
A Theory of Compositional Concurrent Objects

UNSW-CSE-TR-0210

Xiaogang Zhang and John Potter
School of Computer Science and Engineering

University of New South Wales, Australia
{xzhang,potter}@cse.unsw.edu.au

Abstract

This paper presents the theory of composition for concurrent object systems, based on an object
modelling in the � �����������	��
 . The behaviour of a concurrent object can be modelled as the composition
of a process representing the functional behaviour of the object with no constraint on its concurrent
interactions, or synchronisation, and a process representing concurrency constraints to reduce the
allowable concurrency and to avoid the states of exception. With this model, we use the �
�����������	��� , a
process algebra with polars, to study the theory of composition of concurrent behaviours, investigate
when and how concurrent behaviours can (or should) be composed with and separated from
functional behaviours or other concurrent behaviours, identify relevant patterns and properties of
concurrent behaviours, etc. Some generic properties of the behaviour composition, such the Identity
Law and Associative Law, have been proven in this study.

Keywords: object models, π-calculus, ����������������� , concurrency constraints, concurrency controls,
composition, synchronisation

A Theory of Compositional Concurrent Objects

Xiaogang Zhang and John Potter
School of Computer Science and Engineering

University of New South Wales, Australia
{xzhang,potter}@cse.unsw.edu.au

Abstract

This paper presents the theory of composition for concurrent object systems, based on an object modelling in
the � �����������	��
 . The behaviour of a concurrent object can be modelled as the composition of a process
representing the functional behaviour of the object with no constraint on its concurrent interactions, or
synchronisation, and a process representing concurrency constraints to reduce the allowable concurrency and
to avoid the states of exception. With this model, we use the �
��������������� , a process algebra with polars, to study
the theory of composition of concurrent behaviours, investigate when and how concurrent behaviours can (or
should) be composed with and separated from functional behaviours or other concurrent behaviours, identify
relevant patterns and properties of concurrent behaviours, etc. Some generic properties of the behaviour
composition, such the Identity Law and Associative Law, have been proven in this study.

Keywords: object models, π-calculus, �
�����	��������� , concurrency constraints, concurrency controls,
composition, synchronisation

1 Introduction

With the rapid development of communication and networks technology, concurrent and distributed computing systems
have been playing a more and more important role. However, concurrency is hard to reason about. Programming for
concurrent systems is a complicated, difficult, and problematical task, requires experience and skill. The typical
approach for reducing the complexity of problems and isolating difficulties is to separate different issues and recompose
as needed. Object-orientation provides reasonable compositional properties with its support for modularity, extensibility
and reusability. However, with conventional OO techniques the concurrency issues are usually mixed with the
functionality issues. This limits composability and causes the inheritance anomaly problem ([Matsuoka93]). The
anomaly arises from the attempting to inherit code implementing synchronisation controls -- typically the
synchronisation code must be re-implemented in subclasses, negating much of the reuse benefits gained from
inheritance ([McHale94]). To solve this problem, many compositional schemes have been proposed for separating
concurrency from functionality ([Aksit92], [McHale94], [Holmes97]), but these still lack a formal foundation for
describing the semantics of those schemes of composition, for studying principles of composition, and for reasoning
about the correctness of composition.
����� �! �"�#� %$�# $�&(')&*"�#�+,�%-�./"10324.65724-8'	#��:9�.�2� ���&;&<��&*=

[Milner92], [Milner96]), and provides a formal foundation for
modelling systems with dynamic structure. It can be used to mathematically model concurrent and distributed processes,>
?�>�@ A�B;CED)F�C�G HEI8C
F�>/J�G	KML,HN>%?�OPG	O�C%?,DQG)RSATO�C�>�O�@	K�U%VWB<XZY[G D�FTG D<B\>%I8G	@�G D)A]DQKPO�G H/C�U%DQ@ AP^7K�O�C�@_OMA�?W>`^7G	UaH/CbR3C%H/C%?�U�CcBdD�H!L�U%D)L,H/C�B;e�D)F�C f
calculus has been applied to modelling concurrent object systems ([Walker95], [Jones93], [Sangiorgi96], [Hüttel96],
[Zhang97]). Some researchers ([Schneider97], [Zhang98A], [Zhang98B]) also have applied it in modellingg�h4ikj8h�l;m n;m	h4o�p�qrg�h4o�g`s,t
t/u%o,n_h4v,wxu�g%nQl<ykzr{�m	l|j8p%j8u%tWj�t/u�l�s�i}u�l|n){�u8t/u�p�~�u%t/l��3p`i�m	q�m�p
t��]m n�{kn){Wu �3g�pbq�g
s�q s�l<y
In the concurrent object model of [Zhang98A] and [Zhang98B], the behaviour of a concurrent object was described as
the parallel composition of a process F representing the object's functional behaviour with no constraint on its
concurrent interactions, and a process C representing the constraints on the object's concurrent behaviour. For example,
the functionality of a buffer object can be described by F !nr(�).Mr � ��� !nw(�).Mw � ��� , where nr(�).Mr � ��� and
nw(�).Mw � ��� represent the behaviour of the read and write methods respectively; each of them can have unlimited

invocations executing in parallel with no concern for any potential interference. To discipline those invocations, assume
a synchronisation behaviour modelled by the control process C mr(�).� r

� ��� + mw(�).� w � ��� , where the choice operator in
fact represents a mutual exclusion lock on those methods. Then the parallel composition of the two processes,
(ν n) (CF), will be weakly bisimilar to R mr(�) .Mr � �
	 + mw(�) .Mw � ��� , as expected. One of the problems for using the
������������ ����� ������� �"!�#%$%&��'���)('� �����*$%��+,+,�-����� �.�/#10%2�&��)&3�4�5��#6!70��-�������)&�$8&:9���� ���)��#6�;2<&����3�/��#=���?>@��&32<&A��#B�����-�C!;&3� �D#E$%�7�32<&F&�� �-��&32
mutually exclusive or fully parallel.

To enhance the power in modelling the compositional concurrent objects, [Zhang02C] proposed the G�H�I�J-H3K�J K�L , an
extended process algebra, which welds the mobility power of the π-calculus with the synchronisation expressiveness of
the algebra of exclusion ([Noble00]). In the M�N�O�P�N3Q�P Q�R , the major change to the conventional π-calculus is that, the “+”
operation, a mutually exclusive non-deterministic choice which eliminates all the un-chosen branches whenever a
branch is chosen, is replaced by the conditional exclusive choice operator “ ” where the un-chosen branches are only
selectively and temperately blocked. To input-guarded processes, the ‘ S ’ and ‘’ compositions can be viewed as two
extrem cases of “ ”: permenately block all branches, and block none.

In addition to giving simpler and clearer descriptions of method exclusion while modelling dynamic behavour of
concurrent objects, the T�U�V�W�U�X�W XDY provides a naturally separation of different aspects in concurrency behaviours such as
locking status, method exclusion, scheduling synchronisation and the functionality. In this paper we adopt the Z
calculus as modelling and proving tool in study the compositional concurrent objects.

Another difficulty in this compositional concurrent object model was, while an equivalence between the comosed
behaviour and the target behaviour could be determined in practice, it might not be theoritically recognised by existing
bisimulation relations. This problem now has been solved by the responsive bisimulation, which was proposed in
[Zhang02B] and extended to the [�\�]�^-\�_�^ _�` in [Zhang02D]. The responsive bisimulation treats the buffering of a
message globally as of the same effect as buffering locally. With the responsive bisimulation, composing an empty
behaviour to an existing behaviour becomes possible, and more interestingly, similarity between responsive behaviours
of general control processes can be captured.

This forms the base of the Theory of Composition for concurrent objects, a theory about when and how the behaviour of
an concurrent object can be decomposed in to element behaviours and then composed back, and whether and how the
correctness of a concurrent object can be reasoned about through the combination of three separated steps: the reasoning
about the correctness of the functionality of the object, the reasoning about the correctness of concurrency controls, and
the reasoning about the correctness of the composition of these element behaviours.

In this paper we apply the responsive bisimulation and the a,b�ced-b3f�d f�g in the study of the Theory of Composition, and in
establishing our compositional concurrent object model. This will begin with the defining, in term of processes, what is
an object, a component of an object and a behaviour control in an object, and what is a composition of behaviours or a
decomposition of a behaviour propose. Some generic properties of the composition are explored, including the identity law and
associative law, as well as a characterising the existence of commutativity in some composition cases. Then a more detailed
investigation in modelling component behaviours of concurrent objects in the h,i�j�k-i3l�k l�m is presented, which will lead to establish
the semantic of a compositional concurrent object-oriented programming languege, and a methology for developing compositional
concurrent object systems.

Structure of the report: The rest of this report is structured as follows: section 2 briefly introduces the -calculus and
related notions; section 3 iutroduces the concept of responsive bisimulation in the -calculus; section 4 presents a
compositional concurrent model in the -calculus; section 5 studies on the theory of composition for compositional
object; section 6 concludes the paper.

2 The -calculus
npo�q -calculus ([Zhang02C]) is a process calculus especially suitable for modelling the composition behaviours ofr�sBt�r:u%v,v<w3t4xysBz4{=w�r3x/|)}�~�� ��w�x-��w��e|��%t�r��4v<sBt�s=u�| ��r�����r�u�� u�|�� [Amadio96] and [Hüttel96]), it uses asynchronous���B�*�7�E���-���3�/�-�B�������������3�y�6�4���%�4�����3�/���6���E�%���8���B�8���-�E�:�y�B�� D�3¡¢���3�/�-�B���£�¥¤¦� ���§� ��¨���%���3¡ ©,�����-�3��� ����ª

p-calculus) of
[Zhang02B], it adopts the concept of polarised names ([Odersky95a]), and the restriction that only output polar of a

name can be transmitted by communication ([Ravara97]). In addition, close to [Liu97], [Philippou96], [Zhang98A] and
[Zhang98B], the -calculus has a higher-order extension which is only involved with higher-order process abstractions
but excludes higher-order communication ([Sangiorgi92a], [Sangiorgi92b]), and therefore can employ the relatively
simpler bisimilarity theory of the π–calculus while providing more power on behaviour separation.

The major significance in the -calculus is the inclusion of lock as primitive. In the conventional CCS or � ���������	��
 ,
input-guarded processes can only be composed to play either a “one be chosen then all others have to die” game in the
mutually exclusive choice (the sum operation “+”), or “no one minds others' business” game in the parallel composition
“”. In the guarded exclusive choice of the -calculus, however, the exclusion between branches are explicitly defined,
and the invocation of an input action can cause a lock on pre-specified branches, which may become available again
when the lock is released. The “+” and “” operations then are unified into the guarded exclusive choice as two extreme
cases. This enables the -calculus to obtain the expressibility of the algebra of exclusion ([Noble00]) for methods
exclusion of concurrent objects, allows the separation of some major concurrency behaviours of objects to be presented
in a much more natural and clearer way.

Before start to introduce the , we introduce an abbreviation notation which is frequently used throughout this paper.

Notation-2� 1: The notation ti I represents a list of terms t, which is indexed by the index set I. That is, ti I

represents the list t1,t2,…,tn when I={1,2,…,n}. If the details of I is not of interest, then the abbreviation
notation
t can also be used interchangeable with ti I.

Definition-2 � 2: A list ti I (or �t) is called a canonical list if every element in it is distinguished.

2.1 The syntax of the �����������������

In the -calculus we distinguish two disjoint sets of label names in order to provent cross using by mistake: the
communication channel names, and the key names for locking.

Let � be the set of all communication channel names, ranged over by expressions � , � , and variables ! ," . Let
+� {# : � � } and −� {$: � � } be the sets of input polar and output polar of all channel names respectively. Let%

be set of all release keys of locking, ranged over by . Let +% { & : %
} and −% { :

%
} be the sets of input

polar and output polar of all keys respectively. Then the set of all label names is ' � %
, ranged over by n.

Consequently, we have various sets of polars, such as ± � +� −� , ± % +% −% , +' +� +% , −' −� −% , and ± ' +' −' .
Let (,) ± ' be polar constants, and * ± ' be polar variables. The generic process terms P in the -calculus are
generated by the following grammars:

P ::= 0P+-,/.0213 (ν 4n)P[57698:	;]PP1 |P2 < G= A >/?a @  « AP» , A::=(B*)P, ::= CED F P,

Most process terms (P−G�HJIJKMLON2PJI/HQLSR KTR�U�PJI2G�VWG�X	V9LOHQR YZY	V[IJKTP�U \�]�P�U�]�^	U�R�_ 0P is the inactive (terminated) process; `Ta9bcWd is
the output action which sends output polars ef into the channel m; (ν gn)P binds the set of labels hn, and therefore both
polars of each of them, within the scope of P; P1 | P2 indicates two processes run in parallel; A i/ja k is an instance of
parameterised process agent, giving the process agent abstraction A (l*)P is obeying ((m *)P) n/oa p P{ qa/r * }; is a
process variable. For the rest three terms, s is the action which emits the unlock signal within the scope where the name

is bound; higher order P-term agent t�u v P accepts processes as parameters in the double angled brackets, and
obeying (w�x y P)« zR» P{{R/ | }; [}�~E��	�]P is called localisation, indicates an incoming message �� is buffered in the input
polar � , and becomes visible and consumable only by P; and � G� is the guarded exclusive choice (GEC choice),
where G defines the exclusion behaviour which can place some locks on the process itself, and records the lock status.
The syntax of the choice terms (G−terms) is

G ::=B(ν �n)GG1 G2D �/�a �  « �P», ::= �9� � H, H ::= H1 H2(ν �n)H « � »,

B ::=0G! .P!(ν) .P, ::=� (��)L, ::= 0G! . !(ν) . ,

L::= � @J(ν)@J, J::={ �� } M, D ::=(�*)G

Here B is a choice branch; G1 G2 is the choice composition; (��)G and D
���
a � are abstraction and instance of choice

agent respectively, obeying ((��)G) �	�a
 G{ �a/�� }; higher order G-term agent
�� � H accepts processes as parameters
in the double angled brackets, and obeying (��� � H) « �P» H{�P/ � }; H is higher order G-term with some free process
variable ; is a branches of a higher-order GEC term; 0G is the unreachable choice, in the future we can omit the
subscript of both 0G and 0P ��� ����� �!�#"%$'&("%)+*��-,.��� �-&0/�12$�34� 5�67�4��"%�#� $ 8�6:9�6<;=&>*�;:"<$�?=� B here always behaves as a (lazy)
replication, among them, “!(ν)” creates a fresh key private to each replicated copy; in .P the action prefix operator
“.” indicates the execution of action before the execution of the continuation process P; the action @ (AB)L, where we
stipulate that { CD } E (L) = , produces two simultaneous events: receiving information FG from the input port of channel
m, and triggering the lock L; the lock L= H @J read as “lock all input channels in J with key ”, where the exclusion set J
specifies the channels to be locked within the GEC choice and is the key for unlocking the lock; abbreviation L=(ν)@J
indicates a lock with an anonymous key, that is, !I (JK)(ν)@J.P LNM ν)O (PQ) R @J.P for ∉S.T (P), in other words, it is an
unreleasable lock; M is the entire +U , the set of input polar of all channel names, and therefore enforces the locking of
every channel within the GEC choice.

The set of all actions a process may take can be specified by ::= V (WX)(ν Y Z)[]\:^_�`  a  , where b Z c d and m∉e Z .

The other part of the GEC choice, , acts as a state machine maintaining and monitoring the current status of locks, and
is described in an independent language. Different grammars will give different locking schemes and locking status
evolution paths, but will not interfere with semantic or syntax of the G language, and vice versa. In one of the simplest
such locking scheme, where duplicate locks upon the same channel with the same key will have the same effect as such
a single lock ([Zhang02C]), is defined by the grammar ::= î î fL and the structural equivalencies rules are
shown in Figure 2-1.

lstr-SMM (Summation) : î  ; 1 2 2 1; 1(2) g 1) 2.

lstr-EMP (Empty lock) : î h @  î ;

lstr-LKC (Combination) : î i @J1, j @J2 î k @(J1 J2);

lstr-GRP (Grouping) : î lL1î mL2 î nL1, oL2;

Figure 2-1 Structual equivalence of locking status terms

Notation 2p 3: Some auxiliary operations/functions (the formal definitions can be found in [Zhang02C]) are
needed for integrating a language into the -calculus:q r sutwv (G) : gives the set of all branches' input prefix channel names in G, and defined byx y zu{w| (!} (~x) L.P) m; � � �u�w� ((ν �n)G) � � �u�w� (G); � � �u�w� (G1 G2) � � � �u�w� (G1)} � � � �u�w� (G2)}.;� �<�4�

(J, ,) : gives the truth value for whether indicates all the input polars appeared in J are locked by ;� -¡-¢
() : gives the set of all channel names for which their input polars are indicated by as locked;£¥¤ ¦¥§
() : gives the set of all key for which there exists some J ¨ such that © ª<«4¬ (J, ,)=true;.­u®u®u¯ (L,) : gives the new locking status after adding L to the original locking status °

/L : gives the new locking status after removing L from the original locking status ±

We usually use î  to represent an empty lock, and for any language, we always require that:² ³<´4µ
(J, ,î ) False, ¶ ·-¸-¹ (î ) , º¥» ¼¾½ (î ) , ¿.À.ÀuÁ (L, î ) î L and î /L î .

Notation 2Â 4: If m∉Ã ÄwÅ-Æ (), we say that allows the commitment on Ç , denoted as È ;
if m É Ê-Ë-Ì (), we say that Í�Î4Ï�ÐÒÑÒÓ the channel Ô , denoted as Õ .

If for some J J, J Ö and × Ø<Ù4Ú (J Û ,), we say that can commit Ü @J, denoted as Ý @J;
otherwise we say that he cannot commit on Þ over J, denoted as ß @J.

If for some J à á-â�ã (), ä @J, we say that can commit å , denoted as æ ;
otherwise we say that he cannot commit on ç , denoted as è .

In the form of labelled transition, we denote 
é

→L for ê ∉ë ì-í�î () and =ï.ðuðuñ (L,); and

ò @→J for ó @J and = / @J.

Notation 2� 5: Similar to the �������	�
��
��������� ��� , besides the functions ��� , ��� and � for identifying the sets of free,
bound and all names respectively of a P−term, G−term or action, we also use more specified functions, such as��� �

, � � ! , "$# , %�&�' , (�)	* and +-, to identify free, bound and all input or out polars. Further more, as in the -calculus we
distinguish communication channel names and keys, we also use finer grained functions, .�/10 , 2 314 , 516 , 7�8 91: , ;�< =1> , ? @1A ,B�C	D1E

, F G�H1I and J	K1L for communication channels only, and M�N�O , P Q1R , S1T , U�V$W�X , Y Z []\ , ^ _1` , a�b�c]d , e f	g]h and i-j1k for keys
only.

Notation 2l 6: The following process abbreviations are for convenience and can simplify expressions:
m

(no).P î  p !q (rs) (ν)@[t].Pu , ∏ v i(wx).Pi î  y !z i({|) (ν)@
+[} i].Pi ~ , ∑� i(��).Pi î  � !� i(��) (ν)@M.Pi �

!� (��).P î  � !� (��) (ν)@ .P� , ∏!� i(��). Pi î  � !� i(��) (ν)@ .Pi).

These abbreviations give an illustration of that for input-prefixed processes, the standard parallel composition ‘’, the
mutual exlcusive choice ‘ �����-�����]�	 �¡�¢�£��	¤¥¢�¦��§¢ �¨£�¦���©ª�	��¤¥¢�¦�����¡ « £��
¡�£�¬�¡ ¬�­®�
¡�¡�¯���£
¦1°±�²°³�	�]�
¡ ´µ­¶ ���£�¢���¡·£��
­¸�
­¹¦ªº»¤¶¼��¾½ ’
operator in the -calculus. Further more, as these abbreviations suggested, encoding a ¿�À�Á�Â	Ã Ä�Å�Â
Á�Å	Æ�Á Æ�Ç term into the -
calculus is very simple, and has been done by [Zhang02C]. However, so far we have not found any straightforward
technique for the opposite direction. In fact, the È�ÉªÊ�Ë	Ì Í Î�Ë
Ê�Î�Ï�Ê Ï�Ð can be considered as a sub-calculus of the -calculus.

2.2 The semantics of the Ñ¥ÒªÓÕÔ�Ò×ÖØÔÙÖ�Ú

The structural equivalences and labelled transitions in the -calculus are shown in Figure 2-2 and Figure 2-3. The
central idea of the operational semantics in this calculus is presented by rules tr-IN, tr-CHOI, tr-RELS, tr-SYNC1 and
tr-SYNC2 ÛªÜÞÝ1ßáà�â	ã]äØåçæ è�éêè�é�ä ë ì�â
í�ì�î�í î�ï¸ð1åçäñì
â-ò³ï¸ä�ä�è�é�â�è¥ó

1. an input action ô (õö) invokes a new copy of continuation process P from a GEC choice and triggers a lock L
which may change , the locking state of GEC choice, an unlock signal ÷ may also change the locking state

, but does not change the GEC choice context;

2. expressions for different aspects, such as current state, exclusion relation and behaviour of the continuation,
can therefore be separated naturally and intuitively.

Justification for our calculus is given in Section 5 where we further discuss modelling of composite objects.

As a normal treatment in this literature, throughout this paper the rule str-REN is often applied automatically and
implicitly over fresh names to avoid name clash. For example, a name n2∉ø�ù (P) may be picked up automatically so that
the process (ν n1)(A ú û 1,ü 1 ý (ν n2)P1{n2/n1

}) can be used to replace (ν n1)(A þ ÿ 1,� 1

�
(ν n1)P1) without mention.

Remark 2 � 7: Similar to the �����	��
 ��
�����
���� ��� , in the the -calculus the action is truly internal, that is, neither
visible nor interruptible by external observers. Therefore, the name restrictions in rule tr-SYNC1 and tr-SYNC2
are required. Without it, the synchronisation will not be considered as an internal action, but a two steps action,
such as PQ (ν

��
)� 

�

��
→
�

. 
�

(�
�
→) (ν �) (PQ) or PQ →. !→ PQ, where both steps are visible for external

observers. This strong requirement on actions is necessary for guaranteeing the standard rule "$# () %'&)(() *
([Amadio96]) valid, and is necessary for preserving actions in output polars substitution.

As usual, let ()* represent that the contents in () repeating zero or many times, then the weak transitions are defined as:

Definition 2 + 8: P P iff P(→)*P; P P iff P . → . P, where , .

Reduction relation, a familiar concept in this literature, is defined in a non-standard way in the -calculus:

Definition 2 - 9: P→ P iff (ν m)P →(ν m)P for some m; P P iff (ν m)P (ν m)P for some m.

Summation

str-SUM1: P10P P1; G1 0G G1

str-SUM2: P1 P2 P2 P1; G1 G2 G2 G1

str-SUM3: P1 � P2P3) � P1P2) P3; G1 � G2 G3) � G1 G2) G3

str-SUM4: [�����	�
][��
�����]P � ��������][�������]P;

Null

str-NUL: [!�"�#$�%] 0 0; & 0G' 0P

str-DISJ: (*)*),+ (- @J,) . G/ 0 G1 if 24345*687 (G) J 9
Instance

str-INS: ((:x)P) ;=<a > P{ ?a/ @x}; ((Ax)G) B=Ca D G{ Ea/ Fx}

str_HAR: (G�H I P)« JR» P{ KR/ L }; (M�N O H)« PP» H{ QP/ R }
Scope

str-SCP1: (ν n)P P, if n ∉S*T (P); (ν n) G G, if n ∉U,V (G);

!(ν) .P W .P, if ∉X4Y (.P)

str-SCP2: (ν n1) (ν n2)P Z ν n2) (ν n1)P; (ν n1) (ν n2)P (ν n1,n2)P

str-SCP3: (ν m)[]\�^_a` 0P; (ν m)!b (cd)L. P 0G;

(ν)e 0P; (ν) f Gg (ν) h 0Gi , if j kmlon (p4q4r*s8t (G), ,) is true;

(ν) u G G v w G x , if y zm{o| (}4~4�*�8� (G), ,) and ∉�*� (G)

str-SCP4: � (ν)G� � ν) � G� , if ∉��� ��� ();

(ν n) P1P2 (ν n) (P1P2), if n∉�*� (P2); (ν n)G1 G2 (ν n) (G1 G2), if n∉�*� (G2)

str-REN: (ν n1) P (ν n2)(P{n2/n1
}), if n2∉�*� (P)

Localisation

str-LOC: (ν m) [��������]P � ν m) (����� �¡ P)

str_IND: ([¢�£�¤¥�¦]P)Q [§�¨�©ª�«](PQ), if m∉¬,­ ® (Q)

Figure 2-2 Structural congruence rules for the -calculus

tr-OUT:
· ,¯±°�²³µ´

¶ · 
¸¹
→º 0P

P » ¼ 
½¾
→¿ P, m À�ÁÂ

(ν Ã Â)P (ν
ÄÂ
)Å 
Æ

ÇÈ
→
É

P,
tr-SIG:

·

→ 0P

tr-IN: 
Ê

→LË
!(ν)Ì (ÍÎ)L.PÏ 

Ð
(Ñ→Ò) (ν)(P{ÓÔ / ÕÖ } × !(ν)Ø (ÙÚ)L.PÛ)

tr-CHOI: Ü G1Ý →(ν)(P Þ G1ß , à á*â (G2)ã
G1 G2ä →(ν)(P å G1 G2æ)

tr-RELS: ç @→J , where J è4é4ê,ë8ì (G)í
Gî ï→ ð Gñ tr-PARL:

P → P

PQ → PQ

tr-SYNC1: P (ν
òÂ
)ó ô 

õö
→÷ P, Q 

ø
(ùú →) Q, ûÂ ü*ý (Q)=

(ν m) (PQ) → (ν m) (ν þÂ) (PQ)
tr-SYNC2: P → P, Q ÿ→Q

(ν) (PQ) → (ν) (PQ)

tr-SYNC3:
P 
�

(�→
�) P ;

[������
]P → P
tr-INV:

P → P �
� (��) .
[������
�]P → [������
�]P

tr-RES: P → P, �n ��� () =

(ν n)P → (ν !n)P
tr-STRUC: P1 P1, P1 → P2, P2 P2

P1 → P2

Figure 2-3 Labelled transition rules for process terms in the -calculus

Clearly, P →P implies P→ P, and P P implies P P, and therefore a variant of the rule tr-SYNC1 can be
written as: if P (ν

��
)� 

�

��
→
�

P and Q 
�

(�
	
→) Q where
� �
� (Q)= , then PQ → (ν ��) (PQ). Beside the reason we

have just discussed, the distinguish between internal action and reduction is also necessary for the new bisimulation
relation, and we will find out later.

Definition 2 � 10: The strong commitments are defined as:

Process P can commit the action , denoted as P , if there exists some P such that P →P.
Process P can commit on input polar � , denoted as P � , if there exists some input action = � (��) s.t. P ;
Process P can commit on output polar � , denoted as P � , if there is some output action =(ν ��)�������� s.t. P ;
Process P can commit the action sequence , denoted as P ! , if P→a1 . →a2 . … . →an P, or as an abbreviation, P→" P;

The weak commitments , is obtained by replacing → with # and with though out.

Definition 2 $ 11: Process P is a derivative of process P, if there exists some finite sequence % such that P→& P .

2.3 The higher-order GCE terms

One of the most significants of using the higher-order choice term is that, it allows the expressions of exclusion to be
separated from other aspects, and to be reasoned about separately. For example, in the process ' «Pi {1,2,3}»(we may
have) 1, 2, 3 * (!(ν)+ 1(,-) . @{/ 2}. 1 0213 , 4 !(ν)5 2(67) 8 @{9 1, : 2}. 2 ;2<= , > !(ν)? 3(@A) B @ . 3 C2DE , F), which
describes the same exclusion relations as the expression m1 GIH 2J 3, in Noble’s Algebra of Exclusion ([Noble00]),
without rising any details about or Pi {1,2,3}. [Zhang02C] has developed theory to enable this ability.

Notation-2K 12: For convenience, we sometimes using symbol to denote a higher-order GEC with single
arity and single branch, that is, it has the form of L M .

Definition-2 N 13: Higher-order GEC terms 1 and 2 are structural equivalent, written 1 2 ifO
PRQ S T (1)=U
VRW X Y (2), and 1« ZP» 2« [P» for all \P satisfying]
^R_ ` a (bP)=c
dRe f g (1).

For example, 1 2 if 1 h 1, 2 i (! 1. 1 ! 2. 2) and 2 j 1, 2 k (! 2. 2 ! 1. 1).

Corollary-2 l 14: mon p « q ».

With a slight notation abuse, whenever these is no ambiguity, we may simply write « r » as (and therefore write
« » as), and therefore the symbol H for higher order GCE is no-longer necessary.

Definition-2 s 15: Let tvuRw x y (z 1)= {
|R} ~ � (1), �
�R� � � (� 2)= �
�R� � � (2) and � 1 � 2=∅, then composition of higher order GCE
choice is defined as 1 2 ��� 1, � 2 � (1« � 1» 2« � 2»).

Even though we have 1« �P1» 2« �P2» 2« �P2» 1« �P1» and (1 2)« �P1, �P2» (2 1)« �P2, �P1», syntactically the
summation 1 2 2 1 does not hold, since (1 2)« �P1, �P2» (2 1)« �P1, �P2». This is a disadvantage of the current
form of the -calculus. However, as pointed out by [Zhang02C], this problem can be solved by introducing “labelled
tuples” to -calculus, that is, each tuple uses a list of distinguished names called “labels” to indentify parameters and
therefore a parameter will be no longer fixed to a position. For example, with labelled tuples, the three expressions l1=P1,l2=P2,l2=P3 ¡ , ¢ l3=P3,l2=P2,l1=P1 £ and ¤ l1=P1,l3=P3,l2=P2 ¥ will be indifferent, and all can be used to instantiate¦ l1= 1,l2= 2,l2= 3 § H.

To avoid to complicate the syntax and rules of the -calculus, we currently do not include the labelled tuples in the
syntax of the -calculus. However, we may adopt it implicitly whenever the summation 1 2 2 1 becomes
necessary.

Lemma-2 � 16: (1 2) «
�
P1,

�
P2» (2 1) «

�
P2,

�
P1»; 0 0 ;

(1 2) 3 1 (2 3); 1 2 1 2 if 1 1 and 2 2.

There is still a problem of the operator: it does not remove redundancy in composition as what the Algebra of
Exclusion dose. For example, in the Algebra of Exclusion, given expressions e1 m1

�
m2 and e2 m2

�
m3, then the

composition e1e2 m2
�

(m2m3) . But when translated into the -calculus, then the arity of 1 2, the composition of
1

�
e1	 and 2
 e2� , will be 4, while the arity of � e1e2
 is 3. We use a new operator to solve this problem.

Definition-2 � 17: An higher order GEC choice is canonical, denoted as , if the guard of every its branch is
distinguished from other branchs. In other words, satisfies that, either = 0 or 1 where:

1. 1 is a canonical higher order GEC choice; and
2. ��������� () ��������� (1); and
3. The lock key of is defined local to , that is, it is in the form of � � !(ν)� (�) ! @J . .

If is the only branch of , we may also use symbol to denote .

For example, " 1, 2 # !(ν)$ 1(%&) ' @J1. 1 !(ν)(2()*) + @J2. 2 is canonical.

Lemma-2 , 18: If (1 2) is a canonical higher order GEC choice, then both 1, 2 are also canonical higher
order GEC choices, and -�.�/10�2 (1) 3�4�516�7 (2) = .

Proof:By the definition, if otherwise then (1 2) cannot be a canonical higher order GEC choice.

Definition-2 8 19: The combination operator , mapping a pair of canonical higher order GEC choices to a single
canonical higher order GEC choice, is defined as:

1). 0 ;

2). 0 ;

1 2, if 9�:�;1<�= (1) >1?A@�B�C�D (2),3). 1 2 {E F (!(ν)G (HI) J @(KMLONQP (1) RMSOTQU (2)).), if V�W�X1Y�Z (1)=[�\�]�^�_ (2)=m ;

4). (1) 2 (1 2) if `�a�b1c�d ()∉eAf�g�h�i (2);

5). (1 1) (2 2 2) (1 2) (1 (2 2)) if j�k�l1m�n (1) = o�p�q�r�s (2).

Note, because the operands at both sides of the operator should be canonical higher order GEC choices, in the clause
5) of the definition, we have t�u�v�w�x (1)∉(y�z�{�|�} (1) ~����1��� (2) ��������� (2)). Therefore the clause 1) to 5) in the above
definition have covered all possible combinations of the operands.

Lemma-2 � 20: 1 (2 3) (1 2) 3 for all canonical higher order GEC choice 1, 2 and 3.
Proof:The proof is found in [Zhang02C].

From now on we restricte that only canonical GEC choice should be used in an object model to describe method
exclusion relations. In later sections we will see that we model objects in the form of � � « �P»� or a composition of
such.

2.4 A simple type system

To displine the modelling of proecess, a simple type system, close to that in [Liu97], is included in the -calculus. A
term H having type T is denoted as H:T. The first-order types, ranged over by , given by

::=   , λ::=  , ::=  � ,
where is a set of atomic types called link sorts, whose values are communication polars, and can be further devided to
two subsets of types, the input link and output link ; is a set of atomic types called signal sorts, which has only two
atomic types, the input signal type and output signal type � , whose values are input and output key polars
respectively; are some basic type such as integers, boolean, etc. However, with the same technique demonstrated by
[Milner96] �������	��

�������������
��������� ����� ���	��!#"%$����&����$'
%�)(��*!+��� � (,�&��� -.�����&�*��� ���0/1�2�3����(4��� �5�*�6��!#"�$%���7

�������8�&���
���9
:�
polars in the -calculus. Therefore, in this paper we need not consider any basic types other than polars.

The higher-order process types, ranged over by , are given by ::= ;�<>=*? (1, 2,…, n) ;�<�=*? (1, 2,…, n);
and the higher-order choice types, ranged over by , are given by ::= @�<>=*? (1, 2,…, n) @�<�=*? (1, 2,…, n).

To define the idea of well-typing, we introduce the sorting function A B	C from link sorts to tuples of output link sorts, so
that D E	F (λ)=(G HJI�KMLON+P Q0R1I
S�T�U�L	RVS%W�R0SXLMQ QYS[Z�S\N N[]�^6P&Z�U�QYK_Q&]%I
T�K�R`S�W6a�U�T]6K�RVS%WbQ�cbI
K3d . For simplifying expressions, we use

to stand a first order type in either or , and to stand a type in either or e . we also use m:± to stand for a pair
of communication polars f : and g : ,where h i\j ()= k l\m () ; use :± to stand for a pair of key polars : and n : o ; and
use n:± to stand for either n:± or n:± .

A communication action is well-typed when it is in one of the following cases:

1) p (qr), where s : , t u\v (λ) = (w) and xy : z ;
2) {}|%~�J� , where � : , � �\� (λ) = (�) and �� : � ;
3) : ;
4) � : � .

A lock L is well-typed whenever it is in the form:

5) � @J, where : and either J = , J=M or J=[��] and �� : � .

A locking status is well-typed when it is either empty or every element of is well-typed:

6) î ;
7) �X�X��� (L,), where L and are well-typed;
8) /L, where L and are well-typed.

A defining equation E R is well-typed if R has the same type as E. Suppose that each agent variable and agent constant
is assigned with a higher-order type, then each well-typed process expression and abstraction acquires a unique types as
follows:

9) 0P : ;�<>=*? ();
10) �}�\��8� : ;�<�=*? (), if �+�\��8� is a well-typed action
11) � : ;�<�=*? (), if is a well-typed action;
12) ∏i I Pi: ;�<>=*? () if for each i I, Pi : ;�<�=*? ();
13) ¡ G¢ : ;�<>=*? () if is well-typed and G : @�<>=*? ();
14) (ν £n)P : ;�<>=*? () if P: ;�<>=*? () and ¤n: ¥± ;
15) P ¦	§a ¨ : ;�<>=*? (©) if P : ;�<>=*? (ª a, «) and ¬a: ­ a; and P ®:ā ° : ;\<�=*? () if P : ;�<>=*? (± a) and ²a: ³ a;
16) (´µ)P: ;�<>=*? (¶ n, ·) if P : ;�<>=*? (¸) and ¹w: º w; and (»µ)P: ;�<>=*? (¼ w) if P : ;�<>=*? () and ½µ : ¾ w;
17) « ¿P» : À�Á>Â*Ã (Ä) if : À�Á�Â*Ã (Å p, Æ) and ÇP: È p; and « ÉP» : À	Á>Â*Ã () if : À�Á>Â*Ã (Ê p) and ËP: Ì p;
18) ÍÏÎ Ð : À�Á>Â*Ã (Ñ) if : À�Á>Â*Ã (), and Ò : Ó .

and each well-typed GEC expression and abstraction acquires a unique types as follows:

19) 0G : Ô�Á>Â*Ã ();
20) i I Gi : Ô�Á>Â*Ã () if for each i I, Gi : Ô�Á>Â*Ã ();
21) Õ (Ö×)L.P : Ô�Á>Â*Ã () if P : À�Á>Â*Ã () and action Ø (ÙÚ) and lock L are well-typed;

22) (ν �n)G : ������� () if G : ������� () and �n: 	± ;
23) G
��a
 : ������� (�) if G : ������� (� a, �) and �a: � a; and G ���a � : ������� () if G : ������� (� a) and �a: � a;
24) (��)G : ������� (�) if G : ������� () and �� : ;
25) « !P» : ������� () if : ������� ("), and #P : $;
26) %'& (: ������� ()) if : ������� (), and * : + .
27) 1 2:

������� (, 1, - 2) if 1:
������� (. 1), and 2:

������� (/ 2).
Where the clause 15, 17 and 24 base on the fact that the type of S (0�) (((12 , 34)R) 576a, 8�:9) can be determined by that
of the partial instanced R. The type of a canonical higher order GEC choice is covered by clause 25 and 26, since is
a special case of . The type of a term 1 2 depends on the expression of both 1 and 2, and can be individually
derived by applying the clause 19 and 25 to 27 above to the definition of operator .

3 Responsive bisimulation in the -calculus

Bisimulation is an important concept in the process algebra community, and the most common idea utilised to
mathematically set the behavioural equivalence on processes. It considers two processes are behaviourly the same if
both can perform the same action at every step in the every evolution path. Existing bisimulations can fail to capture the
behaviour equivalence between the composed object and the target object. As an example, the process O1 and O2

illustrated in Figure 3-1 represent two different versions of the internal
structure of the same composed object in a state where its only method
is blocked by the lock of key . The only difference between these two
is that O1 has an extra “empty” control Ctrle which does nothing but
forwards whatever message received from channel m to the next
control Ctrll. The body of these two can always give the same response
if fed with the same message. If an unlocking signal is received via
channel , both O1 and O2 can accept incoming messages and process
them immediately, as shown in Figure 3-1a. If some message arrives
before the unlocking, O1 will store it in an internal buffer and delay the

process until unlocked, but O2 will leave the message in the external
buffer as it was while waiting for unlocking, as shown in Figure 3-1b.
To the client who sent the message, the two objects O1 and O2 are
behaviourly the same because they always give the same response. However, existing bisimulations usually distinguish
the two because in the situation of Figure 3-1b, O1 can input the message but O2 does not. To solve this problem, Zhang
and Potter proposed the responsive bisimulation ([Zhang02A], [Zhang02B]) and extended to it the ;=<�>�?@<�AB? ABC
([Zhang02D]). In this section we only give a very brief introduction about responsive bisimulation, for which the
detailed study it can be found in [Zhang02A], [Zhang02B] and [Zhang02D].

In object-oriented systems, the lock/unlock actions are usually internal activities of objects, and therefore may not be
visible from outside. However, while study on a component process of a system or object, these activities have to be
observed. In the -calculus, the distinction between names for locking keys and for communication allows us to take
two different positions in observing processes interactive behaviours:

1. ignore all locking/releasing actions, and adopted the same set bisimulation relations developed in the DFEHG@IKJ L
calculus;

2. MONKPRQTSVUXWKPBY ZF[]\V^7Q�S@Q�N�_`Y ZF[aN�WKMOYVUbZR_cY ZdMOUeN�W�W�UbfXZXMgNKZBh:MViBQK^7Q�jkUb^7QmlX^�UXhbfBW�QmMViRQTn oqpHN�^�Y@NKMOYVUbZRr�stN�ZuQvpHQ�ZwjxY ZBQK^ypXQK^�_`YVUzZBsBjkUb^
each of those bisimulation relations.

{�|X}R~]�d�X�K�7�V�K�O�V�v�R~��X�X�B�V~`� �T}F�V�K�O�V�z���7���@�K�O�V�b�F~��a�@�V���F���X�b}d�F�V���H�X�t�z�c�7�H�x�x�y��|B�X~]�'�F�V~`� ��}F�@�K�O�V�v�B~`�������K| ���X�K��~`�V�z�T�F�V~`� ��}F�V�x�`�@�v���V~
a subset of its non- �k�H�K�7�] @¡v¢ counterpart. And in the £F¤H¥@¦K§ ¨k©�¦�¥V©xªB¥ ªB« , which is a sub-calculus of the -calculus, the ¬
version and ­B®b­F¯ ¯k°H±K²7³`´V®b­ bisimulations will coincide respectively.

Generally say, the µ�¶X·K¸7¹zºV»z¼ bisimulations are needed for measuring properties of object components, when ½B¾b½F¿ ¿
version bisimulations are intersted in measuring overal behaviour of composd objects.

Figure 3-1

m
n

unlock response

msg
O2

p
n

m

unlock response

msg
O1 (a)

(b)O1

Ctrle

m

msg
p

Body

n

Ctrll

O2

Ctrll

m

Body

n
msg

To measure the observation behaviours, we need to distinguish the similarity in responses perceived by outsiders,
butignore the unrelated information. We must note that the state changes of a process caused by internal actions, and we
must also be able to detect which communication channels are available for output in all evolved states. What is more,
in order to distinguish states, we need to be able to observe what each of the messages output by the process is. The � �
bisimulation, can provide this degree of observation:

Definition 3 � 21: The (strong) � -bisimulation is a symmetric relation
�

on processes such that whenever P� Q
then P →P implies Q →Q and P � Q for all action in the form of either =(ν � �)	�

���� or = , and���

() ��� (Q)= .

The ���������! #"�$, (strong) % -bisimulation, is a strong & ' (*),+-) .0/21,3�45),&7698 such that whenever P: Q then P →P

implies Q →Q and P ; Q for all +< −< .

The weak = > ?2@#A!@ BDC2E#F�G5@,=IH and weak J K L2MON!M PDQSR,T�U-M,J�V are obtained by replacing → with everywhere above

respectively. We denote WYX be the largest Z [*],^!] _a`�b,c�d-],Z7e , and fYg be the largest weak h i j2k,l7k mDn2o#p�q5k,hIr , s t be

the largest u v w2x#y!x zD{2|#}�~5x,u�� , and � � be the largest weak � � �2�,�7� �D���#���!�#��� .

The � � �2�,�-� �D���#���-�#��� gives a measurement on processes’ states by observing available reductions and output actions, but
can not determine how a process responses to incoming messages, since communicating input actions are not observed.
To determine responsive behaviours, we introduce a new behaviour equivalence relations.

Definition 3 � 22: Let � [�] be the responsive testing context of syntax � ::=[�][� ��¡¢�£] ¤ , then we define
the strong and weak responsive equivalence:P ¥ rQ iff ¦ . (§ [P] ¨Y© ª [Q]), P « rQ iff ¬ . (­ [P] ®Y¯ ° [Q]);
the strong and weak r- equivalence: P ± ² Q iff ³ . (´ [P] µ ¶ · [Q]), P ¸ ¹ Q iff º . (» [P] ¼ ½ ¾ [Q]).

This definition gives a quite clear description about the meaning of equivalence in responsive behaviour, but is not so
useful since it requires the exhaustive testing over the infinite set of responsive testing contexts. A more practical
definition is the r1-bisimulation, named so because the structurally comparable to the 1-bisimulation in [Amadio96].

Definition 3 ¿ 23: The strong (or weak) r1-bisimulation is a strong (or weak, respectively) À Á Â2Ã,Ä7Ã ÅDÆ2Ç#È�É-Ã,À�ÊÌË if
whenever PÍ Q then [Î ÏÑÐÒ�Ó]PÔ [Õ×ÖÙØÚ�Û]Q for all [Ü×ÝÙÞß�à].
We denote the largest strong r1-bisimulation as á r1, and the largest weak r1-bisimulation as â r1.

The ãåäÑæ�ç�è!é#ê�ë s, strong and weak r1-bisimulation ì í 1 and î ï 1, are defined by replacing ð ñ ò2ó#ô7ó õDö2÷#ø�ù5ó,ðIú with
its ûýü�þ ÿ ������� , the � 	
���
�� ��������������� , in the above definition.

While responsive equivalences and r1-bisimulations provide a good base for describing similarities of responsive
behaviours, they tell little about why or when two processes may offer similar behaviours. For closer study, we need an
inside view observing input actions.

Definition 3 � 24 : The (strong) responsive bisimulation is a (strong) � � ��� ��� !#"�$�%�&�����')(such that whenever
P* Q then P

+
(,- →) P implies either Q 

.
(/0 →) Q and P 1 Q, or Q →Q and P 2 [354768�9]Q.

The weak responsive bisimulation is obtained by replacing transitions with weak transitions everywhere. We
denote : r and ; r be the largest strong and weak responsive bisimulation respectively. Clearly, < r = r.

The >@?BADCFE�G�HJI s, strong and weak K -bisimulation L M and N O , are defined by replace P Q R�S�T�S U�V�W�X�Y�S�P�Z with [\
bisimulation in the above definitions. Clearly,] ^ _ ` .

Lemma 3 a 25: The responsive bisimulation, r1-bisimulation and responsive equivalence are coincide for both
b@ced�fhg�i�jJk and l�mnl�o o@peq�rtsJu�mJl , i.e., v w x y 1 z { , | } ~ � 1 � � , � r � r1 � r and � r � r1 � r.

The responsive bisimulation has the following properties.

Lemma 3 � 26: The responsive bisimulations are equivalences, in other words, it is reflexive, symmetric and
transitive.

Proposition 3 � 27: The responsive bisimulations are preserved by restriction, localisation, and output polarity
name substitution. That is, let

�
be any of � r, � r, � � or � � , then P	 Q implies

(ν
�)P� (ν
�)Q for all �� ;

[��������]P � [��������]Q for all [���! "�#]; and$ %'&
for all ={ () / *+ }.

There is a problem: the responsive bisimulations are not be preserved by parallel composition in general. For instance,
with the O1 and O2 of the previous example, we have O1 , rO2, but (O1O3) - r (O2O3) for O3 î  . !/ (01)L.R2 ,
because the occurrence of input polar 3 in O3 has changed the ability of O1 on receiving message from 4 . However, as
mentioned at the beginning of this paper, the purpose of our study is about object modelling, and as the nature of object
systems, the ownership of each input port should be unique. For example, the object identity of an object is uniquely
owned by no one else but that object; each method of each object is also uniquely identified so that no message would
be delivered to wrong destination. In general, as mentioned in the previous session, each input polar has a static scope
(or ownership), and will never appears outside this scope.

When responsive bisimulation is strictly restricted within the problem domain, objects modelling, where the responsive
bisimulation is needed, then its preservation in parallel composition can be guaranteed, as shown later.

Definition 3 5 28: Let 6 be the input polar of a communication channel name m, P be a process for which
m 798 : (P), and ; be the context < [.] (ν = �) (Env[.]) where m >@?BADC (Env) while m may or may not be a member
of E � . We say that, P is an owner of F (or say, G is owned by P) with respect to the environment Env;

Env is an environment free of H (or say, I -free environment);J
[.] is an K -safe environment context, or L -safe environment for short.

An M -safe environment only allows the process in the hole to consume a message sent along the channel m, ensuring no
interference from the environment. It reflects the fact that the responsive behaviour of a process can be measured only
when messages sent to it are guaranteed not to be intercepted by some other process.

Definition 3 N 29 A process P is safe for Env, and the environment Env is said to be safe for P, if P is the owner
of all m O9PDQ (P) respect to the environment Env, i.e., RBS T (P) UBV W (Env)= . We may call P an safe process, when the
behaviour of P is only considered within environments which are safe for P.

A process P is autonomous if XBY Z (P)= .

Lemma 3 [30: The process safety is preserved by evolution. That is, if \B] ^ (P) _B`Da (Env)= holds for processes P
and Env, then bBc d (P) eBfDg (Env)= holds for all Pand Env, which are derivatives of P and Env respectively.

Proof: Simply because the input polar of a channel cannot be transmitted by communication.

Corollary 3h 31: An autonomous process and all its derivatives are safe to any system.

When modelling objects in the ikjmlonpjrqsn qst , all method bodies can be considered as autonomous, since after parameters
passed through the method interface, further input (if any) can only be performed via channels that were initially private
and informed to the senders by the forked method body. An object itself is initially autonomous while creation, until its
name, the unique identification, is exported to its environment. Its method names can also be considered as initially
private to the object, and then exported to the caller during each method call. For example, similar to [Walker95] and

[Zhang97] amongst others, the method call o.m1(a1,a2) may be modelled as (ν mset) (� � � set � � set(��).� 1 � 	 1,
 2 �),
and on the object side the encoding will look like (ν �m) (!
 (� set). � set ������  � !� i(��)Li.Bodyi�).

Proposition 3 � 32: The responsive bisimulations are preserved by parallel composition for safe processes. That
is, to each of the ��� �"!$#&%('*) or +-,*+-. .0/21"3$4&5(,*+ responsive bisimulations 6 , whenever P17 P2 implies (P1P)8 (P2P)
for all P which satisfying 9*:<; (P) (=?> @ (P1) A*B C (P2)) = .

The following proposition is equivelant to say, in the term of ordinary π–calculi, the responsive bisimulations are
preserved by input prefix, replication, choice and, outside the π–calculi scope, lock, for autonomous processes.

Proposition 3 D 33: The responsive bisimulations are preserved by GEC choice for autonomous processes. That
is, to each of the E�F G"H$I&J(K*L or M-N*MPO O0Q2RTSVUXWYN?M responsive bisimulations Z , if P1 and P2 are autonomous processes,
then P1[P2 implies \ [P1]]_^ [P2] for all context of the form ` [.] a !(ν)b (cd)L.[.] Ge .

Proposition 3 f 34: For autonomous processes, g he responsive bisimulations are congruences. That is, for each of
the h�ikjTlVmXnYoqp or r-s*rPt t�ukvTwVxXyYs*r responsive bisimulations z , if P1 and P2 are autonomous processes, then P1{ P2

implies | [P1]}_~ [P2] for all process context given by syntax � ::=[�](ν �n)� � |P � !(ν) . � G� .

4 Object Model in the �$���������������

In this section we will demonstrate that the idear of [Zhang98A] and [Zhang98B] in modelling compositional
concurrent objects can be better presented in the �����V�Y���-� �P� , and show that the �������Y�"�P� �P can naturally divide different
aspects of concurrency into structurally different parts of an expression, and reason about them separately.

4.1 Compositional object model

In the concurrent object models of [Zhang98A] and [Zhang98B] ¡£¢¥¤-¦(§�¤¨¢ª©�«­¬k®V«X§"¯$¦ °P®�¬±¦ ²±³´¤µ® ¶�§V©�·(§"¸-· ¸P«º¹k®"¯$«X¦Y»q²-¡£³(¤-®
behaviour of a concurrent object can be represented as the parallel composition of a process F representing the object's
functional behaviour with no constraint on its concurrent interactions, and a process C representing the constraints on
the object's concurrent behaviour. For example, the functionality of a buffer object can be described by

F !mr(¼).Mr ½ ¼¿¾ !mw(¼).Mw À ¼¿Á ,
where mr(¼).Mr Â ¼�Ã and mw(¼).Mw Ä ¼¿Å represent the behaviour of the read and write methods respectively; each of them
can have unlimited invocations executing in parallel with no concern for any potential interference. To discipline those
invocations, assume a synchronisation behaviour modelled by the control process

C nr(¼).Æ r Ç ¼¿È + nw(¼).É w Ê ¼�Ë ,
where the choice operator in fact represents a mutual exclusion lock on those methods. Then the parallel composition of
the two processes, (ν m) (CF), will be weakly bisimilar to

R nr(¼) .Mr Ì ¼¿Í + nw(¼) .Mw Î ¼¿Ï
which describes the combined behaviours as expected.

When presenting the similar model in the Ð�Ñ�ÒVÓYÑ�ÔµÓ ÔµÕ , the functionality of an object may be written as :

F (Ö× , ØÙ) î  Ú i I !Û i(ÜÝ)(ν)@ .Mi Þkßà , áâ�ãVä 4 å 1
(æç , èé) ∏i I !ê i(ëì).Mi íkîï , ðñ�ò

The first presentation in this equation emphases that for every method, there is no exclusion constraint has been
specified, and therefore unlimit copies of each Mi, which represents the behaviour of the body of the ith method, can be

“forked” by arriving messages in the corresponding input polar � I, the identifier of the methods. The process abstraction
F can also be presented in a higher-order form

F (�� , ��)î  � ���	�

«Mi I ��
��� » � 4 � 2

where is an empty exclusion control, which does nothing except passes messages to corresponding mathod bodies:

(��)��� � i I !� i(��) (ν)@ . i ����! 4 " 3

Here can be considered as an abstraction of the functional object, which provides the
interface, a set of the input polar of channels (methods), of the object. In other words, the
equation 4 # 2 describes an object’s functionality in an form with separation of the object’s
method interface and the “implementation” of method bodies (Figure 4-1).

Now we can say, for the generic form of objects, the functionality F : $&%('*) (+ m, , m), is a
process with an interface, an empty exclusion control, and a set of method body definitions.

While is presented in the form of 1 2 … n, we may consider that each i

describes a portion of the interface.

A single control process C, which represents a concurrent behaviours, may be modelled in
the -/.&0213.5461 467 as:

C (89 , :;) î  < =&>?A@ «CT i I B�CD�E » F 4 G 4

The control process C itself can be divided into several parts, each determines a difference aspect of behaviour. î  is an
empty locking list. The GEC choice purely describes the exclusion.

(HI)J�K L i I !(ν) M i(NO) P @Ji. i Q&RS , T 4 U 5

The role of here is like an exclusion table for methods, where each Ji lists all the methods should be locked when the
ith method being invoked. For example

1 (V a,W b,X c) Y a, b, c Z (!(ν) [a(\]) ^ @[_ a,̀ b]. a a&bc , d !(ν) e b(fg) h @[i c]. b j�kl , m !(ν) n c(op) q @[r b]. c s�tu , v)

indicates that an invocation of method ma will lock method mb and another copy of ma, and an invocation of method mb

will lock method mc, an invocation of mc will lock mb. The exclusion table which 1 represents is shown in Figure 4-3.

While is presented in the form 1 2 … n, then each indicates a portion of the interface and the exclusion
relation among the methods within this portion.

CTi I, the continuations of , can be used to specify what other synchronisation should be done after the invocaion of
each method, including when a lock should be released. That is, CTi I may play a role as “scheduler”, which we will
demonstrate in details in later sections. The simplest example of CTi can be defined as

CTi (wx) (yz ,) { i|&}~�� , 4 � 6

which simply forwards whatever message received to the method body to process, and provides no mechanism for
releasing locked methods. In other words, all locks laid by will become permanent. For this case, if write
R (�� , ��) î  � ������ « (�� ,)Mi I ���� , ���� »� , then we have

Figure 4-1

F �
M

R �
M

C �
CT

� �

F �
M

Figure 4-2 A visualised explanation of Equation 4 � 7

(ν �m) (C
����

, ���� F 	�
� , �
��) � r R ���� , ���� ,
or (ν �m) (î  � ������ « (� ,)! i I "�#$&% »' î  ()�*+-, « (./)Mi I 0213 , 4576 » 8) 9 r î  : ;=<>�? « (@A ,)Mi I B�CD , EFHG »I . 4 J 7

That is, the exclusion relation described by C is enforced into F. The diagram illustrated in Figure 4-2 is another way to
present the meaning of Equation 4 K 7.

Several control processes may be compounded to from a new one with the composed behaviours. For example, assume
Ck (LM , NO) î  P k Q�RS�T «CTi I U�VWYX »Z for k=1,2, then with the same CTi I definded in equation 4-6, the composed control C
constructed by

C ([\ ,]^) (ν _p) (C1 `�ab , cdfe C2 g�hi , jkml) 4 n 8

will satisfy C o2pq , rs-tvu rC w2xy , z{m| for C (}~ , ��) î  � (1 ������ 2 ������)«CTi I ������ » � .
C ���� , ��m�v� rC �2�� , ��-� for C (�� , ��) î  (1 ¡=¢£�¤ 2 ¥=¦§�¨)«CTi I ©�ª«�¬ » ­ .

That is, by the definition of , the compositionl effect on exclusion is to union the lock sets of each corresponding
branch of 1 and 2:

(i I!(ν)® i(¯°) ± @J1i . i ²�³´ , µ) (i I!(ν)¶ i(·¸) ¹ @J2i . i º�»¼ , ½) î  ¾ i I!(ν)¿ i(ÀÁ) Â @(Jni Jpi) . i Ã=ÄÅ , Æ=Ç .
Figure 4-3 (a) is a detailed example of such a composition.

In fact, C1 can C2 do not have to be of the same arity or of the same type (Figure 4-3b). The following proposition
describes such a composition more generically:

Proposition-4 È 35: Let Ém: Ê± , Ën: Ì± and Íp: Î± be name sets of the same set of link types,

write CTi (ÏÐ) (ÑÒ ,) Ó iÔ�ÕÖ�× , k (ØÙ) ÚÜÛ Ý i Ik!(ν)Þ i(ßà) á @Jki . i â�ãä , å , and given

G1 1 æ {ç i I1} è «{CTi I1 é {ê i (I1 ë I2),ì i (I2 I1)} í }»,

G2 2 î {ï i (I2 I1),ð i (I2 ñ I1)} ò «{CTi I2 ó {ô i I2} õ }», and

G (1 ö {÷ i I1} ø 2 ù {ú i I2} û)«{CTi (I1 I2) ü2ýþfÿ }», then

(ν �p) (î 
�
G1� î  � G2�) � r î  � G� .

Proof: Assume some locking states , 1 and 2 and some autonomous processes P and
P1 which satisfy the following conditions:

1. (� 	�

� (1) ��������� (G1)) ((� �
��� (2) ��������� (G2)){ ! / "# }) $ %
&�' () (�)�*�+�, (G);

C1

-
i I1

.
i (I2 / I1)

0
i (I1 1 I2)

2
i I2pi (I2 I1) C2

Figure 4-4

Figure 4-3 Examples of superposing exclusion

1

3
a 4 b 5 c

6
a 7 7

8
b 9

:
c ;

2

<
a = b > c

?
a @ @

A
b B

C
c

1 2

D
a E b F c

G
a H H H

I
b J J

K
c L

(a)

1

M
a N b

O
a P P

Q
b

2

R
b S c

T
b U

V
c W W

1 2

X
a Y b Z c

[
a \ \ \

]
b ^

_
c ` `

(b)

2. P is either 0 or of the form P ∏I � i

������ , where I I1 I2;

3. P1 is either 0, or of the form P1 ∏I1� i��	
�� and {
 i I1} I������� (2), where I1 I1 I2.

Write � 1= ��� ��� (1) ��� ��� (2) and 2= !�" #�$ (). Now, if we can prove

(ν %p, & 1) ((1 ' G1( 2) G2*)PP1) + r (ν , 2) (- G. P)

then this proposition is obtained by letting = 1= 2=î  and P=P1=0.

Let R1 (ν /p, 0 1) ((1 1 G12  2 3 G24)P1P2) and R2 (ν 5 2) (6 G7 P), and let 8 be the symmetric relation such
that R19 R2. Write Lki= : @Jki . For both R1 and R2, the only actions can be taken are inputs via a channel in ;n, and
outputs via a channel in <m:

R1
=

i
>

?@
→
A

R1: It can only possible when P
B

i
C

DE
→
F

P, therefore R2
G

i
H

IJ
→
K

R2 and

R1 (ν Lp, M 1) ((1 N G1O  2 P G2Q)P P1) and R2 (ν R 2) (S GT P).

It is easy to see from condition 2, that P also satisfies the condition 2. That is, (R1,R2) U .

R2
V

i
W

XY
→
Z

R2: In the same way as the above, we have P
[

i
\

]^
→
_

P, R1
`

i
a

bc
→
d

R1 and (R1,R2) e .

R1
f

i(g
h
→) R1: It can only be one of the following cases (R1ij ik (l mn) R1:)

i (I1 o I2), R1 (ν pp, q 1, r�s t (L1i)) ((uwvwvyx (L1i, 1) z G1{  2 | G2})P~ i ������ P1), and R2
�

i(�
�
→) R2, where

R2 (ν � 2, ��� � (Li)) ((�y�w�w� (Li,) � G� P� i ������). Clearly, (R1,R2) � ;

i (I2 � I1), R1 (ν �p, � 1, ��� � (L2i)) (1 � G1� (�w�y�w (L2i, 2) ¡ G2¢)P£ i ¤�¥¦�§ P1), and R2
¨

i(©
ª
→) R2, where

R2 (ν « 2, ¬�­ ® (Li)) ((¯y°w°w± (Li,) ² G³ P́ i µ�¶·�¸). Clearly, (R1,R2) ¹ ;

i (I1 I2), R1 (ν ºp, » 1, ¼�½ ¾ (L1i)) ((¿wÀwÀyÁ (L1i, 1) Â G1Ã  2 Ä G2Å)PÆ i Ç�ÈÉ�Ê P1). There are two cases.

pi Ë Ì�Í�Î (2), then R1→R 1, and by condition 1, ni Ï Ð�ÑÓÒ (), and therefore R2
Ô

i(Õ
Ö
→) R2, where

R 1 (ν ×p, Ø 1, Ù�Ú Û (L1i), Ü�Ý Þ (L2i)) ((ßyàyàwá (L1i, 1) â G1ã äwåwåyæ (L2i, 2) ç G2è)Pé i ê�ëì�í P1),

R2 (ν î 2, ï�ð ñ (Li)) ((òyóyóyô (Li,) õ Gö P÷ i ø�ùú�û).

From definition of G, we have ü ýÓþ�ÿ (Li) = � ����� (L1i) (� ���	� (L2i{

�
/ �
 }), that is, condition 1 is

maintained. Clearly, (R 1,R2) � ;

pi � ����� (2), then by condition 1, ni � ����� () and therefore R2 � i. Writer P1 � i ������ P1, clearly,

(R1, [i !�"#%$]R2) & .

R2
'

i((
)
→) R2: Similar to the previous one, it can be possible only when in the following cases

i (I1 * I2), R2 (ν + 2, ,.- / (Li)) ((0213124 (Li,) 5 G6 P7 i 8�9:�;), and R1
<

i(=
>
→) R1, where

R1 (ν ?p, @ 1, ACB D (L1i)) ((E3F2F2G (L1i, 1) H G1I  2 J G2K)PL i MONP%Q P1). Clearly, (R1,R2) R ;

i (I2 S I1), R2 (ν T 2, U.V W (Li)) ((X2Y3Y2Z (Li,) [G\ P] i ^�_`�a), and R2
b

i(c
d
→) R2, where

R1 (ν ep, f 1, gCh i (L2i)) (1 j G1k (l2mnm2o (L2i, 2) p G2q)Pr i sOtu%v P1). Clearly, (R1,R2) w ;

i (I1 I2), R2 (ν x 2, y.z { (Li)) ((|2}2}2~ (Li,) � G� P� i ������). By condifion 1, we have R1
�

i(�
�
→) R1→R 1,

R1 (ν �p, � 1, �C� � (L1i)) ((�3�2�2� (L1i, 1) � G1�  2 � G2�)P� i ����%� P1),

R 1 (ν �p, � 1, �.� � (L1i), �. ¡ (L2i)) ((¢2£2£3¤ (L1i, 1) ¥ G1¦ §3¨3¨2© (L2i, 2) ª G2«)P¬ i ­�®¯%° P1).

Clearly, (R 1,R2) ± .

Put them together, by the definition, ² is a ³ ´ .

This proposition indicates that, when composing two controls two together, it when every scheduler CTi in these two
controls is a simply forwarder, then the composition effect on exclusion can be calculated or reasoned about using their

-terms, the describer of exclusion relations, only. In the next subsection we will see that, a scheduler CTi describes
about synchronisation activities, may include the timing of unlock activity, after the exclusion lock (including “lock
nothing”) has been acquired, and therefore it will not affect the descrition of exclusion relations. In other words, the
conclusion from the above proposition is still valid for even a non-simple scheduler CTi. That is, for any situation, the
composition effect on exclusion relations can be always described and reasoned about by using -terms only .

However, with the “simple forwarder” version of scheduler CTi, all the locks generated by will be un-releasable, and
there is also no control over other synchronisation amongst methods.

To enable unlocking and enforce more controls over synchronisation, some signals manipulation within CTi is necessary.

4.2 A more sophisticated compositional object model

McHale ([McHale94]) has considered that a method invocation as a series of events, and the synchronisation performed
between the events of arrival and start (Figure 4-5). But we consider that during the execution of method body, the
produsing of return value and the termination of execution can be considered as two separated events and both can also
be used in synchronisation control (Figure 4-6). That is, during the invocation and execution of a method, we can have
four natural events: message arrival, start execution, return required value and end execution, to be used as the
synchronisation points. With this idea, we designed a more sophisticated object model which uses four extra channels, s,
sf, r and t, to signalise these events respectively, and uses them to manipulate the synchronisation. As we will see soon,
this model allow us keep the unlocking signal channel and other manipulation of synchronisation completely
encapsulated within the control components.

Now, by including these four synchronisation channels into the details of the variable list �� in equation 4 � 1, a refined
version of process F, which represents the functionality of an object, can be expressed as:

F (�� , ��) î  � i I !� i(m,
 f, � m, � m,
�)(ν)@ .Mi ���� , � m, � f, � m, � m, ������ 4 � 9

(�� , !) ∏i I !" i(# m, $ f, % m, & m, '().Mi)�*+ , , m, - f, . m, / m, 0132 .
Here each 4 i refers to a method, 56 the arguaments to the method call, 7 m acknowledges the receiving of the call, 8 f

indicates the start of method body execution, 9 m is the link to the required return value, and : m signalises the termination
of method body execution. With the previously defined abbreviation ; .P < P, the generic form of Mi may look like

Mi (=> , ? m, @ f, A m, B m, CD) (E mF f i« (GH) (I mJ�KLNM  i«O m») »)
(PQ , R m, S f, T m, U m, VW) X m. Y f . i « (Z[) (\ m]_^`ba  i«c m») » 4 d 10

where, e m f�ghNi  i « j m», the continuation of i, indicates that the requested value kl may be obtained and immediately
returned via m m in the middle of the excution (called early return), and the rest of execution (represented by i) will
finally ended with the termination signal n m (see Figure 4-7).

Note in the Equation 4 o 10, each of signals p m, q f, r m and s m is restricted to be sent once only.

For the generic form of the object functionality F in the Equation 4 t 9, assume um: v± m, wx : y z , { m: s, | f: f, } m: r, ~ m: t, then
Mi : ������� (� m, s, f, r, t, � z).
To present F in its higher-order represention of Equation 4 � 2, we also need to refine the empty exclusion control of
Equation 4 � 3 to a detailed form:

(��)��� � i I !� i(� m, � f, � m, � m, ��) (ν)@ . i � � m, � f, � m, � m, ��3� 4 � 11

and both : �¡£¢¥¤ (¦ m, §) and F : ¨�¡�¢¥¤ (©± m) will be well-typed, where i ¨�¡�¢¥¤ (s, f, r, t, ª «) .

Client Object Server Object

call

end ¬

start ­ f

arrival ®

return
value ¯

wait
result

conti-
nue

Client Object Server Object

call

return

end

start

arrival

Figure 4-7
Method body

Mi

i

°
m ±�²³�´

iµ
m

¶
m · f

Figure 4-6

Our synchronisation modle

Figure 4-5

McHale model

For the control process C (�� , ��) î  � ����
	 «CT i I �
���� » � , which has been presented in Equation 4 � 4 and represents the
concurrent behaviours, we can refine the higher-ordered GEC choice from Equation 4 � 5 to

(��)��� � i I !(ν) � i(� n, � f, � n, � n, �) ! @Ji. i " # n, $ f, % n, & n, '(,) 4 * 12

where +n: ,± m, - n: s, . n: r, / n: t, :± and : 0214365 (7 m, 8 c), with ci 9 14365 (s, f, r, t, : ; , <).

If use the simplest version of CTi shown in Equation 4 = 6, which can be refined as CTi (> n, ? f, @ n, A n, BC ,) D iE F n, G f, H n, I n, JKML ,
then again we have the same conclusion of Equation 4 N 7:

(ν Om) (C PRQS , TU�V F WRXY , Z[]\) ^ r î  _ `baced « (fg ,)Mi I h
ij , klnm »o ,
where all the locks laid by are un-releasable, and there is no other synchronisation control amongst methods.

However, we usually do want to get control on unlocking and other synchronisation activities. This can be achieved by
including manipulations of singals p , q , r and in CTi. Equation 4 s 13 gives such an example of CTi, which describes a
behaviour where early return during the execution of method body is enabled, and the exclusion lock is released only
after the execution of method body is terminated.

CTi (tu , v n, w f, x n, y n, z{ ,) (ν sm,rm, tm) (| n} i~ � m, � f, � m, � m, ���� � m .� m(��) . (� n �b���� � n� m .)) 4 � 13
(�� , � n, � f, � n, � n, �� ,) (ν sm,rm, tm) � n. � i � � m, f, ¡ m, ¢ m, £¤�¥ .¦ m .§ m(¨©) . ª n «b¬­�® . ¯ n .° m . .

Now, if write

Mi (±² , ³ m, ´ f, µ m, ¶ m, ·¸) (¹ mº f i« (»¼) (½ m¾R¿À]Á Â m i« »)»)») 4 Ã 14
(ÄÅ , Æ m, Ç f, È m, É m, ÊË) Ì m. Í f. i« (ÎÏ) (Ð m ÑRÒÓ]Ô . Õ m . i« »)»

then we have

(ν Öm) (C ×RØÙ , ÚÛ�Ü F ÝRÞß , àá]â) ã r î  ä åbæçeè «Mi I é
êë�ì »í . 4 î 15

The action diagram in Figure A2-1 illustrates the scenario of this CTi given by Equation 4 ï 13. Different forms of CTi will
result in different forms of Mi. The action diagrams in from Figure A2-2 to Figure A2-5 shown the scenario of some
other examples of CTi. The code such as {wV;sV;sE;wE;rel;} shown in the bottom of these diagrams, is a
programmer-friendly syntax of the expression for CTi, where wV, wE, sV, sE and rel respectively represent the signals
wait return value ð m(ñò), wait end signal ó m, send return value ô n õbö÷�ø , send end signal ù n and send release signal . We will
give a brief introduction about them in the Appendices A1, and present more details about their syntax and usage in an
extended object-oriented programming languege in another paper.

From all these examples we can see that in this model the unlocking signal channel can be completely encapsulated
within the control C, and the functional object F needs no knowledge about at all.

With this model, the structure of the control process C itself actually has already included the separation of some
different aspects of concurrency:

1. The locking list can be viewed as a thread monitor, and may be extended for access controlling or other usage;
2. The canonical higher-ordered GEC choice describes exclusion relation among the methods;
3. The tail controller {CT i I} acts like a scheduler control synchronisation timing.

Corrsponding to the functional object F and the control C in this object model, a method call which waits the return
value then can be modelled as :

(ν sn,sf,rn, tn) (ú]û ü n,ý f,þ n,ÿ n, ���� � n(��).� n .Q) 4 � 16

where 	
 are the values returned from the method call, and Q is the continuation process which waiting the return value.
When no return value is needed to wait, a proceduel call can be modelled as:

(ν sn,sf,rn, tn) (���
 n,� f,� n,� n, ���� � n .Q) 4 � 17

The role of the channel tn in Equation 4 � 16 and 4 � 17 is to signalise when the waiting thread Q can continue the
execution. It is a little bit different from that of the channel tm for the method body Mi shown in Equation 4 � 10 and
Figure 4-7, where tm signalise the termination of the method execution. We may say that tn is for signal of continue.

Since in both Equation 4 � 16 and 4 � 17 the process Q has to wait the continue signal
�

n before it can continue to execute,
now the caller-side concurrent behaviour of a method call can be controlled by the control processes in the called object
side. For example, with the version of CTi shown in Equation 4 � 13 and Figure A2-1, where the continue signal � n is sent
before the receiving of � m , the process Q is able to continue as soon as the the return value is produced, and execute
concurrently with the method body without waiting for the termination of the latter. However, if we swap the order of � m

and � n in CTi, as shown in Figure A2-6, then Q will have to wait for the termination of the method body before continue.

In both Equations 4 � 16 and 4 	 17 , the signal receotors
 n and � f are not appreared since the caller is not interested in the
signal � n and
 f. They may only be useful for some controller processes. Other two signal receotors, � n and � n, are only
used at most once. In fact, we restrict that each polar of s, r or t can be used at most only once.

In all examples of CTi demonstrated in Equation 4 � 13 and diagrams Figure A2-1 to Figure A2-5 using only channels m,
s, sf, r, t and for message passing and synchronisation, no other name involved. We call such a schedule process CTi a
linear schedule process. The number of different kinds of linear schedule processes is finite, and their composition
effect will also finite, which we will study in a different paper.

Sometimes we need to use more synchronisation signals to perform even more flexible and diverse synchronisation
controls. For example, we may define a finite queue behaviour, say FinQue � � nq � , which puts method call requests into a
FIFO queue with limited length, and blocks futher requests when the queue is full. To include this behaviour FinQue in
a control, we may construct a nonlinear schedule process such as

CTi (�� , � , � n, � f, � n, � n, �� ,) (ν sm,rm, tm, in) (��� n ! " n(# ut) . ($ n% i& ' m, (f,) m, * m, +,.-  / m .0 m(12) .3 m . (4 n 5768:9 ; n< ut)))

and then use it in the control process as

C (=> , ?@) (ν q) (î  A B7CDFE «CT i I GIHJ , K�L » M FinQue NPORQ).
Detailed studies on nonlinear schedule process will be left to the future works.

When two or more controls are composited, the compositional effect on the schedulers can be reasoned by using those
schedulers theirselves only. For example, assume we have

(ν Sp) (î  T 1 U7VWFX «CT i I YIZ[]\ »̂ î  _ 2 `bacRd «CT i I eIfgih »j) k r î  l (1 m7noqp 2 r7stqu)«CT i I vxwyiz »{ ,
where for some j I

CT j (|} , ~ n, � f, � n, � n, �� ,) (ν sm,rm, tm) � n. � i � � m, � f, � m, � m, ���� .� m .� m(��) . .� m . � n �7��:� . � n

CT j (�� , � n, � f, � n, � n, ¡ ,) (ν sm,rm, tm) ¢ n. £ i ¤ ¥ m, ¦ f, § m, ¨ m, ©ª�« .¬ m .­ m(®¯) . ° n ±b²³:´ .µ m . ¶ n

then it can be proven that CTj CT j .

In the Apendices A3 we give the pseudo-code of automatical reduction of scheduler composition, as well as some
example of manually compositon. Detailed studies on scheduler composition will be left to a different paper. The
method used in Apendices A3 requires a modification on the -calculus to allow a “partial unlock signal” to release a
subset of locked methods use the same key. This modification will be left to the future work on the -calculus.

The object model discussed in this section clearly demonstrates that the -calculus provides a good platform to separate
different aspects in modelling concurrent objects. Those different aspects can be separated into different parts in the
structure of expression, and can be reasoned about separatedly. These separations we can easily achieved include

1. Separate the functionality F (or method bodies) from the concurrent behaviours C;
2. Separate the current locking status from the specification of concurrency controls, and CTi.
3. Separate the specification of exclusion policy form the specification of synchonisation timing CTi;
4. Separate several concurrent behaviours into some different control processes, then compose them together.

4.3 Deadlock

In a concurrent object system, a deadlock may be regarded as some lock on some still requested service of an object
becomes non-resumable unexpectedly. With our object model, let O (·¸)î  ¹ ºx»¼¾½ « ¿M»À represent the behaviour of
an object in the very initial state, and an actual state of the object can be represented by given an action sequence Á for

which O →� � ������
« �M»	 P. Assume there exist some
��
�� () and � { �� } such that � ����� ({� }, ,), and assume

Env is the rest of the environment in the whole system, then the atom lock î � @�  ��� �"!$# () may become not resumable
in one of the followin situations:

1. %�&�' (P).

This is normally not a deadlock, but expected effect resulted in from the designer’s intention to eliminate the
availability of some choices. In this case, can be presented in the form:

()
i I)* i I + (!(ν) , j(-.) / @Jj. j 0�1243 576

i I−{j} 8 « 9 i I−{j}»)

In other words, the key is abandoned immediately after the lock is fired. More general, assume
:�;<

1, => 2)?A@ 1, B 2 C (1 D�EF 1 G « H 1» 2 I�JK 2 L « M 2») and N { OP 1}.(¬Q R�S�T ({U }, ,)) V W�X�Y ({ Z[2}, ,), then

(\]) ^ _�`a 1, bc 2 d « eM1, fM2»g (hi) /@[jk 2] l 1 m�no 1 p « qM1»r .

2. s�t�u (P) but vxwzy (P) for some P P.

This is caused by the broken of communication, that is, there exists such that
{�|~}

(«0 ») and P « (ν c) � (��). « » » «0 ».

In our object model the scope of is restricted not beyong the control, and the only actions may block are signals�
m, � f, � m and � m. In a programming language where these actions are automatically enforced will eliminate this kind of

deadlock possibilily.

3. P « (ν s,� f,r,t) (����� ,� f,� ,� , ��4� � (��).� . « ») »

This is a true deadlock because the unlock action is blocked by the lock itself. Howevery, similar to the previous
case, this kind of deadlock will not happen in our model because the signal has been separated from method body.

4. PEnv 1« 1« � (��). 1« » » 2« (ν s,� f,r,t) (��� � ,� f,� , , ¡¢4£ ¤ (¥¦).§ . 2« ¨�©�ª«4¬
») » »

This is also a self deadlock because it is the same thread, ­ (®¯).° . 2« ±�²�³´¶µ
», holds the lock and being blocked. This

kind of deadlocks usually happen in OOP when self-call, a tread executing a method body of an object calls another
method of the same object, or call-back, a tread accessing one object from another then accesses back from the former
to the latter without leaving either of them.

This kind of deadlock can be automatically eliminated in a programming language which lets the lock moniter
detecting thread ID automatically such that no lock will locks its owner, in other words, no thread locks itself.

The principle that “a thread should never lock itself” is acturally always used by sequencial progamming. The
“sequencial progamming” is a misleading term since in fact it is equivelant to concurrent programming with single
thread restriction.

The problem of “a thread should never lock itself” is that, when a thread which is accessing some objects splits, more
than one child threads may make self-call or call-back. To solve this problem, we propose a “thread ID with historical
information” mechanism, that is, when a thread splitting, each of the branches becomes its child thread and is given a
new ID which is not only used to distinguish individual threads, but also to remember the ID of the parent thread.
When a thread tempts to access a locked object, the thread monitor of the object will check the thread ID against the
owners' ID of each effected locks. A thread will not be blocked by a lock owned by itself, or one of its ancestor, but
will be blocked by a lock owned by a thread from a different branch of the same family tree.

5. PEnv P1P2 n · n ¸�¹º¼»
« ½N»¾ where

P1 1« 1« ¿ 1(ÀÁ). 1« » » 1« (ν s,Â f,r,t) (Ã 1 Ä Å ,Æ f,Ç 1,È 1, ÉÊ4Ë Ì 1 (ÍÎ).Ï 1. 1« Ð 1 Ñ�ÒÓ4Ô
») » »

P2 2« 2« Õ 2(Ö×). 2« 2»» 2« (ν s,Ø f,r,t) (Ù�Ú Û ,Ü f,Ý ,Þ , ßà4á â (ãä) .å . 2« æ 2 ç�èé4ê
») » »

and either ë 1 { ìí } î ïzðòñ ({ó 1}, 2,)
or ô 1 { õö } ÷ ø�ù�ú ({û 1}, 2, n).

This is, two threads, ü 1 (ýþ).ÿ 1. 1« � 1

������
» and � (�).
 . 2« � 2 ��
��� », block each other.

The continuations of 1 and 2 are describing the pure functionality of some part of methods’ body, indicating that
how some procedures (1 and 2) should be processed depending on the results some servers (� 1 � � ,� f,� 1,� 1, ���� and

����� ,� f,� 1,� 1, �	�
) provided. While reasonning about the functionality can be independed from the controls, here we have
observed that the detecting of deadlock has to have both knowledge about functionality processes (what service is
requested) and the control processes (which service to be locked, indicated by n and , and how the lock to be
resumed, indicated within 1 and 2).

5 Theory of Composition

The previous section has presented a way to model compositional concurrent objects, but it did not give a completed
model of a single object, and it left many questions unanswered: What is an object in sense of process modelling? What
is an object component representing an aspect of the object behaviour? What is a control? And what are the generic
properties of these components and their composition? We start our investigation on those questions in this section.

5.1 Object Processes

What is an object? In term of modelling with process algebra, an object can be considered as a process which uses a
fixed set of distinguished communication input polars, represent the interface of methods, to receive incoming messages
from other processes; then produces corresponging responses to those messages.

For our object model, as described previously, in order to obtain control over synchronisation, we need four control
signals � : s,
 f: f, � : r, � : t to be transmitted together with the message in each method call.

Definition-5 � 42: A link type is called method type if it can be presented in the form � ��� ()= (s, f, r, t, � �),
where s, f, r and t are all signal types, that � ��� (s)= � ��� (f)= � "! (r)= # $"% (t)= ().

In an object system, each object is uniquely identified, and method name clash between different objects should be
avoided. In other words, a message sent for a given object should never be seized by another object. To enforce this
restriction, we required that each process modelling an object is the owner of the input polars of all its method names.
This can be guaranteed in a model where method names are always freshly defined for each object when it is created.
Even for a purely class based object system where method body may be shared by objects of the same class, this can
still be guaranteed, as demonstrated by the class-based object model in [Zhang97] where each object still provides its
own method names to receive messages, and then pass the received message to the shared method body. However, in
order to simplify our expressions, to concentrate at major issues we currently interested in, and to make our study
generic, in this stage we only assume the restriction is guaranteed implicitly rather than present the full details of
object/method name declarations. Latter in the paper, we will define an “autonomous context” to show how this
restriction can be easily garanteed for objects.

In the practical view of Object-oriented Programming, a concurrent object may have some locked methods even in its
initial state after creation. However, we may image that for each object there exists an “abstracted initial state”, in
which all methods of the object are equally accessible, none of them is locked, and any actually state of an object can be
considered as derived from that abstracted initial state via a serial actions. For example, a queue object may have its
“de-queue” method locked when it is freshly created, and we may consider that is the result of the executing the
“constructor” method in its abstracted initial state. This assumption allows us abstract away the complicity of various
states from the generic object model. Now we may consider that, in a generic definition, each object can be represented
by a “definition process” which describes the behaviour of the object in that abstracted initial state, and an action
sequence which indicates the path along which the object evolved from the abstracted initial state to the current state.

Definition-5 & 43: The process agent abstraction P: '�(*),+ (-) is an object template of type '�(*),+ (.) interface if the
following conditions are all satisfied:

1) / is a set of method type;
2) 021 3 (P)= ;
3) P 465798 :

for all ;m: <± and = >? ; and

4) P ������
for all which is not an input communication action.

The process P ����
	
is called an object instantiation process with receptor set �m, if P is an object template of type��
���� (�) interface and �m is a canonical list.

An object template can be viewed as the description, or “definition process”, of the structure of an object or an object
class. An object instantiation process can be viewed as the description of an object in its abstracted initial state.

Definition-5 � 44: Process agent abstraction P: ��
���� (� , �) is an object component of type ��
���� (�) interface, if
(��)P ���� , � "! is an object template for all #$: %± and &m: '± where { ($ } {)m}= . That is, *,+ - (P)= and P .�/0 , 1243 5 for all6 78

whenever 9: : ;± , <m: =± and { >: } { ?m}= .

The process P @�AB , CD4E is called an object component process with receptor set Fn and sender set Gm, if P: H�I�J�K (L , M) is
an object component for which { Nm} OQP (P)= and both R: : S± and Tm: U± are canonical lists.

An object component process with receptor set Vn is in fact also an object instantiation process with receptor set Wn: From
structural equivalence, the following equations are always hold,

((XY)P Z�[\ ,]^"_) `baced P fbgh , ij"k and ((lm , no)P pbqres) tbuv , wx4y P zb{|e} where ~n: �± where { �� } { �m}= ,

and then we can get the above conclusion by applying these equations to the definition of object component process
and object instantiation process. The defining of object component process allows us to unify base objects and controlls.

It is easy to verify that the object’s functionality F in either Equation 4 � 1, 4 � 2 or 4 � 9, and the control C in either
Equation 4 � 4 are object components, as well as the compositions of them described in the previous section.

Now, we can finially define what is an object:

Definition-5 � 45: Process P is an object process with method set �m respect to environment Env, if P is either an
object component process with �m as both its receptor set and sender set and { �m} ����� (Env)= , or a derivative of
such an object component process.

There are a couple of important issues has been expressed in this definition: 1. An object is determined by its abstracted
initial state and a derivation path (a serial actions); 2. The unification of receptor set and sender set indicates that an
object uses its methods for both receiving messages making self calls; 3. an object process is safe for its environment.

Lemma-5 � 46: Let P be an object process with method set �m respect to environment Env, then for any Env
which is a derivative of Env, P and all its derivatives are also object processes with method set �m respect to
environment Env .

Proof: From the definition of object processes, there must exist some object component process Q with �m as both
receptor set and sender set such that either P Q or P is a derivative of Q, and Q is also an object process with
method set �m respect to environment Env. By Lemma 3-30, this implies that Q is safe for all derivatives of Env,
include Env and all its derivatives. Therefore Q is an object process with method set �m respect to environment Env ,
and also P and all its derivatives are.

In the future, whenever discussing an object process without mention the environment, we always assume the safety
constraint has been satisfied for the environment where the object process lives, that is, the object process is the owner
of its receptor set. Later in this section when defining autonomous context, we will see that this assumption is always
guaranted in modelling objects.

Now, the generic form of control processes can be defined.

Definition-5 � 47: An object component C, of type ������� (
�
) interface, is a control abstraction (or control for

short) if for all canonical lists 	n:
± and �p: �± , to each pair of
 i �� and � i �� , and an input action 1=� i(� 1,� f, � 1,� 1, ��),
there exist some processes C, C , action sequence � satisfying { �n, �p} ��� ()= , and an output action either

2=! i " # 1,$ f, % 1,& 1, '(*) or 2=(ν s2,r2,t2)+ i , - 2,. f, / 2,0 2, 1243 , such that C 5768 , 9:*; i→C, C→< C and C 2 .

Here, whenever the canonical lists =n: >± and ?p: @± satisfy { An} { Bp}= , C CEDF , GHJI is called a control process with
socket KL and plug MN , that is, the input polar of its receptor set and the output polars of its sender set repectively.

Through socket and plug of matching types, control processes can be composed in a “plug and play” style.

A control process C acts as a message deliver, and initially is able to pass any incoming message. It is close to the
“forwarder” in [Honda95] (or “wire” in [Sangiorgi96b] and “link” in [Merro98] or [Amadio96]), except the forwarding
in the former can be delayed or blocked (in other word, can be controlled), and the latter, a “forwarder”, can be regarded
as a special case of control processes, the empty control process.

Definition-5 O 48: A control abstraction E: ������� (P , Q) is said to be an empty control, if

1. the relation (ν Rm) (E SETU , VWYX P ZE[\^]
) _ r P `Eabdc is always held for all object template P: ������� (e) and channel setsf

m: g± and hn: i± where { jm} { kn}= , { lm, mn} n�o (E)= and { pm} q�r s (P)= ; and

2. the relations (ν tp) (E uEvw , xy*z C {E|} , ~���) � r C �7�� , ���� and (ν �p)(C �7�� , ��J� E �E�� , ����) � r C �7�� , ���� are always held for
all control abstraction C: ������� (� , �) and channel sets m: ¡± , ¢n: £± and ¤p: ¥± where { ¦m} { §n} {p̈}= and
{ ©m, ªn, «p} (¬�­ (E) ®°¯ (C))= .

That is, an empty control will provide no behaviour change, no matter composed for left or right. An empty control may
be constructed from an empty exclusion and a set of simple message resenders.

Corollary-5 ± 49: Let (²³) i I!(ν)́ i(µ¶) · @ . i ¸�¹º , » and CEi I (¼½) (¾¿ ,) À iÁÃÂÄÆÅ , where Çm: È± and Én: Ê± are
canonical channel name lists with the same set of method types, then the control

E (ËÌ , ÍÎ) î  Ï ÐEÑÒÔÓ « ÕCE ÖE×ØÚÙ » Û . 5 Ü 1

is an empty control.
Proof: Assume some canonical channel name lists Ým: Þ± , ßn: à± and áp: â± satisfying { ãm} { än} { åp}= , and assume
some object template P: �����æ� (ç) and control C: �è����� (é , ê) satisfying { ëm} ì�íïî (P)= and { ðm, ñn, òp} ó�ô (C)=
respectively. For the expression of E, we have { õm, ön} ÷�ø (E)= .

Since E ùEúû , üý*þ 
ÿ

i(�
�
→) E

����
, ��	� 
 i �
���� for all i I , and (ν �p) (E ���� , ���� � i �
���� Q) (ν �p) [i !
"#%$](E &�'(,)*�+ Q) for all Q, it is

trivial to prove (ν ,p) (E -�./ , 01�2 P 3�4576) 8 r P 9�:;=< and (ν >p)(E ?�@A , BC	D C E�FG , HIKJ) L r C M�NO , PQSR ;
And since E T�UV , WXZY 

[
i(\
]
→) E ^�_` , abKc d i e
fg�h , it is even more trivial to prove (ν ip) (C j�kl , mn	o E p�qr , stKu) v r C w�xy , z{K| .

It is easy to see, the empty control E of Equation 5 } 1 satisfies

E (~� , ��) ∏i I!� i(��).� i�
����).
We use Equation 5 � 1 because this form of presentation has the same structure as the controls in Equation 4 � 4, that
makes it a merely sepcial case of the latter. If in the empty control expression of Equation 5 � 1, the data �� is unfolded to
show control signals, then effect of the following two controls can be considered as the same

(�� , ��) î  � ����7� « �CE ������ » � and (¡ , ¢£) î  ¤ ¥�¦§�¨ « ©CE ª�«¬®­ » ¯ 5 ° 2

where (±²) i I!(ν)³ i(́ n, µ f, ¶ n, · n, ¸¹) º @ . i » ¼ n, ½ f, ¾ n, ¿ n, ÀÁ , Â ,
CEi (ÃÄ) (Å n, Æ f, Ç n, È n, ÉÊ ,) Ë iÌ Í n, Î f, Ï n, Ð n, ÑÒÔÓ
CEi (ÕÖ) (× n, Ø f, Ù n, Ú n, ÛÜ ,) (ν sm,rm, tm) (Ý iÞ ß m, à f, á m, â m, ãäÔå !æ m. ç n!è n(éê) . ë n ì
íî%ï !ð m. ñ n).

Furthermore, notice that in a method call of our object model described by equation 4 ò 16 or 4 ó 17, the input polar of
each signal channals sf, sn, rn or tn is used at most once in their definition scope, then the third version of empty control

(ôõ , ö÷) î  ø ù�úû7ü « ýCE þ�ÿ��� » �

where CEi (��) (� n, � f, � n, � n,
�� ,) (ν sm,rm, tm) (� i

	

m, � f, � m,
 m, ���� � m. � n� n(��) . � n������ � m. � n).

can also considered as of the same effect as the above two, while the format of CEi allows itself to be classified as a
special case of the linear schedule processes.

5.2 Composition and decomposition of object components

Sometimes we need to group two or more object components (or object templates) to form a larger object component
(or object template, respectively). These including the following situations: 1. The functionality of the object can be
considered as the grouping of a set of relatively independent sub-functionality’s; 2. The object is a composition of two
of more component objects, each of them performs a portion of the function of the whole object; 3. New components
are added into a child object (or class) through the inheritance; etc.

Definition-5 50: The two object instantiation processes, P1 with receptor set !m and P2 with receptor set "n, are
groupable to form a new object instantiation process of receptor set { #m} { $n}, iff { %m} { &n}= . We may
abbreviate this composition in two ways:

P1 P2 indicates that the object instantiation processes P1 and P2 are groupable, and is also used as a synonym
of the composition P1P2 when P1 and P2 are groupable.

F1 F2 represents the composed object template ('(,)*)(F1 +-,.0/ F2 1-2354) for object templates F1 (67)P1 and
F2 (89)P2.

The two object component processes, D1 with receptor set :m and sender set ;p and P2 with receptor set <n and
sender set =q, are groupable to form a new object component process of receptor set { >m} { ?n} and sender set
{ @m} { An}, iff { Bm} { Cn}= and { Dp} { Eq}= . We may abbreviate this composition in two ways:

D1 D2 indicates that the object component processes D1 and D2 are groupable, and is also used as a synonym
of the composition D1D2 when D1 and D2 are groupable;

C1 C2 represents the composed object component (FG , HI , JK , LM)(C1 N-OP , QRTS C2 UWVX , YZ\[) for object components
C1 (]^ , _`)D1 and C2 (ab , cd)D2.

Corollary-5 e 51: If both C1 and C2 are control abstractions then C1 C2 is also a control abstraction.

Syntactically, F1 F2 F1 F2 and C1 C2 C2 C1, even though

(F1 F2) fWgh , ij k
(F2 F1) lWmn , op q and (C1 C2) rWst , uv , wx , yz { (C2 C1) |W}~ , �� , �� , �� � .

But if we assume the labelled tuples implicitly, then F1 F2 F1 F2 and C1 C2 C2 C1 can also be assumed.

A control can be composed to an object template to form a new object template (Figure 5-1a), or to another object
component to form a new object component (Figure 5-1b). These can be described as.

Definition-5 � 52 (Composibility): A control process D
with receptor set �� and sender set �p is composible to an
object instantiation process P with receptor set �m to form a
new object instantiation process of receptor set { �� } { �m ��
p}, iff �p �m and { �m} { �n}= . We may abbreviate this
composition in two ways:

D P indicates that the control process D is composible
to the object instantiation process P, and is also
used as a synonym of the composition
(ν �p) (DP) when D is composible to P.

C F represents some composed object template
(��) (C �-�� , ���� F �-��¡) for control abstraction

(a) (b)
Figure 5-1

C
¢£

¤¥§¦©¨ª

«
p F¬­

C1
®¯

°±

²³

ṕ
C2

µ¶

·¸¹º

C (�� , ��)D and object template F (��)P, where �� �	
���
�������� ��������������
��! ���"� ��#� �����$�%�&�
{ '(/)* }.

(Figure 5-1a)

A control process D1 with receptor set +, and sender set -q is composible to another object component process D2

with receptor set .m and sender set /0 to form a new object component process of receptor set { 1, } { 2m 354q} and
sender set { 6q 758m} { 9s}, iff { :n} { ;m}= .We may also abbreviate this composition in two ways:

D1 D2 indicates that the control process D1 is composible to the object component process D2, and is also used
as a synonym of the composition (ν <p)(D1D2), where =p= >m ?q, when D1 is composible to D2;

C1 C2 represents some composed object component (@A , BC , DE , FG)(C1 HJIK , LM�N C2 OJPQ , RSUT) for control abstraction
C1 (VW , XY)D1 and object component C2 (Z[, \])D2, where m̂ _m `5aq and bq cq d5em. (Figure 5-1b)

The composition described in Proposition-4-35 is a special case
of the composition described above (and Figure 4-4 is a
synonym of Figure 5-1b).

Corollary-5 f 53: In the above definition, C F is an
object template; C1 C2 is an object component; and if
both C1 and C2 are control abstractions, and
{ gn} ({ hq} { is})= and { js} ({ km} { lq})= , then
C1 C2 is also a control abstraction.

Definition-5 m 54: In the two special cases of the
composition illustrated by Figure 5-1b, C1 C2 is
respectively called:

1. A paralleled control composition, if { nq} { om}=
(Figure 5-2a), in this case we have C1 C2 C1 C2;

2. A serial control composition, if { pq}={ qm} (Figure
5-2b).

For all cases where { rq} s { tm}, we can always first extend C1

and C2 to be of the same type interface by composing them
with some empty controls E1 and E2 respectively, and then
serial compose the two result processes (Figure 5-3). In the
following lemma we will prove that such a composition has the same effect as the original composition C1 C2.
Similarly, for the composition C F illustrated in Figure 5-1a, we can always first extend C to be of the same type
interface as F by composing it with some empty control, and then serially composes to F. That is, we need only study
the compositions between a control and an object component (or object template) of the same type interface.

Definition-5 u 55 : Assume an object component C of type vxwzy|{ (}) interface and an empty control E of type
vxwzy|{ (~) interface, then we say that:

C1 C E is an extended object component of C from interface of type vxwzy|{ (�) to type vxwUy|{ (� , �);
C2 E C is an extended object component of C from interface of type vxwzy|{ (�) to type vxwUy|{ (� , �).

Lemma-5 � 56: The composition of a control to another object component is equivalent to the composition of
extended object components of them, as shown in (Figure 5-3). In other words:

Assume control C1 of type vxwzy|{ (�) interface and object component C2 of type vxwzy|{ (�) interface, and the
composed object component C1 C2 has the type vxwzy|{ (�) interface. Let C1 be the extended object component of
C1 from interface of type vxwzy|{ (�) to type vxwzy|{ (�), C2 be the extended object component of C2 from interface of

Figure 5-3

(a) (b)
Figure 5-2

C1

C2

C1

C2

E2

E1

� �

C1

��

��

��

��C2

C1

��
����� C2

��

type ������� (
�

) to type ������� (
�
), and the serial control composition C1 C2, then for all disjoint canonical lists	

m:
± , �n: �± , we have (C1 C2)
��� , ������ r (C1 C2) ���� , ���� .
Proof: By the definition of extended object component, there exists some empty controls E1 and E2 such that C1 and
C2 are constructed by grouping them with C1 and C2 respectively. Without lose the generality, assume C1 C1 E1

and C2 C2 E2, let �m :(�± − �±), m : !± , "n #%$± , &n :('± − (±),)p :(*± − +±), ,p :(-± .±) and /p :(0± − 1±) be disjoint canonical
lists satisfying 2m 3m 4m 57698;:n <n =n , and write >p ?p @p Ap , then we have

((BC , DE , FG , HI JLK ν Mp)(C1 N�OP , QR , ST U C2 V�WX , YZ , [\])) ^`_a , bc�d�e r

((fg , hi , jk , lm npo ν qp)(C1 rtsu , vw , xy z E1 {�|} , ~� � E2 ���� , �� � C2 ���� , �� , �� �)) �t�� , ����

For for the reason of simplicity, from now on we can always assume the two parties of a composition have the same
type of interface or have been extended to the same type of interface, unless expressed explicitly.

For our purpose of study, whenever given a process which models some behaviours of an object, we want to see if it can
be equally represented by a composition of two or more processes, each of which separately describes a portion of these
behaviours. This leads to the concept of the decomposibility of a process.

Definition-5 � 57 (Decomposibility): An object instantiation process P �t���� with receptor set �n: �± is said to be
decomposible if there exist an object template F : � ��¡�¢ (£), where F P, and some non-empty control
C: ����¡�¢ (¤ , ¥) such that (C F) ¦�§¨ª©¬« r P ­t®¯ª° , that is, (ν ±m)(C ²�³´ , µ¶�· F ¸t¹º¼»

) ½ r P ¾�¿À�Á .
An object component process C Â�ÃÄ , ÅÆ�Ç with receptor set ÈÉ : Ê± and sender set Ëm: Ì± , is said to be decomposible if
there exist some non-empty controls C1: �%��¡�¢ (Í , Î) and object component C : ���Ï¡�¢ (Ð , Ñ) where C C, such that
(C1 C) ÒtÓÔ , ÕÖ�×¬Ø r C ÙtÚÛ , ÜÝ�Þ , that is, (ν ßp)(C1 àtáâ , ãäæå C ç�èé , êë�ì) í r C î�ïð , ñò�ó .
An object template P : ����¡�¢ (ô), is decomposible if P õ�ö÷ªø is decomposible for all ùú : û .
An object component C: ����¡�¢ (ü , ý) is decomposible if C þ�ÿ� , ���� is decomposible for all �� : � and �	 :
 .

5.3 Properties of composition

As pointed out by [Zhang02B] and [Zhang02D], responsive bisimulation is congruence for autonomous processes. Let
process P be an object component process or object instantiation process with receptor set �n, it can be guaranteed to be
a safe process in the environment where it resides in, but is not an autonomous process. However, what it is used for is
to model the initial behaviour of object component, and follow the modelling method in [Walker95] and [Zhang97], the
creation of an object with P as the initial behaviour can be modeled as:

!� ew(
 0).(ν a) (� 0 ����� (ν �n) (!� (�).������� P)

and each created object (ν a) (� 0 �! �" (ν #n) (!$ (%).&('*)+-, P) is clearly an autonomous process.

Definition -5 . 59 : A process context of the form / [.] (ν a) (0 0 1!2�3 (ν 4n) (!5 (6).7�8:9;-< [.]) is called an
autonomous context for processes with receptor set =n. And since for processes and satisfying>

[P1] ? r @ [P2] (or A [P1] B r C [P2]) iff a D (EGF H (P1) IGJLK (P2)) and P1 M r P2 (or P1 N r P2, respectively);
both O [P1] and P [P1] are an autonomous processes if (QGR S (P1) TVULW (P2)) Xn;Y

r and Z [are congruencces for autonomous processes,

we say that:

1. \ r and] ^ are congruences under autonomous context;
2. the processes P1 and P2 are congruent under autonomous context, denoted as P1 r P2 (or P1 r P2) if

P1 _ r P2 (or P1 ` r P2, respectively);
3. the process abstractions A1 (ab , cd)P1 and A2 (ef , gh)P2 are congruent under autonomous context, denoted

as A1 r A2 (or A1 r A2) if P1 i r P2 (or P1 j r P2, respectively) and (kGl m (P1) nGoLp (P2)) qn.

Now lets give some properties of composition.

Propersition 5 � 60 (Identity Law): For each object template F of type ������� (
�
) interface, or object component C

of type ���	��� (

) interface, there exists some empty control E of the same type interface such that for all disjoint

canonical lists �m: �± ,
n: �± and �p: �± the following relation are held:

(E ���� , ���� F ������) � r F �!"$# , (E %�&' , ()+* C ,�-. , /021) 3 r C 4�56 , 78:9 and (C ;�<= , >?+@ E A�BC , DE2F) G r C H�IJ , KL:M ,
or simply written as E F r F and E C r C E r C.

Proof: An empty control of type ���	��� (N) interface can always be constructed in the form of quation 5 O 1.

With the identity law, we may describe the concurrency behaviour
composition in a more portable style, or “plug-and-play” style: We need
not require the sender set of a control process D to be directly the same
name set of the receptor set of a object component process A, but only
require them have the same type P± , and use an empty control of type���	��� (Q) interface to establish a connection between the two sets of names
(see Figure 5-4).

Propersition 5 R 61 (Association Law): Assume control abstractions C1

and C2, and object template F or object component C are all of type���	��� (S) interface, then for all disjoint canonical lists Tm: U± , Vn: W± , Xp: Y± and Zq: [± the following relations are held:
C2 \�]^ , _`�a (C1 b�cd , ef:g F h�ijlk) m r (C2 n�op , qr+s C1 t�uv , wx2y) F z�{|~} and
C2 ���� , ���� (C1 ���� , ���� C ���� , ��:�) � r (C2 ���� , ��+� C1 ���� , ����) C �� ¡ , ¢£:¤ ,

which may simply be written as: C2 (C1 F) r (C2 C1) F and C2 (C1 C) r (C2 C1) C respectively.
Proof: Simply by the structural equivalence, we have

(ν ¥p) (C2 ¦�§¨ , ©ª�« (ν ¬m) (C1 ­�®¯ , °±:² F ³�´µ·¶)) (ν m̧)((ν ¹p) (C2 º�»¼ , ½¾+¿ C1 À�ÁÂ , ÃÄ:Å)F Æ�ÇÈlÉ), and

(ν Êp) (C2 Ë�ÌÍ , ÎÏ�Ð (ν Ñq) (C1 Ò�ÓÔ , ÕÖ�× C Ø�ÙÚ , ÛÜ:Ý)) (ν Þq)((ν ßp) (C2 à�áâ , ãä+å C1 æ�çè , éê�ë)C ì�íî , ïð2ñ).

The existence of association law enables us to combine the concurrence constraints with each other first, then add the
combined constraint to the functional behaviour (see Figure 5-5).

The commutativity, (C1 C2) r (C2 C1) or (C1 C2) r (C2 C1), does not hold in general for the composition between
two control abstractions C1 and C2. In other words, in general the order of adding concurrence constraints to an object
does matter. However, the commutativity between C1 C2 and C2 C1 is certainly held in cases (Figure 5-6a) where
there exist some control abstractions, C1 of type ���	��� (ò) interface and C2 of type ���	��� (ó) interface, such that C1 is an
extended object component of C1 from interface of type ���	��� (ô) to type ������� (õ , ö), and C2 is an extended object
component of C2 from interface of type ���	��� (÷) to type ���	��� (ø , ù). Since it is possible that C1 and/or C2 themselves is
an extended object components of some other control abstraction, commutativity in a little bit more generical situation
as Figure 5-6b can be in sight. What are the other situations the commutativity exists, and what are rules to determine
that, is an interesting topic in the future works.

Figure 5-5

Figure 5-4

(a) (b)
Figure 5-6

ú
C 2

C 1

C1 C2

C 2

C 1

C1C2

û

E2

C2E1

C1

C1 C2
E2

C2 E1

C1

C1C2

üý
CC1

þÿ
E

����� ����

Internal Calls

External
Call 	

��
���

C1C2 C

The distribution property also exists in some restricted cases, as described in the following corollary:

Corollary 5 � 62: Let C1 and C2 be some control abstractions, F1 and F2 be some object templates and C1 and C2

be some object components such that C1, F1 and C1 have the same interface type ������� (
�

), and C2, F2 and C2

have the same interface type ������� (
	

), if C1 C2 is a paralleled control composition, then:
1. (C1 F1) (C2 F2) r (C1 C2) (F1 F2) whenever both C1 F1 and C2 F2 exist;
2. (C1 C1) (C2 C2) r (C1 C2) (C1 C2) whenever both C1 C1 and C2 C2 are serial control compositions.

Proof: Assume disjoint canonical lists let
m �
�± , �m : �± , �n �
�± , �n : �± , �p ���± and �p : �± ,

(ν �m) (C1 ���� , ! " F1 #%$& '
)(ν (m) (C2)%*+ , ,- .

F2 /%01 2
) (ν 3m, 4m) (C1 5%67 , 89 : C2 ;%<= , >? @

F1 A�BC D
F2 E�FG H

),

(ν Ip) (C1 J�KL , MN O C1 P%QR , ST U)(ν Vp) (C2 W%XY , Z[\ C2]%^_ , `a b
) (ν cp, dp) (C1 e�fg , hi j C2 k�lm , no p C1 q%rs , tu v C2 w%xy , z{ |

).

The significant of the distribution property of composition is, for a
composed object which has some component objects to perform a
portion of the functions of the whole object, the control constraints can
be either put on each component objects, or put the container object
(Figure 5-7).

6 Conclusion

In this paper presents the theory of composition for concurrenct object systems, based on the object modelling in the }
calculus. These include a compositional concurrent object model, and a generic theory of object behaviour composition.
We have shown that with the ~��
��������� ��� , the compositional concurrent object model we proposed allows a natural
separation of different aspects in currency, such as locking states, exclusion, synchronisation scheduling, etc., and
allows those aspects to be reasoned about separately in certain degree. Based on this model, an extension to existing
Object-Oriented programming language will be developed, which will provide a better description on behaviour
composition, and also allow certain degree of automatical or manual reasoning on composition. In the study of theory of
composition we have identified what is an object, a component or composible behaviour of an object, while abstracted
away the details of abject model. Based on that, we have studied the properties of object behaviour composition, such as
the proving of the identity law and associative law, and the analysing of commutativity and distribution of the
composition. This theory will allow us study the compositional concurrent object in deep in the future, including to
characterise when a behaviour can be further decomposed into atomic behaviours.

References:

[Aksit92] Mehmet Aksit and Lodewijk Bergmans “Obstacles in Object-oriented Software Development”, OOPSLA ’92

Conference Proceedings, volume 27 of ACM SIGPLAN Notices, pages 341-358, New York, October 1992

[Amadio96] Roberto M. Amadio, Ilaria Castellani and Dacide Sangiorgi, “On Bisimulations for the Asynchronous -calculus”, in

Proceedings of CONCUR’96, LNCS volume 1119, Springer Verlag, 1996

[Amadio97] Roberto M. Amadio, “An Asynchronous Model of Locality, Failure, and Process Mobility”, In D. Garlan and D. Le

Metayer, editor, Proceedings of The Second International. Conference on Coordination Models and Languages

(COORDINATION’97), LNCS 1282, Springer, 1997

[Bos89] J. van den Bos and C. Laffra, “PROCOL A Parallel Object Language with Protocols, ” in Proceedings of the 1989

OOPSLA Conference, New Orleans, Louisiana, September 1989.

Figure 5-7

�
F1C1

F2C2

F1C1

F2C2

[Bos91] Jan van den Bos, Chris Laffra: “PROCOL: A Concurrent Object-Oriented Language with Protocols Delegation and

Constraints. ” Acta Informatica 28(6): 511-538 (1991)

[Busi95] Nadia Busi and Roberto Gorrieri, “Distributed Conflicts in Communicating Systems”, in Christine Mingins, Roger

Duke and Bertrand Meyer, editors, Object-Based Models and Languages for Concurrent Systems, LNCS vol 924,

pages 49-65, Springer-Verlag, 1995. URL: ftp://ftp.cs.unibo.it/pub/techreports/94-08.ps.gz

[Crno98] Lobel Crnogorac, Anand S. Rao, and Kotagiri Ramamohanarao, “Classifying Inheritance Mechanisms I concurrent

Object-Oriented Programming,” in Eric Jul, editor, Proceedings of ECOOP’98, volume 1445 of Lecture Notes in

computer Science, pages 571-600. Springer Verlag, 1998.

[Holmes97] David Holmes, James Noble, John Potter, “Aspects of Synchronisation”, in Christine Mingins, Roger Duke and

Bertrand Meyer, editors, Technology of Object-Oriented Languages and Systems TOOLS 25 - Proceedings of The

25th International Conference TOOLS (TOOLS Pacific'97), pages 7-18, Melbourne, Australia, November 1997

[Honda91] Kohei Honda and Mario Tokoro, “An Object Calculus for Asynchronous Communication”, in P. America, editor,

ECOOP’91, LNCS vol 512, pages 133-147, Springer-Verlag, 1991.

[Honda92] Kohei Honda and Mario Tokoro, “On Asynchronous Communication Semantics”, in M. Tokoro, O. Nierstrasz, and

P. Wegner, editors, Object-Based Concurrent Computing 1991, LNCS vol 612, pages 21-51, Springer-Verlag, 1992.

[Honda95] Kohei Honda and Mario Tokoro, “On Reduction-based Process Semantics”, Theoretical Computer Science,

152(2):437-486, 1995.

[Hüttel96] Hans Hüttel and Josva Kleist, “Objects as mobile processes”, Aalborg University, August 1996. URL:

http://www.cs.auc.dk/~kleist/ObjMobile

[Jalloul94] Ghinwa Jalloul, “Concurrent Object-Oriented Systems: A Disciplined Approach”, PhD Dissertation, University of

Technology, Sydney, Australia, June 1994

[Jones93] Cliff B. Jones, “A -calculus Semantics for an Object-based Design Notation”, in E. Best, editor, Proceedings of

CONCUR’93, volume 715 of Lecture Notes in computer Science, pages 158-172. Springer Verlag, 1993

[Laff92] C. Laffra, “PROCOL: a Concurrent Object Language with Protocols, Delegation, Persistence and Constraints, ”

Ph.D. thesis, Erasmus Universiteit, Rotterdam, the Netherlands, May 1992.

[Liu97] Xinxin Liu and David Walker, “Concurrent Objects as Mobile Processes”, to be appeared in G. Plotkin, C. Stirling,

and M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin Milner, MIT Press.

[Matsuoka93] Satoshi Matsuoka, "Language Features for Reuse and Extensibility in Concurrent Object-Oriented Programming",

PhD thesis, Department of Information Science, University of Tokyo, Japan, April 1993

[McHale94] Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Expressive Power, Genericity and

Inheritance”, PhD. Thesis, Department of Computer Science, Trinity college, University of Dublin, Ireland, October

1994. URL: ftp://ftp.dsg.cs.tcd.ie/pub/doc/dsg_86.ps.gz

[Milner92] Robin Milner, Joachim Parrow, David Walker, “A Calculus of Mobile Process” (Parts I and II), Journal of

Information and Computation, 100:1-77, September 1992. URL: http://www.dcs.ed.ac.uk/lfcsreps/EXPORT/89

[Milner92b] Robin Milner and Davide Sangiorgi, “Barbed Bisimulation”, in W. Kuich, editor, Proceeding of 19th ICALP, volune

623 of Lecture Notes in computer Science, Springer Verlag, 1992

[Milner96] Robin Milner, “The -calculus”, hand-written tutorial. Computer Science Tripos, Cambridge University 1996

[Merro98] Massimo Merro and Davide Sangiorgi, “On Asynchrony in Name-passing calculi”, In 25th ICALP, volune 1442 of

Lecture Notes in computer Science, pages ??. Springer Verlag, 1998

[Merro00] Massimo Merro, “Locality and Polyadicity in Asynchronous Name-passing Calculi”, In Proceedings of FOSSACS

2000, Berlin, Germany, volume 1784, pages 238-251, Lecture Notes in Computer Science, Springer Verlag, 2000

[Nestmann96] Uwe Nestmann and Benjamin C. Pierce, “Decoding Choice Encodings”, Journal of Information & Computation,

163: 1-59, November 2000. URL: http://www.brics.dk/RS/99/42

[Noble00] James Noble and John Potter, “Exclusion for Composite Objects”, In Proceedings of OOPSLA 2000, Minneapolis,

Minnesota USA, ACM press, 2000

[Odersky95a] Martin Odersky, “Polarized Name Passing”, in Proceedings of 15th Foundations of Software Technology and

Theoretical Computer Science (FST&TCS'95), Bangalore, India, December 18-20, 1995. URL:

http://lampwww.epfl.ch/~odersky/papers

[Odersky95c] Odersky, M. “Polarized bisimulation”, In Proceedings of Workshop on Logic, Domains, and Programming

Languages, Darmstadt, Germany, 1995

[Philippou96] Anna Philippou and David Walker, “On Transformations of Concurrent-Object Programs”, Theoretical Computer

Sciences, to appear. Extended abstract in Proceedings of CONCUR'96, papers 131-146, Springer 1996

[Philippou97] Anna Philippou and David Walker, “A Process-Calculus Analysis of Concurrent Operations on B-Trees”, Technical

report, University of Warwick, UK, 1997

[Pierce93] Benjamin C. Pierce and Davide Sangiorgi, “Typing and Subtyping for Mobile Processes”, In Proceedings of 8th

Symposium on Logic in Computer Science, pages 409-454, IEEE Computer society Press, 1993. URL:

http://www.inria.fr/meije/personnel /Davide.Sangiorgi/mypapers.html

[Pierce95] Benjamin C. Pierce, David N. Turner, “Concurrent Objects in a Process Calculus”, In Takayasy Ito and Akinori

Yonezawa, editors, Theory and Practice of Parallel Programming (TPPP), LNCS 907, pages 187-215. Springer,

April 1995. URL: http://www.cis.upenn.edu/~bcpierce/papers

[Pierce96] Benjamin C. Pierce, David N. Turner, “PICT: A Programming Language Based on the -calculus”. URL:

http://www.cis.upenn.edu/~bcpierce/papers

[Ravara97] António Ravara and Vasco T. Vasconcelos, “Behavioural types for a calculus of concurrent objects”. In C. Lengauer,

M. Griebl, and S. Gorlatch, editors, Proceddings of 3rd International Euro-Par Conference, LNCS 1300, pages 554-

-561. Springer-Verlag, 1997

[Sangiorgi92a] ���������
	��
������������������������� ������ ���!" !"#�$
�&%�� �('")�����*+����)�� ������ ���!" !,#-�.���"�&/0���
1(2���3�� Proceedings of TAPSOFT’93., LNCS

668, Springer Verlag, 1992. URL: http://www-sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/mypapers.html

[Sangiorgi92b] David Sangiorgi, “Expressing Mobility in Process Algebras: First-Oreder and Higher-Order paradigms”, PhD

thesis, Computer Science Department, University of Edinburgh, UK, 1992. Available from URL: http://www-

sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/mypapers.html

[Sangiorgi95] David Sangiorgi, “Lazy functions and mobile processes”, INRIA Technical Report RR-2515, August 1996. URL:
http://www-sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/mypapers.html

[Sangiorgi96] David Sangiorgi, “An Interpretation of Typed Objects into Typed -calculus”, INRIA Technical Report RR-3000,

August 1996. URL: http://www-sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/mypapers.html

[Sangiorgi96b] David Sangiorgi, “Locality and Non-interleaving Semanitics in Calculi for Mobiule Processes”, Theoretical

Computer Science, 155:39-83, 1996

[Sangiorgi97] David Sangiorgi, “The Name Discipline of Uniform Receptiveness”, In 24th ICALP, volune 1256 of Lecture Notes

in computer Science, pages ??. Springer Verlag, 1997

[Schneider97] Jean-guy Schneider and Markus Lumpe, “Synchronizing Concurrent Objects in the ”, Proceedings of Langages et

Modèles à Objets '97, Roland Ducournau and Serge Garlatti (Ed.), Hermes, Roscoff, October 1997, pp. 61-76. URL:

ftp://ftp.iam.unibe.ch /pub/scg/Papers/lmo97.ps.gz

[Walker95] David Walker, “Objects in the -Calculus”, Information and Computation, 116(2): 253-271 (1995)

[Zhang97] Xiaogang Zhang and John Potter, “Class-based models in -calculus”, in Christine Mingins, Roger Duke and

Bertrand Meyer, editors, Technology of Object-Oriented Languages and Systems, TOOLS 25 (TOOLS Pacific'97),

Melbourne, Australia, 24th-27th November 1997, pages 238-251, IEEE Computing Society Press, 1998. URL:

ftp://ftp.mpce.mq.edu.au/pub/mri/people/xzhang/papers/class97.ps.gz

[Zhang98A] Xiaogang Zhang and John Potter, “Compositional Concurrency Constraints for Object Models in -calculus”,

Technical Report C/TR-9804, Macquarie University, Sydney, Australia, 1998. URL:

ftp://ftp.mpce.mq.edu.au/pub/mri/people/xzhang/papers/TR98-04.doc

[Zhang98B] Xiaogang Zhang and John Potter, “A Compostion Approach to Concurrent Objects”, in Jian Chen, Mingshu Li,

Christine Mingins and Bertrand Meyer, editors, Technology of Object-Oriented Languages and Systems, TOOLS 27

(TOOLS Asia'98), Beijing, China, 22nd-25th September 1998, pages 116-126, IEEE Computing Society Press, 1998.

URL: ftp://ftp.mpce.mq.edu.au/pub/mri/people/xzhang/papers/tools27.ps.gz

[Zhang02A] Xiaogang Zhang and John Potter, “Responsive Bisimulation”, in Ricardo Baeza-Yates, Ugo Montanari and Nicola
Santoro, editors, Foundations of Information Technology in the Era of Network and Mobile Computing (IFIP-TCS
2002), Montréal, Québec, Canada, August 25th -30th 2002, page 6001-612, Kluwer Academic Publishers.

[Zhang02B] Xiaogang Zhang and John Potter, “The Responsive Bisimulations in the ��������� -calculus”, Technical report UNSW-
CSE-TR-0203.

[Zhang02C] Xiaogang Zhang and John Potter, “A Constraint Description Calculus for Compositional Concurrent Objects”,
Technical report UNSW-CSE-TR-0204.

[Zhang02D] Xiaogang Zhang and John Potter, “On Responsive Bisimulations in the 	�

����

������� ”, Technical report UNSW-CSE-
TR-0205.

APPENDICES

A1 The syntax of control actions

To make the description of a scheduler control to be understandable to ordinary programmers, we add new keywords

<actnKWd> ::= wV sV  wA  sA  wS sS wE  sE  rel

to an extended Object-Oriented programming language. They are corresponding to the symbols � m(��), � n ����	� ,
 m , � n, � f,

f, � m , � n and , respectively, in the Equation 4 � 13. The syntax can described as

<ActBlock> ::= {<Acts>}

<Acts> ::= <Act>; [<Acts>] - (a list of actions)
 <ActBlock>|| <ActBlock> [|| <ActBlock>]; - (forced parallel actions)

<Act> ::= <BAct> <NBAct> - (blocking actions, no-blocking actions)
<BAct> ::= wV;<Acts> wAwS wE - (wait value, arrive, start and end signals)
<NBAct> ::= <SAct> rel  rel(<MLst>) - (sending actions, releaseing signal)
<SAct> ::= sV sAsS sE - (send value, arrive, start and end signals)
<MLst> ::= MethodName;[<MLst>] - (a list of method names)

With restriction:
Each of wV, wA, wS, wE, sV, sA, sS, sE, rel can only appear once within any <ActBlock>
For the statement wV;<Acts>, the signal sV must appear in the <Acts> which follows wV.

A2 Action diagram examples for scheduler

The effect of a scheduler control can also be explainted with interaction diagram.

In an interaction diagram, we use verticle lines to represent threads. A deshed section of a line represents a blocked
duration of the thread, and the solid sections of the line represents the non-blocked durations. A verticle rectangle,
which can be regarded as a very thick line section, represents that the thread is doing some processing. A triangle on a
thread is a small duration on the thread of scheduler, in which a couple of control signals being communicated. A
harizontal arrow repesent a control signal being sent from one thread to another.

According to Equation 4 � 16, a method call with continuation, ����� (�);Q, can be modelled as a “send and wait”
expression (ν sn,sf,rn, tn) (��� � n,� f,� n,� n, � "! # n($%).& n .Q). That is, the continuation Q can continue only after the scheduler
has sent both ' n(()) and * n singals. In the interaction diagram, the caller thread always has a deshed section between the
event of sending method call message , and the point where both + n(,-) and . n signals have received.

To explaint the scenario of the control process, lets look at Figure A2-1, where we have a linear schedule process/
m(0) . (1 n 243�5 6 n7 m.). Because the roles of the arriving signal sn and the start signal sf are not significant in a linear

schedule process, we do not show them.

In the Figure A2-1, the method call signal 8	9�:;	< is received by the method n, which is not locked in this moment, a
control thread is invoked for method n, and the lock L is triggered to lock specified methods, which may (and may not)
included the n method itself. In the same time, the method call message is forwarded to method body m, and invoked a
new execution thread for m.

Once the return value = m(>), produced by the method body m, arrives the scheduler thread, the scheduler forward it to
the caller, and also sends a “continue” signal back to the caller to allow the later to continue. Once the method body is
terminated in execution and sends the termination signal ? m to the scheduler, the scheduler release the lock to allow the
locked methods to be accessable.

�
n(�)

������	�

m(�)

�

L

m

�
n

caller called object

lock

unlock

lock

unlock

lock

unlock

��

call� = �	����	�

�
m(�) . (� n �����  n! m.) {wV;sV;sE;wE;rel;}

"
n #%$�&
'

n

(
n())

*�+�,-	.

/
m(0)

1

L

2
m

3
n

caller called object

lock

unlock

lock

unlock

lock

unlock

45

call6 = 7	8�9:	;

<
n

=
m(>) . (? n @%A�B C nD m.0) {wV;rel;sV;sE;wE;}

E
n FHG�I

Figure A2-2 Early return early unlock

Figure A2-1 Scenario of Equation 4 J 13: Early return late unlock

Figure A2-4 Late return late unlock

Figure A2-3 Late return early unlock

��������

�
m()

L

�
m

caller called object

lock

unlock

lock

unlock

lock

unlock

�

call� = ��������

�
m(�) . � m. (� n ����� � n) {wV;wE;sV;sE;rel;}

�
n()
!

n

"
n #�$�%
&

n

'
n(()

)�*�+,�-

.
m(/)

0

L

1
m

2
n

caller called object

lock

unlock

lock

unlock

lock

unlock

34

call5 = 6�7�89;:

<
m(=) . (> m. (? n @BA�C D n)) {wV;rel;wE;sV;sE;}

E
n F�G�H
I

n

Figure A2-6 Another version of late return late unlock as Figure A2-4

Figure A2-5 Another version of late return early unlock as Figure A2-3

��������

�
m()

L

�
m

caller called object

lock

unlock

lock

unlock

lock

unlock

�

call� = ��������

�
m(�) . (� n ����� � m. (� n)) {wV;sV;wE;sE;rel;}

�
n() ! n "$#�%

&
n ' n

(
n())

*�+�,-�.

/
m(0)

1

L

2
m3

n

caller called object

lock

unlock

lock

unlock

lock

unlock

45

call6 = 7�8�9:�;

<
m(=) . (> n ?$@�A B m.C n) {wV;rel;sV;wE;sE;}

D
n E$F�G

H
n

A3 Scheduler composition

When two or more controls composed together, their effect may be equally represented by a single control. It can be
necessary for software verification and system optimisation to find out the equivalent single control. Since in our object
model the scheduler control is described separately, the composition effect on them can also be reasoned about
separately. There are procedures for such an inference, both for inference automatically and manually.

The following pseudo-code is the procedure for automatically inference on scheduler composition, and the call

Outer_process(OuterScheduler, InnerScheduler, ResultScheduler);

will generate ResultScheduler, the equivalent single scheduler of the composition of the two schedulers,
OuterScheduler and InnerScheduler.

Outer_process(CurrentOuterActions, CurrentInnerActions, Result) {
if(CurrentOuterActions is the EndOfBlock) {

terminate;
} else if(CurrentOuterActions is a NonParalBlocks) {

for (each sub_block of CurrentOuterActions) {
Outer_process(firstAct_of_the_sub_block, CurrentInnerActions, Result);

}
if(CurrentOuterActions becomes an empty_block) {

Outer_process(NextOuterAction, CurrentInnerActions, Result);
} else {

Inner_process(CurrentInnerActions, CurrentOuterActions, Result);
} else if(CurrentInnerActions is a NBAct) {

move the CurrentOuterActions to Result;
advance the Result point;
Outer_process(NextOuterAction, CurrentInnerActions, Result);

} else { // CurrentOuterActions is a Bact //
Inner_process(CurrentInnerActions, CurrentOuterActions, Result);

}

Inner_process (CurrentInnerActions, CurrentOuterActions, Result) {
if(CurrentInnerActions is the EndOfBlock) {

terminate;
} else if(CurrentInnerActions is a NonParalBlock) {

create a NonParalBlock in the Result;
for(each sub_inner_block of CurrentInnerActions) {

create a SubResulBlock in the Result;
Inner_process(FirstActionOfTheSubInnerBlock, CurrentInnerActions, SubResulBlock);

}
if(CurrentOuterActions becomes an empty_block) {

Outer_process(NextOuterAction, CurrentInnerActions; Result);
} else {

Inner_process(CurrentInnerActions, CurrentOuterActions, Result);
}

} else if(CurrentInnerActions is a Sact) {
erase the corresponding Bact in CurrentOuterActions;
Inner_process(NextInnerAction, CurrentOuterActions, Result);

} else { // if(CurrentInnerActions is not a SAct) //
move the CurrentInnerActions to Result;
advance the Result point;
Inner_process (NextInnerAction, CurrentOuterActions, Result);

}
}

The following table is an example of scheduler composition, by both automatically inference and manually inference.

Inner layer Outter layer Result

1 n� m(�) . � m . (� n � ��� � n)
{wV;wE;sV;sE;}

14’ n� p(�) . (n
 ��� 
 p . m� n)
{wV;sV;sE;wE;rel(mlst1);}

2 n � m(�) . � m. � n � ��� � n
{sE;wV;wE;sV;}

17’ n� p(�) . (� n � ���  � p . m)� n
{sE;wV;sV;wE;rel(mlst1);}

3 n � m(�) . � n � ��� � m. n
{{wV;sV;}||{wE;sE;};}

14’ {wV;sV;sE;wE;rel(mlst1);}

4 n ! m(") . (# n $ "�% & m. ' n)
{wV;sV;wE;sE;}

14’ {wV;sV;sE;wE;rel(mlst1);}

5 n (m(") .) n * "�+ , m. 0- n
{sE;wV;sV;}

17’ {sE;wV;sV;wE;rel(mlst1);}

5’ n . m(") . (/ n 0 "�1 2 m.0)3 n
{sE;wV;sV;}

17’ {sE;wV;sV;wE;rel(mlst1);}

6 n 4 m(") . (5 n 6 "�7 8 n) 9 m. 0
{wV;sV;sE;}

14’ {wV;sV;sE;wE;rel(mlst1);}

6’ n : m(") . (; n < "�=  > m.0? n)
{wV;sV;sE;}

14’ {wV;sV;sE;wE;rel(mlst1);}

7 n @ m(") . (A n B m. C n D "�E)
{wV;sE;wE;sV;}

14’ {wV;sV;sE;wE;rel(mlst1);}

8
F

m(") . (n G m. (H n I "�J K n))
{wV;rel;wE;sV;sE;}

11’/
14’

L
p(") . (nM n N "�O P nQ p . m)
{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

8’
R

m(") . (nS m. T n U "�V)W n
{sE;wV;rel;wE;sV;}

19’/
17’

X
p(") . (nY n Z "�[\ p . m)] n
{sE;wV;rel(mlst2);sV;wE;rel(mlst1);}

9
^

m(") . (n _ m. ` n a "�b c n)
{wV;rel;sE;wE;sV;}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

10
d

m(") . (n e n f "�g  h m .i n)
{wV;rel;sV;wE;sE;}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

11
j

m(") . (n k n l "�m n n)  o m. 0
{wV;rel;sV;sE;}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

11’
p

m(") . (n q n r "�s  t m. 0u n)
{wV;rel;sV;sE;}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

12
v

m(") . w m. (n x n y "�z { n)
{wV;wE;rel;sV;sE;}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

12’
|

m(") . } m. (n ~ n � "��) � n
{sE;wV;wE;rel;sV;}

19’/
17’

{sE;wV;rel(mlst2);sV;wE;rel(mlst1);}

13
�

m(") . (� n � "��  � m. (n� n))
{wV;sV;wE;rel;sE;}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

14
�

m(") . (� n � "�� � n)  � m . n
{{wV;sV;sE;}||{wE;rel;};}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

14’
�

m(") . (� n � "��  � m. n � n)
{wV;sV;sE;wE;rel;}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

15
�

m(") . (� n � m. (n� n � "��))
{wV;sE;wE;rel;sV;}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

16
�

m(") . � n � "��  m. (n¡ n)
{{wV;sV;}||{wE;rel;sE;};}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

17
¢

m(") . £ n ¤ "�¥  ¦ m. n § n
{sE;{wV;sV;}||{wE;rel};}

19’/
17’

{sE;wV;rel(mlst2);sV;wE;rel(mlst1);}

17’
¨

m(") . (© n ª "�«  ¬ m. n)­ n
{sE;wV;sV;wE;rel;}

19’/
17’

{sE;wV;rel(mlst2);sV;wE;rel(mlst1);}

18
®

m(") . (n̄ n ° "�±) ² m .³ n
{{wV;rel;sV;}||{wE;sE;};}

11’/
14’

{wV;rel(mlst2);sV;sE;wE;rel(mlst1);}

19
´

m(") . (nµ n ¶ "�·)̧ m .0¹ n
{sE;wV;rel;sV;}

19’/
17’

{sE;wV;rel(mlst2);sV;wE;rel(mlst1);}

14’º
p(").(» m ¼ "�½  ¾ p . m¿ m)
{wV;sV;sE;wE;rel;}

19’ À m(") . (nÁ n Â "�Ã Ä m. 0)Å n
{sE;wV;rel;sV;}

19’/
17’

{sE;wV;rel(mlst2);sV;wE;rel(mlst1);}

Note: mlst1 is the list methods locked by the Inner control, and mlst2 is that locked by the Outter control.

