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Abstract

The great benefit in state abstraction for hierarchical reinforcement learn-
ing (HRL) is the potential improvement in computational complexity
with significant compaction of the value function. Safe state aggrega-
tion of reusable sub-task states is not possible in general for a decom-
posed MDP using one decomposed discounted cumulative reward func-
tion. This severely limits the effectiveness of HRL, particularly for in-
finite horizon problems. This paper makes two related and novel con-
tributions: (1) the introduction of an additional supporting decomposed
discount function allowing state abstraction in the face of discounting
and (2) modifications to adapt HRL to solve infinite horizon problems in
which the recursively optimal policy may require a sub-task to persist.



1 Introduction

State abstraction has been shown to be critical for scaling reinforcement learning [1, 2, 3, 4].
In many cases, without state abstraction, hierarchical reinforcement learners take longer to
converge than flat learners, but converge much faster than flat learners if state abstraction
can be introduced.

Multi-time models for options [5] and similar approaches for MAXQ [3], HAMs [6] and
ALisp [4] are used to apply the correct discount on the termination of abstract actions.
From these models we know that the value of a base level state in a sub-task is jointly
dependent on the value of the state reached after terminating the sub-task and the time to
termination.

Safely state abstracting reusable sub-tasks is severely limited for discounted cumulative
reward problems. These hierarchical reinforcement learners decompose the value function
into the value accumulated inside the sub-task and the value after termination. By safe
state abstraction we mean that the value function over all states for any policy is the same
before and after abstraction. To safely abstract reusable sub-task states we require for any
stationary policy that (1) the value after termination from all sub-task states is the same in
a particular context in which the sub-task is invoked, and (2) the state value inside the sub-
task is not effected by the value after termination in any context in which the sub-task is
invoked. These conditions cannot be met in general using a single decomposed value func-
tion because discounting makes the components of the value function inside and outside
the sub-task interdependent. Dietterich also discusses this issue underresult distribu-
tion irrelevance[3] concluding that this condition is applicable only in an undiscounted
setting.

The consequences, therefore, of discounting in HRL present a major impediment to scaling.
In particular, state abstraction is prevented for infinite horizon problems where discounting
is mandatory for cumulative reward value functions.

The first contribution of this paper is to show how the introduction of an additional decom-
poseddiscount functionworking in concert with a decomposed value function allows safe
state abstraction in the face of discounting. This approach is a natural extension to the au-
tomatic decompositions produced by HEXQ [7] and can be applied to other HRL methods
with additional constraints.

The second and related contribution is to show how some hierarchically decomposed in-
finite horizon MDPs can now be solved using safe state abstraction. MAXQ sub-tasks,
Options and machines for HAMs assume termination of the related abstract action. By al-
lowing non-terminating abstract actions and introducing an additional pseudo reward func-
tion, a recursively optimal solution can be found to some infinite horizon MDPs even if the
solution requires continuing in a sub-task.

Section 2 derives the decomposition equations for a HEXQ decomposed MDP and shows
how state abstraction can be retained with discounting. Section 3 explains how HRL can
be modified to solve infinite horizon problems. Section 4 demonstrates HRL on an infinite
horizon taxi task requiring abstract actions to persist and on a larger infinite horizon soccer
problem that is intractable on present day desktop computers without state abstraction.

2 State Abstraction and Discounting

We will first review the definition of a HEXQ partition for a factored MDP [7] and show
that for every HEXQ sub-MDP the number of steps to termination is independent of the
expected value at termination. We will then derive the decomposition equations to safely
state abstract a discounted value function.



The starting point is a standard MDP(S,A, T, R) whereS is a finite set of states and
A a finite set of actions. When transitioning from states to s′ on actiona the transition
and immediate reward functions areT a

ss′ = Pr{st+1 = s′|st = s,t = a} andRa
ss′ =

E{rt+1|st+1 = s′, st = s, at = a} respectively. With the statess ∈ S partitioned
into regionsg ∈ G an exit from regiong is a state-action pair(so, a) such that taking
actiona from stateso ∈ g may reach a state not ing (or the MDP may terminate) in a
single transition. Stateso is referred to as theexit state. The state reached after exiting is
called anentry stateto the next region or atermination statefrom the current region,
depending on our perspective. Assume that the states are factored by two variables such
thats = (x, y).

A HEXQ PartitionG of the statess = (x, y) of a MDP into regionsg is defined by the
conjunction of the following conditions for allg, g′ ∈ G

1. Same Context: all states in a region must have the samey label:
for all s = (x, y), s′ = (x′, y′) ∈ g
y = y′

2. Markov transitions : all states with the samex label in different regions must have
similar reward and transition functions to states inside their regions:
for all a ∈ A, s = (x, y), s′ = (x′, y) ∈ g andt = (x, y′), t′ = (x′, y′) ∈
g′
T a

ss′ = T a
tt′ andRa

ss′ = Ra
tt′

3. Reachable exits: all exit states must be reachable within the region from all entry
states, with probability one, under some stationary policy.

The HEXQ partition ensures regions with the same set ofx labels are isomorphic in the
sense that they have equivalent internal Markov properties with respect to state transitions
and rewards. HEXQ parameterises a set of sub-MDPs over thex label region classes so
that each sub-MDP is allowed to reach only one possible exit state. We have implicitly in-
troduced state abstraction across the region class by ignoring they labels. This first type of
state abstraction is similar to model minimisation [8] for each region. The decomposition
of the value function in HEXQ was inspired by MAXQ. For HEXQ the local reward func-
tions for sub-MDPs do not include the primitive reward received on exiting the sub-MDP.
The HEXQ partitioning can be applied recursively resulting in a hierarchy of sub-MDPs
not unlike a MAXQ graph. The value of a states under a stationary policyπ in a sub-MDP
m is

V π
m(s) = V π

m−1(s) +
∑

s′,N

P π(s′, N |s, π(s))γN−1[R + γV π
m(s′)] (1)

Parameterγ is the discount factor,N is a random variable representing the number of steps
required to exit the next lower level sub-MDP which we denote asm− 1. V π

m−1(s) is the
internal value of states in sub-MDPm− 1. P π

m(s′, N |s, π(s)) is the joint probability of
reaching states′ after termination of sub-MDPm − 1 in N steps starting in states. R is
the expected primitive reward on exit.

Importantly, for a HEXQ partition, the termination states′ reached and the expected reward
R on exit are independent of the number of stepsN to reach the exit. This is the case
because (1) there is only one exit state defining each sub-MDP, (2) that state is reachable
with probability one, and (3) terminating the sub-MDP is constrained via this one exit state.
This is the key property that makes it possible to additionally abstract a whole region into
an aggregate state.



Independence means thatP π(s′, N |s, a) = P π(s′|s, a).P π(N |s, a). Equation 1 using
abbreviationa = π(s) becomes

V π
m(s) = V π

m−1(s) +
∑

N

P π(N |s, a)γN−1 ×
∑

s′
P π(s′|s, a)[R + γV π

m(s′)](2)

Theexit value functionE [7] for all statess in regiong is the expected value of future
rewardsafter completingthe execution of the abstract actiona exiting g and following
the policyπ thereafter.

Eπ
m(g, a) =

∑

s′
P π(s′|s, a)[R + γV π

m(s′)] (∀s ∈ g) (3)

Definition 1 (Discount Function) Thediscount functionDπ
m is the expected dis-

count to be applied to the exit value ofm under policyπ whereN represents the
random number of steps to exit.

Dπ
m(s) =

∑

N

P π(N |s, π(s))γN−1 (4)

Equation 2 is now succinctly written as

V π
m(s) = V π

m−1(s) + Dπ
m−1(s).E

π
m(g, a) (5)

The discount functionD is itself recursively represented.

Dπ
m(s) = γDπ

m−1(s)Γ
π
m(g, a) (6)

where

Definition 2 (Γ Function) Theaction discount functionΓ for all statess in region
g is the expected value of discount that is applied to states′ reachedafter com-
pleting the execution of the abstract actiona exiting g and following the policy
π thereafter.Γ is constructed with the exit value of sub-MDPm set to1 and all
rewards zero.

Γπ
m(g, a) =

∑

s′
P π(s′|s, a)Dπ

m(s′) (∀s ∈ g) (7)

wereP π(s′|s, a) is the probability of transitioning to states′ after abstract action
a terminates from any states ∈ g.

Equations 3, 5, 6 and 7 are the decompositions equations for a discounted value function
following policy π. The recursively optimal value and discount functions, where abstract
actiona invokes sub-MDPm− 1 and states is in regiong, are

V ∗
m(s) = max

a
[V ∗

m−1(s) + D∗
m−1(s).E

∗
m(g, a)] (8)

D∗
m(s) = γ max

a
[D∗

m−1(s).Γ
∗
m(g, a)] (9)



This formulation requires only one value to be stored for functionsE andΓ for all states
in sub-MDPs for regiong. In other words safe abstraction of the sub-MDP’s states can
be retained as in a non-discounted case. We achieve this at the cost of storing a separate
on-policy action discount function. The overall benefit is that MDPs using cumulative
discounted rewards can, in the best case, still scale linearly in space complexity in the
number of variables.

Figure 1 is a simple illustration of how the overall value function is composed for a MDP
with discounting. The key point is that we can compose the value function of the original
MDP exactly by only storing the exit value functionE for the twoy labels at the top level
sub-MDP (i.e. values 7.71 and 20.0).

x=0 x=1 x=2 x=3 x=4
reward

20x=0 x=1 x=2 x=3 x=4

y=0 y=1

1.62 2.91 4.35 5.94 7.71 9.68 11.9 14.3 17.0 20.0

-3.44 -2.71 -1.90 -1.00 0.00

0.66 0.73 0.81 0.9 1.00

V(x)

D(x)

V(s)=V(x)+D(x)*7.71 V(s)=V(x)+D(x)*20

(a)

(b)

(c)

(d)

Figure 1: A simple example showing the state abstracted decomposition of a discounted
value function. (a) shows a factored state MDP with two identical regions with one exit to
the right. The deterministic actions are move left and right, all rewards are -1. The reward
on termination is 20. The discount factor is0.9. (b) the composed value function for each
state. (c) and (d) are the abstracted sub-MDP value and discount functions respectively.

3 Infinite Horizon MDPs

The action value and discount function working together can decompose the original value
function for all episodic policies. To allow a recursively optimal solution to be found for
any HEXQ partitioned finite MDP we need to guarantee termination of sub-MDPs in the
presence of positive and negative rewards. Even when all the rewards are negative an
optimal policy does not not guarantee that the sub-MDP will exit when using a discounted
value function.

We therefore define a pseudo value function, similar to that used in MAXQ, but one that
has a large enough positive termination value to force any sub-MDP to exit. In MAXQ the
pseudo reward value function sets large negative values on undesirable terminations. These
are not required in HEXQ because the HEXQ partition and construction ensures unwanted
exits cannot occur. Pseudo value functions can create sub-optimal policies in both MAXQ
and HEXQ, but this is the price to pay for reusability of a manageable sub-task policy
cache.

In summary, three decomposed value functions are required for each sub-MDP or sub-



task. The pseudo reward exit value functionE determines the policies available as abstract
actions at the next level up in the hierarchy. The functionΓ holds discount values to be
applied to the real exit value function at the next level up. The real exit value function
E holds (in Ditterich’s words) the “uncontaminated” exit values for each sub-MDP.E is
updated on-line andΓ andE are simultaneously updated followingE’s policy.

A recursively optimal policy may require a sub-MDP never to exit. To allow for this pos-
sibility, we create an additional sub-MDP without exits for each region class in the HEXQ
partition. This creates an abstract action at the next level and an extra policy in the cache
that continues in the sub-MDP forever. To ensure that such a policy exists we need to en-
sure that regions are not forced to exit. HEXQ uses strongly connected components (SCC)
to automatically construct regions. It is therefore a simple matter to meet this requirement.
Any SCC with more than two states can have a no-exit (improper) policy. In the event of
single state regions we only generate a no-exit policy if that state can transition to itself
with probability one.

During learning a timeout is now required for sub-MDPs. A non-exiting sub-MDP will
not return control to its parent and a means of interrupting the execution of the sub-MDP
is required. We count the number of steps that a sub-MDP executes and if it exceeds a
threshold value the execution is interrupted and control is passed back up the hierarchy to
the top level without updating exit value functions.

4 Empirical Experiments

The following two experiment are designed to provide empirical evidence that HEXQ is
able to perform in an infinite horizon setting, continue in a sub-task if required and success-
fully solve otherwise intractable problems. The HEXQ HRL algorithm [7] has been modi-
fied to include the new discount function and non-exiting sub-MDPs as outlined above.

Continuing Taxi. A taxi task, introduced by Dietterich [3] to demonstrate MAXQ func-
tion decomposition, is shown in figure 2. A taxi trans-navigates a grid world to pick up and
drop off a passenger at four possible locations, designated R, G, Y and B. Actions move
the taxi one square to the north, south, east or west, pickup or putdown the passenger.
Navigation actions have a 20% chance of slipping to either the right or left of the intended
direction. Generally all actions incur a reward of−1. If the taxi executes a pickup action at
a location without the passenger or a putdown action at the wrong destination it receives a
reward of -10. To make the task continuing, another passenger location and destination are
created at random after the passenger is delivered and the taxi is mysteriously tele-ported
to a random grid location. The reward for delivering the passenger is 200.

The taxi domain is also augmented with another source of income for the taxi. If the taxi
transitions from below to the grid location marked with the$ sign in figure 2, the reward
is a positive number. This may be interpreted as a local delivery run with guaranteed work
but at a different rate of pay. The taxi problem can be modelled as a MDP with a two
dimensional state vectors = (taxi location, passenger source/destination). There are 25
possible taxi locations and 20 possible pickup-destination combinations.

This problem has two optimal solutions depending on the value of the$ reward. If the$
is low, the solution is to continue to pick up and deliver passengers as per the original taxi
problem. For larger$ values the taxi prefers to continue local delivery runs and ignore the
passenger. As the local$ reward is the same in the context of any passenger pickup and
destination location, HEXQ discovers one class of region for navigation. Performing local
deliveries means deciding to continue in a navigation sub-task.

It is instructive to vary the local reward at location$ to see when the taxi decides to perform
local deliveries instead of picking up and dropping off passengers. The local reward is
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Figure 2: The infinite horizon taxi task. The graph shows that the HRL finds and switches
policies just like the flat RL for various values of positive reward, confirming correct op-
eration of the discount and value functions using state abstraction and non-terminating
sub-tasks.

varied from−1 to 19 in increments of1 and the MDP solved both with HEXQ and with
a flat RL. The number of times the$ location is visited per time step is counted as an
indication of which strategy the taxi uses. A high visitation rate indicates the taxi prefers
the local delivery run.

A HEXQ automatic decomposition of the original episodic taxi task creates4 sub-MDPs
at level1 [7]. For the continuing taxi task we still only have4 exit states at level1, but
an extra non-exiting sub-MDP is created as explained previously. Figure 2 indicates the
optimal policy chosen for each value of local reward$. As the amount of local reward
increases the taxi switches strategy from delivering passengers to local delivery runs. The
switch takes place when the local reward is about10 for both HEXQ and the flat learner.
The error bars indicate the maxima and minima over ten runs for each reward setting.

Within error bounds, both learners find similar solutions for this problem, providing con-
firming evidence that HEXQ can find the correct solution by persisting in a sub-task if
necessary.

Soccer Player.The second example is a stylized bipedal robot that learns to walk, kick
a ball and score goals. This problem is intractable on present day desktop computers re-
quiring nearly3 billion Q values. The experiment is designed to demonstrate the benefit of
state abstraction in a discounted setting.

The MDP state description contains three variables: the robot leg stance and direction (384
labels), the position of the robot relative to the ball (861 labels) and the position of the
ball on a soccer field (400 labels).21 primitive actions allow the robot to move the legs
and change its direction. The robot leg positions, soccer field and ball behaviour is shown
in figure 3 (a) and (b). The reward on each state transition is−1 and a trial terminates
when a goal is scored. When the robot runs into the ball, the ball is kicked stochastically
but roughly in the direction the robot is moving. HEXQ automatically generates a3 level
hierarchy. A fuller description is beyond the scope of this paper. Our primary interest is to
test HEXQ when positive reward is introduced. We separately use positive rewards to (1)
reward the robot for running on the spot and (2) reward the robot for running around the
ball. The significance of these conditions is that recursively optimal solutions can only be
found by the robot continuing in a level 1 sub-task and level 2 sub-task respectively.

Using a learning rate of0.25, a discount rate of0.99 and anε−greedy exploration policy
for the top level sub-MDP withε = .5 for the first500 trials, HEXQ generates a total of
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Figure 3: The soccer player showing (a) the simulated robot leg positions, (b) 400 discrete
ball locations on the field, (c) the discounted value of states in the level 2 no-exit sub-MDP
when the robot is rewarded for running around the ball and (d) a snapshot of the robot
running around the ball.

17 sub-MDPs to decompose the problem. At level1, 6 sub-MDPs determine the one step
walk directions plus one no-exit sub-MDP. At level2 there are two regions, one with860
states and the other with one state when the agent is at the ball location. The first region has
7 sub-MDPs representing the6 directions from which to approach the ball and one no-exit
MDP. The single state region has two vestigial sub-MDPs, one allowing abstract actions
to kick in one of six directions and a no-exit policy. After exploring the value function
for scoring goals, the agent decides to continue at the no-exit level1 sub-MDP running on
the spot for case (1). For case (2) the agent continues in the level2 no-exit sub-MDP for
the larger region, running around the ball as shown in figure 3 (d). In this case it invokes
terminating sub-MDPs from level1 for locomotion. Figure 3 (c) shows the discounted
value function for the no-exit sub-MDP for the larger region at level2. Six maximum
value states determine the circling policy.

HEXQ solves this problem in seconds with over four orders of magnitude saving in space
requirements as a result of state abstraction made possible with the additional action dis-
count function discussed in this paper.

5 Discussion and Future Work

This paper introduced a decomposedaction discount functionto make safe state abstrac-
tion possible in HEXQ. Commenting on options, Sutton, et al [9] say “The integration with
state abstraction remain open and unclear”. The ideas presented in this paper could easily
be adapted to work with Options, MAXQ and HAMs under the constraints of a HEXQ
partition.

A HEXQ partition allows stochastic exits. The more difficult condition to meet in HEXQ
decomposing a MDP is that each exit state must be reachable from within a region class
with probability one. Work in progress [10] to relax this constraint includes extending
bounded parameter MDPs [11] to a semi-Markov setting using approximate HEXQ parti-



tion conditions or using overlapping regions as for “Airport Hierarchies” [12].

To reduce computational complexity hierarchical reinforcement learners generally con-
strain policies and therefore cannot make global optimality guarantees. For deterministic
problems, HEXQ will find globally optimal solutions. In general, for stochastic problems,
HEXQ can only find recursively optimal solutions based on the constructed hierarchy. In
practice HEXQ finds good policies or even globally optimal policies for a range of simple
stochastic problems with hierarchical greedy execution after learning.
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