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Abstract

Although clustering problems are in general NP-hard, many research efforts have been put
in the areas of OODB and RDBMS. With the increasing popularity of XML, researchers have
been focusing on various XML data management including query processing and optimization.
However, the clustering issues have been disregarded in all their work. This paper provides a
preliminary study on data clustering for optimizing XML databases. Different clustering schemes
are compared through a set of extensive experiments.



1 Introduction

In recent years, XML [2] has become one of the dominant data representation languages. While the
reasons for its success are not immediately clear, it is likely that XML'’s ability to represent relatively
unstructured data has played a key role in its success. Relational databases have dominated database
research for the past thirty years, but the success of XML has highlighted that its restrictive data model
does pose some real world problems. In spite of these difficulties, attempts have been made to merge
RDBMS systems with the data model of XML, by overlaying XML upon existing relational databases,
e.g. [7]. However, it has been shown that the performance of such systems is beaten by native XML
databases in many cases [18].

Numerous native XML and semi-structured databases have been developed over the past decade,
e.g., [11,15]. As XML query languages standardize, we expect their popularity to increase. For such
database systems to gain widespread acceptance, however, their performance must be notably better
than relational databases. These databases share many similarities with the object oriented databases
popular in the early 1990s, although their simpler data model should make their task considerably
easier. In spite of this research, to the best of the authors’ knowledge, the effect of clustering, a
well-researched OODB topic, upon XML and semi-structured databases has never been investigated.
Research into OODB clustering techniques has shown that effective clustering can improve the perfor-
mance of some OODBs by up to several hundred percent [4]. Apart from the obvious effect on the
number of disk accesses, clustering related objects together yields other performance improvements.
For instance, better locality of reference can improve locking contention in highly concurrent systems.
It could be expected that clustering would have a similar effect on XML databases.

Figure 1: A sample XML database

As an example of the potential effect of clustering, consider the database shown in Figure 1. A
typical XML database may load the data in using a SAX parser, and hence the nodes would be clustered
in the order indicated by the dashed arrow. However, suppose we run the XPath query / a/ d/ / * over
this database. If the nodes were clustered in the order indicated by the solid arrow, it is clear that the
average distance between consecutive nodes is smaller, because nodes which are not accessed by the
query are stored in another part of the database. More dramatic improvements could be anticipated for
real world database systems, which very often have large portions that are rarely queried.

While XML databases have many similarities to traditional object oriented databases, there are
some differences which mean that OODB clustering strategies may not be utilized directly, or can be
improved upon. The most important difference is that XML is ordered, whereas in object databases



unordered sets of objects are common. This difference is particularly crucial as the most popular query
languages for XML, XPath and XML Query [2,6, 17], both deal with ordered queries explicitly. Thus,
it is important that any clustering strategy takes into account the relative order between objects in the
database.

A second significant difference is that XML databases store trees of objects, whereas object
databases store general graphs. We note that the use of | D and | DREF types in a DTD allows the
XML data model to represent general graphs; however, this is a second-class feature of XML in the
sense that it is rarely seen in practice, and requires additional effort to use. Thus, ignoring the presence
of | Ds, we expect that many of the algorithms designed for object oriented databases could possibly be
made considerably simpler, by restricting them to the case where the data is a tree.

In this paper, we present several alternative clustering strategies, and test their effectiveness in
a simple native XML database system. We show that clustering does indeed have a positive effect on
overall query time, and hence further research in this area would be useful. Section 2 covers the plethora
of related work from OODB research. Section 3 lists five different proposed clustering strategies of
varying degrees of complexity and characteristics, and some of which are adapted from object oriented
clustering strategies. Section 4 presents our experimental results, and finally Section 5 concludes the

paper.

2 Related Work

Clustering has been thoroughly investigated in both relational and object oriented databases. Rela-
tional clustering is relatively simple; generally, the clustering is performed along one or more attributes
of the relation. If a single attribute is used, then the standard structure is a B-tree or one of its many
variants. Multi-dimensional clustering is a little more involved, but there are well known data struc-
tures which perform quite well, such as the R-tree and its variants. A good survey of classic multi-
dimensional access schemes is [8]. Relational clustering is not particularly relevant to XML database
clustering, due to the fact that access patterns are considerably simpler.

OODB clustering is a far more difficult and well-researched problem. Given that XML databases
can be thought of as fairly simple object oriented databases, it is clear that OODB clustering should
be very applicable to XML databases. Generally speaking, the research into OODB clustering can be
classified into static and dynamic strategies. While all static strategies are offline, dynamic strategies
can be further partitioned into offline and online strategies.

2.1 Static Offline Clustering

Static schemes perform clustering using information available at database design time only, such
as schema and type information. These schemes are typically very simple, and hence the clustering
schemes of most commercial OODB:s fall into this category. Unfortunately, due to their simplicity,
there are many situations where they have only a negligible impact on performance, because they do
not take advantage of any additional structure found in the database.

As mentioned above, many commercial databases employ simple static clustering schemes. Gem-
Stone [14], one of the first object oriented databases, provides the most trivial possible clustering algo-
rithm, by allowing the user to specify which segment, which is simply a group of pages, of the database
an object is to belong. Clearly, the fact that this algorithm is not automated imposes a significant burden
on the developer of the database.

ObijectStore [13] provides another simple scheme, through the use of placement hints specified by
the user. In practice, however, placement hints can sometimes have an only negligible impact on system
performance. More importantly, placement hints can only be used at object creation time; this means



that it is not possible to have a re-clustering tool for the database, because any information the user
specified is meaningless after creation.

The O, database system [16] uses placement trees. When the database schema is unrolled, place-
ment trees correspond to sub-trees in this schema. Objects whose type lie in the placement tree are
clustered together. This is a powerful technique, but suffers from the significant drawback that human
intervention is required to carefully specify the placement trees to be used.

The ORION database [12] provides another simple scheme: all objects of the same type are clus-
tered together into the same database segment. The user may additionally specify whether two classes
should be grouped into the same segment. Needless to say, this simplistic scheme also suffers from the
same problems that the other commercial solutions suffer from.

2.2 Dynamic Offline Clustering

Dynamic offline clustering methods address the most serious problem with static clustering meth-
ods by taking advantage of patterns in the actual data to be clustered. Generally, this is done by
maintaining some sort of statistical summary of object accesses. In practice, dynamic offline algo-
rithms are particularly attractive, because whilst they adapt to the changing topology of the database,
they do not generally impose a continuous overhead upon the normal operation of the database, as
online algorithms do. Nevertheless, in some situations it is not possible to take the database offline
for the significant periods of time the re-clustering process can take. Additionally, frequent updates to
the database which occur between re-clusterings can negate any benefit that the re-clustering may have
resulted in.

The first dynamic offline clustering scheme to be considered was that of Yue [22], who proved
that the obvious clustering scheme based on decreasing probability of access was optimal under the
assumption that accesses are independent and identically distributed. Of course, it has been made
patently clear over the years that in real world databases systems accesses are very much correlated,
and hence this scheme is generally sub-optimal in practice, sometimes by a significant degree.

So far, all of the commercial solutions have been static. The Cactis database [10] instead used
a dynamic algorithm. Like most dynamic algorithms, the Cactis algorithm maintains a count of the
references to each object, and the coreferences between every two objects. It then uses this information
to periodically perform an offline re-clustering of the database, using a simple greedy algorithm. The
advantages of a dynamic strategy are obvious; unfortunately, the storage overhead required for the
statistical information is relatively high.

Cheng and Hurston proposed the leveled clustering algorithm [5]. Again, this algorithm takes as
input the references and coreferences maintained as in previous algorithms. The algorithm is different
from other clustering algorithms in that it considers a leveled clustering scheme, which takes advantage
of the hierarchical nature of many OODBs. The algorithm also has the ability to work on segments of
contiguous data.

The most effective dynamic clustering algorithm is stochastic clustering, proposed by Tsangaris
and Naughton [19]. They model the clustering problem as a graph partitioning problem (where the
graph is based on the reference and coreference information), which is NP-complete. They employ a
heuristic method to find a good partitioning of this database. Unfortunately, the best heuristics have
quadratic or worse time complexities; given that clustering can be performed on huge databases, this is
unacceptable.

To alleviate this problem, a simpler partition-based approach was proposed by Gerlhof [3]. The idea
is very similar to that of stochastic clustering, but a much simpler heuristic algorithm is employed. The
experimental results of [3] show that this clustering strategy produces excellent results with relatively
little time spent. Gerlhof’s work also statically analyzes queries to infer possible clustering strategies.

Another clustering technique of significant interest to XML clustering is that of Banerjee et al [1],



which studies the problem of clustering directed acyclic graphs, a category into which XML data clearly
falls. The paper describes three traversal methods of DAGs, including the two traditional depth-first
and breadth-first traversals, and examines the effect of clustering using these traversals.

2.3 Online Clustering

Online clustering algorithms generally build upon offline algorithms, by adding an incremental
maintenance scheme. Wang [20] studies the problem of determining how to perform dynamic cluster-
ing, by considering various simple models of database activity. He offers several practical improve-
ments which may mitigate the general performance hit of dynamic clustering. Nevertheless, even with
this improvements dynamic clustering remains expensive.

Mclver and King [21] propose a framework for online clustering, which divides the process into
three components: the Statistics Collector, the Cluster Analyzer, and the Reorganizer, the functions
of which should be obvious. Their clustering mechanism keeps track of the number of references to
objects and coreferences between objects. Additionally, a distinction is made between navigational
accesses (i.e., scanning a set of objects) and materialization accesses (i.e., accessing an object and all
of its sub-objects). In the first case, the objects are sorted in a breadth-first traversal, in the second case,
in a depth-first traversal. We will in fact make use of a similar scheme in the algorithm of Section 3.3.
In addition to this basic clustering scheme (which is in fact offline), they use a simple analysis to
determine whether it is worthwhile to re-cluster using the new scheme. The dynamic clustering is
performed using triggers.

In practice, online clustering schemes are extremely difficult to implement in such a way that they
actually provide a positive benefit. As there has been no work in offline clustering algorithms for XML,
we instead choose to focus on these, and leave online clustering algorithms as an open, but difficult,
research problem.

3 Proposed Clustering Strategies

This section proposes several clustering strategies that are based on the availability of different
database information, e.g., query statistics or schema information.

3.1 Scheme A: Hybrid Breadth-Search Clustering

Our first static clustering scheme is based on observations of real world XML documents such
as MEDLINE and DBLP. The vast majority of large XML documents tend to have a very structured
model, with a very broad breadth and shallow depth. In fact, many XML documents can easily be
visualized as a large relational database; the key advantage to using XML in these cases is that each
record has a high degree of irregularity. As an example of this phenomenon, DBLP is only five levels
deep, but contains more than 300000 records (in fact, the vast majority of these records are only two
levels deep). Therefore, we can expect that the number of children of each node is generally quite high.

As a result of the pseudo-relational nature of many XML documents, a possibly effective clustering
scheme is to cluster in breadth-first order. The effectiveness of this strategy is predicated upon the as-
sumption that the data is accessed like a relational database, with many horizontal scans of the records.
However, we expect breadth-first clustering will tend to slow down materialization queries, such as
/1 *, which will typically be executed when printing out portions of the database.

Figure 2 shows the order of traversal used by our clustering scheme. The arrows indicate the order
in which the nodes are rearranged. Note that we do not use an actual breadth-first based ordering
of nodes, but instead a hybrid between pre-order (document order) and breadth-first based ordering of
nodes. We believe this strategy can perform well for fetching nodes that are closer to bottom of the tree,
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Figure 2: Static hybrid breadth-search based clustering of XML an database

without sacrificing too much for depth-based traversals. We also generally expect that when horizontal
scans are performed, they will only be performed on the set of all children of a node, instead of the
set of all nodes at a particular level. Hence, by grouping children together, instead of entire levels, we
strike a balance between navigational and materialization accesses. The pseudo code for re-clustering
the database using this strategy is described in Algorithm 1.

We suggest that there are two types of XML databases: document-centric and data-centric
databases. This scheme is designed to work well with some data-centric databases, in particular,
databases which have some properties of relational data.

Algorithm 1 Re-clustering of a database D, into a new ordered set Dy based on hybrid breadth-depth
based ordering

HYBRI D- ORDER- RECURSE( n)

1 C «+ CHI LDREN(n) (in document order)

2 D+C

3 for ¢ € C do(in document order)

4  APPEND(D, HYBRI D- ORDER- RECURSE(c))
5 end for

6 returnD

HYBRI D- ORDER- RECLUSTER( D)
1 DQ — (Z)
2 APPEND(D,, ROOT (D))
3 APPEND(D,, HYBRI D- ORDER- RECURSE(ROOT (D )))

3.2 Scheme B: Document-order Based Clustering

This clustering scheme is designed based on the requirements of current XML query languages
such as XPath 2.0 and XML Query, where the result node set must be in document order. Thus, we
might expect that a sensible approach for the query processor to return node sets in document order is



to actually search through the document in document order.

Of course, if there were indexing support for document order built in to the database system, or
the queries executed rely on other properties of the data (for instance, searching for records with an
element whose numerical value lies within some range), then clustering in document order may not be
the most efficient way of ordering. As mentioned earlier, we categorize XML databases into document-
centric and data-centric databases. While in the latter case many queries will have access patterns not
corresponding to document order, we expect that in the former case document order will be heavily
relied upon. Even in the event that queries are executed on document-centric databases which do not
follow document order, it is likely that the results of these queries will have to be materialized in
document order. We propose that, in lieu of any further information, clustering an XML database in
document ordering is a good default choice.

Order of nodes on pages

1
1,2,5,10
2
11,3,6,7
3
recluster nodes in 8,12,13,14
docunent order
4
Order of reclustered nodes 4
=[1, 2, 5, 10, 11, 3,
6, 7, 8, 12, 13, 14, 4]

Figure 3: Static document order based clustering of XML database

Figure 3 shows how a small database is rearranged in document order and how they are loaded
on pages, assuming each page stores four objects. This clustering scheme is particularly effective at
speeding up queries which contain the descendant operator (/ /). The pseudo code for the database
into document order is given by Algorithm 3.2.

3.3 Scheme C: Schema-based Dynamic Clustering

The last two clustering schemes were both static, in the sense that they did not adapt to the query
workload of the database. Our next algorithm is inspired by Mclver and King’s dynamic use of breadth-
first and depth-first traversals [21]. Their algorithm keeps track of two quantities, heat and tension.
The heat of an object is the number of references made to it, and hence is a measure of that object’s
popularity. The tension is the number of co-references made navigating from one object to another, and
measures the correlation between accesses to different objects.

The novel insight of Mclver and King was to split the heat metric into two values, the navigational
heat and the materialization heat. Navigational heat measured the references that were made to an
object during a navigation-like query, such as a scan over a set of objects. Materialization heat measured
the references that were made to an object during a query which accessed an object and all of its sub-



Algorithm 2 Re-clustering of a database D into a new ordered set D, based on document ordering

DOC- ORDER- RECURSE( 1)
1 D+ 0
2 APPEND(D, n)
3 for ¢ € CH LDREN(D) do (in document order)
4 APPEND(D, DOC- ORDER- RECURSE(c))

DOC- ORDER- RECLUSTER( D4)
5 end for
6 returnD

/pl X
title / \
act act

. = . =\
title scene title scene scene
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title title title

Figure 4: A small XML database

objects (for instance, to print the object on screen). Using these two different quantities, their algorithm
then clustered the children of each object as follows: if the navigational heat was greater than the
materialization heat, a breadth-first traversal of the children was used, otherwise, a depth-first traversal
was used.

It could be expected that this OODB clustering algorithm will work quite well on XML databases,
due to the nature of XML query languages. Most XML query languages, such as XPath, are built
upon the concept of root-to-leaf path navigation. Hence, one expects that at each level of the data tree,
depending on the type of query, either breadth-first or depth-first traversals will dominate. For instance,
consider the sample XML database of Figure 4. If we executed the query / pl ay/ act//titl e over
this database, then a traditional top-down XPath processor would perform a breadth-first traversal of
the second level, and a depth-first traversal of all the sub-children of the act node.

Of course, Mclver’s algorithm has one particularly significant disadvantage: we must store a refer-
ence count for each node and edge. This overhead is typical of virtually all OODB dynamic clustering
algorithms. We can alleviate this to a significant degree in an XML database due to the properties
of real world XML data. We make the assumption that elements of an XML document which share
the same “type” will most likely be accessed in similar ways. Hence, if we only store the relevant
information per type, instead of per node, then we should be able to render the storage overhead of the
clustering algorithm insignificant, whilst maintaining a reasonable degree of optimality.

While DTDs provide a standard method of defining types, much of the interest in XML data in-
volves untyped documents, in which case type information must be inferred. To handle this case, we
will make use of DataGuides [9], which provide a structural summary that can be efficiently computed
and stored. A particularly appealing property of a DataGuide is that they mesh well with simple regu-
lar path expressions, whose navigation axes correspond to traversal of the DataGuide. Thus, we expect
that if the statistical information is stored per DataGuide node instead of per database node, the loss



in accuracy should be minimal, due to the fact that access patterns should remain relatively constant
across the target set of a DataGuide node.

For each node of the DataGuide, our algorithm maintains a reference count, which is incremented
every time an object in the target set of that node is accessed. We do not store coreference information,
for several reasons. Firstly, in an XML database there are typically only a few access paths that can
be taken from a node; this contrasts with OODBs where access paths can be far richer. As we are
restricting our statistics to DataGuide nodes only, this is made even worse by the fact that sibling
information is essentially lost. Hence, we do not expect that maintaining coreference information
would add much accuracy to the algorithm.

To perform our re-clustering pass, we traverse the database in a single pass, beginning with the
root node. We maintain a queue of nodes to visit; for each node, we examine its direct children,
through whichever access paths the database implementation supports. We sort these nodes by the
reference count of their DataGuide node, with ties broken by favoring depth-first traversals (such as
accessing child nodes) over breadth-first traversals (such as accessing sibling nodes). We favor depth-
first traversals because we expect these to occur more frequently in practice, however, we also do not
believe that this choice substantially affects the performance of the algorithm.

Algorithm 3 Re-clustering a database D; into an ordered set Ds using the schema based dynamic
clustering algorithm.

DYNAM C- SCHEMA- RECLUSTER( D)
1 DQ $— @
Q<+
APPEND(Q, ROOT(D1))
while @ # 0 do
n < REMOVE- FI RST(Q)
C + CHI LDREN(n)
Sort C by decreasi ng DataCGui de node
reference count
8 c¢1 < REMOVE- FI RST(C)
9 APPEND(Dy, 1)
10 APPEND(Q, C)
11 end while
12 return Dy

No o~ wWDN

Our algorithm is given in pseudo-code in Algorithm 3. At each step of the algorithm, the most
expensive step is the sort. However, as we expect the number of nodes to be sorted to be very small,
this step can be regarded as constant time. Hence, the entire algorithm runs in approximately one linear
pass over the database, which is the best that can be hoped for.

3.4 Scheme D: Schema-based Static Clustering

The previous scheme was a dynamic clustering strategy which took advantage of schema informa-
tion such as a DataGuide. In this scheme, we consider a static clustering strategy which takes advantage
of schema information. While we cannot expect it to be as accurate as the previous scheme, we can
expect the scheme to be considerably easier to implement, and faster to run. The scheme clusters the
database by clustering by DataGuide type.

We assume each DataGuide node keeps a count of the number of nodes in its target set (this in-
formation is trivial to maintain). The algorithm proceeds by picking the DataGuide node that has the
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highest count of corresponding document nodes. For each DataGuide node, we cluster its target set
by document order. Hence, the nodes are clustered in a hierarchy of clusters: at the top level, they are
clustered by type, and then clustered by document order. Thus, this algorithm is an adaptation of the
ORION database’s clustering strategy [12] to ordered XML. This approach differs from the previous
two static clustering strategies in that it assumes, like the previous schema algorithm, that access pat-
terns for XML nodes remain approximately the same for all nodes of the same type. The algorithm is
described by Algorithm 4.

Algorithm 4 Re-clustering of a database D, into a new ordered set D, based on static schema-based
clustering

CLUSTER- DATAGUI DE- NODES()

D«

for n € DATAGUI DE- NODES() do

(sorted in decreasing order of access frequency)
3 8§+ TARCET- SET(n)

4  APPEND(D, DOC- ORDER- RECLUSTER(S))
5

6

N B

end for
return D

CLUSTER- OTHER- NODES( S)
1 V «+ ALL- NODES- | N- DATABASK()
2 D+«V-S§
3 S + DOC- ORDER- RECLUSTER(D)
4 returnS

RECLUSTER()
1 D + CLUSTER- DATAGUI DE- NODES()
1 S« CLUSTER- OTHER- NODES()
1 APPEND(D, S)
2 returnD

3.5 Scheme E: Clustering based on Access Patterns

The previous dynamic clustering scheme in section 3.3 made approximations based on assumptions
about standard XML query access patterns. In this approach, we remove these assumptions, and instead
process data about access patterns directly. We store information from the most popular database
queries and recluster the database system periodically, in order to optimize it for these popular queries.
In between reclustering runs, we store the access paths of all queries. An example of this information
follows:

firstchild 2 ->
firstchild 3 ->
firstchild 4 ->
firstchild 7 ->
next 9 -> 28
next 28 -> 42

O NP w
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Figure 5: Clustering based on the node access paths

next 42 -> 72

parent 79298 -> 7
parent 7 -> 4

Clustering is then performed based on the frequencies of the access paths appearing in the access
log (above), which can be visualized as a graph as shown in Figure 5, with the nodes of the graph being
the nodes in the database, and the edges of the graph annotated with their access frequencies. In the
figure, we assume each page can hold at most three nodes; if this is the case, then for the access patterns
given, the following clustering is optimal according to most of the OODB clustering schemes [3]: {{1,
3,5}, {8}, {9, 10, 11}}. Although this has proved to be effective on object databases, this clustering
scheme is extremely expensive unless heuristics are employed.

In order to cluster vast amounts of XML data in a very short time, we simply partition the nodes by
their access frequencies. Note that this has been proved to be optimal for database with independent and
identically distributed accesses [22]. To compute the frequencies from the access log file efficiently, we
combine the following steps and perform them at the same. First, let us assume the links in the access
log denoted as (z,y); (i.e., the i-th entry is operation x - > y) and each page can hold P nodes.

1. Swap z and y if necessary so that z < y.

2. Sort the access log by (z,y), so that (z;,v;) < (z;,y;) if and only if either z; < z; or z; = z;
and y; < y;.

3. Scan the access log, merging duplicates by computing the frequencies of their occurrences (note
that this can be performed at the same time with step 1 and 2 above).

4. Partition the nodes into pages of P nodes each based on their frequencies, using a simple greedy
algorithm.

One aspect of this method is that we treated the graph as an undirected graph, even though the
access paths are directed. Our reason for doing so is that, in terms of clustering, it makes little differ-
ence whether node A accesses node B or vice-versa; we are instead interested in the total number of
coreferences between A and B.

We demonstrate our technique on the example of Figure 5. After the first two steps, the frequency
table looks like:

12



xy freqg xy freqg
37 60 37 60
7 3 60 37 60
3 5 100 3 5 100
57 100 57 100
95 30 ==> 59 30
59 5 59 5

5 10 10 5 10 10
9 10 200 9 10 200

After the log is sorted and frequencies are calculated, the summarized log will look like this:

x y freq 9

9 10 200 10

3 7 120 3

3 5 100 ==> 7

5 7 100 5

10 11 100 10

As described above, once we have this data we use a simple greedy algorithm to partition the
nodes into pages. We note that, as proved in [22] under the assumption of i.i.d. accesses, this scheme
is optimal under an LRU buffer management scheme. Since most operating systems and database
systems use algorithms very similar to LRU for their buffer management, grouping nodes with high
access frequencies together is likely to increase the effectiveness of LRU.

4 Experimental Results

We performed our experiments on a dual Pentium 11l 750MHz box with 256MB memory and a
50 GB 7200 rpm SCSI hard-drive. In order to increase the number of page swaps performed in the
database kernel (so as to simulate very large databases, where we expect the effect of clustering to be
greatest), we set the cache size to 1000 pages, where each page holds 8 kilobytes of data. Therefore,
the experiment was effectively performed on a machine with 8 megabytes of memory.

For our experimental database, we used a cut-down version of the DBLP database, which had
50000 bibliographic records. The experiment was performed using the native XML database SODA4
from Soda Technologies (http://www.sodatech.com). However, we stress that none of our clustering
approaches are tied to any particular implementation of query processors or database systems, and
hence they will work equally well on other XML database implementations. To ensure that we were
only measuring the effect of clustering, we turned off all database indices. We expect that our clustering
schemes will work for databases with various indexing schemes, and even XML persistent repositories
based on memory-mapped approaches which do not have any fast indexing, such as Java serialization
of XML objects.

The data was first loaded into an empty database with a SAX-based XML parser, such that the
XML data was stored according to the order of how the SAX-based parser performed the parsing, that
is, as a pre-order traversal. However, most database repositories will generate and store some auxiliary
information such as statistics, indexes or schema information. Therefore, the data nodes may not be
physically stored adjacent to each other according to the document order. The query results for Raw in
Table 1 and also in Figure 6 are obtained using this typical way of storing XML data.
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Different queries, as described below, were then sent to and processed by the database system. The
following shows some of the queries and their processing time according to the different clustering
schemes. In particular, queries two through six were among the popular queries and were cached for
use by two of our proposed clustering schemes (C and E), while the other schemes (A, B and D)
clustered the data based on the schema and data distribution of the database.

Query 1 Find all the publications (Size of the answer: 50,000 records).
/ dbl p/ *

Query 2 Find all the articles (Size of the answer: 533 records).
[ dbl p/article
Query 3 Find the first 100 publications (Size of the answer: 100 records).

[ dbl p/*[position() >= 1 and
position() <= 100]

Query 4 Find all publications published by Springer between 1998 and 2002 (Size of the answer: 250
records).

[ dbl p/ *[ publ i sher =" Spri nger’
][year >= 1998 and year <= 2002]

Query 5 Find all publications authored by Hector Garcia-Molina (Size of the answer: 14 records).
[ dbl p/ *[ aut hor =" Hector Garci a- Molina’]

Query 6 Find all the co-authors (with duplicates) published with Hector Garcia-Molina (Size of the
answer: 27 records).

/ dbl p/ *[ aut hor =" Hect or Gar ci a- Mol i na’
]/author[.!="Hector Garcia-Mlina']

Query 7 Find any school/institution information (if available) that is recorded in the database (Size of
the answer: 77 records).

/ ] school

Processing of any descendant queries such as the one shown above without any database indexes
will naturally involve traversing all descendant nodes of the context node. Since the context node
of the above query is the root node, all nodes would basically need to be visited. This explains
why this is the most expensive query among the others as shown in Figure 6. Due to the fact that
all objects were needed to be visited in this query, our proposed clustering schemes are relatively
less effective (compared to that in the other 6 queries). However, the overall number of pages can
still be reduced by clustering all related objects into the same page, and hence it is still better to
cluster instead of storing the data in an arbitrary order (including the SAX-based style of storage
as mentioned earlier).
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Time | A [Time| A |[Time| A [Time| A |[Time| A [Time| A
Q1| 347 | 100 | 034 |10.21 | 0.68 | 510 | 0.37 |9.38 | 0.70 | 496 | 0.21 | 16.5
Q21| 387 |[100| 043 | 900 | 089 [435| 040 |9.68 | 0.89 |435 | 041 |9.43
Q3| 4.65 | 1.00 | 0.66 7.04 1.13 | 412 | 066 | 7.05 | 1.15 |4.04 | 0.67 | 6.94
Q4 | 10.77 | 1.00 | 4.48 2.40 504 | 214 | 426 | 253 | 5.00 | 215 | 413 | 261
Q51 993 | 1.00 | 5.77 1.72 6.37 | 156 | 589 | 169 | 6.33 | 157 | 413 | 2.40
Q6 || 10.10 | 1.00 | 5.80 1.74 640 | 158 | 594 |1.70 | 6.37 | 159 | 416 | 2.43
Q7 || 17.24 | 1.00 | 12.19 | 141 | 1287 | 1.34 | 1237 | 1.39 | 12.74 | 1.35 | 12.66 | 1.36

Table 1: Detailed results
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Figure 6 and Table 1 shows the performance of different clustering schemes. As shown in our ex-
perimental results, all of our clustering algorithms had improved the overall performance of each query
over the typical data arrangement scheme (i.e., Raw). In particular, Scheme E performed significantly
better than the other clustering schemes on some queries. This is due to the fact that it uses substan-
tially more data than the other schemes to perform its clustering, and hence can produce considerably
more accurate results. However, on simple queries, it is interesting to note that the relative difference
between the clustering schemes is much less, which indicates that the assumptions made by the simpler
static clustering schemes are appropriate for primitive XML queries.

Apart from Scheme E, the most consistent performer was Scheme C. Recall that the main assump-
tion that this clustering scheme made was that access patterns remained the same for nodes which had
the same DataGuide node. It is clear from our experimental results that this assumption seems to hold
fairly well in practical queries. It is particularly interesting to note that Queries 4 and 5, where Scheme
E comfortably beat Scheme C, are queries which do not just access structural information, but also
data values (the author’s name). This is exactly the kind of access path which Scheme C’s assumption
implicitly ignores.

The other three schemes used had relatively similar performance on all queries. This is somewhat
surprising, as we expected the document ordering scheme (Scheme B) to outperform the other two
simple static clustering strategies. Nevertheless, as can be seen from our results, the other two static
schemes both consistently out-performed document ordering.

5 Conclusion

While clustering has been a well-researched topic in object oriented databases, there has not as
yet been a transfer of knowledge into the relatively simpler domain of XML databases. In this paper,
we have adapted some of the standard OODB clustering techniques to XML databases. We have
investigated the applicability of various assumptions about standard access paths in XML.

We have shown that clustering has a dramatic effect on essentially all queries. Just as with OODB
clustering, partitioning-based clustering (Scheme E) can perform dramatically better than other, simpler
schemes, particularly as query complexity increases. On the other hand, as in OODBSs, partitioning-
based algorithms require substantially more data to achieve accurate results.

If the storage overhead required to run partitioning-based strategies is excessive , we have shown
that by making some simple assumptions about XML access methods, we can adapt these schemes
to achieve very respectable performance (e.g., Scheme C). We suspect that in practice it will be these
schemes that are used, as the amount of data required for the re-clustering pass is an order of magnitude
less than for the full partitioning-based strategies.

There are still many open questions left in this research area. Of most pressing interest is the effect
of clustering on very complex queries, written in languages such as XQuery. Gathering empirical
evidence in this case will be significantly more challenging, due to the fact that evaluating such queries
will generally have to involve sophisticated query optimization plans. Another research area we intend
to investigate is the use of dynamic online clustering algorithms to continuously adapt the database to
its query workload.
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