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Abstract

This paper gives a proof of the Turing completeness of the Circal process algebra by ex-
hibiting a universal program capable of mapping any Turing machine description into Circal
specifications that effectively simulate the behaviour of the given machine.



1 Introduction

1.1 The Circal process algebra
1.1.1 Brief overview

The Circal process algebra was developed by G. Milne [3], being mainly targeted to control-
oriented applications and system verification. Indeed, Circal offers a simple and efficient way
of describing systems and their inherent notions of synchronisation and concurrency, along with
some rules that allow the system to be exhaustively checked against given specfications.

A brief summary of the Circal operators is as follows:

e Termination: A is a deadlocked process, that cannot evolve.

e Guarding: given a process P and a non-empty set of events S, S P is a process that synchro-
nises to performs all the events of S and then behaves as P.

e Choice: given two processes P and @, P + @ is a process that can behave either as P or as
Q, depending on the environment.

e Non-determinism: given two processes P and @), P&( is a process that can behave either as
P or as @), with the choice depending only on the process itself, and being independent of
the environment.

e Composition: given two processes P and @), P x () is a process that runs P and @ in parallel,
with synchronisation occurring for shared events.

e Abstraction: given a process P and event set S, P — S is a process that behaves as P and that
encapsulates the events of S, which are then hidden externally.

e Relabelling: given a process P and two events a and b, Pla/b] behaves as P, except that all
occurences of event b are replaced by event a.

e Definition: given a process () and an identifier P, P < () defines P to have the behaviour of
Q, thus allowing recursive definitions.

1.1.2 Mapping Circal to reconfigurable logic

This process algebra has recently proven to be quite easily mapped into field-programmable gate
arrays (FPGASs), as presented in [2, 4, 1]. This opportunity offers many applications, such as hard-
ware accelerated model-checking, and the ability to embed complex controllers directly onto FP-
GA:s.

However, one question remains unanswered regarding the usefulness of Circal: is the process
algebra powerful enough to describe any system? This question was posed as the problem of
proving the Turing completeness of the Circal process algebra. Although it has commonly been
assumed, so far no proof has been demonstrated.



1.2 Turing machines

As this paper is targeted to a wide audience, we think that recalling a few notions about Turing
machines would serve to aid the understanding of the rest of this paper. Readers who are familiar
with Turing machines may skip this section.

The formal definition of a Turing machine if a tuple M = (Q, k, X, B, 9, Qaccept ) Where:

e () is aset of states;

k € N is the number of tapes;

Y is an alphabet (a set of symbols);

B € Y is a special symbol, meaning “blank”;
e §:Q xYF = Q x ¥F x {~1,+1}* is the transition function;

® Quaccept © @ is the set of accepting states.
The configuration of a Turing machine is given by the tuple C = (g, p, ¢) where:

e g € () is the current state;
e p=(p1,...,px) € Z* is the position of the heads;

e c:{l,...,k} x Z — ¥ is the contents of the tapes.

And finally, in one step, a configuration C = (g, p, ¢) can lead to a configuration C' = (¢',p’, )
if and only if:

e (q,(c(,p1),...,c(kypr))) = (¢,(a1,...,ar), (m1,...,my)) where Vi € {1,...,k}, a; € &
and m; € {—1,+1};

o Vie{l,...,k}, d(i,pi) = ai;
o Vie{l,... .k}, pl =pi+m.

In a more informal way, one can just say that a k-tape Turing machine is a finite state machine
coupled with k infinite tapes, along with a head on each of these tapes. At each step, the Turing
machine polls the data written where the heads are on each tape, then writes new data, and moves
its heads either left (-1) or right (+1) by one cell.

A Turing machine is said to effectively compute a function f when, given an initial config-
uration (qo, (0,...,0),7), where 7 is the encoded actual parameter n, the machine evolves from
configuration to configuration until entering an accepting state g € Q accept, its configuration then
being (¢,p,m), where m = f(n).

One interesting result that has been proved is that any k-tape Turing machine is equivalent to
a single semi-finite tape Turing machine (and therefore this type of Turing machine has the same
“computing power” as general Turing machines).



1.3 Turing completeness

As Turing machines were presented as a “suitable programming model”, hence introducing a
notion of computability, they became a reference for computational power, being considered to
be the most powerful machines. Thus, the notion of Turing completeness qualifies the computing
power of a given system: indeed, a system is said to be Turing complete if it can perform all the
computations a Turing machine can.

A simple way to prove the Turing completeness of a programming language is to show that one
can describe a universal machine for this language, that is a machine that, given the description
and the initial configuration of a Turing machine, will output a program in that language, and
that, according to the semantic rules of the language, will simulate the original Turing machine,
effectively computing the same function.

Thus, in order to prove the Turing completeness of the Circal process algebra, this paper fo-
cuses on the realisation of a Turing machine in Circal, described in the next section.

2 Description of the Turing machine process

2.1 General overview of the machine

The implemented machine is a quite straightforward transposition of a single semi-finite tape
Turing machine. Indeed, we can identify the two main parts:

e The finite state machine: this part is an automaton, that remembers in which state the ma-
chine is, and successively polls the head for the data on the tape, writes new data on the tape
and moves the head, then changes its own state.

e The tape: which is trickier to represent, since the tape is in theory infinite. But hopefully,
Turing machines don’t allow random access to any cell of the tape: the head can only move
from a cell to its left or right neighbour. Therefore, it allows us to use a finite tape, that
can be dynamically extended when the head needs to visit new cells. The head is directly
embedded in the tape, the cell that is being read by the head being in a particular state.

2.2 Communications between the automaton and the tape

The communications between these two main parts are achieved by some dedicated events, whose
description follow:

e ¢4, a € X3: one of these events is sent by the tape when polled for its data, and another one is
sent by the automaton to write data onto the tape;

® elef; and epigng: ONe Of these events is sent by the automaton to move the head one cell left or
right;

* cready this eventis sent by the tape when the head has successfully moved to the next cell.

2.3 The automaton process

The automaton process A is composed of a large monolithic process, mainly translated form the
orignal automaton, each transition being replaced by a sequence of sub-states, in order to guaran-
tee the sequentiality of the polling and writing of the tape, and the moving of the head.



Thus, we can have the following definition, where g € Q, a € X and é(q,a) = (¢',a’,m):

® Ajdle,q ¢ €ready Areading,q . the automaton waits for the head to be correctly placed,;

® Areading,q ¢ Z eq Awriting,q,a - the tape sends the symbol read by the head;

acy

® Auriting,g,a < €a/ Amoving,q,a - the automaton sends the symbol to be written by the head,;

® Anoving,g,a < €m Aidle,y Where e, = ejer; if m = —1and e, = eigy: if m = +1: the automaton

moves the head.

2.4 The tape process

The tape process is much more complex, as it involves the head passing from one cell to another,
along with dynamic creation of cells. Thus, we have to deal with three main tape cells:

e the first cell, that does not have any left neighbour;

e the regular cells, that are in the middle of the tape, that have a left and a right neighbour;

e the end-of-tape cell, that is not actually a cell as it cannot contain data, but that can give birth

to a regular cell on demand.

As one may notice, the space locality of the head along with the locality of its movements
require local communications between the cells, so that a cell can actually “give” the head to one of
its neighbours. As Circal only offers a finite number of events and global synchronisation between
processes, we overcome that problem using abstraction. More details concerning the events we
used are given in the next section, and section 2.4.2 describes the actual processes involved in the

tape.

2.4.1 Internal communications between cells

Figure 1 illustrates the organisation and linking of processes in the tape.
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Figure 1: Schematic representation of communications in the tape

Except for the “forwarders”, whose role is detailed in the next section, the organisation of the

internal communications of the tape is quite direct:

e charert (ANd enqrerr): these events are asserted between two adjacent cells when the head

moves from the rightmost cell to the leftmost one;

® endrighs (@Nd epgrighi): these events have the same role as previous ones, but for a left to

right movement of the head.



2.4.2 The different tape processes

As the first tape cell is almost like a regular tape cell, except that it ignores all the events that move
the head leftward, we only present here a definition of a regular cell C, where a,a’ € X:

o Cidlo > e Cidie.a + > e Chead.o : UNless it receives an event
e¢{endreft/ 7ehdRight’} e€{enqres 7ehdRight’}

stating the arrival of the head, the cell stays in an idling state;

® Chead,a < €ready Creading,a - the cell with the head signals the automaton that it is ready to
start the “poll-write-move” sequence;

® Creading,a < €a Cluriting - the cell then sends its symbol;
® Curiting < €a’ Cmoving,o’ - then it writes the new data to the tape;

® Croving,a < €left Cleft,a’ T €right Cright,o - the automaton determines in which direction the
head must move;

® Cleft,a' < endLeft Cidle,a’ - Moving the head leftward;

® Cright,a’ < €ndright Cidle,r - Moving the head rightward.

As one can see, this process is again nothing but a state remembering the current symbol of
the cell, and a sequence of actions to perform when the head visits this cell, matching those of the
automaton.

The following is the description of the forwarder process F"

® Flgle < endreft Fleft + €ndright Fright + €ready Fidle - When all forwarders are idle, they allow
the automaton to start another “poll-write-move” sequence;

o Flori < enarett Fiale : forwarding leftward move event;

® [light < endright’ Fidle - forwarding rightward move event;

As suggested by its name, a forwarder process only forwards local events. If its usefulness
can be doubtful at first glance, it is important to notice that without forwarders, each tape cell
process would have similarly named events for both left and right ports, and this problem cannot
be solved easily in Circal.

Finally, the description of the end-of-tape process F is as follows:

o Figle +— Z e Eiqle + endright Erorking - UNIess it receives an event stating the arrival of

eZ€ndRight
the head, the process stays in an idling state;

® FEforking < (Fidie * ((Chead,B * Fidle) — {€ndLeft’s €hdRight })) — {€ndLeft, €ndRight’ } - When forking,
the end-of-tape generates a forwarder and a fresh tape cell (initialised with the blank symbol
B).

In fact, here lies the basic structure on which is based the whole tape: indeed, two successive
abstractions allow us to reuse the events to ensure local communications between cells.



3 Example

This section describes the implementation of a simple Turing machine. The Turing machine we
have chosen for this example is a binary counter, that, with the alphabet ¥ = {B,0,1}, on the
input < B 7 > (where 7 is the binary representation of n € N, the leftmost bit being the least
significant bit), successively computes < B (n +1) >, < B (n+2) >

This Turing machine is interesting as an example, because it only has a few number of states
and transitions, simplifying the automaton process, and it combines all the “tricky” features of our
Turing machine implementation: indeed, it moves the head left and rightward, and sometimes has
to extend the tape.

Thus, this machine only has two states (¢g and ¢;) and six transitions, as detailed in the follow-
ing table:

6: (90,B) = (q,B,+1)
(90,0) = (qo0,0,-1)
(90,1) +— (q0,1,-1)

(@1,B) = (qo,1,-1)
(71,0) — (qo,1,-1)
(@1,1) = (q1,0,+1)

Figure 2 illustrates the graph representation of the corresponding automaton. As one can
see, its structure mainly resembles the structure of the original Turing machine automaton, each
transition being in fact represented here by a sequence of actions (events) of the form “poll-write-
move” (ep - e - ey TOr example).
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Figure 2: Graph representation of the automaton process A

The table in figure 3 is a simplified execution trace of the processes, in parallel with the be-
haviour of the original Turing machine. For the sake of readability, only the automaton (A) and
the tape cells (C) processes are represented, the forwarder (F) and end-of-tape (%) processes be-
ing “hidden”. Concerning the reading of the tape (rightmost column), the position of the head is
represented by underlining the corresponding cell.



Process states | State | Action | Tape

Aidle,qo * Chead,B * Cidie,o * Clidle,1 qo idle | B 01
Areading,qo * Creading,B * Cidle,O * Cidle,l q0 reading | B 0 1
Agriting,qo,B * Cwriting  * Cidle,o0 * Cldle,1 qo | writing | _ 0 1
Amoving,q0,B * Cmoving,B * Cidle,0  * Cidle,1 qgo | moving | B 0 1
Aidle,q * Cright, B * Cidie,o  * Cidle,1 qu | moving | B 0 1
Aidle,q, * Cidle,B * Chead,0  * Clidle,1 qQ idle | B 01
Areading,ql * Cidle,B * Creading,O * Cidle,l q1 reading | B 0 1
Agriting,q1,0 * Cidie, B * Curiting  * Cldle,1 q | writing | B _ 1
Amoving,q1,0 * Cidie, B * Cmoving,1 * Cidle,1 qu | moving | B 11
Ajdle,qo * Cigie,B * Cleft,n * Cidle,1 g |moving | B 1 1
Aidle,qo * Chead, B * Cidle,t  * Cldle,1 qo idle | B 11
Aidle,q, * Cidle,B * Chead,1  * Cldle,1 qQ idle | B 11
Aidle,q, * Cidle,p * Cidle,o * Chead,1 qQ idle | B 01
Aidle,qu * Cidle,p * Cidieo * Cidle,g * Chead,B | @1 idle | B 00 B
Aidle,qo ¥ Cidie, B * Cidle,o * Chead,0 * Clidle,1 qo idle B 00 1
Aidle,qo * Cidle,B * Chead,0  * Cidle,0 * Cidle,1 qo idle | B 00 1
Aidle,qo * Chead, B * Cidle,o * Cidle,0 * Cidle,1 ) idle |B 00 1

Figure 3: Simplified execution trace of the Turing machine processes

4 Conclusion

In this paper, we have given an algorithm for the construction of any Turing machine using the
Circal process algebra. This is therefore a constructive proof of the Turing completeness of Circal.
If this result was commonly assumed, mainly because of the nearness of Circal to other Turing
complete process algebras, such as Milner’s CCS or Hoare’s CSP, its proof is still a good step
forward, as we are now sure of the computational power of this process algebra. Indeed, many
applications of Circal, especially using its FPGA embedded version, are on the verge of being
developed, and ensuring that these applications will prove to be useful was a necessity.

Another point that needs to be underlined is that this Turing machine implementation in Cir-
cal only uses constructs that can be mapped in our hardware version. Thus, even if the interpreter
needs to be extended to support these constructs, we now know that this interpreter will be ca-
pable of effectively handling any possible computation, and so will the applications developed
above.

Future work for Circal will now be oriented towards the following milestones:

e extending the interpreter to allow it to run our Turing machine;

e developing some applications on top of the interpreter, such as hardware accelerated model-
checking.
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