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Abstract

The contribution of this paper is to introduce heuristics, that go beyond
safe state abstraction in hierarchical reinforcement learning, to approx-
imate a decomposed value function. Additional improvements in time
and space complexity for learning and execution may outweigh achiev-
ing less than hierarchically optimal performance and deliver anytime de-
cision making during execution. Heuristics are discussed in relation to
HEXQ, a MDP partitioning that generates a hierarchy of abstract models
using safe state abstraction. The approximation methods are illustrated
empirically.



1 Introduction

Not only do humans have the ability to form abstractions, but we control the amount of
detail required to represent complex situations and to make decisions. To decide the best
way to travel to a conference in Vancouver, for example, we may choose from available
modes of intercity transport; car, bus, aircraft or train. The final decision may even take
into consideration connections at either end for each mode of primary transport. However,
the way we exit our home (front door, back door or garage door) is unlikely to be an
influencing factor in our decision, although the final execution of the plan will use one of
the doors to exit the home. How could a reinforcement learner model these pragmatics?

The Markov property significantly reduces the potential hypothesis space for MDPs but
the state space still grows exponentially with the number of variables. For many complex
environments we can exploit additional constraints. Examples of weak kinds of inductive
bias are repetition, spacial coherence and weak coupling. By abstracting away redundant or
irrelevant information and modelling the problem approximately we can reduce the com-
plexity and solve it more efficiently.

The objective of this paper is to consider variable levels of model resolution to approximate
hierarchically decomposed Markov decision problems that have already been safely state
abstracted. Section 2 reviews model reductions for MDPs and hierarchically decomposed
MDPs. Section 3 reviews the automatic HEXQ decomposition of a MDP and shows that
it produces a hierarchy of abstract models. Section 4 introduces three variable resolution
heuristics. Section 5 shows the results for Kaelbling’s10 × 10 maze [1]. We conclude
with some discussion on future research directions.

2 Modelling, Homomorphism and Abstractions

Ashby [2] described amodelas a state-action homomorphism between Markov machines.
A homomorphism is a many-one mapping that preserves certain operations of interest. For
example, the state transition function in a MDP is a good model of the environment if it ac-
curately reflects the probabilistic behaviour of the environment. Additional homomorphic
reductions may be possible to further simplify these models. Dean and Givan’s model min-
imisation [3] is such a homomorphism (stochastic bisimulation homogeneity). This type of
homomorphism is related to algorithms by Boutilieret al. [4] that use structure in factored
MDPs represented as two stage temporal Bayes nets to effect the reduction.

Additional abstraction opportunities my be available by introducing multi-level hierarchi-
cal decompositions where each level acts as gating mechanism switching in sub-controllers
or behaviours in a similar manner in which programs call subroutines. Hierarchical rein-
forcement learning frameworks such as HAMs [5],options[6], MAXQ [7], HEXQ [8]
and ALisp [9] are not homomorphic reductions from original “flat” MDPs, but usually
constrain the sub-task policies in various ways to simplify the learning. It appears it is
not possible in general to significantly improve the computational complexity of solving
a MDP and give optimality guarantees. For example in HAMs the designer specifies the
underlying abstract machine that constrains the policies. The solution quality will depend
on the heuristics implemented by the machine. Optimality is therefore often considered
only in relation to a given hierarchical representation.

We thus concern ourselves with homomorphic reductions ofgivenhierarchical MDP rep-
resentations. The aforementioned hierarchical reinforcement learning frameworks all use
a SMDP formalism at abstract levels. Ravindran and Barto [10] have defined a SMDP
homomorphismh as a set of many-one mappings〈f, gs〉 from SMDPM〈S,A, T, R〉 to
SMDP M ′〈S′, A′, T ′, R′〉 with h((s, a)) = (f(s), gs(a)), wheref : S → S′ and
gs : As → A′f(s) for s ∈ S, such that∀s, s′ ∈ S, a ∈ As and N ∈ N : (1)



T ′(f(s), gs(a), f(s′), N) =
∑

s”∈[s′]f T (s, a, s”, N) and (2)R′(f(s), gs(a), N) =
R(s, a, N). The surjectionf induces equivalent classes of statess of M (i.e. [s]f ).
R(s, a, N) is the expected reward for performing actiona in states and completing it in
N steps time.

A safe state abstraction is a homomorphism. By asafeabstraction we mean that the state
value function is the same for the original and reduced MDP. Dietterich identified three
kinds of safe state abstraction conditions for a MAXQ decomposed value function: (1)
The elimination of irrelevant variables within a sub-task. This is closely related to model
minimisation. (2)Funnel actions, are temporally extended actions moving from a larger
number of states to a smaller number of resultant states. (3)Shielding, ensures states
for which all parent tasks are terminated do not require values to be stored. Interestingly,
funnel actions can be interpreted as a kind of hierarchical model minimisation in which
a whole sub-task is abstracted to a single state. This condition is difficult to satisfy in a
discounted setting because the discount rate applied to the resultant state depends onN ,
the number of steps to termination of the sub-task. With the introduction of an additional
discount function, safe state abstraction conditions for funnel actions under discounting
can be weakened to those for the undiscounted case [11]. In the rest of this paper we will
restrict ourselves to episodic MDPs with undiscounted value functions (stochastic shortest
path problems).

3 Hierarchies of Abstract Models using HEXQ Partitions

A HEXQ partition for a factored MDP [8] attempts to find variable wise repetitive sub-
state regions that have equivalent internal transition and reward functions and from which
exits can be controlled. Formally, aHEXQ PartitionG of the states factored by two
variables,s = (x, y), of a MDP into regionsg is defined by the following conditions for
all g, g′ ∈ G

1. Same Context: all states in a region must have the samey label:
for all s = (x, y), s′ = (x′, y′) ∈ g
y = y′

2. Markov transitions : all states with the samex label in different regions must have
similar reward and transition functions to states inside their regions:
for all a ∈ A, s = (x, y), s′ = (x′, y) ∈ g andt = (x, y′), t′ = (x′, y′) ∈
g′
T a

ss′ = T a
tt′ andRa

ss′ = Ra
tt′

3. Reachable exits: all exit states must be reachable within the region from all entry
states with probability one. All possible starting states for the MDP are also entry
states.

The transition and immediate reward functions areT a
ss′ = Pr{s′|s, a} and Ra

ss′ =
E{r|s, a, s′} respectively. With the statess ∈ S partitioned into regionsg ∈ G an
exit from regiong is a state-action pair(so, a) such that taking actiona from stateso ∈ g
may reach a state not ing (or the MDP may terminate) in a single transition. Stateso is
referred to as theexit state. The state reached after exiting is called anentry stateto the
next region or atermination statefrom the current region, depending on our perspective.

The HEXQ partition ensures regions with the same set ofx labels are isomorphic in the
sense that they have equivalent internal Markov properties with respect to state transitions
and rewards. Thus a first (sub)homomorphism allows the irrelevanty variable to be elimi-
nated from each sub-task. HEXQ parameterises a set of sub-MDPs over thex label region
classes so that each sub-MDP is allowed to reach only one possible exit state. A second



homomorphism allowsx labelled region states to be safely aggregated at the next level
because their exits can be controlled. The Cartesian product of the region classes and
the y variable labels produce the state labels in a new abstract state spaceS′ = [s]G,
hencef : S → [s]G. Together with the sub-MDP exit policies as abstract actions, this
defines a safely abstracted SMDP. Condition (1) for a SMDP homomorphism is satisfied
as the transition function from an exit state to sub-MDP termination states is indepen-
dent of the starting states inside the sub-MDP. For condition (2) we note that the com-
ponent of reward accumulated inside a sub-MDP is not the subject of the second homo-
morphism and remains untouched. To showR′ = R it is sufficient to show that the
expected reward on exit of abstract actiona afterN steps, having starting in states satis-
fiesR′

exit(s, a, N) = Rexit(f(s), gs(a), N). As the sub-MDP exit state is independent
of the starting state inside the sub-MDP and the discount factor is1 this condition is also
satisfied. The decomposition of the value function in HEXQ was inspired by MAXQ. The
HEXQ partitioning can be applied recursively resulting in a hierarchy of sub-MDPs not
unlike a MAXQ graph for which all of Ditterich’s safe abstraction conditions hold.

The HEXQ decomposition produces a hierarchy of abstract models. The decomposed hier-
archically optimal value function for states in SMDPm at levele, where (abstract) action
a invokes sub-MDPm− 1 defined over regiong, is given by

V ∗
m(s) = max

a
[V ∗

m−1(s) + E∗
m(g, a)] (1)

At the lowest levelV ∗
m−1 = 0 as all primitive actions are exit actions and do not invoke

lower level routines. TheHEXQ action-value functionE1 or exit value function for all
statess in regiong is the expected value of future rewardsafter completingthe execution
of the (abstract) actiona exiting g and following the policyπ thereafter.E includes the
expected primitive reward on exit, but does not include any rewards accumulated ing.

E∗
m(g, a) =

∑

s′
P π(s′|g, a)[Rexit + V ∗

m(s′)] (2)

P π(s′|g, a) is the probability of transition to states′ after (abstract) actiona terminates
from any states ∈ g andRexit is the expected final primitive reward on transition to state
s′.
The following examples illustrate the HEXQ decomposition of MDPs into a hierarchy of
increasingly abstract models. Figure 1 (a) is the plan view showing two of 10 similar multi-
room floors in a multi-storey building connected by two (east and west) banks of elevators.
The state of this MDP is described by three variables; floors (labels 0-9), rooms (0-24)
and locations in room (0-8). An agent uses one step actions to move north, south, east,
west, up or down and starts on floor 0. The goal is to move to position “G” on floor 1 and
execute the up action (to say turn the coffee maker on). The up/down actions only work
at the elevator where they move the agent one floor at a time. The reward is−1 for taking
each action. The HEXQ hierarchical decomposition for the building MDP generates two
abstract SMDP. The first SMDP aggregates room locations into a single state and therefore
has 250 states, one for each room, and 8 abstract actions, 4 to leave the room via the N,S,E
or W and 4 to execute up or down at each elevator or “G” position. The top level SMDP has
only 10 abstract states, one for each floor, and 9 abstract actions, moving to each elevator
and pressing up or down and moving to the coffee machine and pressing up. The storage
required to compute the value function for the original MDP is 13,500 values. The first
safely abstracted model of the original problem requires 2216 values. The final safely
abstracted model requires 1306, an order of magnitude saving.

1The notationE is used here in preference toQ used in [8] to avoid confusion with the normal Q
function
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Figure 1: (a) The plan view of two out of ten floors connected via two banks of elevators,
(b) The Towers of Hanoi Puzzle with 7 disks.

The second example, Figure 1 (b), shows a seven disk Tower of Hanoi (ToH) puzzle where
the objective is to move the disc stack from peg 1 to peg 3, one disk at a time, but never
with a lager disk on top of a smaller. This can be modelled as a MDP with 7 state variables
encoding the peg position of each disk, 6 primitive actions indicating a disk move from
one peg to another and a reward of−1 per disk move. The HEXQ decomposition of the
ToH MDP has 7 levels, one for each disk in ascending order of size. Each level has three
(abstract) states, three exit states and six exits. The ToH MDP is an example where the
HEXQ hierarchical RL space complexity scales linearly in the number of variables,n. The
action value function requires only54n − 36 values compared to the original MDP that
requires6× 3n values.

4 Variable Resolution Approximations

When space or time is constrained we still wish to find good solutions within the resources
available. The hierarchy of abstract models generated by HEXQ suggests that further ap-
proximation, by varying the resolution of modelling, may improve the computational com-
plexity over and above that achieved by safe state abstraction.

4.1 Variable Resolution Value Function

HEXQ uses a best first search2 as a result of the recursion present in equation 1 to decide
actions at execution time. Limiting the depth of the search approximates the value function,
assuming that either (1) there is a diminishing return in finer detail and these costs can be
ignored or (2) sub-tasks accumulate near constant internal reward during execution. In the
latter case the constant accumulated reward within a sub-tasks can be added to the reward
on exit, but other than linearly scaling the value function it will not effect the optimal
policy. For example, in the extreme case with a depth limit of zero, equation 1 becomes
V ∗

m(g) = maxa E∗
m(g, a) reducing nicely to the usual “flat”Q learning representation

for the most abstract approximation of the problem. It is important to note that limiting the
search to a particular depth does not effect the ability to operate at more detailed levels. For
example, at level 4 a depth of 2 searches to level 2 and at level 3 the search extends to level

2as does MAXQ [7]



1.

In the multi-storey building example, limiting the value function to top level values would
result in choosing an arbitrary elevator to reach the first floor. In this case the agent may
lengthen the journey by travelling to a non-optimal elevator bank. Increasing the depth of
search to one level would result in an optimal path as the distance to each elevator bank is
included in the decision. For the ToH puzzle, constraints ensure that the cost of an abstract
action is constant at each level (given the disks are stacked on one peg to this level). This
means that a depth zero search is sufficient to ensure an optimal policy, reducing the number
of values that need to be searched in the 7 disk version from67 = 279, 936 to only6, more
than 4 orders of magnitude saving! This is a huge reduction in decision time complexity.

4.2 Variable Resolution Exit States

The HEXQ decomposition generates one region sub-MDP for each hierarchical exit state.
A hierarchicalexit state means that the exit state is full resolution and distinguished at
the base level of the hierarchy. This is necessary to ensure safe state abstraction. Limiting
the resolution of the exit states reduces the number of sub-MDPs required. The effect
is to reduce the number of separate policies for each region at the expense of possibly
reaching each exit sub-optimally. The benefit is to reduce space complexity and learning
time complexity. The loss of resolving exit states will lead in general to an overestimation
of the value function as some rewards within the abstract exit state may be short-circuited.

For the multi-storey building, consider the floor region defined by the 25 abstract room
states. Separate sub-MDPs are required for each of the four elevators, despite each of the
two elevators sharing the same room. If we generate only one sub-MDP per elevator bank,
that is, per abstract room state, the storage requirements to represent the value function
are reduced from 1306 to 906. In this example there is no loss in accuracy of the value
function, but in general the loss is limited to the intra-room distance.

4.3 Variable Resolution Exits

To allow safe state abstraction for funnel actions, HEXQ generates one abstract action for
each sub-MDP exit, that needs to be represented and explored at the next highest level.
Exits may also generate additional sub-MDPs if they have different hierarchical exit states.

A natural heuristic is to combine exits from a region when they always transition to the
same next abstract state. Again the resolution can be adjusted to only combine exits be-
tween abstract state at a certain level of resolution. For the multi-storey problem, the two
floor exits going up for each elevator bank could be combined as they always lead to the
same next state (the room on the floor above). Similarly the down exits could be combined.

Combining exits makes it easier for sub-MDPs to exit and this will in general increase
the internal value function of a sub-MDP. On the other hand there is an increased loss
of control as exits cannot be discriminated at the next level. The net effect on the value
function and resultant policy will depend on each specific problem instance and will need
to be tested. It should be noted that the sub-MDP with combined exits may no longer be
totally independent of the entry state. Nevertheless, combining exits can still provide a
good approximation to the safe state abstraction produced by HEXQ.

The effect of combining elevator exits in the above building problem is to reduce the storage
space requirements from 1306 to 866.



5 Kaelbling’s 10× 10 Maze Example

Kaelbling’s introduced the maze, reproduced in figure 2, showing that it is possible to
efficiently learn an approximate navigation policy to move to any goal at a small cost from
optimality by using landmarks. In this maze the agent is required to navigate from a starting
position to a goal position, both selected at random for each trial. The agent is assisted
by 12 fixed landmarks (indicated by circles). The locations are partitioned into Voronoi
regions indicating their closest landmark. The actions are to move north, south east or
west. This task can be represented with the 3 state variables: agent-location (100 labels),
goal-location (100 labels) and closest-landmark (12 labels). A dummy action is introduced
to allow the agent to signal arrival at the goal. Primitive rewards are−1 for each action.
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Figure 2: Kaelbling’s10×10 navigation maze. The regions represent the Voronoi partition
given the circled landmarks.

Table 1 summarises the results in comparison to the flat learner’s performance with deter-
ministic actions for the maze. Storage is the number of Q or E values required by each
algorithm to represent the value function. DFS is the average number of values that are
searched to decide the next action. Stor% indicates the percentage of storage required in
comparison with the flat learner. Steps are the average number of primitive actions to the
goal. Regret is the deterioration in performance (steps to goal) compared to the optimum.

Table 1: HEXQ with variable resolution approximations solving Kaelbling’s10×10 maze.

Algorithm Storage Stor% DFS Steps Regret%

Flat Q learning 40,000 100% 4 6.6 0%

HEXQ (safe state abstraction) 15,844 40% 52 6.6 0%

HEXQ VF depth 0 15,844 40% 15 7.5 14%

HEXQ state depth 0 5,108 13% 41 7.0 6%

HEXQ combining exits 9,644 24% 20 7.4 12%

For ‘HEXQ VF depth 0’ the value function was only evaluated at the highest level of
abstraction and the value inside subtasks ignored. The decision time (DFS) is reduced by



a factor of more than 3 at the expense of 14% regret. This approximation ignores the exact
position of the agent and goal and only considers their Voronoi region locations. There is
no further saving in storage space.

For “HEXQ state depth 0” sub-MDPs are combined for all exits with the same depth 0
abstract exit state. This reduces the number of sub-MDPs required at level 2 from 100 to
12 and reduces storage requirements significantly. If the agent is in a goal region it will take
the optimal path to the goal by following the local policy of the goal exit sub-MDP. If the
agent is in a region next to the goal region then the exit values for each exit will be averaged
over all the possible goal locations in the adjoining region because this approximation has
taken away the power to discriminate between them. The optimum average value will be
associated with that exit that minimised the average distance to the goal after exit. This exit
will be in the middle of the boundary between the two Voronoi regions. Interestingly, the
effect is similar to Kaelbling’s original idea, that the agent should aim for the landmark of
its next closest region on the way to the goal. This approximation gives the smallest regret
(6%) and achieves the best reduction in storage (to 13%) for this problem.

Combining exits in the maze means that all possible transitions between adjacent Voronoi
regions are combined. The number of inter-region exits is reduced from 122 to 46. At
level 2 in the hierarchy the number of abstract actions is reduced accordingly. Overall the
storage requirements reduced from 40% to 24% at the cost of 0.8 increase in average steps
to the goal. The reason for the deterioration can be seen, for example, if the agent is right
next to a goal that is in a neighbouring Voronoi region. As it cannot discriminate between
exits leading to the goal region, it may choose one that lands the agent two moves away
from the goal. The agent then needs to backtrack to the goal.

6 Discussion and Future Work

For practical applications of hierarchical reinforcement learning it is important to make
decisions in a realistic time frame. We have presented approximations using variable reso-
lution on a hierarchy of abstract models that can deliver any-time solutions. For example,
the resolution depth of the search in compiling the value function can be performed by
iterative deepening, interrupting the deliberation process when the extra cost of search is
estimated to exceed the additional returns.

Variable resolution heuristics cannot give any optimality guarantees, but then we cannot
make any guarantees in general for practical MDP decompositions. Some estimate of solu-
tion quality in relation to a hierarchical optimal solution may be possible for the heuristics
by measuring the limits on abstract transition probabilities and sub-task rewards and em-
ploying bounded parameter MDPs [12].

HEXQ finds globally optimal solutions for deterministic factored MDPs. This would allow
some stochastic problems to be decomposed and approximated by deterministic optimal
policies. A clearer definition of conditions and limits on the accuracy of these various
approximation techniques is left for future research.

To scale up reinforcement learning to real world applications, efficient practical represen-
tations will be required. This article has presented and demonstrated a number of variable
resolution approximations to reduce the space and time complexity for HEXQ decomposed
MDPs.
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