
Update Synchronization for Mobile XML Data

Franky Lam Nicole Lam Raymond Wong
School of Computer Science & Engineering

University of New South Wales
Sydney, NSW 2052, Australia
wong@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-0310

June 2003

SCHOOL OF COMPUTER SCIENCE & ENGINEERING
THE UNIVERSITY OF NEW SOUTH WALES

1

Abstract

Many handheld applications receive data from a primary database server and operate in an in-
termittently connected environment these days. They maintain data consistency with data sources
through sychronization. In certain applications such as sales force automation, it is highly desirable
if updates on the data source can be reflected at the handheld applications immediately. This paper
proposes an efficient method to synchronize XML data on multiple mobile devices. Each device
retrieves and caches a local copy of data from the database source based on a regular path expres-
sion. These local copies may be overlapping or disjoint with each other. An efficient mechanism
is proposed to find all the disjoint copies to avoid unnecessary synchronizations. Each update to
the data source will then be checked to identify all handheld applications which are affected by the
update. Communication costs can be further reduced by eliminating the forwarding of unnecessary
operations to groups of mobile clients.

2

1 Introduction

The growing trend towards mobile computing and the increasing popularity of XML have resulted
in more and more handheld applications accepting their data in XML format. Due to this, some vendors
(for example, http://www.tendara.com) have provided handheld XML database management
system for integrating enterprise applications such as sales force automation systems with a mobile
workforce. Others have used XML for defining synchronization protocols between the global database
servers and the mobile databases. For instance, SyncML is a proposed synchronization protocol which
runs over different internet and wirelesss transports. An updategram used by Oracle and SQL Server is
XML generated by agents to notify the client of changes to the data on the server, and vice versa.

Consider a database environment where an XML server database system shares portions of data
(e.g., legacy data with exchange in XML format, a part of a large XML document, or a subset of
document collections) with a set of intermittently connected clients. The connectivity is intermittent
due to an unstable or expensive connection. Hence clients retrieve a copy of the shared data from
the server and maintain it in their local database. In this paper, the retrieval language is XQL [12]
extended with update operators as proposed similarly in [13, 14]. Updates made to this local database
are propagated to the server database when the client connects. The data shared between the server and
some Client A may also be shared with another Client B; therefore, changes to that data at Client A
should be reflected at Client B. Since the clients are only intermittently connected and cannot directly
send changes to other clients, the server acts as a conduit for updates by forwarding the updates to its
relevant clients. In fact, the server is responsible for tracking client updates to shared data and batching
those updates for dissemination to other clients which share the data.

To solve this problem, we could adopt the current approach used in most intermittently connected
relational databases. In these systems, each client is treated individually such that update files are cre-
ated containing updates relevant to each particular client (on a per-client basis). That is, for each client,
the server prepares a client-specific update file. This is called the client-centric approach [9] because it
aggregates database changes based on the data needed by each client. Unfortunately, the processing and
sending of each client-specific file is expensive in terms of server processing and network bandwidth
consumption; therefore, the server processing load is on the order of the number of clients. That is, the
server incurs additional cost for each and every client, so the number of clients that can be served is
limited.

[9] proposed exploiting the overlap of data shared between various clients to increase the scalability
of the server. This was accomplished with data-centric processing, rather than client-centric processing,
by grouping data according to how it is shared between clients. In the data-centric approach, the server
creates an update file for each data group. Unlike the client-centric approach which builds an update
file for each client, the data-centric approach builds update files for data groupings and requires the
clients to merge the correct set of update files to retrieve the needed updates. Hence, the data-centric
approach reduces the complexity of update file maintenance from the order of the number of clients to
the order of the number of groups, thereby increasing the scalability of server processing.

However, as XML information is semistructured and may not have a rigid schema, the techniques
proposed in [9] and also [16] cannot be applied. In this paper, we exploit this data-centric grouping
idea and propose a hierarchical grouping structure based on data sharing. In particular, data sharing
is determined by a client’s subscription. Moreover, determination of whether an update is related to a
client group becomes difficult due to the complexity of XML data and query structures.

3

2 Background

In this section we present the architecture of an XML-based mobile database system. We then
describe how XSync uses XQL expressions as a retrieval language to specify the subset of data to be
stored in the local cache of a mobile client.

2.1 An XML-based Mobile Database Architecture

Figure 1 shows the general architecture for an XML-based mobile database architecture. The back-
end server, S, stores information which is shared between mobile devices (A, B, C, D, E, F). This
information, which may exist in a different format, is converted to XML. Mobile devices can identify
a subset of the data that is of interest by specifying a gerneral path expression for their subscription.

A

B
C D

E

F

S

T U

Figure 1: Architecture of an XML Based Synchronization System

2.2 XQL as an Access Language

XQL is a query language, similiar to XSL pattern syntax. It is used to address and filter the elements
and text of XML documents. XML documents can be viewed as a directed acyclic graph (DAG) where
every XML element can be represented as a node and an edge is represented as a relation between
two nodes (Figure 2). An XQL expression consists of a set of path expressions combined using binary
and set operators such as ����� operator and � ���	�
� operator. A path expression contains a list of literal
strings or wildcard (�) operators, delimited by either the child (�) or descendant (��) operator. Literal
strings and wildcard operators are used to match against XML element names, while the child and
descendant operators are used to match the relationship between those XML elements. Each literal
string and wildcard operator can optionally contain predicates (���) for filtering. A predictate contains
an XQL expression with the matched element name acting as the root of the DAG.

We use an XML database management system which manages computer hardware sales force au-
tomation systems as an example throughout this paper. Different clients issue different XQL expres-
sions to identify the subset of data they are interested in:

� Retrieve all computer systems.
/Product/Computers/Item

4

Harddisks

"ABC" 4050"XYZ"

Name QtyQtyName

"XYZ" 80 120

Item Item

Computers

"ABC" 110 "XYZ" "ABC"

Item ItemItem Item

Monitors

Product

Components

Name Qty Price NameNamePriceName

Figure 2: An Example XML Document Represent in Graph Model

� Retrieve all harddisk products.
/Product/Components/Harddisks/Item

� Retrieve all products manufactured by XYZ.
/Product//Item[Brand = "XYZ"]

� Retrieve all harddisks manufactured by ABC.
/Product/Components/Harddisks/Item[Brand = "ABC"]

� Retrieve all components.
/Product/Components/*/Item

3 Related Work

By using XQL [12] as a profile language, an efficient filtering mechanism that takes structure
information into account for matching each subscription against XML stream data was presented in [3]
using XPath [11]. However, the merging of similar subscriptions for further optimization was not
addressed. Our work also has similarities with the very recent work proposed by [4, 10], in which
the containment of XPath queries was investigated in detail. In particular, a new data structure based
on the string Trie index was proposed in [4]. Their proposed data structure is similar to ours in that
paths are encoded in a directed acyclic graph. However, ours differs in the handling of wildcards and
descendant operators. [10] focused mainly on the tractability and analysis of methods for determining
the containment of tree-pattern queries, in which XPath was selected as the query language. It described
how to determine the containment of XPath queries efficiently, but did not explore the merging and
handling of contained queries. Furthermore, both works did not address the problem from a mobile
synchronization perspective. Hence, containment of queries was not applied for clustering clients into
groups according to their subscription interests such that their updates are efficiently synchronized
within each group. More importantly, selective propagation of updates (e.g., based on the containment
of updates and subscriptions of different groups of clients) was not addressed.

Furthermore, our work also shares similar motivations with several other efforts including [1,2,5,9,
15, 16]. However, all these efforts only considered primitive or less expressive subscription languages.
For instance, [2] considered conjunctions of simple event predicates, where each event is checked
against an attribute value. Although efficient index structures for selective dissemination was presented

5

in [15], only the boolean model was considered. In [5], efficient algorithms for merging geographic
queries were proposed. However, an efficient data structure for handling merged subscriptions was not
addressed.

Similar motivations can also be found in mobile database applications. In [9], scalability is en-
hanced by grouping mobile clients according to their interests in sharing data in relational databases. A
similar concept was recently applied for efficiently maintaining replica in an intermittently connected
environment in [16]. With the exception of [5], the works above did not attempt to reduce costs by
automatically merging similar queries. Finally, an extensive survey on recent research and develop-
ment related to semistructured and web data, ranging from data models to query languages to database
systems, was presented in [7]. Information regarding recent standards, techniques, and systems can be
found at many XML portals such as xml.com and xml.org.

Other noteworthy mobile computing work, include Bayou [6] and Deno [8], which focus on conflict
resolution and consistency maintenance. These works use mechanisms such as compensating transac-
tions and voting protocols to enforce constraints. Moreover, as the number of clients maintained by
each server increases, clients must be serviced in groups in order to maintain scalability. Broadcast
databases [1] addressed this problem in the wireless domain but is primarily aimed at reducing the
response time for data requests.

4 Overview of Solution

This section provides a basic idea of how the proposed query merging mechanism works. The
key to our solution is an efficient mechanism to determine if two XQL expressions are overlapping.
Overlapping expressions are merged so that the server can process fewer updates and the amount of
information sent may be reduced (e.g., by exploiting the advantages of multicasting). However, we
assume here that the client applies a post-filtering query over the received data in order to perform the
update to its local data.

Two XQL expressions are considered overlapping if the XML segments retrieved from the same
XML document by these two expressions are also overlapping or completely contained from one to
another.

Consider the following example of computer hardware sales force automation system:
� /Product/Computers

�
/Product/Computers/Item[Brand = "XYZ"]

A computer item with brand name XYZ, represented by a path element Item, is a child element
of element Computers. Their relationship is reflected in the above XQL expressions. In this case
information regarding that Item should be delivered to both subscribers. However, the first subscriber
is interested in more general computer product, which may or may not be interesting to the second
subscriber depending on whether the expression is about Item. Consider another example below:

� /Product/Computers � /Product/Components = �

These two subscriptions are mutually exclusive (since elements Computers and Components
are two distinct children of element Product) so they cannot be merged. Similarly, even though both
subscriptions below are interested in the Item elements, they cannot be merged as these two Item ele-
ments are under two independent (i.e., mutually exclusive) parents (Computers and Components).

� /Product/Computers/Item �
/Product/Components/Harddisks/Item = �

wildcard (*) is more general than any literal tokens since it can match any literals within the spec-
ified scope. For instance, the wildcard below can match any child elements of /Product, including
the element Components.

� /Product/*
�

/Product/Computers

6

When descendant operators are involved, we cannot determine whether two subscriptions are in-
dependent by observing the XQL expressions. However, we can still determine their dependency if
DTD information is available. For instance, we can confirm the following two subscriptions are not
independent as Computers contains Brand.

����� Brand � /Product/Computers �� �

Finally, further dependency information can be obtained by observing the predicates inside the
XQL filter conditions. For example, the following two subscriptions are independent (because of their
exclusive price ranges) although they are both interested in the child elements under Product.

����� Product//Item[Price � 10] ���� Product//Item[Price � 30] � �

All XQL method invocations like the !count() function are based on the full result set of ele-
ment nodes, and all their disjoint relations cannot be determine statistically as the following example
illustrates. Therefore method invocations can be treated as though they do not exist.

����� Item/Price!max() � ��� Item/Price!min() � ������ Item/Price!max() � ��� Item/Price!min() �� �
(��� Item/Price!count() = 1)

4.1 Transactions from Other Computers

The update statement in SQL plays a crucial role to make the manipulation and transactions of
data stored in relational databases convenient and expressive. While the original XQL proposal did not
include any update capabilities, the extended XQL [14] supports a complete set of update constructs
from create to copy and move. These constructs are implemented as functions in XQL and can be
invoked as other standard XQL functions like ancestor() or count() using the ’!’ notation .

4.1.1 Constructors

New elements, attributes, or texts can be created interactively by the insert function. The function
accepts a plain path (i.e. a path without filters or subqueries) as its only argument. The quoted string
in the path will be treated as the value of a text or an attribute value. For example, the following will
create an empty element Name under every Restaurant element:

*/Restaurant!insert(Name)

The following will create an Entree element under every Restaurant, then create a Name element under
Entree, and finally create the text ”Black bean soup” under Name:

*/Restaurant!insert(Entree/Name/"Black
bean soup")

Finally the example below will create an attribute Note with value ”Sunday Only” for the second
Entree of each Restaurant:

*/Restaurant/Entree[1]!insert(@Note/
"Sunday Only")

Similarly, there are insertBefore(path) and insertAfter(path) constructors to insert path as a sibling
before and after the current reference node, respectively. For example, the following will insert an
element Cafe on the same level as Restaurant, just before the second Restaurant:

Restaurant[1]!insertBefore(Cafe)

7

4.1.2 Delete

Delete can be executed by invoking the function delete() with no arguments. It will delete all the
nodes (and their descendants) from the current context. For example, the following will delete all the
Names (and their descendants) from Restaurant elements. Note that the Restaurant elements will not
be deleted in this case.

Restaurant/Name!delete()

Another example below will delete everything from the current context. If the root context is set to the
global entry point to the whole database, it will delete all data in the database.

*!delete()

4.1.3 Copy

Cloning elements, attributes, or texts is possible by using the copy function. It accepts one argument
which is the source of the copying. It will copy all the nodes (and their descendants) from the resultant
context set of the evaluated argument, to every node in the current context. For example, the following
will copy the content of the first Entree of Restaurants in the whole repository to the second Entree of
the Restaurants.

(Restaurant/Entree)[1]!copy(//(Restaurant
/Entree)[0]/*)

Note that very node in the current context will get a copy of the argument path, so the following
example will make a copy of the content of the first Entree to every Entree including the first Entree
itself. The argument path will be evaluated every time against every node in the current context. We
define the sub path of an operation to be the argument path of the operation.

Restaurant/Entree!copy(//(Restaurant/
Entree)[0]/*)

As with Create, there are copyBefore and copyAfter operations besides Copy, which will copy the
source to be just before or after the reference node, at the same level.

4.1.4 Move

The move operation will move the resultant reference nodes from the evaluated argument path to
become the child of the nodes in the current context. As with Create and Copy, there are moveBefore
and moveAfter operations. For example, the following will move the Ratings of Entrees to just after
the Price elements of Entrees:

*/Restaurant/Entree/Price!moveAfter(
//Restaurant/Entree/Rating)

Note that before the actual move operation is executed, validity checking needs to be done to ensure
that ancestor nodes are not being moved to become the descendant nodes of the nodes in the current
context. Otherwise, nodes in the current context would become invalid and no longer accessible from
the root entry point(s).

8

4.1.5 Update

The value of an element or attribute can be updated by using the update function with the new value
as an input argument. For example, the following will update Name and Price of the 2nd Entree of each
Restaurant to ”Onion soup” and ”2.04” respectively.

*/Restaurant/Entree[1]/
Name/*!update("Onion soup")

/Restaurant/Entree[1]/Price/!update("2.04")

Update can also be used to update the tagname of an element. For example, the following will
rename all the Restaurant tagnames to Cafes:

*/Restaurant!update("Cafe")

5 Data Structure and Algorithms

5.1 Merging Simple Path Expressions

A naive approach to merging subscriptions has very poor performance. For instance, whenever
a new subscription is created, it needs to be checked against all existing subscriptions or groups of
subscriptions to determine if it is overlapping with any of them.

To address this problem, we present a sophisticated index structure. This index structure is briefly
illustrated by the diagram shown in Figure 3b.

7 /a/b/a/c/a

14 /a/b/a
4 /a/*/d
8 /e/f/g

/a/b
13 /a/c
5 /a//a
11 /a//b
3 /b/a
1 //a//b

9

/*
15 /a
6 /b

12

16
2

//*
//a

10 /
cid path

9, 11, 1

15,2

13

14, 5 4

7

3, 2 22

6 −1 8

12, 16

10

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 //a//b
//a
/b/a

/a/*/d
/a//a
/b

/a/b/a/c/a
/e/f/g
/a/b
/

/a//b
/*

/a/c
/a/b/a

/a

cid path ptrs

−1 /c

//*

1
1 3

3 5
5

14
Start position
End position

/a/b/a

path token nodes

4

6

10

2

1

a) Example of sorted XPath b) Client Table & Containment Index
before creating Containment Index

index nodecid

c) row in client table

Figure 3: Data structure of Containment Index

With this index structure, we are able to improve the performance of merging subscriptions sub-
stantially as it captures the subscription containment relationships between clients. The Containment
Index is a directed acyclic graph (in practice, it is a tree with some index nodes pointed to by more than
one parent nodes). Each index node holds a list of client identifiers (cid). Each cid uniquely identifies
a subscription client. The parent-child relationship of the index structure represents the subscription
containment relationship, in which the data interested by each cid of an index node is a superset of the
data interested by the cids of all its child index nodes. In other words, data of interest to the cids of
an index node are also of interests for those cids of its parent index node. Cids held by the same index
node implies equivalence, i.e., the clients share the same interest or subscription.

Each index node contains the following variables:

Cids: Client Identifiers. Note that the maximum number of client identifiers an index node can hold
depends on an adjustable, predefined constant.

9

Next Pointer: For performance and efficient implementation of the paging mechanism, index node is
implemented as a fixed size block. If the number of cids exceeds the maximum number allowed,
another index block will be created and it will be chained to the current block using next pointer
(in a linear manner).

Running level: Every XQL expression of cids in the same index node has the same number of path
tokens. Running level is an integer value to represent the number of tokens each XQL expression
has, for each cid in the same index node. The running level of an XQL expression containing
descendant operators is treated as if the expression was expanded with respect to the schema of
the document (e.g., DTD).

Note that the running level of an index node, which has XQL expressions containing descendant
operators, changes at run-time depending on the other path expressions in the Index. This is
based on the assumption that no schema is provided.

It is a requirement of the Containment Index that each path token, for a given path, has to be
represented by an index node. For example, the Containment Index in Figure 3b has an index node
which contains cid = -1. In this case, we suppose that /c/a exists in the database, hence, the index
node containing cid = -1 acts as a ’dummy’ node for the path token /c for cid = 2.

5.1.1 Tokenization

The XQL parser used in our prototype development is an event-based parser which breaks XQL
expressions into path tokens via callback functions. Each wildcard operator (�), child operator (�),
descendant operator (��) and literal (e.g. Stock) is considered as a single path token. Although
predicates (���) need to be checked for subscription dependency, they will be treated separately using
the technique similar to the one presented in [2].

The index structure also stores the parse tree of each XQL expression. Common subscriptions can
be located in constant time using the Client Table (Figure 3b). The Client Table stores basic information
about each client as well as its XQL expressions.

A path token node contains the following variables (see Figure 3c) along with other runtime vari-
ables based on the parse tree structure:

Start Position: The starting character’s position of the representing path token in the XQL literal
string.

End Position: The last character’s position of the representing path token in the XQL literal string.
Together with the Starting Position attribute, The end position can be utilized for string comparisons.

Filters and Predicates: There is a list of parsed predicates from the XQL parse tree. This list
allows the index engine to further refine the disjoint detection mechanism, especially for those with
predicates.

Each tokenized XQL expression is annotated with its total number of tokens, which is the running
level of the expression. To construct the index from a set of existing subscriptions, all XQL expressions
will first pass through the tokenizer. They are then sorted by the number of path tokens in increasing
order. The second criteria for the sorting is by the following path token order:

path op � descendant op � wildcard op � literal

Figure 3a shows a sorted list of tokenized XQL expressions that respects the above ordering. The
sorting will enable construction of the whole Containment Index in effective order.

5.1.2 Insertion

When a tokenized XQL expression is inserted into the Containment Index, it starts from the root
index node and keeps track of the current running level (l) variable. This is necessary as the Contain-

10

ment Index represents the overlap between subscriptions, not the XQL expression itself. The depth of
the Containment Index does not directly correlate to the position of path tokens in the XQL expression
that we are comparing. Therefore the running level is necessary to identify the token in the XQL token
list that is being compared.

Traversing the Containment Index and inserting an XQL expression without wildcard and descen-
dant operators is simple. We first describe the algorithm of insertion by assuming no wildcard or
descendant operators are available. The algorithm can then be extended to include the handling of
wildcard and descendant operators. For clarity, present the algorithms below using recursion, while
their actual implementations use an iterative approach.

��� return a new empty index node
INDEX-NODE-CREATE(cid)
1 n � ALLOCATE-INDEX-NODE();
2 for i � 1 to CIDMAX do
3 n.cid[i] ��� ;
4 n.
�
parent,child,sibling,next ��� � ;

5 n.cid[0] � cid;
6 n.runLvl � client[cid].PE.size() - 1;
7 return n;

CLIENT-INSERT(cid)
1 T.root � CONTAIN-INSERT(cid,T.root,0);

��� node is the root of subtree for insertion��� l is running level denotes which token to check��� Assume all inserting PEs are pre-sorted
CONTAIN-INSERT(cid,node,l)
1 if node = � then
2 return INDEX-NODE-CREATE(cid);
3 if node.runLvl = l then
4 if IS-EQUIV-IN(cid,node,l) then
5 if client[cid].PE.size() - 1 = l then
6 node.insertCid(cid);
7 client[cid].ptr � node;
8 else
9 n � CONTAIN-INSERT(cid,node.lastChild(),l+1);

10 if n �� node.lastChild() then
11 node.insertChild(n);
12 return node;
13 else
14 return INDEX-NODE-CREATE(cid);
15 else
16 if IS-EQUIV-IN(cid,node,l) then
17 n � INDEX-NODE-CREATE(cid);
18 node.runLvl++;
19 n.insertChild(node);
20 CONTAIN-INSERT(cid,node,l + 1);
21 return n;
22 else
23 return INDEX-NODE-CREATE(cid);

IS-EQUIV-IN(cid,node,l)
1 while node �� � do
2 for i � 0 to CIDMAX do
3 if node.cid[i] = � then
4 return false;
5 if client[node.cid[i]].PE.token(l) �
6 client[cid].PE.token(l) then

11

7 return true;
8 node � node.next;
8 return false;

When a cid is inserted to an index node, the reverse pointer in the Client Table for the current cid is
also inserted for quick look up. Also when a new index node is created, its running level is set according
to the running level of the given XQL expression.

5.2 Handling Wildcard/Descendant Operators

The pseudo-code above greatly simplifies the insertion of a client subscription to illustrate the
main structure of the algorithm. This was done by disregarding all issues involving wildcard (�) and
descendant (��) operators. A wildcard operator is treated as the parent for all literal operators if all
their ancestors, without predicates, are equal. For example, /a/b/* is the parent of /a/b/c. During
insertion, if the current path token of the XQL expression being inserted is a wildcard operator, instead
of checking the node’s last child, we need to perform the insertion on every child node. This idea is
illustrated in the pseudo-code below.

��� insert after line 3 in CONTAIN-INSERT
1 if client[node.cid[0]].PE.token(l) = ’*’ then
2 if client[cid].PE.token(l) = ’*’ then
3 if client[cid].PE.size() - 1 = l then
4 node.insertCid(cid);
5 client[cid].ptr � node;
6 else
7 n � c � node.childs() s.t. c.cid[0] = ’*’;
8 if n �� � then
9 CONTAIN-INSERT(cid,n,l+1);

10 foreach c � node.childs() - n do
11 CONTAIN-INSERT(cid,c,l);
12 else
13 n � CONTAIN-INSERT(cid,node.lastChild(),l);
14 if n �� node.lastChild() then
15 node.insertChild(n);
16 return node;
17 else

Every XQL expression that contains descendant operators has to be checked against the schema of
the XML documents in the server. This checking process involves the retrieval of all possible paths in
the schema and inserting them accordingly. However as the elements of the schema form an acyclic
graph and due to the nature of the inclusion, only the first occurrence of the expression in such cycles
will be considered. For example, if /a/b/a exists in the schema, //a will expand as /a only.

5.3 Synchronization Engine

When a mobile client issues an update request and sends it to the XSync server, the Integration
Module communicates with the XML Database. If the transaction is successful, it passes the mobile
client identifier (cid) and the query (q) to the Synchronization Engine. The Synchronization Engine
locates the pointers associated with cid in the Client Table. It then uses the pointer (or pointers if
the XQL expression contains wildcard and/or descendant operators) to locate the index nodes within
the Containment Index which contains the client identifier. Notices that only XQL expressions with

12

wildcards and/or descendant operators will contain a list of pointers, other XQL expressions will only
be pointing to a single node.

In the non-enhanced version of XSync, once the index node is found, all the client identifiers which
are in index nodes that are ancestors and descendants of the original index node will be broadcast the
update. Although this approach achieves a relatively good result, it can be greatly improved.

CLIENT-SEARCH(cid, q)
1 � � � ;
2 for each ����� � client[cid].ptr do
3 ���
	�� �������� ;
4 ��� include equivalent PEs
5 � ����������������� �����
	���� �! "	 ;
6 for each � � node.parents() do
7 � ���#� CLIENT-SEARCH-UP(�);
8 if processLoad() � bandwidthLoad() then
9 for each � � node.childs() do

10 � ����� CLIENT-SEARCH-DOWN-ALL(�);
11 else
12 for each � � node.childs() do
13 � ����� CLIENT-SEARCH-DOWN(� , q, 0);
14 return � ;

CLIENT-SEARCH-UP(node)
1 � �$�%�
	���� �� "	 ;
2 for each n � node.parents() do
3 � ����� CLIENT-SEARCH-UP(n);
4 return � ;

CLIENT-SEARCH-DOWN-ALL(node)
1 � �$�%�
	���� �� "	 ;
2 for each n � node.childs() do
3 � ����� CLIENT-SEARCH-DOWN(n);
4 return � ;

CLIENT-SEARCH-DOWN(node, q, l)
1 � �$�%�
	���� �� "	 ;
2 � � node.cid[0];
3 if client[�].PE.token(l) � q.token(l) then
4 for each � � node do
5 � ���#�$� ;
6 for each � � node.childs() do
7 � ���#� CLIENT-SEARCH-DOWN(� , q, l+1);
4 return � ;

The equivalence binary operator (&) always evaluates to true when comparing a wildcard operator
to a literal string.

6 Enhancements to the Synchronization Algorithms

As all ancestor index nodes represent subscriptions to data that are supersets of the subscription
index node iteself (without considering predicates), it is necessary to forward all updates performed
by a client to it’s ancestors. However, this is not the case for descendants. If the client subscription
covers a large portion of the XML document, forwarding updates to all descendants will result in a large
amount of communications between clients and the Synchronization Engine. However by combining a

13

mobile client’s update query with its own subscription XQL expression, the Engine is able to compute
a disjoint set in its decendant index nodes.

For example, in Figure 3b, if client 15 issues an update operation:

Q15: d/e/f!update("g")

The Engine can merge the update query with its XQL subscription to form a new path expression
/a/d/e/f. It can then create the token nodes and match these against the descendants of the index
node containing client 15. In this example, all descendants of index node will match as disjoint and
thus all cids in the subtrees are not considered as part of the set of broadcasting clients.

Using the update statement to match against the descendants of an index node is very similiar to the
insertion of a query to the Containment Index.

For the purposes of the Synchronization Engine, the update statements detailed in Section 4.1 can
be classified into two categories:

1. Statements that do not affect other disjoint paths: These statements include !insert(PE)
and !delete(PE). If the statements do not contain wildcards or descendant operators, the
Engine executes CLIENT-SEARCH-DOWN. Otherwise, it expands the descendant operator to
determine all unique paths from the DTD. For each of these paths the Engine searches the de-
scendant index nodes and checks the path tokens against the update statement path tokens. Even-
tually either the index node reaches a leaf node or the update statement runs out of path tokens.
At that point, the current index node and its descendants are treated as affected.

2. Statements that affect other disjoint sets: In this situation, the Engine has to perform two
separate steps of overlapping expression detection, hence increasing the runtime cost. Firstly, we
need to check the overlap for the target path as mentioned above, then the sub path expression
has to be treated as a separate update, searching from the root index node as with a normal search.
All cids located by the two overlapping expression detection mechanisms represent clients that
are affected and have to be notified of the update. Examples of update statements in this category
include !move(PE), where PE is the sub path expression.

6.1 Update Merging

When mobile clients perform updates on their local cache of the database, they forward each up-
date to the server so as to allow the server to forward the updates to appropriate clients. The server
determines whether an update should be forwarded to a given client based on that client and the updat-
ing client’s subscription. The server only forwards updates to those clients which are interested in the
update.

Consider the situation where Client A has an overlapping subscription with Client B and Client
C has an overlapping subscription with Client B. When both Client A and C perform updates to their
local cache, their update operations are forwarded to the server. A naive solution to keeping Client B
up-to-date would involve broadcasting two separate update operations to Client B. However, XSync
performs a merge between the two operations and encapsulates the operations into a single message to
Client B. Hence, this reduces the communication costs between the clients and server.

However, being able to merge several update operations from different clients into a single message
leads to issues of conflict detection and resolution. In the situation where clients perform updates on
the same subset of nodes remotely, their update operations may be conflicting in terms of their target
and/or sub path. Hence, conflict detection is necessary to merge the updates of several mobile clients.

To analyse the problem of update merging, we first consider a specific example involving two
clients. We next generalise our analysis to merging the update operations of n clients that are forwarded
to the server.

14

Consider the simplified problem where two clients (Client A and Client B) have an overlapping
subscription, where both have cids in the same index node, and each perform an update operation on
their local database. The updates performed by Client A and Client B are forwarded to the server and
it is the responsibility of the server to detect and resolve any conflicts, while forwarding these updates
to the appropriate clients.

To do this, the server constructs a Containment Index structure similar to Figure 3b, using the
algorithm described in Section 5.1 and 5.2. In contrast to Figure 3b, the Containment Index captures
the containment relationships among the update operations performed by the clients. Hence, instead of
cids stored in each index node, oids are stored. The server also maintains an Operation Table (similar
to the Client Table) which contains basic information about each operation including:

Oid: The Operation Identifier of the update operation. Each operation has a unique Oid, hence, an
operation with a sub path has a different Oid from the operation with its target path.

Cid: The Client Identifier of the client which performed the operation. This allows the identification
of conflicting operations between clients.

Operation: The type of operation that was performed on the target path (e.g. !insert(PE)).

Target Path: A value which indicates if the path being represented is the target path or the sub path.
This aids in the conflict detection of overlapping paths.

6.1.1 Types of Conflicts

Given two edit operations, a Conflict occurs if and only if they have paths that are overlapping.
We define two disjoint subclasses of Conflict:

Direct Conflict (DC): A DC is a Conflict such that the order that the operations are carried out is
important. That is, if update operations x and y are in DC then one of the operations, x or y,
cannot be performed if the other operation is performed first. For example, let x be an insert
operation and y be a delete operation. If y is performed first, x cannot be performed as it deals
with a node that has already been deleted.

This situation occurs when one of the operations in DC is update() or delete() and their
target paths are in Conflict, or one of the operations is a move operation and its subpath is in
conflict with the path of the other operation. Note that the update() operation may participate
in a DC, as the operation can update the tagname of an element.

Syntax Conflict (SC): A SC occurs when two update operations are Conflicting in terms of their target
path or (if applicable) the sub path of one of the operations is Conflicting with a path of the other
operation. The order in which two SC operations are performed on the database affects the
resulting database as we are dealing with the ordered model.
Table 2 lists the update operations that are in SC, given that the operations are in the same index
node. op indicates an update operation including insert, move and copy.

� � �!� After � � Before

�!� Yes No No
� � After No Yes Yes
� � Before No Yes Yes

Table 2: SC between update operations in the same index node.

It is noteworthy that in Table 2, opBefore is in SC with opAfter. This occurs in the situation where
one of the operations is position specific. For example, let x = a/b[0]!insertAfter(c)

15

and y = a/b[0]!insertBefore(b). x and y are in SC because if x is performed first,
then y, the resulting database would be different from when y is performed before x.

Note that despite the ordering of a pair of update operations that are in SC, the operations can
still be applied ot the database. This is not the case for operations in DC.

6.1.2 Conflict Detection & Resolution

Once the update operations of Client A and Client B have been processed to construct the Contain-
ment Index, we traverse the data structure to identify path conflicts. This is similar in concept to the
steps carried out by the server in response to the update by client 15 at the beginning of Section 6. By
constructing the Containment Index based on Client A and B’s update operations, we are able to detect
conflicts.

In order to resolve conflicts, we have to consider each subclass of Conflicts individually.

Direct Conflict (DC): The architecture of XSync implicitly orders the update operations that it re-
ceives from its clients. That is, the server receives the update operations serially. Hence, for
operations that are in DC, if the operations are received in an order such that both operations can
be performed to the database in that order, then the conflict has been resolved.

On the other hand, if the order in which the DC operations arrive at XSync result in one of the
operations not being able to be performed on the database, XSync provides a resolution to this
conflict. On detection of such a conflict, XSync selects an operation (out of the two in DC) to
undo based on the DC resolution rules listed below:

1. A delete operation is always selected to be undone over any operation.

2. A move operation is always selected to be undone over any operation if Rule 1 does not
apply.

3. A update operation is always selected to be undone over any operation if Rule 1 and 2 do
not apply.

The rules are listed in order of precedence. That is, Rule 1 is evaluated first and if it does not
apply, Rule 2 is evaluated, etc.

The intuition behind the resolution rules listed above is to undo the operation which has a more
’costly’ effect on the database. For example, delete operations are always chosed by XSync to
be undone because the operation, if executed, would result in a significant amount of data being
removed from the database.

Syntax Conflict (SC): As XSync receives update operations from its clients in a serialized manner,
the order that the SC operations are performed has already been resolved. However, given this
serialized order, some operations that are in SC still may not be able to be applied directly onto
the database.

For example, given two insert operations with the same target path, one of the operations will
have to be modified syntactically to allow it to be performed on the database. This is because,
after the first operation has been executed, the target path is no longer a leaf node and hence
an insert operation cannot be performed on it (rather the operation has to be changed to an
insertAfter with a modified target path).

After all the conflicts have been resolved, we forward the merged sequence of update operations to all
clients that have overlapping subscriptions with the initiating client(s).

16

Note that the responsibility for conflict detection and resolution is with XSync. That is, clients
need not provide facilities to deal with conflicts. Hence, this reduces the complexity of the clients that
communicate with the server.

6.1.3 Multiple Clients

The above solution can be generalized to n number of clients. In this case, the Synchronization
Engine maintains a single Containment Index for all client updates that arrive at the server. The Engine
periodically broadcasts update operations to the appropriate clients based on the Containment Index
for operations. Once the appropriate clients have been notified, the corresponding operations can be
deleted from the Index.

The Containment Index is constructed by extracting all paths associated with each client’s update
operation, passing each path through the tokenizer (detailed in Section 5.1.1), sorting the tokens ac-
cording to path token order and finally inserting each path into the Index.

The Engine first executes DETECT-CONFLICTS to detect and resolve any conflicts. It then exe-
cutes UPDATE-MERGE to broadcast the update operations issued by the clients so far to all applicable
clients.

Note that this solution also scales to the situation where a client issues several update operations to
the server before the server broadcasts the updates to all the appropriate clients.

6.1.4 Algorithm for Detecting & Resolving Conflicts

The algorithm below detects conflicts between n client update operations.

��� C is the set of clients that forwarded update��� operations to the server
DETECT-CONFLICTS(C)
1 dc � �
2 for each cid � C do
3 cidSet � CLIENT-SEARCH(cid) -

�
cid � ;

4 dc � dc �
DETECT-DIRECT-CONFLICT(T.root(), cid, cidSet);

5 RESOLVE-DIRECT-CONFLICT(SORT(dc));
6 for each cid � C do
7 cidSet � CLIENT-SEARCH(cid) -

�
cid � ;

8 DETECT-SYNTAX-CONFLICT(T.root(), cid, cidSet);

��� L is a list that contains pairs of��� operations that are in DC. It is constructed��� such that the first of each pair is the��� operation that has to be undone later.��� Also, DCs with delete operations are��� considered first followed by move��� operations and finally update operations.
DETECT-DIRECT-CONFLICTS(node, cid, cidSet)
1 C � � ;
2 N � FILTER(cid, node.oid());
3
�
D, M, U � � [];

4 for each o � N do
5 if operation[o].op() = ”delete” then
6 D.append(o);
7 elif operation[o].op() = ”move”

�

8 !operation[o].targetPath then
9 M.append(o);

10 elif operation[o].op() = ”update” then

17

11 U.append(o);
12 L � D;
13 L.append(M);
14 L.append(U);
15 for each n � node.childs() do
16 for each o � FILTER(cidSet, n.oid()) do
17 for each l � L do
18 if operation[o].order > operation[l].order

�

19 (l,o) �� C then
20 C � C � (o,l);
21 C � C � DETECT-DIRECT-CONFLICTS(n, cid, cidSet);
22 return C;

��� S is a list obtained by ordering the��� output of DETECT-DIRECT-CONFLICTS��� according to cid of the operation that��� has to be undone due to DC and within that,��� by the order they were received
RESOLVE-DIRECT-CONFLICTS(S)
1 undoCids � [];
2 for each (undoOp, conflictOp) � S do
3 if � (cid, order) � undoCids s.t.
4 operation[undoOp].cid = cid then
5 continue;
6 if ��� (cid,order) � undoCids s.t.
7 operation[conflictOp].cid = cid

�

8 operation[conflictOp].order > order then
9 op � operation[undoOp];

10 undoCids.append((op.cid, op.order));
11 for each (cid, o) � undoCids do
12 for all op � operation s.t.
13 op.cid = cid

�
op.order � o do

14 op.orig � op.PE + op.op();
15 op.op � ”UNDO”;

��� Detect and resolve SCs.
DETECT-SYNTAX-CONFLICTS(node, cid, cidSet)
1 N � FILTER(cid, node.oid());
2 L � � ;
3 for each o � N do
4 if operation[o].op() != ”update”

�

5 operation[o].op() != ”delete”
�

6 operation[o].op() != ”UNDO” then
7 L � L � o;
8 for each n � node.childs() do
9 for each o � FILTER(cidSet, n.oid) do

10 for each l � L do
11 if operation[o].op ����� operation[l].op then
12 if operation[o].order > operation[l].order then
13 OP-DELETE(o);
14 operation[o].changed � true;
15 operation[o].orig � operation[o].PE;
16 operation[o].PE � NEW-PATH(l);
17 OP-INSERT(o);
18 else
19 OP-DELETE(l);
20 operation[l].changed � true;
21 operation[l].orig � operation[l].PE;
22 operation[l].PE � NEW-PATH(o);
23 OP-INSERT(l);

18

24 DETECT-SYNTAX-CONFLICTS(n, cid, cidSet);

To detect DCs involving the delete operation involves traversing through the Containment Index.
All cids that are in nodes which are descendants of a delete operation node are in DC. Similarly for the
move and update operation. We then have to undo some operations (if applicable) in order to resolve
the conflict. In order to handle the situation when a client forwards multiple update statments and one
of the operations have to be undone in RESOLVE-DIRECT-CONFLICTS, we keep track of the clients
(undoCids) which have operations that have to be undone.

We define a function FILTER(cid, Ops), for use in DETECT-DIRECT-CONFLICTS, which
returns a subset of Ops which were operations performed by cid.

We also define &���� to be a function in DETECT-SYNTAX-CONFLICTS that returns true if and
only if its arguments correspond to a ’Yes’ entry in Table 2.

OP-DELETE deletes the argument oid from the Containment Index, while OP-INSERT inserts
the argument into the Containment Index. The implementation for OP-INSERT is equivalent to
CLIENT-INSERT.

We also define extra parameters in the operation table for each operation to maintain information
on whether the operation was modified in order to resolve a SC and if so, it’s original target/sub path.
We also include the order that the operation arrived at the server in order to resolve operations that are
in conflict. NEW-PATH generates the new path that should be the target/sub path of oid in order to
resolve the SC.

6.1.5 Algorithm for Update Merging

On receipt of m update operations from n clients, C, XSync performs the algorithm detailed above
to detect and resolve conflicts. XSync then executes UPDATE-MERGE(L) where L is the list of
operations returned by DETECT-CONFLICTS(). We assume that the client has facilities to undo
specific operations.

We handle clients in C differently from clients with overlapping subscriptions with clients in C.
This is because operation(s) have already been carried out on their local cache database, and hence
may need to be undone to maintain consistency.

UPDATE-MERGE(L)
1 message � []
2 for each o in L do
3 if operation[o].op() = ”UNDO” then
4 op � operation[o];
5 message[op.cid] � UNDO(op.orig) + message[c];
6 continue;
7 C � CLIENT-SEARCH(o.cid, o);
8 for each c in C do
9 if c = o.cid then

10 if operation[o].changed then
11 op � operation[o];
12 message[c] � UNDO(op.orig) + message[c] + o;
13 else
14 message[c].append(o);
15 else
16 message[c].append(o);
17 for each c in message do
18 SEND-UPDATE(message[c], cid);

19

7 Performance

7.1 Settings

In this section, we present our cost model for calculating the worst and average case scenario. Let� ���
denotes the total number of XQL expressions, ������� as the average number of path tokens in all

expressions calculated by 	 ��
��� �� ��� and � is the number of cids stored in one index node.

7.1.1 XQL Expression Insertion Cost

Tokenization and Sorting of the original XQL expression set
�

is ��� � ������� ��� � ����� � �����! and the
insertion cost to the Containment Index is bounded by �"�#� � � ����� �#� ��� . Therefore, the cost of generating
the whole index is:

�%$ � ������� ��� � ���&� �������(')� � ������� ��� ��� *
7.1.2 XQL Expression deletion Cost

Trivial. Near constant time.

7.1.3 Search Cost

� $�+ � � �-,.!/10!243 ����� � 6517-8:9<;=5?>@ �BA * ')� $ � �-,C.!/EDF/ ����� � 65?>@ �BA *
Practically, both

,.!/=DG/ ����� � and
,.!/10!243 ����� � are very close to one.

C = 1 when the Synchronization Engine broadcasts to all descendants.

7.2 Experimental Results

The description of the experiment parameters are shown in Table 1.

Parameter Range DescriptionH IJH
1 - 1M # of queriesK-L MONQPSRUT 0 - 10 Length of queryVWL MONQPSRUT 0 - 10 Length of updateH X�H
1 - 20 Avg # of cids / index nodeH Y[Z\Y]H

1 - 100 Size of DTD^`_<acbUd L MGNQPSReTgf 10 Max. Depth of XML element

For simplicity, we assume each mobile client (hjilk%m) contains only one query (n�ilk%o) to describe
its cache. n<prq#stQuGv is defined as the total number of path tokens in a query and �wprq#stQuGv is defined as the
total number of path tokens in the update statement that a particular client issues. The size of the DTD
is defined as the total number of unique element names in the Document Type Definition.

We develop a random DTD generator which generates DTD with
� x�yzx{�

as input to limit the
number of element names. The DTD that is generated also allows for cyclic inclusion of element
names for testing the correctness of descendant operator.

Also we made our own simple random XQL expression generator which can produce client queries
and updates according to the njprq|sgtQuFv and �=prq|sgtQuFv length parameters.

Queries that are generated using n�prq#stQuGv are used to populate the index and they do not contain
extended method invocations such as !move(}�~) or !delete(}�~). Also the XQL expression

20

generator accepts extra parameters to limit the number of wildcard, descendant operators and their
position within the expression.

The maximum depth of XML elements in the XML document has a direct relationship with the
length of the query and the length of update. As any mobile client can specify its subscription to be
the leaf node of the XML tree, n�prq#stQuGv cannot exceed � ��� ����prq#stQuGv . Also, the combined length of the
update and query of a particular client cannot exceed � ��� ��� prq#stQuFv .

For example, in Figure 4 and Figure 5, the length of an update is fixed, therefore only clients withnCprq#t-s�uFv���� ��� ��� prq|sgtQuFv
	 � prq#stQuGv would be considered.

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 2 4 6 8 10

O
pe

ra
tio

ns

Length of update

Operations / Length of update

simple PE
PE with a wildcard

PE with a descendant op

Figure 4: # of Operations / Length of Update
CLIENT-SEARCH-DOWN-ALL,

H IJH ��� ^ ,
H X�H ���� , H Y[Z\Y]H ������� , ^ _<acbUd L MONQPSRUTgf ����� , K-L MONQPSRUT ��� � � ^`_<acbUd L MGNQPSReTCf��V!L MONQPSRUT

Figure 4 shows the number of operations required to search for overlapping clients when a client
sends an update statement to the server. The number of queries are fixed at 1,000,000 and the method
of search only utilises client subscriptions, ignoring client updates. In this situation, the server forwards
updates to both ancestors and all its descendants.

Simple PE refers to XQL expressions which do not contain wildcards or descendant operatiors.
We also specifically chose to test path expressions which included only one wildcard or descendant
operator for both the client query and its update. However we did not limit the location of such an
operator within the query or update. By doing so, we were able to analyse the behaviour of the most
complex operators in the expression.

As the length of an update is fixed at �?prq#stQuGv , we randomly chose a client with its n&prq#stQuGv between
0 (e.g. �) and � ��� ����prq|sgtQuFv �	 �=prq#stQuGv . Therefore, this graph shows a scalarability of �"� ������� �"!$# % .
However, � prq|sgtQuFv can only approach � ��� ����prq#stQuFv as any updates that are any longer will always yield

21

no result. Hence, the worst case is the same as simple broadcasting. This is applicable when the client’s
view is the whole document and the update statement is ignored.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10

O
pe

ra
tio

ns

Length of update

Operations / Length of update

simple PE
PE with a wildcard

PE with a descendant op

Figure 5: # of Operations / Length of Update
CLIENT-SEARCH-DOWN,

H IJH ��� ^ ,
H X�H � � , H Y[Z Y]H ������� , ^`_ja�bUd L MGN6PSRUT f � ��� , K L MONQPSRUT � � � � ^`_ja�bUd L MONQPSRUT f�� V L MGN6PSRUT

In contrast to Figure 4, Figure 5 shows the number of operations required to search for overlapping
clients by matching the path expression to the update statments issued by the client. Comparing this
with Figure 4, both have similar costs when �?prq#stQuFv is equal. By checking the update statement, the
cost is significantly reduced when the length of the update statement increases.

Instead of fixing the length of update statement and randomly choosing client queries, Figure 6
and Figure 7 shows the behaviour of the system when the length of the update statement is random.
It is interesting to note that although the length of the query and length of the update has an inverse
relationship in these graphs, Figure 5 and 7 illustrate a similar curve, unlike Figure 4 and 6. This is
because when the length of the update or the length of the query is short, the overall length, on average,
with the chosen counterpart is short as well. Together with the randomness for the location of the
operator, it is more likely that a large subtree is included.

Figure 8 and 9 shows the growth of the search time against the number of queries. n prq#stQuGv and
�=prq#stQuGv is chosen at random and the average number of operations it taken. It is observed that the
growth of the search time is logarithmic. In addition, the size of the DTD was chosen relative to the
number of queries. This is the main factor resulting in the growth in the number of operations for
complex queries (such as those which contain the descendant operator).

Figure 10 and 11 illustrates that as the size of the DTD increase, the number of expressions that can
be obtained by expanding an update operation with descendant operators decreases, and hence reducing
the cost of a search.

Notice that from Figure 8 to Figure 11, the performance of PE with a wildcard is only slightly

22

0

10000

20000

30000

40000

50000

60000

0 2 4 6 8 10

O
pe

ra
tio

ns

Length of query

Operations / Length of query

simple PE
PE with a wildcard

PE with descendant op

Figure 6: # of Operations / Length of Query
CLIENT-SEARCH-DOWN-ALL,

H IJH � � ^ ,
H X�H � � , H Y[Z\Y]H ������� , ^`_ja�bUd L MGN6PSRUTf � ��� , VWL MONQPSRUT � � � � ^`_<acbUd L MGNQPSReTf$�K L MONQPSRUT

higher than the simple PE because n&prq#stQuGv is choosen to be from 3 to 5. Other parameters were also set
at such realistic values. However if we increase the fanout value by lowering the depth of the XML
Document (� ��� ����prq#stQuGv) or by reducing the size of the DTD, the cost of searching wildcard queries
and updates increases. Decreasing n&prq#t-s�uFv will also have the same effect, as shown in Figure 7.

8 Conclusions

In this paper, we presented an efficient synchronization server for handling mobile XML data. The
proposed server, XSync, consists of an Integration Module (for communication with the XML database)
and a Synchronization Engine (for handling all synchronization issues). The Synchronization Engine
utilizes a sophisticated index structure, which provids a significant improvement compared to current
methods available. We also explored several enhanced synchronization algorithms for update merging
and disjoint predicates and ranges, to further improve the performance of the system.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data management for asymmetric
communication environments. In Proceedings of ACM SIGMOD International Conference on Management
of Data, May 1995.

23

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 2 4 6 8 10

O
pe

ra
tio

ns

Length of query

Operations / Length of query

simple PE
PE with a wildcard

PE with a descendant op

Figure 7: # of Operations / Length of Query
CLIENT-SEARCH-DOWN,

H IJH � � ^ ,
H X�H � �� , H Y[Z\Y]H � ����� , ^`_<acbUd L MONQPSRUTf � ��� , VWL MONQPSRUT � � � � ^`_ja�bUd L MONQPSRUTgf �K L MONQPSRUT

[2] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, and T.D. Chandra. Matching events in a content-
based subscription system. In Proceedings of ACM PODC, pages 53–61, 1999.

[3] M. Altinel and M.J. Franklin. Efficient filtering of xml documents for selective dissemination of informa-
tion. In Proceedings of the 26th VLDB Conference, pages 53–64, 2000.

[4] C.Y. Chan, P. Felber, M.N. Garofalakis, and R. Rastogi. Efficient filtering of xml documents with xpath
expressions. In Proceedings of IEEE International Conference on Data Engineering, February 2002.

[5] A. Crespo, O. Buyukkokten, and H. Garcia-Molina. Efficient query subscription processing in a multicast
environment. Technical report, Stanford University, 1999.

[6] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The bayou architecture: Support
for data sharing among mobile users. In Proceedings of the Workshop on Mobile Computing Systems and
Applications, 1994.

[7] D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the world-wide web: A survey. SIGMOD
Record, 27(3):59–74, 1998.

[8] P.J. Keleher and U. Cetintemel. Consistency management in deno. Journal on Special Topics in Mobile
Networking and Applications (MONET), 1999.

[9] S. Mahajan, M.J. Donahoo, S.B. Navathe, M. Ammar, and S. Malik. Grouping techniques for update
propagation in intermittently connected databases. In Proceedings of the IEEE International Conference
on Data Engineering, February 1998.

[10] G. Miklau and D. Suciu. Containment and equivalence of xpath expressions. In Proceedings of ACM
Principles of Database Systems (PODS), 2002, to appear.

24

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200000 400000 600000 800000 1e+06

O
pe

ra
tio

ns

Number of queries

Operations / Number of queries

simple PE
PE with wildcard

PE with descendant op

Figure 8: # of Operations / Number of Queries
CLIENT-SEARCH-DOWN-ALL,

H X�H � � , H Y[Z\Y]H � ��� , ^`_ja�bUd L MGN6PSRUTf � ��� , K-L MGNQPSReT � � � � � , VWL MGN6PSRUT �
� � � ^`_<acbUd L MGN6PSRUT f ��K L MONQPSRUT
[11] W3C Recommendation. Xml path language (xpath) version 1.0. http://www.w3.org/TR/xpath, November

1999.

[12] J. Robie, J. Lapp, and D. Schach. Xml query language (xql). In The XSL Working Group, World Wide Web
Consortium, 1998. Available at http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[13] I. Tatarinov, Z.G. Ives, A.Y. Halevy, and D.S. Weld. Updating XML. In SIGMOD Conference, 2001.

[14] R.K. Wong. The extended xql for querying and updating large xml databases. In Proceedings of ACM
Symposium on Document Engineering (DocEng), November 2001.

[15] T.W. Yan and H. Garcia-Molina. Index structures for selective dissemination of information under the
boolean model. ACM TODS, 19(2):332–364, June 1994.

[16] W.G. Yee, E. Omiecinski, M.J. Donahoo, and S.B. Navathe. Scaling replica maintenance in intermittently
synchronized mobile databases. In Proceedings of ACM CIKM, pages 450–457, 2001.

25

0

200

400

600

800

1000

1200

1400

1600

0 200000 400000 600000 800000 1e+06

O
pe

ra
tio

ns

Number of queries

Operations / Number of queries

simple PE
PE with a wildcard

PE with a descendant op

Figure 9: # of Operations / Number of Queries
CLIENT-SEARCH-DOWN,

H X�H � � , H Y[Z\Y]H � ��� , ^ _<acbUd L MGN6PSRUTgf � ��� , K-L MGN6PSRUT � � � � � , V!L MONQPSRUT � � � � ^`_ja�bUd L MONQPSRUTf �KQL MONQPSRUT

26

800

900

1000

1100

1200

1300

1400

1500

1600

0 10 20 30 40 50 60 70 80 90 100

O
pe

ra
tio

ns

Size of DTD

Operations / Size of DTD

simple PE
PE with a wildcard

PE with a descendant op

Figure 10: # of Operations / Size of DTD, simple traversal
CLIENT-SEARCH-DOWN-ALL,

H IJH � � ^ ,
H X�H � � , ^ _<acbUd L MONQPSRUTgf ����� , K-L MGN6PSRUT � � � � � , VWL MGN6PSRUT � � � � ^`_<acbUd L MGNQPSReTf �KQL MONQPSRUT

27

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90 100

O
pe

ra
tio

ns

Size of DTD

Operations / Size of DTD

simple PE
PE with a wildcard

PE with a descendant op

Figure 11: # of Operations / Size of DTD
CLIENT-SEARCH-DOWN,

H IJH � � ^ ,
H X�H � �� , ^`_<acbUd L MONQPSRUTgf � ��� , KQL MONQPSRUT � � � � � , VWL MONQPSRUT � � � � ^`_<acbUd L MGNQPSReTCf �KQL MONQPSRUT

28

