
Adaptive Change Management for Semi-structured Data

Raymond K. Wong Nicole Lam
School of Computer Science & Engineering

University of New South Wales
Sydney 2052, Australia

wong@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-0314

June 2003

SCHOOL OF COMPUTER SCIENCE & ENGINEERING
THE UNIVERSITY OF NEW SOUTH WALES

1

Abstract

This paper presents an efficient content-based version management system for managing XML
documents. Our proposed system uses complete deltas for the logical representation of document
versions. This logical representation is coupled with an efficient storage policy for version retrieval
and insertion. Our storage policy includes the conditional storage of complete document versions
(depending on the proportion of the document that was changed). Based on the performance mea-
sure from experiments, adaptive scheme based on non-linear regression is proposed. Furthermore,
we define a mapping between forwards and backwards deltas in order to improve the performance
of the system, in terms of both space and time.

2

1 Introduction

With the increasing popularity of storing content on the WWW and intranet in XML form, there arises
the need for the control and management of this data. As this data is constantly evolving, users want
to be able to query previous versions, query changes in documents, as well as to retrieve a particular
document version efficiently.

A possible solution to the version management of data would be to store each complete version of
data in the system. Although this would maintain a history of the data stored on the system so far, the
performance of such a system would be poor. This leads to the use of change detection mechanisms
to identify the differences between data versions. The storage of these differences may provide an
increased performance of the system, especially in relation to its space requirements.

Traditional change detection systems which computed the differences between two documents
(such as GNU diff) were based on a line-by-line comparison. This was appropriate for flat textual
files but cannot be extended to handle semistructured data, such as XML documents.

Change detection algorithms have been proposed by [4] and [8]. In each case, the algorithm utilises
the concept of persistent identifiers and node signatures in order to find matchings between nodes of
the 2 input documents. We adopt a similar approach. An alternative solution to the change detection
problem is via object referencing as suggested by [2].

Marian et. al. [5] developed a change-centric method for version management, which is similar
to our approach. In [5], the system stores the last version of a document and the sequence of forward
completed deltas. In contrast to the approach by [5], we also store intermediate complete versions
of the document. A disadvantage of [5] is: if we have already stored 100 versions of a document,
retrieving the 3rd version would involve applying 97 deltas to the curent version - a very inefficient
process. On the other hand, by storing intermediate versions, our system is likely to result in a more
efficient retrieval of the 3rd version (for example, by working forward from the initial version).

In this paper, we present an adaptive selection scheme between forward and backward deltas for an
efficient content-based version management system that have been previously proposed in [10]. The
system is primarily designed for managing and querying changes on XML documents based on update
logging. The proposed system uses complete deltas for the logical representation of document versions.
Our storage policy includes the conditional storage of complete document versions (depending on the
proportion of the document that was changed). Furthermore, we define a mapping between forwards
and backwards deltas in order to improve the performance of the system, in terms of both space and
time. We also adapt a set of basic edit operations, which provide the necessary semantics to describe the
changes between documents, from our previous work regarding the extensions of XQL with a useful
set of update operations [9]. Although these operations are based on XQL, since they are designed and
implemented based on regular path expressions, they can easily be extended as other query languages
such as XPath or XQuery.

Finally we discuss the query mechanisms to facilitate meaningful queries to our proposed version
management system, The mechanisms behind querying previous versions of data (such as a document)
are greatly dependant on the logical and physical model of the version management system in ques-
tion. That is, it is impossible to explore query mechanisms of a version management system without
considering the context in which previous versions of data are stored in the system.

Our intended Version Management System allows for content-based change detection, which en-
ables content-based queries in relation to changes in documents. Our system provides performance
efficiency by constructing a given version from one of the intermediate complete versions rather than
from the current version only, as suggested in [5]. Furthermore, we provide a mapping between back-
wards and forward deltas, hence reducing the space requirements for the system. The prototype of our
proposed Version Management System has been integrated with a native XML database system called
SODA3 that is available at [7].

3

The rest of the paper is organised as follows. Section 2 describes the design of our proposed
system. Section 3 details the basic edit operations and version insertion and retrieval. This is followed
by Section 4 containing some of the pseudo code of our system to illustrate the algorithms used. Section
5 presents the adaptive parameters that are used to tune the performance of the proposed system and
Section 6 estimates its adaptivity. We then provide the performance results from experiments at Section
7 and Section 8 summarizes the query mechanisms that supports querying of changes. Finally Section
9 concludes the paper.

2 System Model

This section defines a system model for version management. The logical model of the system
consists of the representation of intermediate versions similar to the notion of Complete Deltas in the
style of [5]. Different from [5], we here define an efficient storage policy for the document versions
to reduce the storage requirements of the system. The system also maintains the time at which the
document was loaded into the system in order to perform time related queries on this data.

2.1 Complete Deltas

Our proposed system uses the concept of Complete Deltas to store the different versions of a docu-
ment in the database. That is, instead of storing the complete versions of all documents in the system,
we chose to represent only the differences between versions to conserve storage space.

The Complete Deltas used here are representations of the differences between versions. They are
termed ’Complete’ as it is possible, given two versions,

���
and

���
and their Complete Delta � ��� �

to
reconstruct either document version. That is, given

� �
and � ��� �

, we can reconstruct
� �

; and given
� �

and � ��� �
, we can reconstruct

�	�
.

2.2 Storage Policy

We define an efficient storage policy for our proposed system. Suppose there are many differences
between two versions of a document, it may be more efficient to store the complete version of the more
recent document, rather than storing the large complete delta. This is the intuition behind the storage
policy defined.

Depending on the relative size of a complete delta, as compared to the complete document version,
we either store the complete delta or the complete version. This reduces the storage requirements of
the system significantly. However, due to this unconventional storage policy, there arises the need to
define new query mechanisms in order to efficiently query these document versions.

2.3 Representing Time

We associate with each version of data (i.e. a complete delta or a complete version) a time value,
also called a timestamp. This timstamp represents the time that the version was entered into the system.
This facilitates the processing of time related queries, detailed in the next section.

3 Edit Operations

3.1 Complete Deltas

This paper utilises the concept of deltas, rather than object references [3], or node annotations [1],
as deltas are more intuitive. Firstly, we define a forward (backward) delta to be an edit script that

4

can be applied to a complete version of a document to obtain the next (previous) complete version of
a document. Such deltas are also termed ’lossy’ as, given two versions

� �
and

���
such that f is the

forward delta which can be applied to
� �

to obtain
���

, it is not possible to obtain
� �

from
���

and f.
Similarly for a backward delta. Hence, such deltas contain operations that are not invertable. Next,
we define a complete delta to be an edit script such that there exists a 1 to 1 mapping between the
forward and backward deltas between two versions. Although a lot of redundancy is introduced to the
edit operations in a complete delta, this method is preferred as we argue that complete deltas enable
our system more flexibility and efficiency.

3.2 Edit operations

In addition to the two basic operations: Insert and Delete, there are three more main operations
supported by SODA3 [7]: Update, Move and Copy. Although the Insert and Delete operations are
sufficient to describe the differences between two versions, we find that the three additional operations
provide a more meaningful and intuitive approach to the description of differences.

For simplicity and clarity, we use simple path expressions, in the style of [6], to present the edit
operations of our system, refer to Appendix A for the syntax. In our actual prototype implementation,
we use more complicated, extended XQL expressions as described in [9].

For the insert, delete, move and copy operations, it is necessary to include the element’s final
index as this facilitates the inversion of the operations. The operations also contain some redundant
information (for example the oldvalue in Update operation) so as to aid in the mapping between forward
and backward deltas.

We consider the following operations:

1. Insert: We define three sub-operations under the Insert operation: insertInto, insertBefore,
insertAfter.

insertInto: path!insertInto(
insertedpath) inserts insertedpath as a subtree of path, given that path
has no children.

insertBefore: path!insertBefore(
insertedpath, i) assumes that there exists a subtree, t, rooted at path, such
that t has nodes other than the root. This operation inserts insertedpath before subtree
t, such that it has a final element index i.

insertAfter: path!insertAfter(
insertedpath, i) assumes that there exists a subtree, t, rooted at path, such
that t has nodes other than the root. This operation inserts insertedpath after subtree t
such that it has a final element index i.

2. Delete: This operation is the inverse of the Insert operations. That is, path!delete(x,
elem, isBefore) removes the subtree x (which has nodes other than the root node) rooted
at path. The subtree x is the raw XML that represents the subtree being deleted. Also, elem
is the node that was adjacent to x before it was moved. isBefore identifies if elem is the
left/right neighbour or neither.

We also define path!delete(elem, isBefore) which assumes that path describes a
leaf node and thus removes the leaf node.

3. Update: Intuitively, path!update(newvalue, oldvalue) updates the oldvalue of
path to the newvalue specified. It is necessary to keep track of the oldvalue in order to
invert the operation.

5

4. Move: We define three sub-operations under the Move operation: moveInto,
moveBefore, moveAfter.

(a) dstpath!moveInto(srcpath, elem, boolean)

(b) dstpath!moveBefore(srcpath, elem, boolean, path)

(c) dstpath!moveAfter(srcpath, elem, boolean, path)

We also include extra parameters for these operations to aid in the mapping between backward
and forward deltas. For example, in path!moveAfter(srcpath, origNeighbour,
isBefore, newpath), newpath is the final path of srcpath in its new location. The
parameters for the other move operations are similarly defined.

5. Copy: We define three sub-operations under the Copy operation: copyInto,
copyBefore, copyAfter.

(a) dstpath!copyInto(srcpath)

(b) dstpath!copyBefore(srcpath, index)

(c) dstpath!copyAfter(srcpath, index)

We next define the 1 to 1 function that maps an operation to its inverse:

1. Insert: The in the mappings indicates that the value of that field is irrelevant (as it should
contain redundant information unnecessary in the mapping).

(a) path!insertInto(name/restpath)
�� path/name[0]!delete()

(b) e1/n1[num1]!insertBefore(n2/

restpath, index) �� e1/n2[index]!delete(,)

(c) e1/n1[num1]!insertAfter(n2/

restpath, index) �� e1/n2[index]!delete(,)

2. Delete: To aid in the conversion from a delete operation to insert, we augment the insert opera-
tions (defined above), such that each insert operation can also take as an argument the raw XML
representation of the subtree that is to be inserted (rather than a single path). To invert the delete
operation on attributes, we include as a parameter to the delete operation the attribute’s value.

(a) e1/end!delete(s, n, isBefore)
��

if (isBefore == NULL)
e1!insertInto(s)

else if (isBefore)
e1/n!insertBefore(s,)

else
e1/n!insertAfter(s,)

(b) e1/n1[num1]!delete(n, isBefore)
��

6

if (isBefore == NULL)
e1!insertInto(n1)

else if (isBefore)
e1/n!insertBefore(n1,)

else
e1/n!insertAfter(n1,)

(c) e1/@name!delete(text)
�� e1!insertInto(@name/text)

3. Update: path!update(oldvalue, newvalue)
�� path!update(newvalue, oldvalue)

4. Move:

(a) e1/n1[i1]!moveInto(e2/n2[i2], n, isBefore)
��

if (isBefore == NULL)
e2!moveInto(e1/n1[i1]/n2[i2],

,)
else if (isBefore)

e2/n!moveBefore(e1/n1[i1]/
n2[i2], , ,)

else
e2/n!moveAfter(e1/n1[i1]/
n2[i2], , ,)

(b) e1/n1[i1]!moveBefore(e2/n2[i2], n, isBefore, newpath)
��

if (isBefore == NULL)
e2!moveInto(e1/n2[i2], ,)

else if (isBefore)
e2/n!moveBefore(newpath,

, ,)
else

e2/n!moveAfter(newpath,
, ,)

(c) e1/n1[i1]!moveAfter(e2/n2[i2], n, isBefore, newpath)
��

if (isBefore == NULL)
e2!moveInto(e1/n2[i2], ,)

else if (isBefore)
e2/n!moveBefore(newpath,

, ,)
else

e2/n!moveAfter(newpath,
, ,)

5. Copy:

7

(a) path!copyInto(elem/name[index])
�� path/name[0]!delete()

(b) e1/n1[num1]!copyBefore(e2/

n2[num2], index) �� e1/n2[index]!delete(,)

(c) e1/n1[num1]!copyAfter(e2/

n2[num2], index) �� e1/n2[index]!delete(,)

3.3 Insert a new version

The system stores backwards deltas (as opposed to forward deltas). This was a design decision, as
the type of delta stored by the system is arbitrary. The algorithm presented below will work equally
well with forward deltas stored instead, as we define a function that provides a mapping between the
two. Our implementation shows that the mapping can be done in reasonably low cost, as shown in
Figure 3 later.

Either a backwards delta or a complete version is stored, depending on the number of operations
required to convert between the given versions . This is implemented by specifying an upper bound
which depends on the size of the document. We provide a user defined parameter MAX RATIO such
that, given: �������

���
	���
�������������������� �"!$# %&!('$)+* (1)

where #ops is the number of operations in the delta, and size(document) is the size of the complete
document.

If Eq. (1) is true, then we store the complete version of the document, rather than the delta.

3.4 Retrieve a version

To retrieve a particular version,
	
, we define a method getVersion which finds the 2 complete ver-

sions (
��,

and
�.-

) that bound version
	
. That is, there consist of only deltas between

�/,
and

�.-
,

such that one of the deltas belong to
	
. The method then constructs version

	
by applying the for-

ward/backward deltas, depending on the number of operations each involve. The construction of a
version using backward deltas is favoured in the algorithm, as less computation is required to construct
the version required - we just need to apply the stored delta step-wise on version

� -
. On the other hand,

to work forwards from
� ,

, we have to do extra computation to work out the forward deltas as they are
not explicitly stored in the system. We define a constant FORWARD CONSTANT such that:

�0�0����1 * ���
2 �435�61 * ���87:9 *&%<;=!5%&> ?<*&@BAC'$!5@�' (2)

where
�0�0�D�61 * ��� (

2 �435�61 * ���) is the number of operations required to get from the
� -

(
� ,

) complete
version to the version z.

If Eq. (2) is true, it is more efficient to use
� -

to construct version
	

(using backward deltas).

4 Main Algorithms

In this section, we consider the major parts of the system and present their key algorithms.

global:
currentVersion E 1

8

���
flag to indicate if the complete version of���
(currentVersion - 1) should be stored

storeComplete E false

���
stores the delta between���
(currentVersion - 2) and (currentVersion - 1)

prevDelta E null

���
list of version numbers that have���
their complete versions stored

fullVersion E []

���
hash table or stucture to store the number of���
operations associated with each delta stored

numOp E��

insertNewVersion(File version):
1 delta E version;
2 operations E countOperations(delta);
3 write ’version’ out to disk ;
4 if !storeComplete � !prevDelta :
5 write prevDelta out to disk;
6 delete complete version of ’currentVersion’;
7 prevDelta E null;
8 if operations > MAX RATIO * size(version) :
9 fullVersion.append(currentVersion++);

10 storeComplete E true;
11 else :
12 numOp � currentVersion++ �BE operations;
13 prevDelta E delta;
14 storeComplete E false;

getVersion(int ver):
1 i E complete version closest and � ver
2 prev E complete version closest and � ver
3 uBound E fullVersion[i];
4 lBound E fullVersion[prev];
5 for j E lBound to ver do :
6 lowerOps E lowerOps + numOp � j � ;
7 for k = uBound to ver do :
8 if upperOps > (lowerOps * FORWARD CONSTANT) :
9 break;

10 upperOps E upperOps + numOp � k � ;
11 if upperOps < (lowerOps * FORWARD CONSTANT) :
12 cVersion E complete file, ’uBound’;
13 constructBackwards(uBound, ver, cVersion);
14 else :
15 cVersion E complete file, ’lBound’;
16 contructForwards(lBound, ver);

constructBackwards(int upper, int version, File f):
1 if upper != version :
2 delta E retrieve delta file, ’version’;
3 applyDelta(delta,f);
4 constructBackwards(upper-1, version, f);
5 return;

constructForwards(int lower, int version, File f):
1 if lower != version :

9

2 applyForwardDelta(lower, f);
3 constructForwards(lower+1, version, f);
4 return;

applyForwardDelta(int version, File fileSoFar):
1 backwardDelta E retrieve delta file, ’version’;
2 forwardDelta E convertToForward(backwardDelta);
3 applyDelta(forwardDelta, fileSoFar);
4 return;

applyDelta(File deltaFile, File fileSoFar):
1 for each e � fileSoFar do:
2 apply e to fileSoFar;

convertToForward(File backwardDeltaFile):
1 File forwardDeltaFile;
2 for each e � backwardDeltaFile do :
3 apply rules in Section 2: Edit operations
4 to obtain the inverse of e;
5 store the inverse operation �

�
in

6 reverse order in forwardDeltaFile ;
7 return forwardDeltaFile;

To insert a new version of a document into the system, we firstly process the new version - by
storing it in its entirety into the system. Next, we process the previous version of the document using
Eq. (1). This determines whether the backward delta of the previous version or the complete version
of the document is stored.

For the retrieval of a given version, we have to iterate through the complete versions of the docu-
ment stored in the system, in order to identify the version that can be used to most efficiently reconstruct
the required version. This can be achieved by applying the backward deltas directly to a complete ver-
sion of the document, or inverting the backward deltas and then applying the operations to the complete
version.

We define a function applyDelta which applies the edit operations to its argument file.
convertToForward is a function that converts each operation to its inverse (using the rules de-
fined in Section 3).

5 Adaptive parameters

This section proposes an alternative to the adaptive parameters FORWARD CONSTANT and
MAX RATIO in an attempt to automate the process of version management, without having the user
specify the value of the respective parameters.

5.1 FORWARD CONSTANT

We first consider the parameter FORWARD CONSTANT. We propose another equation which
takes into account the extra computation cost associated with inverting a forward complete delta to a
backward complete delta.

Suppose the total number of operations that have to be performed on a complete document version
stored in the system (using forward deltas) is l, while the total number of operations using backward
deltas is u. The cost (

� � ���
�) of using forward deltas is:

� � ���
��� ' � (3)

10

where ' � represents the cost of performing all l operations on the complete version. We estimate the
cost of ' � using the formula:

' ��� 2��
��� �
� (4)

where i represents the cost of applying an insert operation to a document and d represents the cost of
applying a delete operation to a document. Here, we assume that the time complexity for move (

�
),

update (
�0�

) and copy (
�
) are such that:

� 7 ��� � (5)� 7 � (6)�0� 7 ��� � (7)

This assumption is valid because, for example, if Eq. 5 was not true, we could replace the move
operation to a delete and insert operation to improve the time complexity. Similarly for Eq. 6 and 7.

The cost (
� ��� ���

) of using backward deltas is:
� � �����

�
��� ' � (8)

where '
�

represents the cost of performing all u operations on the complete version. We estimate the
cost of '

�
using the formula:

' � � � �
�	� �
� (9)

Note that in contrast to
��� � �

� ,
� � � �
�

includes an additional u to the cost of retrieval. This is because
the forward complete deltas that are stored explicitly in the system have to be converted to their inverse
(i.e. backward complete deltas). It takes constant time to invert each operation in a complete delta,
hence to invert u operations, it costs u.

Hence, the final cost is � � �����
� � ���

�
�
� �41 �
 ���	�� �

2 � 2
 ���	�� � �
� (10)

The intuition behind the above equation is: if the cost of using backward deltas is higher than the
cost of using forward deltas, it is more efficient to use a forward delta to retrieve the document version.

5.2 MAX RATIO

By analysing the adaptive parameter MAX RATIO, we find that the main issue involves the efficient
retrieval of the version being inserted. The factors that affect whether a complete delta or the complete
version,

��,
of a document is stored in the system include:

1. cost of executing the edit operations, E =
���	�� ;

2. the size of the complete delta, � � , � ;
3. the size of the current version being inserted, � � , � ;
4. the size of the previous complete version stored in the system, � � ,���� � ;
5. number of operations in each complete delta stored in the system, Ops(� �

) ; and

6. total number of operations since the last complete version.

11

Hence, by analysing the costs associated with retrieving version,
� ,

, in the long run, we are able to
identify a meaningful relationship between the factors listed above and whether a complete delta or
document version of

� ,
is stored in the system.

More precisely, we divide the problem into two sections: (i) the cost of retrieving the current version
using forward deltas (?��); and (ii) the cost of retrieving the current version using backward deltas (?��).

Hence, the cost is: � � �
 ?�����?�� �
� � , � �	� 3�
���1 � ���)�@�'
� � � � (11)

This inequality represents the relationship between the cost of version retrieval and the size of the
current complete document version. It indicates that if the cost of version retrieval using complete
deltas is large relative to the size of the actual document, the system should store the complete version
of the document rather than the complete delta. Here, K is a system-defined constant.

Cost to retrieve a version with forward deltas (?��): The cost associated with retrieving a version
using forward deltas (which are stored explicitly in the system) is mainly attributed to the total
number of operations since the last complete version. Hence,

?�� ��� ,��������� * ���+
 � � � ���
(12)

In the above equation, m represents the previous closest complete version stored in the system.

Cost to retrieve a version with backward deltas (?
�): Given that we are currently performing the
version insertion of

� ,
, it would be impossible to determine accurately the cost associated with

retrieving
� ,

using backward deltas. This is because it would involve having some knowledge
of the document versions that are yet to be stored in the system. Hence, the best approach to
determining a cost value would be to approximate the costs associated with retrieval by predicting
the the number of edit operations contained in future complete deltas (Op(����)) to be stored in
the system.

We use nonlinear regression to predict Op(����) on the basis that
��,

is not stored as a complete
version. Hence we are able to identify whether a subsequent document version is stored as a
complete version (using the threshold, T, presented in next section). We consider all subsequent
document versions up to the version specified by the cost equation, such that using backward
complete deltas to retrieve the current version is more efficient than using forward complete
deltas.

Also, as backward deltas are not stored explicitly in the system, we have to consider the extra
computational cost associated with converting a forward complete delta to a backward complete
delta.

?�� �������� , * ���+
 � �� ��� ��� ������ ,
 * ���+
 � �� � ��� �
(13)

In the equation above, k represents the predicted version number which is the closest com-
plete version of the document stored in the system, such that x � k. That is, *

���+
 � �� � 7 ' ,� � ��� �"!#!
%$�& � �(' and *
���+
 �)��

� � ' . Hence, ?�� represents the predicted cost associated with
retrieving

� ,
using backward deltas in an efficient manner.

6 Adaptivity

The adaptivity of the system is defined by a nonlinear regression model detailed in this section.
This model enables the system to operate autonomously, without any user input specifying the value

12

of MAX RATIO. In addition, this model is adaptive in terms of being able to modify its storage plan
based on the version history of the documents that are currently stored in the system. This results in a
highly efficient version management system, especially for the retrieval of a given document version.

By comparing the estimated number of operations in the next delta: Op(� �,) (using nonlinear
regression) with a probability threshold: T, we can predict if the complete version of x will be stored in
the system. These concepts will be presented in this section.

6.1 Nonlinear Regression

We use nonlinear regression to estimate the number of operations in each subsequent delta to be
entered into the system.

* �
 � �- � �
 ! � * �
 � , ��� � � �., � ��� 3�
���1 � ! � � ��? � � (14)

This equation forms the model for the nonlinear regression. We observe that the number of operations
in a subsequent delta is largely dependant on the number of operations in each previous delta stored in
the system, together with the size of each complete version of the document stored in the system. The
equation above contains variables A, B and C that vary independantly. In particular, C represents the
order of the equation. The value of C is adjusted accordingly, based on the percentage error on a given
prediction.

6.1.1 Error

Each prediction of Op(� �-) is verified when version y of the document is loaded into the system
by the user. Hence, it is possible to verify the accuracy of the regression, especially with regard to the
order variable C . Initially, we set the value of C to be 1. However, as the user loads more versions
of the document into the system, the value of C adapts accordingly. This enables a more accurate
equation for regression, and hence provides a more accurate prediction on the number of operations
contained in the subsequent deltas and improves the efficiency of the system.

More specifically, the system allows a minimal error rate before adjusting the value of C in order to
improve performance. For example, if C = 2 and regression has predicted the wrong size of subsequent
deltas for the last 4 out of 5 document versions loaded into the system, we increase the value of C to 3
in an attempt to obtain a more accurate estimate for the size of a delta. Once the error rate converges to
a specific range, we increment the value of C by smaller amounts, as this range is the most appropriate
for regression.

6.2 Threshold

We define a threshold, T, that specifies the maximum probability to store a complete delta in the
system (rather than a complete version) based on the number of edit operations in the deltas currently
stored in the system.

' �
� ,������� ��� 1 � � * �
 � � �

� & � (15)

�
1 �

indicates the probability that the number of operations for a delta stored in the system is equal to
* �
 � � �

. It is based on the version history of the document stored in the system.
From the equations in last section,

2 7 � �

��� �

� � ��� � � (16)

13

We use this equation to limit the number of deltas the system attempts to predict the size of, using
nonlinear regression. Therefore, while the above equation is true, the system estimates the number of
operations in the next delta that is to be stored in the system. This process continues until the estimated
number of edit operations in a subsequent delta exceeds the threshold, T, resulting in a complete version
of the document being stored in the system.

7 Experimental Results

Extensive experiments were performed for collecting the data presented in this section. XML doc-
uments (upto 512,000 nodes per document) were randomly generated with depth upto 20. The exper-
iment was carried out on a dual pentium PC with two Pentium 850MHz processors, 512MB memory,
and a 10,000RPM SCSI harddisk. Each experiment was repeated 20 times with different randomly
generated documents (and the average runtime is then taken). All optional database indexes were dis-
abled throughout the experiment. The corresponding edit operations (with valid path expressions) were
randomly generated for updating the documents in the experiments.

In the case when versoning mechanism is enabled, the runtime presented (the Y-axis) in each figure
represents the total time to perform 50 check in’s, with each check in consists of upto 50 edit operations.
Depends on the path expressions being randomly generated, some of these operations may involve
modifying multiple document nodes.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100000 200000 300000 400000 500000

T
im

e
(s

)

No. of nodes per document

All Operations without Versioning

insert
delete

update
copy

move

Figure 1: Costs of edit operations in the original SODA3 system

Otherwise, when versioning mechanism is disabled or unavailable (such as Figure 1), upto 2500
edit operations are simply generated and used. For example, in Figure 1, the time taken for processing
250 random edit operations on a document with 512,000 nodes is about 14 seconds.

14

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100000 200000 300000 400000 500000

T
im

e
(s

)

No. of nodes per document

All Operations with Versioning

insert
delete

update
copy

move

Figure 2: Costs of edit operations in SODA3 after the proposed versioning mechanism was imple-
mented

Figures 1 and 2 show the performance of each of these edit operations in the original SODA3
system and those in the system extended with the proposed versioning mechanism, respectively. The
version index proposed previously [10] has been implemented. New version can be created by typical
check in and check out operations. These two figures show that the costs of processing each type of
the edit operations (e.g., move, delete, copy) are very close. They also show that our implementation is
efficient so that the overhead of having the versioning mechanism added is reasonably small.

Figure 3 shows that the computation from forward deltas to backward deltas can be done efficiently.
In this experiment, the Y-axis represents the time taken for randomly retrieving 10 versions according
to the settings mentioned above.

Finally, Figures 4 and 5 show the effects of varying the value of MAX RATIO. In Figure 4, edit op-
erations become significantly more expensive (compared to the system without versioning mechanism
built-in) when the MAX RATIO is low. This is due to the fact that every check in creates a complete
version that needs to be stored by the system. However, as shown in Figure 5, low MAX RATIO will
increase the retrieval performance (as fewer deltas are involved in the re-construction of a document
version).

8 Querying Changes

To facilitate the processing of queries on changes, we need to be able to query the edit operations
contained by each delta file. In some circumstances, we need to combine the results from the queries
on the data with those from the queries on the edit operations. Due to space limitations, this section

15

 0

 5

 10

 15

 20

 25

 0 100000 200000 300000 400000 500000

T
im

e
(s

)

No. of nodes per document

Update Operation - Retrieval

backward delta
forward delta

Figure 3: Cost of retrievals via Forward deltas vs that via Backward deltas

illustrates the basic idea through the following examples:

� Find the latest version of the document just before the product with brand “cse” was increased
its price by 10%.
v1.1: .../product[brand=’’cse’’]/*/

price!update(110, 100)

� Find the lastest version of the document just before the product with brand “cse” was deleted
from the document.
v1.3: .../product[brand=’’cse’’]

!delete()

� Find the version with maximum number of changes being done to it. We can measure this by
counting the number of edit operations contained in each delta file, or alternatively, we can count
the total number of XML elements being involved in all the edit operations of each delta file.

After the correct delta file is identified, the computation of the full document version takes place in
either backward or forward manner (depending on which way is more efficient).

8.1 Major Query Operators

8.1.1 diff(
�	�

,
� �

)

This operator takes as arguments two versions of a document (with i � j) and computes the differ-
ence between the two. In the case where the two versions are actually consecutive versions (i.e. i = j),

16

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

T
im

e
(s

)

MAX_RATIO

Operation times with varying MAX_RATIO values w and w/o versioning

w/o versioning
w versioning

Figure 4: The cost of edit operations by varying MAX RATIO

it is trivial to compute their differences. That is, either the differences are already stored explicitly in
the form of a complete delta, or the differences are implicit (i.e. the two consecutive versions are stored
as complete versions in the system and we have to apply xDiff to determine the differences).

On the other hand, if i 7 j we have to combine several deltas and complete versions of documents
together to obtain the differences between the two versions. In this case, we have to perform a merge
on the differences contained in the complete deltas, while eliminating an redundant operations. To
illustrate this, suppose we are merging two complete deltas � ��� �

and � ��� � to obtain the differences
between

� �
and

� �����
. Let � ��� �

represent the difference where a/b/c is inserted into the document,
and � ��� � represent the difference where a/b/c is deleted from the document. Hence, the merged
delta of � ��� �

and � ��� � should not contain either operation as both are irrelevant to the differences
between

� �
and

� �����
.

8.1.2 searchPaths(paths)

searchPaths(paths) returns the most recent version of a document such that all paths are valid. By
executing searchPaths(� ’/product/name’, ’/item/name’

'
), we can process a query to

determine the most recent version of a document where ’/product/name’ and ’/item/name’ are both
valid paths.

8.1.3 versionOperation(op, path)

Returns the version of document where the operation op was performed on path
or an ancestor of path. For example, a query to retrieve the version of a docu-

17

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0 20 40 60 80 100

T
im

e
(s

)

MAX_RATIO

Retrieval times with varying MAX_RATIO values

backward delta
forward delta

Figure 5: The cost of version retrieval by varying MAX RATIO

ment where ’/product/name’ was affected by an ’insert’ operation, can be processed using
versionOperation(’insert’,’/product/name’).

8.1.4 Other operations

We define below other operations that are necessary to efficiently process queries on changes.

completeVersion(
�	�

) : Obtain the complete version of a document. This may involve simply returning
the complete version - if it is explicitly stored in the system, or reconstructing the version using
a complete version and its complete deltas.

time(
� �

) : This returns the timestamp associated with the document version,
� �

.

history(
� � ��� �

,
� � ��� �

) : The history operator returns all complete versions of a document that were
loaded into the database within the specified time range. That is, it returns all complete versions,� � , such that

� � ��� � � time(
� �) 7

� �
��� �
.

8.2 Query Processor

We propose a model for processing queries based on the system model (using forward complete
deltas) in Section 2. Note that a model using backward complete deltas can be similarly defined. To
process a query based on the edit operations performed on the system, we maintain an Operation Index
to keep track of all relevant operations that were performed on the document. The Operation Index is
created incrementally once a query has been issued. The system starts processing the versions from

18

the version, V i, as indicated by the query and works backwards from V i, adding the edit operations
in each forward complete delta to the Operation Index. The system processes each complete delta
sequentially and checks if the delta if the delta processed satisfies the query issued. This is done by
traversing the tree structure of the Operation Index.

For example, given:

delta_1 = a/b/c!delete()
delta_2 = a/b!delete()

the system is able to answer the query: identify the version where a/b, which has a child c, was involved
in a delete operation. The system will return Version 2. Note that by scanning the complete deltas
independantly, the query processor would not have been able to answer this query. This is because the
edit operation in delta 2 does not specify that the a/b previously had a child ’c’.

Structure of Operation Index is summarized as follows (details can be found from [10]):

1. Tree structure

2. Each node represents an element in the document which is part of the target and/or sub path of
an edit operation

3. Each node contains additional information to indicate the history of operations that were per-
formed on that node, together with the version in which the operation was executed on the docu-
ment

When constructing the index, it is necessary to process the relative-location-based operations (e.g.
opBefore, opAfter where op is a Move or Copy operation) differently from the other operations. This
different handling is not necessary for insertBefore and insertAfter as new data is inserted into the
database and the data is regarded as new elements. On the other hand, the relative location based
operations mentioned above require special handling so as to keep track of the edit operations being
performed on the same element, despite it’s location. To handle these operations, we simply apply the
inverse of the operation to the Operation Index, hence maintaining the edit history of each element.

In order to determine if the Operation Index created matches the user’s query, we apply the query
directly onto the Operation Index. The query takes into account the history of operations contained in
each node of the Index and matches the query path to the nodes in the Index. If the processor locates a
node that matches the query, the version corresponding to the matching is returned.

The above method is applicable for handling Simple Path Expressions (see Appendix A for details).
To handle complete deltas which have XPath expressions as a target and/or sub path of an edit operation,
we expand the XPath expression with respect to the DTD or schema provided and insert these expanded
paths into the Operation Index.

8.3 Algorithm

This subsection presents the algorithm that corresponds to the query processor above.

���
returns the most recent version of data���
(up to ’version’) that satisfies the query

processQuery(query, version):
1 paths = � query �
2 for each � � [version..

� �] :
3

���
process editOp in reverse order

4 for each editOp ��� �����	��
 do:
5 if overlap(editOp, paths):

19

6 if editOp = opAfter or editOp = opBefore:
7 � = invert editOp
8 � = apply(e, T.root(), 0, paths)
9 else :

10 � = apply(editOp,T.root(), 0, paths)
11 ans = � (query)
12 if ans �� � � :
13 return ans.version

apply(editOp, node, level, paths):
1 if node == � � :
2 return createNode(editOp, level);
3 if node.element == editOp.elementAt(level):
4 if node.childs() == � � :
5 node.addHistory(editOp.operation,

editOp.version)
6 else:
7 for each � � node.childs() :
8 child = apply(editOp, n, level+1, paths)
9 if child �� � :

10 node.insertChild(child)
11 update paths to include sub path of

move/copy operations
12 return node
13 else:
14 � = createNode(editOp, level)
15 return �

createNode(editOp, level):
1 for each � � [level..editOp.pathLength]:
2 � = NEW-NODE();
3 prev.insertChild(child)
4 prev = � ;
5 n.history = � (editOp.operation, editOp.version) �

9 Conclusion

In this paper, we have addressed the problem of content-based version management of XML data.
We presented a system which had an efficient logical representation and storage policy for managing
changes of such data, which involved the storage of intermediate complete versions, together with
complete deltas. Automatic conversion between the forward and backward deltas was also defined,
which can be used to derive the complete deltas without storing both types of deltas. Adaptive selection
between forward and backward deltas based on the justifications from the experimental performance
data were presented. Finally we summarized the query operators and the query processor for facilitating
meaningful queries on data changes.

References

[1] S. Chawathe, S. Abiteboul, and J. Widom. Representing and querying changes in semistructured
data. In Proceedings of the International Conference on Data Engineering, February 1998.

[2] S-Y. Chien, V. Tsotras, and C. Zaniolo. Copy-based versus edit-based version management
schemes for structured documents. In RIDE-DM, pages 95–102, 2001.

20

[3] S-Y. Chien, V.J. Tsotras, and C. Zaniolo. Efficient management of multiversion documents by
object referencing. In Proceedings of VLDB, September 2001.

[4] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in xml documents. In ICDE (San
Jose), 2002.

[5] A. Marian, S. Abiteboul, G. Cobna, and L. Mignet. Change-centric management of versions in
an xml warehouse. In Proceedings of VLDB, September 2001.

[6] W3C Recommendation. Xml path language (xpath) version 1.0. http://www.w3.org/TR/xpath,
November 1999.

[7] Soda Technologies. Soda3 xml database management system version 3.0. URL:
http://www.sodatech.com.

[8] Y. Wang, D. J. DeWitt, and J-Y. Cai. X-diff: An effective change detection algorithm for xml
documents. Technical report, University of Wisconsin, 2001.

[9] R.K. Wong. The extended xql for querying and updating
large xml databases. In Proceedings of the ACM International Symposium on on Document En-
gineering (DocEng), November 2001.

[10] R.K. Wong and N. Lam. Managing and querying multi-version xml data with update logging.
In Proceedings of the ACM International Symposium on on Document Engineering (DocEng),
November 2002.

Appendix A: Syntax of Simple Path Expressions

path ::= elem/end
end ::= @name | @name/"text" |

name[num]/"text"
elem ::= elem/elem | name[num]
num ::= [0-9]+
name ::= [a-zA-Z0-9:. -]+
text ::= [ˆ � � &"’]*
srcpath ::= path
dstpath ::= path
newpath ::= path
newvalue ::= "text"
oldvalue ::= "text"
insertedpath ::= elem2/end2
elem2 ::= elem2/elem2 | name
end2 ::= name | @name/"text" |

name/"text"

21

