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Abstract 
 

In active and programmable networks, packet processing could be accomplished in the router 
within the data path. For efficient resource allocation in such networks, the packet scheduling 
schemes should consider multiple resources such as CPU and memory in addition to the 
bandwidth to improve overall performance. The dynamic nature of network load and the 
inherent unpredictability of processing times of active packets pose a significant challenge in 
CPU scheduling. It has been identified that unlike bandwidth scheduling, prior estimation of 
CPU requirements of a packet is very difficult since it is platform dependent and it also depends 
on processing load at the time of execution and operating system scheduling etc. This paper 
presents a new composite scheduling algorithm called CBCSWFQ which is based on Weighted 
Fair Queuing (WFQ) and is designed for scheduling both bandwidth and CPU resources 
adaptively, fairly and efficiently. CBCSWFQ uses an adaptive prediction technique for estimating 
the processing requirements of active flows efficiently and accurately. Through simulation and 
analysis works we show the improved performance of our scheduling algorithm in achieving 
better delay guarantees compared to WFQ if used separately for CPU and Bandwidth 
scheduling. 
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1.  INTRODUCTION 
 

Active and programmable networks facilitate fast deployment of new services and protocols 
by allowing execution of packets in routers and switches. They also allow customized 
computation on packets flowing through them [1, 11, 12]. To use this technology safely and 
efficiently, individual nodes must understand the varying resource requirements for specific 
network traffic and must manage their resources efficiently. 

Network resources in traditional networks mainly refer to bandwidth. Service discipline such 
as Fair Queuing (FQ) provides perfect fairness among contending network flows. However, 
traditional notion of fair queuing that specifies a resource allocation constraint for a single 
resource does not directly extend to active and programmable networks since allocation of 
resources in these networks involves more than one resource such as, CPU, bandwidth, and 
memory. Moreover, the allocation of these resources is interdependent and maintaining fairness 
in allocating one resource does not necessarily entail fairness in allocating other resource(s) [3, 
8].  It is apparent that for large-scale deployment of active and programmable networks, 
researchers must address the issues of managing multiple resources within a node.  

Today’s Internet consist not only the best effort flow but also the QoS flows which is 
sensitive to delay, delay jitter etc. For QoS flows ensuring equal (fair) resource allocation for 
every flow would not be enough. It has to ensure that all the flows get its reserved resource and 
QoS is also maintained. To ensure this there has to be mechanism to give guaranteed bandwidth 
and computational resources to incoming flows. Guarantees in these two dimensions means that 
a flow always gets its reserved share except when the flow requires computational or link 
bandwidth more than what they have reserved.  

QoS guarantees for multimedia traffic are difficult because first, when the traffic is processed 
in real-time (for interactive application) it is impossible to predict precisely what the actual 
behavior will be. Second, the traffic itself may be highly variable. For these reasons efficient 
resource allocation along with good control of QoS, is a challenging problem. 

In an environment, where we want to be able to give service guarantees to data flows, it is 
typically necessary to explicitly reserve resources for that flow. This should be done during the 
flow setup and allows the network to route a new flow in such a fashion that enough bandwidth 
is available on the chosen path.  

To make the resource reservation and admission control mechanism effective, it is important 
to have the knowledge of the resource requirement for every flow. Although knowing the 
bandwidth requirement for each flow is easy but the inherent unpredictability of execution time 
of arbitrary execution code poses a significant challenge in providing QoS guarantees for data 
flows that compete for such processing resource in the network. 

Pappu et al. [7] presented a processor scheduling algorithm called Estimation-based Fair 
Queuing (EFQ) that estimated the execution times of various applications on packet of given 
lengths and then scheduled the processing resources based on the estimation. Their estimation 
process depends on the application specific estimation parameters that need to be determined 
through off-line experimentation of processing some packets using the application, and 
therefore, it does not support packets referencing any new application for which the parameters 
were not determined.  They claimed that this algorithm provided better delay guarantees than 
processor scheduling algorithms that did not take packet execution times into consideration.  

Galtier et al. [4] proposed a scheme to predict the CPU requirements to execute a specific 
code on a variety of platforms. In this work, a code can be executed on a specific platform off-
line and the CPU requirement on this platform can be used to predict the CPU requirement on 
other platforms. They calculated the CPU requirement based on the relative calibration 
performance of the local and reference nodes. In reality, the predicted CPU requirement on a 
platform can differ significantly from the actual requirement. Therefore, it would be very 
difficult to implement the scheme on a busy node where allocation of proper share to competing 
flows was crucial. 
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In our previous work [8], we have developed a framework that has the capability of 
determining the CPU requirements of active packets on-the-fly.  This system stores the CPU 
requirement of an active packet referencing a specific code/program in a node database once the 
referenced code is executed first time in the node.  The database information and a scaling 
method are used to determine the processing requirements of the incoming packets (having 
varying packet sizes) referencing the same code/program.  

To resolve the issues of efficiently and fairly managing both the processing and bandwidth 
resources in programmable and active networks and providing better QoS guarantees to the 
competing flows, this research work has been focused on developing a composite scheduler 
based on Weighted Fair Queuing (WFQ) which is able to predict the CPU requirements of the 
packets with reasonable accuracy and can schedule both the bandwidth and CPU resources 
adaptively, fairly, and efficiently. We have investigated the alternative techniques for predicting 
the processing requirements and have examined the performance of these prediction techniques 
in order to propose the solution that could be efficiently used for our composite scheduler 
CBCSWFQ.  The scheduler also uses the framework developed in our previous work [8] for 
managing the node resources. Through some simulation analysis we show how CBCSWFQ 
provides better delay bounds compared to using separate WFQ schedulers for CPU and 
bandwidth. 

 
 
2.  RESOURCE RESERVATIONS AND ADMISSION CONTROL 
 

We assume the existence of a reservation protocol that the end system could use to 
communicate their resource requirement to the network. Evaluation of resource requirement and 
reservations are done according to the framework described in our previous work [8]. For each 
packet entering the node, the framework determines both the processing and bandwidth resource 
requirements for the packet and the information then used by the composite scheduler for 
admission control and scheduling of the packet.  It may be noted that the framework takes the 
packet size into account for determining CPU requirements if the referenced code / program 
were classified as a payload processing application in the node database.  It has been identified 
that for payload processing applications (such as packet compression, packet content 
transcoding) the processing requirements depend on the packet size, whereas the processing 
complexity for header processing applications (such as IP forwarding, QoS routing etc.) is in 
general independent of the size of the packet. It may also be noted that processing of packets on 
an active or programmable node can also affect the size of packets after processing is 
completed. To take this packet size change into account for bandwidth consumption, our 
framework described in [8] calculates and uses an Expansion Factor that is the packet size after 
processing divided by the packet size before processing.   

When admitting a new flow, the admission control of this system decides whether the flow 
get the service requested, and it also decides whether admitting the flow will prevent the node 
from keeping its prior commitments. The admission control is used to limit the packet-loss 
probability to a known value. The basic idea of admission control is that a host must probe the 
path to the receiver before sending the actual data. It accepts the packet of the probe is received 
with no or at most a moderate amount of loss. The aim of the admission control is to establish a 
reliable upper bound on the packet-loss probability in the network. Admission control in our 
system uses the following policies:  
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2.1 Reserved (QoS) flows 
 

 If an incoming flow α requests guaranteed service, the admission control algorithm: 
 

1. Denies the request if summation of the reserved bandwidth rate of all the reserved flows 
and the current flow’s requested bandwidth rate exceed the targeted link utilization 
level. I.e., deny accepting if – 
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2.  Denies the request if admitting the new flow could violate the delay bound, of the same 

priority level. 
3. Denies the request if summation of the reserved CPU rate of all the reserved flows and 

the current flow’s requested CPU rate exceed the targeted CPU utilization level. I.e., 
deny accepting if – 
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Where in (1) and (2),  
 

i
bwr , i

cpur  = reserved bandwidth and CPU rates for flow i. 

rN     = number of registered reserved flows.  
α

bwr , α
cpur   = requested bandwidth and CPU rates.  

bwµ , 
cpuµ  = targeted bandwidth and CPU utilization factors. 

bwR     = transmission link rate. 

cpuR    =  processing rate of the node. 
 
 
2.2  Best effort flows 
 

The system equally distributes the remaining bandwidth and CPU resources to all the 
competing best effort flows. While registering a new best effort flow and also after registering 
any reserved flow, the system re-calculates the allowable bandwidth and CPU rates for all the 
best effort flows as follows: 
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Where, 
be

bwr  =  Allocated bandwidth rate for a best effort flow. 
be

cpur  =  Allocated CPU rate for a best effort flow. 

beN  =  Number of best effort flows in the system. 
 

 The system also compares the number of best effort flows against a pre-defined threshold and 
denies accepting a new best effort flow if the number exceeds the threshold.  It also checks the 
queue size of the individual best effort flows and denies accepting packet if the queue size gets 
bigger than another pre-defined threshold.  
 
3.  PREDICTING PROCESSING REQUIREMENTS 
 
3.1 Application Types 

 
Applications that can process packets on a programmable or active node can be classified 

into two categories: header processing applications and payload processing applications. Header 
processing applications only perform read and write operations in the header of the packet and 
therefore, the processing complexity is in general independent of the size of the packets.  
Examples of the header processing applications include IP forwarding, transport layer 
classification, and QoS routing.  Whereas the payload processing applications performs read and 
write operations to all the data in the packet, in particular the payload of the packet, and 
therefore, the processing complexity here strongly correlates to the packet size [7]. Examples of 
payload processing applications are IPSec Encryption, packet compression, packet content 
transcoding (e.g. image format transcoding) etc.  

 
3.2 Need for Adaptive Predictions 

 
We have performed some experiments to investigate the impacts of processing load and 

operating system scheduling of a node on the packet processing times.  It has been identified 
that the packet processing times significantly varies in different number of executions by both 
the header processing applications and payload processing applications even though the packet 
size remained the same for all executions. 
    Figure 1 shows the processing times consumed by MPEG2 encoder code for 1000 repetitive 
executions on a MPEG2 data packet having a packet size of 24576 bytes.  The processing times 
varied between 20 – 40 milliseconds. The experiments were performed on a machine having 
Pentium 4, 1.8 GH CPU and running on Linux (RedHat 7.2) operating system. The results 
indicate that processing time consumed measured through off-line experimentations by a 
particular application to process a packet cannot be readily used for estimating processing times 
for new incoming packets referencing the same application for a scheduler (such as WFQ) that 
schedules packets based on estimated finish time of the packets.  Therefore, we need an 
adaptive prediction process that can accommodate the variation in packet size and the effect of 
processing load and operating system scheduling.  
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Figure 1:   Variation in processing times for MPEG2 
data packets having same packet size 
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3.3 Evaluating Alternative Prediction Techniques 
 
In this section we present two alternative smoothing methods that we have implemented to 
predict the CPU requirements of data packets.  Experiments have been performed (again on a 
Pentium 4, 1.8 GH processor under Linux operating system) to analyze the performance and 
suitability of the methods in the context of using them within a CPU scheduler.  
 
3.3.1 Single Exponential Smoothing 
 
Single Exponential Smoothing (SES) is computationally simple and an attractive method of 
forecasting. Researchers have used this method to forecast the display cycle time (which include 
decompression time plus rendering time) for compressed video data packets [15]. SES uses the 
following equation to calculate new forecasted value. 
 

ttt FXF )1(1 αα −+=+                 where 10 ≤≤ α         (5) 
 
here, 

Ft  =  Forecasted value for the tth  period 
Xt =  Current actual value 
Α =  Parameter chosen by the user. 
Ft +1 = Forecasted value for (t+1) period, e.g., next forecasted value. 

 
 
3.3.2 Linear Least Square Regression  
 
Researchers [7] have demonstrated that the processing times of payload processing applications 
are highly dependent on the packet size. They have formulated the following equation of packet 
processing cost in terms of a fixed overhead and a variable cost that depends on the packet size.  
 
C = αa + βa.l,                           (6) 
 
Where, 

C= the processing cost of a packet of length l. 
αa = per packet fixed processing cost of application a. 
βa.=per byte processing cost of application a. 
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The researchers in [7] have determined the values of α and β for different applications through 
off-line experimentations and suggested that the parameters could be estimated on-line using 
Linear Least Square Regression (LLSR) techniques. As the packets are processed, the router can 
keep tracks of the cost and length of the packets being processed and the value of those 
parameters could be determined using the following relationships. 
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3.3.3 Performance Evaluation of the Prediction Techniques 
 
It may be noted that the online estimation of α and β using the equations (7) and (8) and using 
those for predicting processing cost of a packet within a flow can only de done if the flow 
contains packets of variable lengths.  In other words, this technique cannot be used to predict 
processing costs of packets within a flow having all the packets with same size.  Moreover, as 
the equations suggest, the overhead for estimations using LLSR is significantly higher than that 
using SES. 
 
We have compared the performance of both prediction techniques on processing an MPEG 
packet flow where the flow contained packets of varying lengths e.g. 24576, 13824, 6144, and 
1536 bytes.  The packets with varying lengths were generated randomly and fed to the MPEG2 
encoder code for encoding. We measured the actual processing times elapsed for 1000 packets 
and the estimated times predicted by both prediction schemes. The processing times elapsed 
varied between 10 and 40 milliseconds. Figure 2 shows the actual processing times elapsed vs. 
estimated times predicted by SES technique, whereas figure 3 shows the actual processing times 
elapsed vs. estimated times predicted by LLSR technique.  Figure 4 shows the deviation of 
actual processing times from the estimated times for both the schemes.  For SES, the value of 
α  was set to 0.5.  

Figure 2:    Actual processing time and predicted processing 
times using SES
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Figure 2 – 4 show that both the estimation techniques produced estimated results that could be 
quite acceptable for a CPU scheduler. In both cases the patterns of the predicted values 
resembled the patterns of the actual processing times.  Figures show that LLSR technique can 
produce a-bit better prediction results with the expense of extra processing overheads. It also 
may be mentioned that we have used both techniques within our composite scheduler CBCSWFQ 
to analyze the difference in delay behaviors, and found that both technique produced 
comparable delays.  The delay results are shown in section 5.  

 

Figure 3:   Actual processing time and predicted 
processing times using LLSR
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Figure 4: Deviation of actual processing times  from 

predicted times using SES and LLSR
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3.4 Adaptive Prediction Scheme used in CBCSWFQ 
 
SES technique is simple and it requires in-significant processing overhead for maintaining the 
state variables required for the prediction process.  It can produce results comparable to LLSR 
and it can also be used for predicting processing requirements of flows having packets with 
fixed sizes.   SES technique would be perfect for estimating CPU requirements for any header 
processing applications and also for payload processing applications for processing packet flow 
having minor variation in packet sizes within the flow.  It would also produce quite good 
estimates for payload processing applications for processing flows having variations in packet 
sizes.  The SES prediction process can quickly react to a new actual processing time caused by 
changes in packet size and or processing load / operating system scheduling and can produce a 
new good estimate for the next packet.   

For the simplicity and the benefits of the SES technique as discussed above, we have opted to 
use SES technique and the framework presented in [8] to predict the CPU requirements of the 
incoming packets within our composite scheduler CBCSWFQ.  The framework in [8] has a node 
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database to store the information of different applications (including the CPU time requirement 
for processing a packet of a specific size, application type etc.) referenced by packets in the 
node.  The system stores the CPU requirement of an active packet referencing a specific 
code/program in a node database once the referenced code is executed first time in the node. 
The database information can be used for admission control and reserving resources etc. The 
CBCSWFQ uses the database information as the starting point for predicting the processing 
requirements of the packets, i.e. the processing time indicated in the database is used as 
estimated processing time for packets in a flow until a packet in that flow is processed by the 
scheduler and then SES is used for updating the predictions. 
 
4.  CBCSWFQ –THE COMPOSITE BANDWIDTH AND CPU SCHEDULER 

 
The architecture of the CBCSWFQ, a composite bandwidth and CPU scheduler based on 

Weighted Fair Queuing, is depicted in Figure 5.  Primary goal of the scheduler is to manage 
both the bandwidth and CPU resources fairly and efficiently and to provide better delay 
guarantees.  
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Figure 5   Composite Scheduler Architecture 

 
The Admission controller controls the flow registration and setup (including setting up 

weights for the flows based on the reserved rates of the bandwidth and processing resources) 
and admission of each individual packet. The scheduler estimates the processing times of the 
incoming packets and en-queues them in the corresponding flow queues and de-queues packets 
using its composite scheduling algorithm CBCSWFQ which takes both the estimated processing 
time and transmission time of packets into account to decide which packet to de-queue.  After 
de-queuing a packet, the scheduler hands the packet to the CPU handler for processing if the 
packet needed any processing. CPU handler object notifies the scheduler after processing each 
packet so that the scheduler can re-estimate the processing times for the new incoming packets.   

The processing and transmissions of different packets happen in parallel in the system, i.e., 
after processing, the packets enter into a FIFO queue for transmission, which is served by a 
separate thread for sending the packets to their next destination.  The packets that do not require 
processing (e.g. non-active packets and active packets already processed in up-stream nodes) 
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enters directly into the transmission queue after the scheduler de-queues them from their flow 
queues. The scheduler algorithm is discussed below. 
 
4.1 Composite Scheduling Algorithm 
 
 CBCSWFQ enforces fairness in resources allocation using the Weighted Fair Queuing (WFQ) 
Principle [5]. Most Packet Fair Queuing (PFQ) algorithms such as WFQ, WF2Q+ (Worst Case 
Fair Weighted Fair Queuing +) [6], SFQ (Start time Weighted Fair Queuing) [13] are based on 
approximating Generalized Processor Sharing (GPS) [2] scheme which is an ideal scheduling 
discipline based on a fluid flow model in which the traffic is infinitely divisible and each session 
is serviced simultaneously according to its weight.  In these algorithms, packets from different 
sessions are stamped with virtual finishing times and selected to schedule based on increasing 
order of virtual finishing times.  Virtual finish time of a packet indicates a virtual time by which 
the last bit of the packet must be transmitted through the link.  The algorithms use the packet 
size and a system virtual time (which is updated each time a new packets arrives) to compute 
the finishing times of the incoming packets.  The virtual time is updated by using a system 
virtual function and its role is to compute finishing times of packets in new backlogged sessions 
in order to equalize the normalized services of these sessions with current backlogged sessions. 
A flow is backlogged during the time interval (t2 – t1) if the queue for the flow is never empty 
during the interval.  The differences in defining the system virtual function in Packet Fair 
Queuing (PFQ) algorithms result in different implementations complexities, fairness 
measurement and delay behaviors. 
 The traditional PFQ algorithms (including WFQ and WF2Q) are mainly used for packet 
scheduling i.e. for allocating bandwidth resource only and they do not directly extend for 
allocating multiple resources.  In CBCSWFQ, new system virtual function and finish time 
calculation equations have been formulated in order to schedule both bandwidth and CPU 
resources from a single composite scheduler.  The following parameters and equations are used.   
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Where, 

i
cpuφ , i

bwφ  = Weight for CPU and bandwidth for flow i. 
)(tB =   Set of backlogged flows at time t. 

)(tsumw  =  Summation of the weights (both CPU and bandwidth) of all the active flows at time 
t. 

)(tV =   System virtual time at time t. 
τ =    Time difference between two virtual time updates, i.e. inter-packet arrival time. 

k
iS  =   Virtual start time of packet k of flow i. 

)( k
iaV  =   System virtual time at the arrival of packet k of flow i. 

k
iF , 1−k

iF =  Virtual finish time of packets k and K-1 of    flow i. 



 12

k
iP =   Estimated processing cost of packet k of flow I in sec. 
k
iL  =   Length of packet k of flow i in Bytes. 
iγ =    Expansion factor of the packets in flow i. 

BW  =  Transmission link bandwidth in Mbps. 
  
At the start of the scheduler )(tV is set to zero. With the arrival of every new packet, admission 
controller determines the estimated processing cost i.e. k

iP  and the expansion factor i.e. iγ for the 
packet using equation (5) and the framework in [8] and hands the packet to the composite 
scheduler specifying the values for k

iP , and iγ .   The scheduler updates )(tV , and calculates the 
virtual finish time of the packet ( k

iF ) using (9) – (12).  The scheduler then stores the packet in 
the corresponding flow queue.  

While any packet exists within the queues, the scheduler algorithm (i.e. the de-queue process 
of the scheduler) checks the finish times of the packets at the head of all active flow queues and 
de-queues the packet (from the head of the queue) having minimum finish time. It then hands 
the packet to the CPU handler object that in turn process the packet and then en-queues it in the 
FIFO transmission queue.     

The pseudo-code for the en-queue and de-queue methods are given below. 
 
Pseudo-code for en-queue 
 
Read the packet header and determine the flow id;  
Instantiate a queue item object and set the packet reference; 
Find the current time; 
//Update V(t) 
If (total number of packets in all queues is zero) 
{ 
 for each flow i  
 { 
   F[i]=0; 
   B[i]=0; 
 } 
  V(t)=0; 
  sumw(t)=0; 
  LastVtUpdate =current time; 
} 
else 
{ 
 V(t) = V(t)+(current time -LastVtUpdate) / sumw(t); 
 LastVtUpdate =current time; 
} 
 
//Update B and sum 
if(B[flow id] is zero)  
{ 
  B[flow id] = 1; //mark it as active or backlogged flow 
  sumw(t) += weight[flow id]; 
} 
 
//Calculate Finish time 
Calculate start time using equation (7) i.e. start time = max {F[flow id], V(t)}; 
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Calculate finish time using equation (8) i.e. update F[flow id]; 
Set the value of the f_time member of the queue item to F[flow id]; 
//Update total number of packets  
Total number of packets += 1; 
 
//Store the packet 
En-queue the queue item in the individual queue corresponding to the flow id; 
 
Pseudo-code for de-queue  
 
While (true) 
{ 
  if (total number of packets > 0) 

{ 
Access the queue item from head-of-queue of all the active flow queues and read the 
f_time member; 

    Locate the queue i having the queue item with minimum f_time; 
  De-queue the packet from queue i; 
  Hand the packet to the CPU Handler; 
 
  //Update total number of packets 
  Total number of packets -= 1;  //same variable used by en-queue 
   //Update B and sum if necessary 
  if(length of queue i is zero) 
   { 
   B[i] = 0; //mark as non active flow 
     sumw(t)  -= weight[i]; 
  } 
} 

 
} 
 
 
4.2 Delay Guarantees and Analysis 
  
We use the concept of delay guarantee that is defined in [10] to formulate and compare the 
worst-case delay of CBCSWFQ with that of WFQ when separately used for CPU and bandwidth 
scheduling.  WFQ algorithm when used for bandwidth or CPU scheduling is able to guarantee a 
delay to a session flow based on maximum normalized transmission cost or maximum 
normalized processing cost of a packet within the flow.  Also the worst-case delay is influenced 
by the maximum bandwidth or CPU cost of a packet within all the backlogged flows.  Table 1 
shows delay guarantees of WFQ algorithm. 
 

Table1.   Delay Guarantees of WFQ 
Resource scheduled  Delay Guarantees 
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4.2.1 Delay Guarantees with Separate WFQ CPU and Bandwidth Schedulers 
 
As the WFQ delay guarantees given in table 1, to service active packets in programmable / 
active node if we use WFQ separately for scheduling CPU and bandwidth resources, the delay 
guarantees for any flow i becomes:  
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Where,  
 wfq

iδ   = Delay guarantee for flow i when WFQ is used separately for CPU and bandwidth scheduling. 
 max

iP   =  The maximum processing cost of a packet within flow i. 
 maxP    = The maximum processing cost of a packet within all the backlogged flows. 
    max

iL   =  The maximum length of a packet within flow i. 
 maxL   =  The maximum length of a packet within all the backlogged flows. 

 
i

bw

i

r
L max   = Maximum normalized transmission cost of a  packet within flow i. 

    
i

cpu

i

r
P max  = Maximum normalized processing cost of a packet within flow i. 

 
 
4.2.2 Delay Guarantees of CBCSWFQ 
 
 While scheduling both the CPU and bandwidth resources using CBCSWFQ, the scheduler 
considers both the processing cost and the transmission cost (i.e. total cost) of the packets in 
order to calculate the finish times of the packets.  Therefore, CBCSWFQ, is able to guarantee a 
delay to a session flow based on flow’s properties such as its reserved rates for bandwidth and 
CPU and the maximum total cost of a packet within the flow.  Also the worst-case delay is 
influenced by the maximum total cost of a packet within all the backlogged flows.  The delay 
guarantee of the CBCSWFQ for any flow i can be derived as: 
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Where, 
 cbcs

iδ      =  delay guarantee for flow i using CBCSWFQ 
 k

iP      =  processing cost of packet k in flow i. 
 k

iL      =  length of packet k in flow i. 
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4.2.3 Delay Analysis 
 
 Analysis of (13) and (14) shows that CBCSWFQ can provide better delay guarantee than WFQ 
when used separately for bandwidth and CPU scheduling.  We will take an example to analyze 
the delay provided by (13) and (14).   

Let assume that a node is serving 2 flows. In flow 1, each packet length is 10 Bytes and 
requires 30 CPU cycles to process. In flow 2, each packet length is 30 Bytes and requires 10 
CPU cycles to process. The node processing capability (i.e.,

cpuR ) is 1000 Cycles per second, and 
the bandwidth of the transmission link (i.e.,

bwR ) is 1000 Bytes per second.  Flow 1 has reserved 
75% of the CPU (i.e. 1

cpur  = 750 cycles / second) and 25 % of the bandwidth (i.e., 1
bwr  = 250 

Bytes / sec). Flow2 has reserved 25% of the CPU (i.e. 2
cpur  = 250 cycles / second) and 75 % of 

the bandwidth (i.e., 2
bwr  = 750 Bytes / sec).  Let’s consider that packet arrival rates from both 

flow 1 and flow 2 are such that both flows are just saturating their reserved rate.  
Table 2 shows the calculated delays using (13) and (14), and shows that CBCSWFQ provides 
better delay guarantees for this example. 
 
 

Table 2   An example of delay comparison 
Flow 

iP  iL  i
cpur  i

bwr  wfq
iδ  cbcs

iδ  

1 30 cycles 10 Bytes 750 cycles / s 250 Bytes/ s 140 msec 120 msec 

2 10 cycles 30 Bytes 250 cycles / s 750 Bytes/ s 140 msec 120 msec 

 
 
 

5.  SIMULATION RESULTS 
 

In order to demonstrate the characteristics of CBCSWFQ compared with WFQ, we have 
modified the NS2 network simulator [14] to implement the components described in Fig. 5 to 
simulate an active / programmable network. The simulation was performed on a PC having a 
1.8 GHZ Pentium 4 processor and 384 MB memory and running under the Linux operating 
system (RedHat 7.2).  We have also implemented both the SES and LLSR estimation 
techniques (either one is selectable through a configuration parameter) within our scheduler in 
order to analyse the differences in delay influenced by these estimation techniques.  The 
experimental results achieved using CBCSWFQ are compared with the results using WFQ for 
scheduling CPU and bandwidth independently.  

 
 

5.1 Simulation Settings 
 
We used 10 hosts to generate network traffics for an active / programmable node, where 

each host generated CBR traffic corresponding to a flow. Hosts #1, #3, and #5 generated active 
packets containing MPEG2 video data of four different sizes (e.g., 1536, 6144, 13824, and 
24576) and referencing MPEG2 encoder code. The other hosts generated active packets with 
different packet sizes and referencing different codes. MPEG2 encoder code was implemented 
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in C++ within the NS2 environment and the framework in [8] was used to evaluate the CPU 
requirement and expansion factor of MPEG2 data packet the first time one arrived at the active 
node.  For the other hosts, the packets generated from a given host carried the same code 
reference, and the framework evaluated the CPU requirements and expansion factor for the code 
(when the first packet arrived in the active node). The output link capacity was set to 5 Mbps. 
The simulation settings of the individual flows are given below. 

 
Table 3: Settings for individual flows 

 
 

The simulations were run for 50 seconds and measurements were taken at 5-second intervals. 
Packet generation rates for all the flows were adjusted such that all the flows required 97% of 
the CPU resources and 97% of the bandwidth resources (i.e., resource utilizations were just 
below 100%) so that the measured delays are because of scheduling and not because of queuing 
backlog.  Simulations were re-run using both estimation techniques and the results achieved 
using CBCSWFQ is compared with that achieved using WFQ for scheduling CPU and bandwidth 
independently.  It may be noted that we have also implemented separate WFQ CPU scheduler 
(that also estimates the processing time of packets using the same schemes) and bandwidth 
scheduler within NS2 environment. 
 Each simulated active packet header contained some additional fields (or parameters) to 
signify the packet as an active packet and to facilitate the handling of the packet by the active 
node. In reality, the communication between active nodes could be done by exchanging 
messages, similar to the PANTS [13] architecture. However, for our simulation in NS2 
simulator we added some parameters in the common header (i.e., hdr_cmn structure) of the NS2 
packet. 
 
 

 
5.2 Fairness Measurements 
 
 We have measured the both utilized CPU rates and bandwidth (BW) rates by all the flows and 
compared that with the reserved rates (based on the weights used in table 3) and found that 
fairness achieved in utilizing a flow’s share of CPU and bandwidth of CBCSWFQ is similar to 
that achieved by WFQ.  As an example, the results measured at 45th seconds (while using SES 
prediction) are shown in table 4.  Total bandwidth utilization was 97.39% using WFQ compared 
to 97.17% in CBCSWFQ.  Total CPU utilization in both cases was 97.1%.  Both schedulers 
allowed a flow to over-utilize its share of CPU and /or bandwidth when other flows were not 
sending packets to saturate their shares. 
 
 
 
 

Flow# 1, 3, 5 2 4 6 7 8 9 10 

Packet size (Bytes)   1536 - 24576 3 3 3 3 3 3 3 

CPU Req. (msec) 10 - 40 10 8 4 3 2 2 2 

Expansion Factor  0.11 – 0.36 1 1 1 1 1 1 1 
i
cpuφ  3 3 2 2 1 1 1 1 
i
bwφ  3 1 2 2 1 1 3 3 
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Table 4   Fairness measurement 
 

Utilized CPU rates Utilized BW rates Flow i
cpur  i

bwr  
CBCS WFQ CBCS WFQ 

1 0.15 0.1364 0.125578 0.125123 0.007004 0.006947 
2 0.15 0.0454 0.144871 0.146934 0.080814 0.082037 
3 0.15 0.1364 0.125578 0.124665 0.007004 0.006927 
4 0.10 0.0909 0.117728 0.117181 0.082223 0.081781 
5 0.15 0.1364 0.125578 0.124665 0.007004 0.006927 
6 0.10 0.0909 0.088342 0.088161 0.123462 0.123055 
7 0.05 0.0454 0.073671 0.075802 0.137166 0.141072 
8 0.05 0.0454 0.051494 0.051450 0.143954 0.143628 
9 0.05 0.1364 0.073603 0.073055 0.205685 0.203941 
10 0.05 0.1364 0.073557 0.072964 0.205685 0.203686 

 
 
5.3 Delays Measurements 
 
 Figure 6 – 9 shows the delays measured at 45th seconds for the MPEG flow 1 using CBCSWFQ 

and WFQ while using SES and LLSR as the estimation techniques.  
     The figures show that LLSR can provide a-bit better delays compared to SES.  However, the 
delays achieved using SES is quite convincing compared to that using LLSR given the fact that 
SES is significantly less computationally expensive and simple compared to LLSR. 
 

Figure 6:  Delay for MPEG flow 1 using CBCSWFQ composite scheduler 
and SES estimation
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Delay results show that CBCSWFQ achieved much superior delay guarantees compared to 

WFQ in both estimations.  While using CBCSWFQ the worst case delays measured were 0.3649 
sec and 0.296 sec for SES and LLSR respectively.  While using WFQ the worst case delays 
measured were 0.6693 sec and 0.5273 sec for SES and LLSR respectively.  Therefore, the 
results show that when WFQ was used for scheduling CPU and bandwidth independently, the 
worst case delays increased by 83% and 78% compared to using CBCSWFQ.   
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Figure 7:  Delay for MPEG flow 1 using CBCSWFQ 

composite scheduler and LLSR estimation 
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Figure 8:  Delay for MPEG flow 1 using WFQ scheduler and using 
SES estimation
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Figure 9:  Delay for MPEG Flow 1 using 
WFQ scheduler and LLSR estimation
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5.4 Throughput Measurements 
 
    Figure 10 – 13 shows the CPU and bandwidth utilizations measured at every 5th second 
during simulation.  The results show that both the CBCSWFQ and WFQ achieved similar or 
comparable throughput.  Also the results show that CPU and bandwidth utilizations in both 
cases were not influenced by SES or LLSR. 
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Figure 10:  CPU Utilization Using CBCSWFQ Composite 
Scheduler
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Figure 11: CPU Utilization using WFQ
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Figure 12: Bandwidth utilization using CBCSWFQ
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Figure 13: Bandwidth Utilization Using WFQ
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6.  CONCLUSION 
 

In this work, we have presented an approach for providing QoS guarantees for flows that are 
processed on nodes in the network. We have investigated the alternative methods for estimating 
the processing requirements for active flows and provided a solution that can be used for 
predicting processing requirements of packets flowing through active and programmable 
networks. The suggested estimation process can be utilized for both the header processing and 
the payload processing applications.  We have evaluated the performance of our combined 
scheduling algorithm for fair service among all the competing flows through simulation. The 
simulation result and also the analysis work shows that our composite scheduling algorithm 
offers better delay guarantees than the traditional WFQ algorithm when used separately for CPU 
and bandwidth scheduling. It also offers similar fairness and throughput compared to WFQ. 
CBCSWFQ would be very attractive for an active / programmable node where the node needs to 
efficiently manage active packet flows competing for both CPU and bandwidth resources.  
Especially, the CBCSWFQ would provide much superior delay guarantees under highly dynamic 
environment where even each flow can carry packets with varying sizes and varying CPU 
requirements. 
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