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Abstract

Systems-on-Chip (SoC) design methodologies rely increasingly on reuse of intellectual
property (IP) blocks. IP reuse is a labour intensive and time consuming process as IP
blocks often have different communication interfaces. We present a framework to generate a
synthesizable VHDL description of an interface between two mismatching IP communication
protocols. We improve and extend previously published work by formalising the problem
and by explicitly handling data width and type mismatching and multiple data transfers. At
present, simpler cases of pipelining are handled as well. We have implemented our technique
and demonstrate it by generating an interface between the CoreConnect Processor Local Bus
from IBM and the AMBA System Bus from ARM.
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1 Introduction

1.1 Motivation

The current VLSI design scenario is characterised by high performance, complex functionality
and short time-to-market. A reuse-based methodology for SoC design has become essential
in order to meet these challenges. Typically, a SoC is an interconnection of different pre-
verified IP blocks which communicate using complex protocols. Integration of such blocks would
usually require some glue logic to be inserted between them. Approaches adopted to facilitate
IP integration include the development of a few standard on-chip bus architectures such as
the CoreConnect from IBM and the AMBA from ARM and the work of the VSI Alliance[9].
Unfortunately, the vision of assembling SoCs using plug-and-play IP blocks is yet to become a
reality for various reasons[3] including:

• Lack of a single standard bus architecture resulting in IPs still being designed to interact
with different protocols.

• Integration of IP blocks into an SoC is largely a manual process requiring considerable
effort.

• Verification of the entire system is still a bottle neck due to interface and timing issues.

Interface synthesis is an area of research[5] that seeks to automate the process of inter-
connecting components at different levels. Low level interfaces are primarily concerned with
physical quantities such as voltage and capacitance while at higher levels they address abstract
behaviours such as communication between processes or state machines. We focus on the syn-
thesis of interfaces which facilitate the exchange of data.

1.2 Related Work

The interface synthesis problem has been addressed in the literature and the following causes
of protocol mismatch have been identified: differences in clock speeds, signalling conventions,
sequencing of data and data width or data type mismatches. Additional issues arising in interface
construction are optimising latency and buffer sizes, resolving non-determinism and preserving
timing requirements.

Borriello and Katz[4] use timing diagram specifications of protocols to construct event graphs
and then generate a logic circuit which behaves as a transducer. Their technique requires that
data buses have the same names and that the designer provide the information for correct
merging of event graphs.

Gajski et al.[14] decompose a protocol specification into a combinations five basic operations,
and organise the protocol behaviour as ordered sets of guarded executions. Sets transferring the
same amount of data are matched an interface is constructed. Data width, control and clock
signal mismatches are handled but the sequencing of data must be the same in both protocols.

Smith and De Micheli[19] map any given protocol into a standard communication scheme
which identifies between senders and receivers. Their scheme can be applied in a multi-party
communication environment involving components operating at different frequencies. Their
technique is not optimized for timing as data has to be transferred between buffers, amount of
control logic as an internal arbiter is used, and storage as separate input and output buffers are
used. Further, it is assumed that data types are matching.

Passerone et al.[17] use regular expression based specifications of synchronous protocols to
synthesize an interface which uses only a single buffer and minimizes the latency between trans-
fers. The synthesis algorithm cannot be easily extended to different kinds of data type mis-
matching, and does not handle multiple transfers. As stated in[16] the methods reviewed so far
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Figure 2: On-Chip Bus Architecture with Interfaces and mismatching IPs

lack a mathematically sound formalisation and interpretation. Consequently, it is unclear how
the techniques developed apply to any two arbitrary mismatching protocols.

Recently, de Alfaro et al.[16] formalised the problem in a game theoretic framework. They
identify the functions of an interface as a type converter handling data value mismatches and a
protocol converter resolving other interaction mismatches. The interesting question of whether
an interface exists is equated with the existence of a winning strategy for the game. The interface
synthesized is synchronous and is capable of modifying the timing and order of data but data
value translation is not incorporated in the synthesis methodology as it will result in state
explosion.

Interface synthesis has been addressed in the context of network protocols as the protocol
conversion problem. Okumura[15] uses finite automata to model network protocols a product
based approach to construct an interface given a conversion seed. Calvert and Lam[6] perform the
synthesis using a service specification with progress and safety properties to ensure correctness.
Tao et al.[20] take protocol and channel specifications as input and derive constraints which are
used to compute an optimal interface in the context of layered network protocols. While the
problem is similar and the treatment rigorous, significant contextual differences prevent easy
application of these techniques to mismatching hardware protocols.
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1.3 Paper Contributions and Overview

In this paper, we propose a formal framework for the protocol mismatching problem and provide
a solution capable of handling mismatching data widths, types and multiple transfers. In partic-
ular, the formalisation is inspired by Milner’s well known theory of communicating systems[12]
which provides an intuitive interpretation for communicating Finite State Machines(FSMs). We
focus on modelling data and observe that the synthesis procedure varies depending on the data
transformation to be performed. A set of interface construction rules are proposed which may
be modified to incorporate various data transformations.

The modelling and synthesis flow is shown in Figure 1. The designer is expected to provide
protocol specifications as Mealy style FSMs(henceforth referred to as FSMs). Manufacturers
usually provide protocol and bus architecture specifications as FSMs or timing diagrams which
are easily translatable into FSMs. We use FSMs as an input because they capture all the re-
quired behaviour and simultaneously minimize the designer’s effort. FSMs are handled within
our framework and used to synthesize an interface using a data transformer and a set of con-
struction rules. Then, dead states are pruned and timing information is assigned to generate
a VHDL description of the interface. We also provide a new method for checking protocol
compatibility and are able to prove that the interface behaves as required. Figure 2 illustrates
the use of interfaces with on-chip buses in a typical reuse scenario when protocol mismatching
is encountered. Our ideas have been implemented and applied to two on-chip bus protocols
commonly used in SoC design. Our preliminary results are very encouraging.

The paper is organised as follows. Section 2 introduces the preliminary definitions, the notion
of compatibility and the problem specification. Section 3 contains a formal description of an
interface and synthesis rules. Section 4 demonstrates the interface synthesized for a mismatch
between the IBM CoreConnect Processor Local Bus and ARM’s AMBA Peripheral Bus and we
conclude in Section 5 with a discussion and indicate directions for future work.

2 Protocol Specification and Modelling

2.1 Definitions

When provided with protocol specifications, IP blocks may be designed with the functional and
communication components interleaved or separate as advocated in [1, 18]. The latter approach
is more conducive to reuse. These protocols may be expressed as Mealy style FSMs[8] which are
formalised below.

Definition 1 A Mealy machine is a state machine M = (QM , IM , OM , σM , λM , qM0). QM is
the state space, IM and OM are the input and output alphabet. σM ⊆ QM × IM × QM and
λM ⊆ QM × IM ×OM are the state transition and output functions respectively. A transition is

written as q
a/b

−→M q′ where a ∈ I and b ∈ O.

Most systems perform many read or write actions in a single transition hence a and b in a
transition would be replaced by Sa ⊆ IM and Sb ⊆ OM respectively. Given a FSM specification,
we define a communicating agent which is more weildy than an FSM for interface synthesis.

Definition 2 A communicating agent is defined as a tuple P = (QP ,ΣP ,∆P , VP ,AP ,−→P , q0)
where

• Q = QPt ∪ QPu is a finite set of timed and untimed states.

• ΣP is a set of control channels.

• ∆P is a set of data channels.
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• VP is a set of variables such that there exists one variable corresponding to each data
channel.

• AP = Pow(Λr) ∪Pow(Λw)∪ {τ} is a set of operations. Each operation is a set of atomic
read(Λr), write(Λw) or internal (τ) actions. Pow(A) denotes power set of A.

• −→P⊆ QP ×AP × QP is the transition relation.

• q0 is the initial state.

The subscripts will be dropped when the context is clear. Intuitively, QPt contains the states
the protocol might be in at the beginning of each clock cycle; control channels model signals,
data channels model buses and atomic actions are reads or writes performed on channels. c!
causes an event on a control channel and c? denotes a read on a control channel and can be
performed only if an event has occurred on that channel. Control actions model the raising and
detection of the value of a signal. Signals which are active low can be modelled by a channel
cz. Control signals consisting of more than one wire are modelled similar to one-hot encoding
used in HDL coding. If c is a data channel, c!v denotes the value v being written on c and c?x
denotes that the value on c is read into a buffer x.

An operation is a set of actions and captures that in a given clock cycle many actions can be
performed. Ar = Pow(Λr) denotes the set of read operations and write operations are denoted
Aw = Pow(Λw). Operations belonging to these two sets are external while the action τ is
internal. τ is used to model the passage of time in the absence of external activity. We write
AC to refer to operations performed only on channels in the set C. Every external action a has
a complementary action denoted ā. A read and write on the same channel are complementary
actions. The complement of an operation Sa is S̄a = {ā|a ∈ Sa}. A transition is written

as q
Sa−→P q′ and denotes that the operation Sa is performed in the transition from q to q ′.

DataChannels(Sa) refers to the data channels operated on in Sa.

Figure 3 contains Mealy machine descriptions of a polling and a handshake protocol. Figure
4 shows the corresponding communicating agents with the untimed states shaded. A communi-

cating agent P is obtained from a Mealy machine M as follows: for every transition r
Sa/Sb

−→M r′

there exists a pair of transitions q
S′

a−→P q′′
S′

b−→P q′ in P such that q′′ is an untimed state. For ev-
ery c ∈ Sa there exists a c? ∈ S ′

a if c is a control channel and c?x if c is a data channel. Similarly,
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the output set is replaced by a write operation. As a consequence of constructing communicat-
ing agents from FSMs, we observe that untimed states have only one incoming and outgoing
transition and have no transitions to other untimed states. Hence sequences of transitions of
type Zeno[11] (infinite activity occuring in finite time) are disallowed.

2.2 Protocol Compatibility

Given two protocols, we say they are compatible if they are capable of executing successfully
together. We formalise this idea by adapting the definition of bisimulation[12] to communicating
agents.

Definition 3 A pair of communicating agents P1 and P2 are matching if there exists a binary
relation R ⊆ QP1

× QP2
over the states of P1 and P2 such that

1. r0Rs0 where r0 ∈ P1 and s0 ∈ P2 are initial states of P1 and P2

2. For any pair of states r and s such that rRs the following hold:

(a) If r
Sa−→ r′ and Sa 6= {τ} then there exists some s′ such that s

S̄a−→ s′ and r′Rs′.

(b) If r
τ

−→ r′ and r, r′ ∈ QP1t, there exists some s′ such that s
τ

−→ s′ satisfying that
s, s′ ∈ QP2t and r′Rs′.

3. R is a symmetric relation.

The definition requires that at every stage in its execution, if one agent can perform an
external operation or a finite wait, the other agent should be able to perform the complementary
operation or wait equally long. A protocol pair (P1, P2) that does not satisfy these requirements
is said to be mismatching.

2.3 Operation of Communicating Agents and Interfaces

We now describe the operation of the machines described so far. The operation of a single
communicating agent is identical to that of the Mealy Machine it is generated from. The
operation of a pair of communicating agents may be described by the parallel composition
operator ||. A pair of matching agents P1 and P2 in states r and s respectively,denoted 〈r, s〉,

when composed as (P1||P2) will make the transitions r
Sa−→ r′and s

S′

a−→ s′ synchronously if
S′

a = S̄a. The transition is labelled with the set Sc of channels on which actions are performed

and denoted 〈r, s〉
Sc−→ 〈r′, s′〉. An agent in a protocol pair in state r can perform a read operation

only if the complementary operation is performed by the other agent. If the complementary
write is not performed and there is a transition r

τ
−→ r the agent is capable of waiting for the

required operation to be performed. If such a transition does not exist and no other transition is
possible, the agent will deadlock. It may be observed that the composition (P1||P2) will perform
all operations successfully only if P1 and P2 are matching.

The composition of an interface with a communicating agent is similarly defined. The set
of operations of an interface I defined over a pair of communicating agents P1 and P2 may be

written as A = AP1
∪AP2

∪{τ}. The composition (I||P2) will make a transition 〈q, s〉
Sa−→ 〈q′, s〉

if Sa ∈ AP1
and 〈q, s〉

Sc−→ 〈q′, s′〉 if Sa ∈ AP2
, q

Sa−→ q′, s
S′

a−→ s′ and S′
a = S̄a. Informally,

transitions which involve operations on channels shared with P2 require the complementary
operation to be performed in order to take place while those operations on channels shared with
P1 are included with no requirement.

The framework developed so far allows for a definition of the problem. Given a mismatching
protocol pair (P1, P2) synthesize an interface I such that (P1, (I||P2) form a matching protocol
pair.
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3 Interface definition and Synthesis

The interface between two mismatching protocols mentioned above is a device which should
have the following properties

1. Passivity: the interface does not initiate any transactions.

2. Two-Phased: It should be able to read from and write to the channels of both P1 and P2

and distinguish between them.

3. Consistency: Data which has been read must be output to the required channel after
performing the required data transformation. Further, the interface should not be a source
or a sink of data.

3.1 Interface Definition

A generic schematic of an interface is shown in Figure 1 and is formalised below.

Definition 4 An interface between two mismatching protocols is a machine I = (Q,Σ1,∆1,Σ2,∆2, V,A,−→
, q0) such that

• Q = Qt ∪ Qu is a set of timed and untimed states.

• Σ1,∆1,Σ2,∆2 are distinct sets of control and data channels.

• V is a set of variables.

• A is a set of operations.

• −→ is the state transition relation.

• q0 ∈ Qt is the initial state.

Information regarding the correspondence between data channels of two protocols has to be
provided by the designer and cannot be determined automatically. Two data channels might
either have mismatching data width or data type or both. The former is resolved by fragmenta-
tion or combination of data and the latter by devising a type transformer. When data is read, it
may be transformed into the output format and stored in a buffer till it is required. Alternately
it may be stored in a buffer and the type transformation performed prior to output. The choice
between the two is made depending on the optimum combination of storage and time required
to perform a type transformation.

Formally, a correspondence between data channels is a bijective function f : ∆1 → ∆2. Let
D(c) be the symbolic data type of a data channel. D(c) might simply describe the width of a
data channel or provide more complex information. The definition of a data transformer follows.

Definition 5 A data transformer T : (c, f(c)) → W is a mapping defined for every c ∈ ∆1 such
that f(c) ∈ ∆2 and W ⊆ D(c) × D(f(c)).

Given a pair of corresponding channels (ci, f(ci)), the transformation indicates how data
from the domain of one is mapped to the domain of the other. In the case of mismatching
bus widths, computing the number of packets from one bus which correspond to the other is
simple arithmetic. This information is denoted as a set N T = {(ni, n

′
i)} of the number of the

reads which must be performed on ci to successfully transfer data over f(ci) via a sequence of
n′

i writes. We will use a set of pairs of counters N = {(yi, y
′
i)} intialised to these values in the
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construction process to ensure the data consistency requirements are not violated. N 0 denotes
that all the counters are zero. Nm

yi
denotes that the value of counter yi is set to m. Let the

function g(ci) return the counter variable yi for ci if ci ∈ ∆1 and y′i if ci ∈ ∆2.
It is reasonable to assume that the two bus widths will be multiples of each other as widths

are usually designed to be powers of 2. The rules which will follow can handle mapping between
bus widths of arbitrary sizes, but more attention will have to be paid to buffer operations.

3.2 Interface Construction: Transitions

The interface is defined in terms of the protocol pair (P1, P2) whose communication it is to
facilitate. Elements of P1 and P2 are subscripted while those of I are not. N denotes the set of
counters and g(c) is as defined previously. r ∈ QP1

, s ∈ QP2
, .

• Q ⊆ {[r, s,N ]} is the set of states.

• Σ1 = ΣP1
,Σ2 = ΣP2

,∆1 = ∆P1
,∆2 = ∆P2

.

• V is such that there exists one variable xi for each pair of channels (ci, f(ci)) and
size(xi) = max(size(ci), size(f(ci))).

• [r0, s0, N
T ] is the initial state.

• Given two transitions r
Sa−→P1

r′ and s
S′

a−→P1
s′ we define −→ for I as follows. k and l are

indexes of positions in the buffer to which data must be written. These values have to be
calculated prior to each use in a rule and are computed easily so details will not be given
here.

1. If Sa = S′
a = {τ} then [r, s,N ]

τ
−→ [r′, s′, N ].

2. If Sa ∈ AP1Σ1
then [r, s,N ]

S̄a−→ [r′, s,N ].

3. If Sa ∈ Aw and for all ci ∈ DataChannels(Sa), if
∏

i g(ci) 6= 0 then for all such ci,

āi = ci?xi[k : l], N ′ = N
g(ci)−1
g(ci)

. Add the transition [r, s,N ]
S̄a−→ [r′, s,N ′]

4. If Sa ∈ Ar and for all ci ∈ DataChannels(Sa), if
∏

i g(ci) 6= 0 and
∑

i g(f(ci)) = 0

then for all such ci, āi = ci!xi[k : l], N ′ = N
g(ci)−1
g(ci)

. Add the transition [r, s,N ]
S̄a−→

[r′, s,N ′]

5. Rules 2,3 and 4 are symmetrically defined for transitions in P2.

Rule 1 ensures that τ actions are performed only if both agents can perform them thereby
maintaining synchrony. Rule 2 inserts a complementary operation for every control operation.
The counters are not modified as no data operation is performed. Rule 3 handles interface read
operations on one or more data channels. If the required counters are not zero (

∏
i g(ci) 6= 0) the

reads are performed and the relevant counters are decremented. In Rule 4 when the interface
has to output data, an additional check is performed (

∑
i g(f(ci)) = 0) to ensure that valid data

can be output.
It is important to note that in the rules given, only decrement operations are performed on

counters. Hence, the final state reached will have all counters at 0 and they will have to be
explicity reinitialised. Similarly, if the counters relating to the channels of one agent are zero
and it has reached its initial state, no further transitions from that agent should be used in
construction. To meet these and the passivity requirement of the interface, we impose the follow
conditions on the rules above.

1. No write transition are made from the initial state.
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Figure 5: Interface between Polling and Handshake Protocols

2. All transitions to the state [r0, s0, N
0] are redirected to the state [r0, s0, N

T ].

3. If the interface is in state [r0, s,N ] and ∀ci ∈ ∆1, g(ci) = 0 no transitions of P1 are
considered in transitions from this state. Expectedly, this condition is symmetric.

Figure 5 shows the interface which has been constructed between the handshake and polling
protocols. The correspondence is f(PData) → HData; PData is an 8 bit bus and HData a 16 bit
one. The transformation T : (c, f(c)) → (2, 1) so N T and N contain only one pair. The labels
of the states in Figure 5 indicate the corresponding states of the two protocols and the value
of the counter is shown in angular brackets. The dotted transitions are not included as they
violate the requirements of the rule or condition indicated. The transition back to the initial
state is as per the requirement of condition 2.

Looping behaviour is handled by introducing a set of predicates and related counter opera-
tions {(pi, Incri(N))} such that there is one predicate for each transition causing a loop. If a
predicate evaluates to true in a given transition, the related increment operation is performed.

The rules ensure that the interface synthesized incorporates only valid behaviours but may
still include dead states. Dead states are those which do not have a path to the initial state and
arise when one of the protocols contains transitions to an error state. They can be eliminated
by performing a backward reachability from the initial state and marking all states encountered.
All unmarked states and the transitions leading to them can then be removed.

3.3 Interface Construction : Timing

The steps given so far generate the transitions of the interface. It remains to identify timed
states to enable a FSM and consequently HDL code to be generated. The assignment of timed
states should be such that in one clock cycle the interface performs at most the operations
of the two protocols it interfaces. Product construction might introduce nondeterminism or
pseudo-nondeterminism[17] into the interface when a single read operation precedes different
write operations. Nondeterminism can sometimes be resolved by choosing one of the different
paths available. In a situation where protocols support single and back to back transfers, a given
initial input may produce different behaviours which are determined by some internal operation
resolution maynot be possible. A choice between different paths can be made by depending on
whether storage or latency is to be optimized.

In order to decide timing, each state of the interface is labelled with a tuple (i, j), indicating
the number of clock cycles consumed by each protocol. A label might be a number designating
a clock cycle or the symbol u followed by a number indicating that a clock value is undefined in
the current state, and capturing the last defined clock value.
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1. [r0, s0, N
T ].label = (0, 0)

2. For a state [r, s,N ] with label (i, j) such that there exists a transition [r, s,N ]
Sa−→

[r′, s′, N ′], If

(a) Sa is a read operation in AΣ1
∪A∆1

then

i. if i is a number, [r′, s′, N ′].label = (u; i, j).

ii. if i = u; i′ where i′ is a number then,
[r, s,N ].label = (i′ + 1, j) and
[r′, s′, N ′].label = (u; i′ + 1, j).

(b) Sa is a write operation in AΣ1
∪A∆1

then

i. if i is a number, [r′, s′, N ′].label = (i + 1, j).

ii. if i = u; i′ where i′ is a number then,
[r, s,N ].label = (i′, j) and
[r′, s′, N ′].label = (i′ + 1, j).

The rules are symmetric and follow from the observation that a read operation always begins
in a timed state and that a write operation always terminates in a timed state. The symbol u

is required to deal with sequences of transitions which interleave read and write operations.

We now distinguish between timed and untimed states. The initial state is a timed state.

Timing for the remaining states is assigned by considering every sequence of transitions [r, s,N ]
Sa1−→

. . .
San−→ [r′, s′, N ′] such that [r, s,N ] ∈ Qt. If [r, s,N ].label = (i, j) and [r′, s′, N ′].label = (i′, j′)

then [r′, s′, N ′] ∈ Qt if the following conditions are satisfied :

1. i′ ≤ i + 1 and j ′ ≤ j + 1

2. There exists no pair (m,n) ∈ N such that the corresponding pair (m′, n′) ∈ N ′ satisfies
(m′, n′) = (m − 1, n − 1)

The first condition ensures that the interface progresses only one clock cycle with each pair of
clock cycles in the two protocols. The second condition states that a data packet cannot be read
and written by the interface within the same clock cycle. In Figure 6, the states of the interface
are labelled with tuples attached to each state and the untimed states have been shaded. The
dotted transitions comprise final FSM as shown in Figure 7. The FSM can be translated into
VHDL code and relevant analysis may be performed using CAD tools.
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3.4 Correctness of Generated Interface

The interface which is generated is correct if when composed with P2 it forms a matching
protocol with P1 and vice versa.

Theorem 1 If P1 and P2 are mismatching protocols, the interface I which is synthesized ensures
that (P1, (I||P2)) is a matching protocol pair.

Proof Sketch 1 The machine (I||P2) maybe written as an operationally identical product ma-
chine. This machine is a projection of the actions of I on channels shared with P1. We show
that the only external actions of (I||P2) are those on channels of P1. Then, it has to be shown
that all τ actions are matched as required completing the two requirements of matching.

Proof 1 The machine (I||P2) = (Q,Σ,∆,A,−→, 〈[r0, s0, N ], s0〉) where

• Q = {〈[r, s,N ], s〉}

• Σ = Σ1, the control channels of the interface which are not shared with P2.

• ∆ = ∆1, the data channels not shared with P2

• A = A1 ∪ {τ} where A1 is the set of operations on channels Σ1 and ∆1.

• −→ follows from the definition of ||.

We define a relation R such that every pair of states r ∈ QP1
and 〈[r, s,N ], s〉 ∈ Q, rR〈[r, s,N ], s〉.

It remains to show that R satisfies the requirements of a matching relation.

1. r0R〈[r0, s0, N ], s0〉 as required.

2. For every pair of states such that rR〈[r, s,N ], s〉

(a) For every transition r
Sa−→ r′, we have that 〈[r, s,N ], s〉

S̄a−→ 〈[r′, s,N ′], s〉 due to the
construction of I and definition of ||.

(b) For every transition, r
τ

−→ r′ there exists 〈[r, s,N ], s〉
τ̄

−→ 〈[r′, s,N ], s〉 due to the
interface construction process.

3. The relation satisfied by 2(a) is symmetric because for every action in P1, there exists a
complementary action in I. Symmetry holds as these are the only external operations in
(I||P2). �
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PLB_PAValid!

PLB_AddrBus!
PLB_RNW!

SL_rdDBus?
SL_rdAck?

PLB_PAValid!

PLB_AddrBus!
PLB_RNW!

SL_rdDBus?
SL_rdAck?

SL_AddrAck_z?

SL_AddrAck?

PLB_PAValid_z!

SL_rdComp?
SL_rdComp?

τ

0

1

2

3

4

5

6

Figure 8: IBM CoreConnect Processor Local Bus Specification

PSEL?
PWRITE_z?
PADDR?

PENABLE?

PREAD!

PENABLE_z?
41

2 3

Figure 9: AMBA Peripheral Bus Specification

Gate Count 855

Flip Flop Count 49

Max. Operating Frequency 357MHz

Peak Memory Usage 92MB

Table 1: Physical Characteristics of the Synthesized Interface.
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process (clk)

begin

if (clk’event and clk = ’1’) then

case state is

when 0 =>

if (PLB_PAValid = ’1’ and PLB_RNW = ’1’) then

data1buffer <= PLB_AddrBus;

state <= 1;

end if;

when 1 =>

SL_AddrAck <= ’1’;

state <= 2;

when 2 =>

SL_rdComp <= ’1’;

PSEL <= ’1’;

PWRITE_z <= ’1’;

PADDR <= data1buffer;

state <= 3;

when 3 =>

if (PLB_PAValid = ’1’) then

data1buffer <= PADDR;

PENABLE <= ’1’;

state <= 4;

end if;

if (PLB_PAValid_z = ’1’) then

PENABLE <= ’1’;

state <= 5;

end if;

when 4 =>

data2buffer <= PREAD;

state <= 6;

when 5 =>

data2buffer <= PREAD;

state <= 7;

when 6 =>

SL_rdDBus <= data2buffer;

SL_AddrAck <= ’1’;

PENABLE_z <= ’1’;

state <= 1;

when 7 =>

SL_rdDBus <= data2buffer;

SL_AddrAck <= ’1’;

PENABLE_z <= ’1’;

state <= 0;

when others =>

state <= 0;

end case;

end if;

end process;

Figure 10: VHDL Code

4 Experimental Results

A tool which takes FSMs as input and generates VHDL interfaces has been implemented. Input
can be provided as text in the dot format or using the graphical editor dotty both of which are
part of a set of graph visualisation tools[7].

We have applied the methodology presented to model the communication interface of IBM’s
CoreConnect Processor Local Bus(PLB)[10] and ARM’s AMBA Peripheral Bus(APB)[2] and
synthesize an interface between them. FSM descriptions of the protocols were made from the
specification documents. Figures 8 is a communicating agent modelling the single and back to
back read transfer behaviour of PLB and 9 models the read behaviour of the APB. It can be
seen that the operation of the APB is much simpler than that of the PLB. Infact, the PLB is a
highspeed bus while the APB being a peripheral bus operates at lower frequencies.

The data channels correspond as follows: (PLB AddrBus→ PADDR) and (PREAD → SL rdDBus).
As the data and address bus widths both match, no further specification is required. The
challenge in generating a correct interface between the two protocols described lies in meeting
the clock cycle requirements of a back to back transfer. The construction uses one predicate:
(PLB PAValid ∧ (g(PLB AddrBus), g(PADDR)) = (0, 0)) which checks if the counters correspond-
ing to the two address buses are zero an action is performed on the signal PLB PAValid. If this
predicate is true, the counter is reset to (1, 1). This allows for the transition between state 3 and
4 in Figure 8 to be made correctly in the interface. The interface which was generated had 31
states which reduced to 11 states after pruning was performed and timed states were identified.
A 7 state FSM which was output and is shown in Figure 10. The physical characteristics of
the interface are shown in Table 1. It can be seen that the interface is lightweight and does not
significantly increase the amount of logic in the system.

5 Conclusion

In this paper, we have presented a general framework for modelling communication protocols,
detecting when they mismatch and generating synthesizable interfaces between them if they do.
The experimental results demonstrate that our framework is both easily adaptable to existing
specification techniques and highly applicable to practical instances of the mismatching protocol
problem. Specifically, the framework allows for detailed modelling of data buses, generation of
provably correct interfaces and a new method for checking protocol compatibility. We extend
the existing work in this area of research by addressing the issues of data type and bus width
mismatching, transactions with multiple transfers, and provide solutions for the same.

Presently, the techniques presented here apply to synchronous protocols. We are exploring
extensions to protocols operating at different frequencies which would allow for automatic syn-
thesis of bridges between high and low speed buses. The definition of matching is quite strict as
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both communciating agents are required to be equally powerful. A pair of agents with a master
which is capable of interacting with many protocols and a slave which is just one of them would
be declared mismatching. We plan to investigate how relaxing the requirements might allow for
better identification of matching protocols.
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