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Abstract

The current information overload problem has called for the need to develop an automatic
text summarization system. This paper presents an efficient sentence-based extraction summarizer
which can be used for the above purpose. Lexical chains were used as a basis and knowledge
resources such as WordNet and a sentence boundary disambiguation tool were integrated to the
system for better performance.

Three different summary extraction heuristics were used and compared. An intrinsic evaluation
which involved the comparison of our summarizer with a commercial product to the human written
abstracts was performed. The results obtained have been encouraging, and it is found that our
system favors the human judgement than the other system.

The algorithm used in this paper demonstrated a linear runtime behavior. This not only suggests
a positive position in the scalability of our system but also its potentiality in handling documents of
longer length.
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1 Introduction

Throughout the last decade, the growing popularity of Internet has stimulated the exponential
growth of document-based information online. The wide availability of Internet and the rapidly ex-
panding global information network has also meant that information retrieval is now a much more
familiar and convenient process to casual users. However, this explosion of information and interest of
information-seekers has resulted in a well-recognized information overload problem. There is already
no time to read everything, and yet it is not unusual that during searching information on the Internet, a
large proportion of the results are often not relevant to the query. This leads to the consequence that the
user ends up spending a significant amount of time reading through details of documents that are only
“potentially” relevant. This problem has called for attention of the need to research and development
of systems to automatically summarize text and since then, it has become the focus of considerable
interest and investment in both the research and commercial sectors. By building automatic text sum-
marization systems, it is hoped that they can act as a decision or navigation tool to help the users in
deciding which articles are most suitable for their needs in a more effective and efficient way.

In this paper, a sentence-based extraction summarization system which takes in a single document
from any domain was developed to produce an indicative summary as output. The approach taken was
initially similar to that taken by Barzilay and Elhadad [1]. It is based on the use of lexical chains, which
can be computed without requiring “deep” text understanding while can still be able to determine the
context of the text at the same time. However, different to Barzilay and Elhadad, except the semantic
relatedness of words in the text was considered during the summarization process, the existence of text
title and the actual distance between words in the text were also considered as factors in determining the
“aboutness” of the input document. Furthermore, different heuristics for detecting relations between
words were developed to deliver a more efficient system, which has shown to increase its feasibility in
handling longer documents.

2 Related Work

Automated text summarization is not a new idea. Earliest systems were developed in the late
1950s, using mainly the word-frequency-based approach. Since then, several different approaches to
text summarization have been implemented and aimed to improve the quality of the summarized text.
From their level of processing, different approaches can be characterized into three categories: surface-
level, discourse-level and entity-level.

2.1 Surface-Level

Surface-level approaches tend to represent information in terms of shallow features which are
then selectively combined together to yield a salience function used to extract information. [25]
These features include word frequency statistics, location, background, cue words and phrases
[5, 11, 19, 23, 34, 42].

2.2 Discourse-Level

The second category is the discourse-level summarization systems. These systems attempt to model
the global structure of the text, and its relation to communicate goals [25]. Clearly the discourse-based
summarization technique [7, 26, 27] falls into this category.
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2.3 Entity-Level

The last category of summarization approach is the entity-level. Entity-level approaches tend to
build an internal representation of the source text, modelling the text entities and their relationships.
They aim to use the connectivity in the text to determine the salient part of the text [25]. Examples
of connectivity include word co-occurrence, proximity of text units, co-reference, syntactic relations,
similarity and thesaural relationships among words. Information-extraction-based and Cohesion-based
summarization systems are two systems that are under this category:

2.3.1 Information-extraction-based

Information-extraction-based systems [28, 29] are knowledge-based systems that apply knowledge
of the domain to characterize specific conceptual knowledge of a text. They are usually used to generate
abstracts that concern very specific aspects, such as when, who, what, why, etc, of some events. One
drawback is that they are usually not domain independent.

2.3.2 Cohesion-based

The assumption made by the cohesion-based summarization systems is that important words, sen-
tences, and paragraphs are the highest connected entities in elaborate graph-like representations of text.
Words in the text are assigned weights based on their “statistical and formal-semantical characteristics”
while the word-word relations are detected on the basis of lexical similarity and by using a thesaurus
(Paice [35]). According to this heuristic, the most important sentences in the source text are those that
are related to the largest number of other sentences. Salton and Singhal [39] used term repetition to
construct a weighted graph with nodes being the paragraphs and the weighted arcs representing the
similarity between them.

Another class of this cohesion-based system is the use of lexical chain, whose concept was first
introduced by Morris and Hirst [31]. Barzilay and Elhadad [1] explored the use of lexical chains and
used WordNet as their knowledge base. They claimed that by using lexical chains, the readers will be
able to get a better indication of the topic of the text compared to simply picking the most frequent
words in the text (i.e. frequency-based). In their system, chains are built in two processes: the source
text is first segmented using TextTiling method proposed by Hearst [9], then for each segment, nouns
and noun phrases in the text found by a shallow parser are grouped into lexical chains based on their
cohesion relationships with each other using WordNet. Then, chains between segments are merged if
they contain a word in the same sense in common. Strong chains are chosen based on the number and
weight of different relations in the chain and a fixed length summary is then generated based on these
chains.

3 System Overview

The automatic text summarization system developed in this paper can be divided into four stages:
preprocessing, lexical chains computing, strong chains extractor and finally, the sentence extractor.

Input

Input to the summarization system is a single document from any domain. The title of the document
can also be attached, but this is not compulsory. The idea of allowing the inclusion of title file is based
on the assumption that, a good title should have positive influence on the context of the document. On
the other hand, when there is no title present, or when the title is too general or unrelated, the judgement
in determining the “aboutness” of the document should not be affected.
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Preprocessing

The first step of the summarization process is text segmentation. The role of the text segmenter
is to divide the input document into segments that address the same topic. Under the assumption that
most articles have good division to segments marked as paragraphs, the division used in this paper is
based on paragraphs. Regular expressions were used to detect paragraphs boundaries.

Since this summarization system is a sentence-based system, each sentence in the document has to
be disambiguated. In order to detect sentence boundary at a higher accuracy, Reynar and Ratnaparkhi’s
sentence boundary detector [37] was employed in this paper. Below gives a detailed description of the
issue of sentence boundary disambiguation and tool developed by Reynar and Ranaparkhi.

Sentence Boundary Disambiguation

In order to improve the accuracy in detecting sentence boundaries, a tool developed by Reynar
and Ratnaparkhi was used in this paper. The system is pre-trained on 39441 sentences of Wall Street
Journal text from the second release of the Penn Treebank and requires no hand-crafted rules, lexica,
part of speech tags or domain specific information.

Lexical Chains Computing

Before lexical chains can be constructed, candidate words must first be chosen. Candidate words
are defined as words that have the potential to contribute to the capturing of the context of the doc-
ument. Each candidate word is exploded into senses, using information obtained from a thesaurus.
The lexical knowledge database used in this paper was WordNet. Lexical chains are then built based
on the semantic relatedness among these senses (e.g. synonyms, antonyms, hypernyms/hyponyms,
meronyms/holonyms, etc). Since a word can have several senses, in building lexical chains, the sense
of each word in the document will be able to be disambiguated. Again, WordNet was used as the
knowledge source for this word sense disambiguation process.

Strong Chains Extractor

Once the lexical chaining process is completed, strong chains must be chosen to capture the most
important concept of the input document. Strong chains are determined by a chain-score scaling system
developed in this paper. Each chain is initially associated with a chain-score, based on the degree of
semantic relatedness among words in the chains, what this score scaling system does is that, it takes
into account the word-to-word distance as well. Each chain-score is scaled according to this factor. In
doing so, the distance between word instances in the input document is allowed to affect the word’s
contribution to a chain as well, aiming to develop a higher quality system.

Sentence Extractor

The final step of the summarization system is to extract sentences from the input document and form
a summary as output. There are many ways one can produce a summary based on the strong chains
extracted. In this paper, three different heuristics have been proposed for determining which sentences
should be included in the summary. Out of the three, two are flexible, which means that all sentences in
the document are ranked according to its importance, where the degree of importance depends on the
heuristic used. Once the rank of each sentence is available, users are allowed to choose the length of
summary wanted, based on the number of sentences they want to be included in the summary. On the
other hand, the remaining heuristic gives a fixed length summary. This length is calculated according
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to the number of strong words (i.e. representative words) found in the strong chains and is about 5-
15% of the original document on average.

4 Lexical Chains Building

Lexical chains are chains of semantically related words. They are computable without requiring
“deep” text understanding, and exist in non-domain specific text. They provide a constrained easy-to-
determine representation of context for interpreting words, concepts, and sentences. Hence, it makes
sense to use it as clues to the structure of the text, and it forms the basis of the summarization system
developed in this paper.

We built the lexical chains by following the following steps:

1. Check if there is a title file. If there is, insert the title to the beginning of the text

2. Select all the candidate words from the text by calling selectNouns

3. For each segment, call the segmentChainBuilder(segment candidate word list) to get a list of
chains for that segemnt

4. Merge all the chains obtained from each segment.

5 Strong Chains Extraction

Once the lexical chains can be computed, the function chainScaling can be called to scale the
chain-score according to the distance of the candidate words in the chain and return a list of strong
chains (where score is above a certain threshold) for the text.

The score scaling system allows the distance between word instances in the source text to affect
the word’s contribution to a chain. The scaling system is as shown in Table 1. The scaling system also
takes title of the text into account. Where the title file is not empty, the relation score of any words
that occur in the chains as well as the title of the source text will be doubled. This is based on the
assumption that a good title should have positive contribution to the “aboutness” of the text while at
the same time, title that is too general or unrelated to the text should not affect the result of strong
chains extraction.

Table 1: Score Scaling System.
same 3 same default

sentence sentences paragraph
synonyms 1 1 1 1
hypo/hypernym 1 0.8 0.8 0.8
antonyms 1 0.7 0.7 0.7
mero/holonym 1 0.4 0.3 0.2
siblings 1 0.2 0.1 0

There are two types of thresholds: the upper and lower thresholds.
The score of the upper threshold is calculated by:

Upper Threshold(chain list) = average(chain scores) + 2 * standard deviation(chain scores)
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Algorithm for function
  selectNouns


1     initialize 
 nounList
 to be an empty list of nouns/noun phrases

2     
For each
 segment in text 
 Do

3
      initialize 
 segNounList
 to be an empty list of nouns/noun phrases in the segment

4
      
For each
 sentence 
S
 in segment 
Do

5
      tokenize 
 S

6
      
word1
 := the next token

7
      
If
 
word1
 ends with "-" 
Then

8
      concatenate 
 word1
 with the next token

9
      
End If

10
      
While 
there are more tokens in 
 S 
Do

11
      
word2
 := the next token

12
      
If
 
word2 
ends with "-" 
Then

13
      concatenate word2 with the next token

14
      
End If

15
      
If
 
word1
 and 
word2
 is a noun phrase 
 Then

16
      add (
 word1 + word2
) to 
segNounsList
  if it is not already in the list

17
      record the sentence number it occurs in

18
      
Else

19
      
If 
word1
 is a noun 
Then

20
      add 
word1
 to 
segNounsList 
 if it is not already in the list

21
      record the sentence number it occurs in

22
      
If
 
word2
 is a noun 
Then

23
      add 
word2
 to 
segNounsList
  if it is not already in the list

24
      record the sentence number it occurs in

25
      
End If

26
      
End While

27
      
End For

28
      add 
 segNounList
 to 
nounList

29     
End For

30     initialize 
 candidateList 
as an empty list of candidate words

31     
For each
 segment noun list in 
 nounList 
Do

32
      
For each
 noun/noun phrase in the 
 segment noun list 
 Do

33
      
W
 := noun phrase/noun

34
      
sentenceList
 := a list of sentences the 
 W
 occurs in

35
      
senseList
 := a list of synonyms, antonyms, hypernyms, and meronyms of
 W

36
      
relationList
  := initialize to be an empty list

37
      
CW
 := a new candidate word created from 
 W
, 
sentenceList
, 
senseList
 and 
relationList

38
      add 
CW
 to 
candidateList

39
      
End For

40     
End For

41     
return
 
candidateList


Figure 1: Algorithm for function selectNouns.
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Algorithm for function 
 segmentChainBuilder


1     initialize 
 unitList
  to be an empty list of units

2     
For each
 candidate word 
CW
 in 
nounList
 
Do

3
      
related_units
  := 
getRelatedUnits (
CW
)

4
      
If
 
related_units
  is empty 
Then

5
      create a new unit with only 
 CW 
in it and add this new unit to
  unitList

6
      
Else

7
      remove 
related_units 
from 
unitList

8
      
interpList
  := cartesian product for all interpretations in 
 related_units
  by

                                                              calling
  
joinUnits (related_units)

9
      initialize 
 newInterpList
 to be an empty list of interpretations

10
     
 For each 
 interp
 in 
interpList 
Do

11
      get new lists of interpretations after trying to fit 
 CW
 in 
interp

                                                             by calling 
 fitCW(CW, interp)

12
      add these new lists to 
 newInterpList

13
      
End For

14
      choose the most active interpretations in 
 newInterpList
 based on the

                                             interpretation score

15
      create a new unit that contains these interpretations

16
      add the new unit to 
 unitList

17
     
 End If

18   
End For

19   initialize 
 chainList
  to be an empty list of chains

20   
For each
 unit in 
unitList
  
Do

21
      get the interpretation with the highest interpretation score

22
      add all the chains in this interpretation to 
 chainList

23   
End For

24  
 return 
chainList


Figure 2: Algorithm for function segmentChainBuilder.
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The score of the lower threshold is simply the average of all chain scores:

Lower Threshold(chain list) = average(chain scores)

And strong chains are chains which have:

score(chain) � upper threshold (chain list)

If no chains have chain score above the upper threshold, we then define our strong chains as chains
which have:

score (chain)
�

lower threshold (chain list)

If still no strong chains can be found, all the chains which have a score � 0 are returned.

6 The Heuristics

Once the process of lexical chain computing has completed and strong chains have been chosen,
we are ready to extract sentences from the text and form a summary. One issue regarding on the length
of summary is that, should it be fixed or should it let the users choose how long they want the summary
to be? In this paper, three different heuristics for extracting summary (one fixed and two flexible) have
been proposed and a comparison of their performance is discussed in the next section.

6.1 Heuristic 1

Length: flexible

Algorithm: In this method, each sentence is associated with a sentence score. The score is calculated
as the sum of relation scores of each word in the sentence that appears in the strong chains as well.
Sentences are then ranked according to these scores, with the highest score being interpreted as
the most important sentence in the source text. In doing so, users are allowed to choose the length
of the summary according to how many sentences they want to be in the summary. The pseudo
code of this algorithm is shown in Figure 3.

Algorithm for 
Heuristic 1


1     initialize 
 rankList1
  to be an empty list of sentence ranks for heuristic 1

2     
For each
 Candidate Word 
CW
 in Strong Chain List 
 Do

3
     
 relation_scores
  := sum of scores 
CW
 has according to the types of

                                                       relations it has with other words

4
     
 For each
  sentence 
S 
that 
CW
 appear 
Do

5
 S_score
 += 
relation_scores

6
      
End For

7     
End For


Figure 3: Algorithm for Heuristic 1.

9



6.2 Heuristic 2

Length: fixed

Algorithm: In this method, the term “strong word” is introduced. Strong words are defined as words
in the strong chains that have a relation score greater than 1.5 * the average relation scores the
words in the strong chains have. Once all the strong words are identified, the sentence that each
strong word first appears in the source text is extracted to be part of summary. In this case, the
summary produced by this method will be of fixed length, based on the number of strong words
found in the strong chains and their locations in the text (on average, the length is around 5-15%
of the source text’s). Recall that the position based summarization system assumes important
sentences occur at the beginning of the text. By picking the sentence that the strong words first
appear, the position based factor is integrated into this word-word relation based method, aiming
to produce a better quality of summary. The pseudo code of this algorithm is shown in Figure 4.

Algorithm for Heuristic 2


1     initialize 
 strongWordList
  as an empty list of strong words

2     
For each
 Candidate Word 
CW
 in Strong Chain List 
 Do

3
      
relation_scores
  := sum of scores 
CW
 has according to the types of relations it

                                                          has with other words

4
     
 If
 
relation_scores 
> average of all 
relation_scores
  in Strong Chain List 
 Then

5
      add 
CW
 to 
strongWordList

6
      
End If

7     
End For

8     
For each
 strong word 
SW 
in 
strongWordList 
Do

9
      select the sentence that 
 SW 
first appears

10
      insert 
 SW 
to the summary

11  
 End For


Figure 4: Algorithm for Heuristic 2.

6.3 Heuristic 3

Length: flexible

Algorithm: This method is a combination of heuristic 1 and heuristic 2. Once all the sentences are
ranked and a fixed length summary becomes available, a merging sentence ranking system is
used. All sentences that occur in the fixed length summary will be ranked first, and after that, the
remaining sentences in the source text will be ordered in the same way as those from heuristic
1. This method gives the sentences a different ranking order compared to heuristic 1, depending
on the summary produced by heuristic 2. The users are then allowed to choose the length of the
summary according to how many sentences they want to be in the summary. The pseudo code of
this algorithm is shown in Figure 5.
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Algorithm for 
Heuristic 3


1     initialize 
 rankList2
  to be an empty list of sentence ranks for heuristic 3

2     add all sentences in fixed length summary into 
 rankList2

3     
For all
 sentences 
S
 in the order as rankList1 
 Do

4
      add 
S
 to 
rankList2
  if it is not part of the fixed length summary

5     
End For


Figure 5: Algorithm for Heuristic 3.

7 Experiments and Results

Once the automatic text summarizer has been implemented, an evaluation is needed to be carried
out in order to have a better understanding of the utility of the system. Evaluations of summarization
systems can be divided into two types in general: intrinsic and extrinsic. Intrinsic evaluations focus
on the system’s quality, while extrinsic evaluations focus on the system’s performance in a particular
task [13]. In this paper, the intrinsic evaluation approach was taken.

7.1 Description of the Experiments

Five experiments were undertaken. The materials used included 38 articles (along with their titles
and abstracts) from online journals such as Economist, Information Management Journal, Geographical
Review, Scientific American and Western Journal of Medicine; 5 articles collected from the newspaper,
and a commercial sentence-extraction summarization product from “Zentext”1 .

Experiment 1

Aim: Comparing the summaries produced by our summarizer to Zentext’s using articles’ abstract
as “ideal” summaries (that are found from the original articles).

Resources Used: 38 journal articles with their abstracts, Zentext

Procedures:

1. Based on the length of the articles’ abstract, Summary-1, Summary-3 and Zentext-Summary of
the same length were extracted for each article.

2. All the candidate words for each four summaries of each article were extracted.

3. For each article, the number of candidate words in Summary-1, Summary-3 and Zentext-
Summary that were related to the candidate words in abstracts were counted, and vice versa.

1available at http://www.zentext.com/z product summarizer.html
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Experiment 2

Aim: Determine the sentences matching rate of summaries at various length with Zentext’s.

Resources Used: 38 journal articles, Zentext

Procedures:

1. For each journal article, Summary-2, and Summary-1 and Summary-3 with length varied from
10% to 70% of the original length of the article were extracted.

2. For each journal article, Zentext-Summary with length varied from 10% to 70% of the length of
original article, and a length same as Summary-2’s were extracted.

3. The sentences matching rates at varied length between Zentext-Summary and Summary-1,
Summary-2, and Summary-3 were calculated.

Experiment 3

Aim: Examine the effect of including the article title on summaries.

Resources Used: 38 journal articles along with their titles and abstracts, Zentext

Procedures:

1. Same as Experiment 1, but this time, the title of each article was considered.

Experiment 4

Aim: Direct human judgement of informativeness and coverage of the summaries.

Resources Used: 5 newspaper articles, Zentext, 8 human judges

Procedures:

1. For each newspaper article, Summary-2, and Summary-1, Summary-3 and Zentext-Summary
with length of 15% of the original article were extracted.

2. All the summaries were grouped together with no repeated sentences.

3. For each sentence in the summary group, human judges were asked to give a rate from 0 - 10
(totally disagreed to totally agreed) based on their agreement with its inclusion in the summary
of the article, if there was one.

4. The agreement rates for each sentence were averaged and used to calculate an average rate for
each summary produced in step 1.
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Experiment 5

Aim: Examine the effect of article length on system process time.

Resources used: 38 journal articles

Procedures:

1. Each article was run with our summarizer (on Linux platform), and the time taken for the process
was recorded.

8 Results and Analysis

This section shows the results obtained in all 5 experiments conducted. All the detailed results
tables can be found in Appendix B.

The experimental results for Experiment 1 is as shown in Table 2. Columns 1 and 2 show the av-
erage recall and precision rate for Summary-1. Columns 3 and 4 show the average recall and precision
rate for Summary-3. Columns 5 and 6 show the average recall and precision rate for Zentext-Sumamry.
From the results, it is seen that in 68.03% of the cases, the candidate words in the articles’ abstracts
were related to the candidate words found in the Zentext-Summary, while in 61.05% of the cases, the
candidate words in the Zentext-Summary were related to the candidate words found in the articles’
abstracts. This shows that, in this particular experiment, Zentext, a commercial summarization product
outperformed the summarization system constructed in this paper, with an average of 4% higher in
precision. Since the percentage difference was not huge, the results for Summary-1 and Summary-3
are extremely encouraging. Both had a recall and precision rate over 50%, with Summary-3 generally
producing better summary results compared to Summary-1.

Table 2: Experimental results for Experiment 1.
Summary-1 Summary-3 Zentext-Summary

Recall (%) Precision(%) Recall (%) Precision(%) Recall (%) Precision(%)
62.51 57.18 66.47 57.23 68.03 61.05

Table 3 shows the experimental results for Experiment 2. It is shown from the table that the prob-
ability of the summarization system built in this paper chooses the same sentences as Zentext at a
particular summary length is not high at all. The sentence matched rate was below 50% if the length of
summary was less than 40% of the original text, with Summary-1 contained more sentences included
in ZenText-Summary than Summary-3. Both Summary-1 and Summary-3 gave nearly identical results
as the length of summary increases. This is due to the fact that Summary-3 was produced by combining
Summary-2 and Summary-1. As mentioned before, the length of Summary-2 was generally about 5-
15% of the original text. Hence for the first 20%, the sentences selected as summary for Summary-1 and
Summary-3 could be very different, and therefore contributed to this gap of sentences matching rate.
However, as the length of summary increases, the difference between their performances decreases.

One interesting observation can be seen from the results obtained in Experiment 1 and Experiment
2 is that, while the sentences selected as summary for both system were quite different, the context
in each summary did not differ by much. This was proved by human inspections and by the fact
that the difference between the recall and precision rate for both systems was not relatively large (as
shown in Experiment 1, which is an experiment testing on the similarity of context represented by
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Table 3: Experimental results for Experiment 2.
Sentences matched rate (%)

Length Summary-1 Summary-3 Summary-2
10% 26.88 18.75 -
20% 38.71 35.79 -
30% 46.84 45.30 -
40% 54.89 53.77 -
50% 62.01 61.80 -
60% 66.69 66.85 -
70% 70.70 70.67 -

fixed length - - 15.84

articles’ abstracts, summaries from this summarization system and summaries from Zentext). One
possible explanation for this is that different summarization algorithms will most likely select different
sentences to be included in a summary. As there is no single “right” summary and as in many cases,
there are alternative sentences that can be used in the summary that will still give the same context.
Summaries produced by different systems might be different in terms of the sentences used but very
similar in terms of the context they represent.

Experiment 3 investigates the effectiveness of including an article title in the summarization system
on the summaries produced. As seen in Table 4 and Table 5, both the recall and precision rate for
Summary-1 and Summary-3 increased slightly after considering the inclusion of the article title. Al-
though the increase rate was less than 1%, it confirmed with the assumption that: “a good title should
be able to contribute to the ‘aboutness’ of the text while at the same time, title that is too general or
unrelated to the text should not affect the final result.”

Table 4: Experimental results for Experiment 3 (1).
Summary-1

No Title With Title
Recall (%) Precision(%) Recall (%) Precision(%)

62.51 57.18 63.44 57.39

Table 5: Experimental results for Experiment 3 (2).
Summary-3

No Title With Title
Recall (%) Precision(%) Recall (%) Precision(%)

66.47 57.23 66.56 57.53

In the analysis of results obtained in Experiment 1 and Experiment 3, the issue of there is no single
“right” summary is mentioned. Due to this fact, another experiment judging on the quality of the
summarization system in this paper was conducted in Experiment 4. 8 independent human judges were
asked to read 5 articles. As a result of human resources limitations, these 5 articles contain 22 sentences
on average and were obtained from newspaper. Sentences selected by Summary-1, Summary-3 and
Zentext-Summary were mixed together and human judges were then required to give a mark for each
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sentence (from 0 - 10), based purely on their agreement on its inclusion as a summary. The results
are shown in Table 6. It is clear that the summaries produced by this summarization system favor
human judgement as they performed significantly better compared to its performance with articles’
abstracts, especially Summary-2, which achieved an agreement as high as 80.59%. Again, Summary-3
performed better than Summary-1, with an average of 74.17% agreement within the human judges.
Zentext performed worse in this experiment, with an average of only 65.98% agreement within human
judges. However, as only 5 articles were used, more testing has to be done to confirm the findings
from this experiment, though the results obtained so far have been very encouraging. Two of these five
articles are shown in Appendix A, together with all its sentences choices and summaries produced by
our summarizer and Zentext.

Table 6: Experimental results for Experiment 4.
Summ-1 Summ-2 Summ-3 Zentext

(%) (%) (%) (%)
Article 1 74.58 95.00 74.58 57.08
Article 2 69.38 83.75 75.94 62.50
Article 3 56.25 85.63 85.63 78.13
Article 4 69.06 76.88 67.19 58.75
Article 5 67.50 61.67 67.50 73.44

Mean 67.35 80.59 74.17 65.98

A working algorithm is not sufficient, the efficiency of the system needs to be considered as well.
As a result, Experiment 5 was conducted to determine the process time for articles of different length
and investigate the efficiency and scalability of the summarization system built in this paper. The same
38 articles were used, with the shortest article containing 22 sentences and the longest article containing
389 sentences. Process time is determined by 3 factors: number of sentences, number of words and
number of candidate words in each article. Figure 6, 7 and 8 show the relationship between process
time and these 3 factors respectively (Time on X-axis, No. of words/sentences on Y-axis). All 3 graphs
suggest a linear relationships, and hence it also suggests that the algorithm used in this paper has a
linear runtime. One big factor that contributes to this is the method used for getting related senses for
each word and the method used for checking the hypernym/hyponym relationship between two words
in this paper. Instead of walking up and down the hypernym/hyponym graph in WordNet to collect
information as Barzilay and Elhadad did [2] (which resulted in exponential efficiency as suggested
by Silber and McCoy [40]), in this paper, for checking hypernym/hyponym relationship between two
words, no hyponyms of words are needed. Two words are hypernym/hyponym if one is the hypernym
of another one. As a result, only the hypernyms information for each word is required and stored.
This has largely reduced the time for going down all possible routes in the hypernym/hyponym graph
collecting all the children information of a word, as there is only one route up to get a word’s parents
information.

Again, the results obtained in this experiment are extremely promising. It not only suggests that
the algorithm used is efficient itself, but also suggests that this system has a very high potential in its
feasibility in summarizing documents of longer length.
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