

Design and Implementation of a Virtual Quality of Service MAC
Layer (VQML) for Wireless LANs

Mahbub Hassan, Kenneth Lee, Mohammad Rezvan

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

UNSW-CSE-TR0208

July 2002

 2

Abstract

Wireless LANs are becoming increasingly popular. While the technology offers wireless connectivity, it
offers minimal or no quality of service (QoS) to multimedia applications. We propose a virtual QoS MAC
layer (VQML) between MAC and networking layers to provide QoS. The proposed VQML architecture
is implemented in a Linux platform and tested in an experimental wireless network test-bed in the
Network Research Laboratory of UNSW. This report details the design, implementation, and
experimentation of VQML.

 3

1 Introduction

Current wireless MAC protocols offer minimal or no support for QoS applications. There are some recent
initiatives in IEEE 802.11 working group to add QoS features to 802.11a and 802.11b family. This can
cause cross-compatibility problems for wireless LAN (WLAN) environments. We propose an
intermediate layer between MAC and networking layer (we call it VQML) to provide QoS support. Such
architecture can provide seamless migration of applications between different WLANs with different
MAC protocols. VQML has two salient features:

� It provides a MAC-independent QoS mechanism. If QoS support is implemented at MAC layer, each
vendor may decide to implement its own specific approach.

� It is a software-based architecture. A software-based approach introduces more flexibility as the

design can be easily changed and upgraded. While the same level of flexibility may be achieved by a
hardware-based (e.g., FPGA and/or ASIC-based design), manipulation and/or changes can be applied
in software more easily.

We have implemented VQML on Linux platform. The implementation was later tested in an
experimental wireless network. Experimental results demonstrate that VQML can provide QoS to video
applications over WLANs in the presence of background data traffic.

The rest of the report is organised as follows. Section 2 presents the VQML architecture. Linux
implementation of VQML is described in Section 3. Section 4 explains the experimental wireless network
test-bed and presents results obtained from the tests. Related work is discussed in Section 5. Finally, we
provide our conclusions in Section 6.

2. VQML Architecture

Figure 1 shows the traditional protocol stack used in WLANs. In the traditional stack, Internet Protocol
(IP) (layer 3) directly communicates with MAC (layer 2). In the proposed VQML architecture (see Figure
2), a VQML layer resides between IP and MAC layers, and offers software-based QoS support for
networking layer. There is also a bypass connection between networking layer and MAC layer. This
means that the VQML does not interrupt the operations of normal protocol stack. As regards to
implementation, we have divided the project into two phases:

� In Phase-I, we deploy VQML only at wireless stations. Therefore, in Phase-I, wireless users will only

be able to “send” QoS traffic across the wired backbone via WLAN access point. In other words, in
Phase-I, only up-link part of the wireless link will become QoS-capable. One very useful application
under such scenario is transmission of voice traffic (VOIP) from wireless stations to another user that
resides outside of WLAN environment.

� In Phase-II, in addition of wireless stations, VQML (possibly with some changes) will also

be deployed in access points. Therefore, down-link part of the wireless link will become
QoS-capable as well. Phase-II is outside the scope of this report.

 4

RF MAC
WLAN, IEEE 802.11a (5.2 GHZ), IEEE 802.11b (2.4 GHZ), Bluetooth, …

IP

TCP

Application

Figure 1: A typical protocol stack for wireless LAN

R F M A C
W LA N , IE EE 802 .11a (5.2 G H Z), IE E E 802 .11b (2.4 G H Z), B lueto oth , …

IP

T C P

A pplication

M A C A d aptation U nit

Q oS M anagem e nt U nitA P I U nit

F igu re 2: V Q M L resides betw een M A C and la yer 3 to p rov id e Q oS fo r
W ireless LA N

 5

VQML consists of three units, QoS management, application programming interface, and MAC
adaptation. Each unit handles a specific set of tasks. These units are further described in the following
subsections.

2.1 QoS Management Unit

This unit is the heart of the proposed VQML architecture. It handles all QoS- specific tasks. Other units
are designed to support the operations of this unit. It is designed to be fully programmable system calls
provided by API unit. Figure 3.3 details the internal architecture of this unit.

QoS management unit itself is made up of a number of units. The Packet Classifying Unit (PCU) receives
network layer packets (i.e., IP packets). The main task of this unit is to map “user-level”, “application-
level”, or “flow-level” priority to “access-level” priority. Because wireless stations operate in a shared
medium, there is no mean of defining a QoS “route”. While it is possible to compute an end-to-end QoS
route in ATM or IP networks, in WLANs the concept of QoS can only be interpreted as “access”
priority. This is because in a WLAN environment, stations compete to gain access to the shared wireless
channel. Access priority is inherently defined for each individual packet (or individual frame). Therefore,
VQML can smoothly operate even if a specific application or flow like a MPEG-2 stream generates
packets with different priorities. PCU can potentially look at ToS field (or similar field) in IP header and
assign a priority level to the packet. Based on the assigned priority, PCU then stores the packet in one of
the queues in the queue pool.

As Figure 3 shows, PCU is connected to a parameter bank. This bank provides different settings for
parameters that control the operation PCU and queue pool. For example, PCU may be forced to look at
other fields than ToS or the number of access priority levels and number of queues can be changed. These
changes can happen via system calls provided by API unit from application/user layers and are stored in
this bank. Each time VQML resets and starts working, it can access this bank to tune its behaviour. The
Transmission Control Unit (TCU) selects the packets from different queues based on a specific algorithm.
Note that a variety of different scheduling algorithms can be implemented. It would be wise to experiment
with a broad range of scheduling algorithms. Again, because TCU is connected to an algorithm bank,
multiple algorithms can be implemented and stored simultaneously.

 6

2.2 Application Programming Interface (API) Unit

This unit provides application level interface so that the functionality of VQML can be easily changed or
tuned. It can also be used for performance monitoring and diagnostic purposes. The importance of API
unit can be described as follows.

• At experimental level, it provides a flexible way to experiment with different algorithms and

parameter settings that control the operation of VQML. The data collected from these experiments
can be used to find optimal working range for parameters and also efficient algorithms. Without API
unit, each new feature/algorithm has to be tightly hard-coded into the source code and new system
should be built.

• At operational level, API can be used to fine-tune performance of VQML based on specific

requirements of user/network.

Packet Classifying Unit (PCU)
(Reconfigurable)

QoS Queue Pool
(Reconfigurable)

Transmission Control Unit (TCU)
(Reconfigurable)

Parameter Bank

Algorithm Bank

To MAC Adaptation Layer

From
layer 3

Connected to API

Figure 3: Internal architecture of QoS management unit

 7

• Because API system calls will be visible at application level, it may be feasible to establish
application-level QoS awareness. However, the real merit and practicality of this issue needs more
investigation and is not the purpose of VQML.

API unit provides a set of application-level system calls for tuning and changing different operations of
VQML. A user interface may be suitable to let system users to tune different aspects of VQML. Some
tunable aspects of VQML can be outlined as follows:

1. IP header look up. PCU (refer to Section 2.1) needs to look at some fields in the incoming IP packets
to interpret their required QoS and accordingly assign an access priority to the packets. Such QoS
information can be carried in different parts of IP header (e.g., ToS). The PCU can be tuned so that it
can look for QoS information at different places in the IP header. This gives the system more
flexibility.

2. Number of priorities. PCU classifies the incoming IP packets into multiple “levels” or “access

priority”. The number of these priorities (and the number of corresponding priority queues) is tunable.

3. Packet scheduling algorithm. TCU (refer to Section 2.1) is responsible for transmission of QoS IP

packets and uses an algorithm to transmit the packets on wireless channel. Such algorithm may be
implemented in many different ways. Therefore, the rapid and easy implementation of new
algorithms in TCU seems an attractive idea. API will provide a system call by which one of the
available algorithms is selected.

2.3 MAC Adaptation Unit

VQML is a cross-platform protocol architecture. This means the network layer is connected to VQML
and is not aware of underlying MAC protocol. On the other hand, VQML itself has to deal with and
support different wireless MAC protocols. This mandates that some low-level components of VQML
should be re-written, each time the whole architecture is ported on a new MAC layer. The MAC
adaptation unit (MAU) is designed to handle this issue smoothly.

Figure 4 shows the details of MAU. It is made of two units; unified portable interface (UPI) and device
driver/chip interface (DDI). The UPI provides a seamless interface for communication and hides the
details of MAC protocol. While the interface remains fixed, the internal implementation of UPI is subject
to change as we port the architecture on top of different MAC protocols. DDI is in direct contact with
MAC chip (via device driver and/or hardware ports on MAC chip). This unit should be completely re-
written for each MAC protocol.

 8

3 Linux Implementation

We have implemented VQML in the traffic control (TC) framework of Linux operating system. We
briefly describe the TC framework before explaining VQML implementation.

3.1 Traffic Control

TC in Linux provides a range of control functions for packets transmitted from the Linux networking
code to the device driver. TC allows to classify packets, queuing of packets in multiple queues according
to a given priority, and scheduling of packets from different queues with different rates. These features
are very useful in implementing VQML. Implementation of VQML in the TC framework is described
below.

3.2 Implementation of VQML units

Implementation of VQML requires modifications to both kernel and user-space components of TC. The
user-space program of TC is a part of the iproute package. It is used to manipulate individual traffic
control elements. This includes manipulating parameters for the queuing disciplines, filters and traffic
classes. It forms the basis of the API unit for VQML, it provides a flexible way to control the operation of
VQML.

The QoS management unit and MAC adaptation unit of VQML are both integrated into the Linux kernel.
The modularised nature of Linux means modules can be dynamically inserted and removed from the
kernel and thereby ensures a flexible and extendable architecture.

The kernel code of TC resides mainly in the directory net/sched of the Linux kernel source tree. Major
components of QoS management unit are implemented here. Transmission control unit (TCU) selects the
packets from different queues based on a specific queuing discipline.

Unified Portable Interface (UPI)

Device Driver/Chip Interface (DDI)

Connected to
hardware /device

driver

Connected to QoS
management unit

Figure 4: Internal architecture of MAC adaptation Unit

 9

The packet classifying unit (PCU) is implemented in the traffic control framework as filters and classes.
There are a number of ways to classify packets:

� RSVP – using 5 tuples and RSVP control messages.
� u32 – matching any field in the IP header
� route – using routing table
� fw/ipchains/iptables – using netfilter/iptables or ipchains to mark packets to a flowid.

The communication between traffic control elements in user-space and in the kernel is implemented using
the rtnetlink mechanism (rtnetlink is based on netlink mechanism).

The VQML framework is designed to be flexible and completely extensible. The PCU and the TCU in the
QoS management unit are designed to be reconfigurable and upgradeable. TCU can be reconfigured via
the API unit. The tc interface enables users to select a suitable queuing discipline from the scheduling
algorithm bank as required. PCU can be reconfigured via the tc interface.

The new queuing discipline and packet classifier must be implemented according to the interface as
specified in include/linux/pkt_sched.h and include/linux/pkt_cls.h. In addition, it also requires
modifications to the user-space tc program. A new parsing file is written which details how the
parameters are parsed from the tc interface. The file is named as q_{new_queuing_discipline_name}.c.

In addition, the new scheduling algorithm is implemented in a file called
sch_{new_queuing_disciplin_name}.c. Each new instance of queuing discipline must provide the
following set of functions to control its operation (see struct Qdisc_ops in include/net/pkt_sced.h):

� enqueue - enqueues a packet with the queuing discipline.

� dequeue – returns the next packet eligible for sending.

� requeue – puts a packet back into the queue after dequeuing it with dequeue. This differs from

enqueue in that the packet should be queued at exactly the place from which it was removed.

� drop – drops one packet from the queue.

� init – initialises and configures the queuing discipline.

� change – change the configuration of a queuing discipline.

� reset – returns the queuing discipline to its initial state. All queues are cleared, timers are stopped, etc.

� destroy – removes a queuing discipline.

� dump – return diagnostic data used for maintenance.

The Inter-Frame Gap (IFG) scheduling algorithm is implemented to demonstrate the extensibility of the
VQML architecture. The algorithm basically works by controlling the sending rate of each outgoing
interface. It essentially controls and allocates the duration of the inter-frame gap depending on the priority
of the traffic. Higher priority traffic is assigned a smaller gap.

 10

4 Experiments

In this section, we detail the experiments carried out in our networking lab to test the performance of the
VQML implementation described in the previous section. The objective of these experiments is to
demonstrate the effectiveness of VQML in providing QoS to multimedia traffic over WLANs. More
specifically, we carry out our tests with a streaming video to assess VQML’s performance in video-on-
demand scenario.

Figure 5: Wireless Test Bed Configuration

4.1 Experimental Test-Bed

Figure 5 shows the wireless network test bed used for all experiments. There are four PCs, Dell, Sharp,
Dot and Willow. Dot is the wireless subnet gateway; it has a 100Mbps Ethernet connection to Willow and
an Ethernet connection to the wireless access point. Dell and Sharp are mobile laptops with wireless
cards1. All machines are installed with Linux 2.4 kernels. VQML is installed on both Dell and Sharp and
thus allowing the outgoing traffic to be shaped and policed. Dot and Willow are Pentium III 600Mhz and
450Mhz respectively with at least 128MB of Ram. Dell is a Pentium III 800Mhz laptop with 256MB of
RAM. Sharp is a Pentium III 600Mhz laptop with 128MB of RAM.

1 Wireless cards are Lucent Orinoco 11Mbit Wavelan Silver

 11

Table 1: Properties of the experimental video clip.
File Properties

File name: crush.mpg
File size: 61490kbytes
Format: MPEG2

Video Properties
Frame width: 352 Pixels
Frame height: 240 Pixels
Encoded frame rate: 29.97 Frames/s
Bitrate: 2Mbit/sec

Audio Properties
Audio bit rate: 224 kbit/s
Audio coding: MPEG Audio Layer 2
Sampling Freq: 44.1 kHz

Table 1 shows important properties of the video clip used for the video streaming application. The video
player used to conduct the video streaming experiments is called MPlayer. It is a movie player for Linux.
It plays most MPEG, VOB, AVI, VIVO, ASF/WMV, QT/MOV, FLI, NuppelVideo, yuv4mpeg, FILM,
RoQ, OGG and some RealMedia files, supported by many native, XAnim, and Win32 DLL codecs. It
supports a wide range of output drivers. It works with X11, Xv, DGA, OpenGL, SVGAlib, fbdev, AAlib,
SDL, VESA, and some lowlevel card-specific drivers (for Matrox, 3Dfx and Radeon).

Due the limited number of video streaming servers available on Linux (in particular, there is no MPEG2
open source video streaming server freely available at the time of this project), all experiments were
conducted by streaming the video clip to the player via web server. Apache was used for the purpose of
this demonstration. Its primary job is to transmit the file (video clip) across the network upon receiving
the GET request from the client. Thus, the web server is unaware of the encoding of the video file.

To give higher priority to video traffic, we have prioritised all traffic which goes through the http port (i.e.
port 80). Best effort traffic is generated using Netperf via different ports (other than port 80). TCP was
primarily used as the transport protocol in all our experiments. RTP/RTCP which normally runs over
UDP was not used for this demonstration. In addition, the video clip was encoded prior to the streaming
as the web server doesn’t encode the video stream in real time.

4.3 Experiment 1: Video without VQML

The aim of this experiment is to demonstrate that the required bandwidth for the privileged flow cannot
be maintained in the standard WLANs without VQML.

The video stream is established from Dell to Willow via gateway Dot. Whilst video is running, best effort
traffic is also generated from Sharp to Willow. Since the external link has a greater capacity than the
wireless medium, any degradation in the video quality would be strictly due to the wireless medium being
congested and not the external link. In this experiment, VQML is not implemented, and hence we do not
adjust inter-frame gaps of video and best effort flows.

 12

Frame rate (frame/sec)

0

5

10

15

20

25

0 50 100 150 200 250

Time Elapsed (Second)

F
ra

m
e

R
at

e
(F

ra
m

e/
S

ec
o

n
d

)

Frame rate (frame/sec)

Figure 6: The video playback frame rate as time elapsed (without VQML)

Bit rate (kbit/sec)

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

Time Elapsed (Second)

B
it

 R
at

e
(k

b
it

/S
ec

o
n

d
)

Bit rate (kbit/sec)

Figure 7: The audio playback bit rate as time elapsed (without VQML)

 13

First we examined the perceived QoS of the video. We focused on picture detail, video smoothness, and
audio quality. We found that video and audio streams were out of lip-sync and the video was quite
“jerky”. Second, we recorded video playback frame rates and audio playback bit rates as time elapsed.
Video frame rates and audio bit rates are shown in Figures 6 and 7, respectively. As we can see, video
frame rates and audio bit rates drop drastically as file transfer traffic contends for wireless bandwidth.

4.4 Experiment 2: Video with VQML

The objective of this experiment is to demonstrate that the required bandwidth for the video can be
maintained in the wireless medium with the use of the VQML protocol. We have the same experimental
set-up as in the previous experiment, except VQML selects a smaller (50% less) inter-frame gap for the
video traffic.

Frame rate (frame/sec)

0

5

10

15

20

25

30

35

0 50 100 150 200 250

Time Elapsed (Second)

F
ra

m
e

R
at

e
(F

ra
m

e/
S

ec
o

n
d

)

Frame rate (frame/sec)

Figure 8: The video playback frame rate as time elapsed (with VQML)

This time, the perceived quality of video was excellent. The video and audio streams were lip
synchronised and there were no “jerkiness” during playback. Figures 8 and 9 shows the video frame rates
and audio bit rates. As can be seen, we were able to maintain the original frame and bit rates at playback.

 14

Bit rate (kbit/sec)

0

50

100

150

200

250

0 50 100 150 200 250

Time Elapsed (Second)

B
it

 R
at

e
(k

b
it

/S
ec

o
n

d
)

Bit rate (kbit/sec)

Figure 9: The audio playback bit rate as time elapsed (with VQML)

5 Related Work

Veres et al. [1] proposed two distributed estimation algorithms to provide service differentiation for delay
sensitive and best-effort traffic. The Virtual MAC (VMAC) algorithm works by passively monitoring the
radio channel and estimates locally achievable service levels. The Virtual MAC estimates key MAC level
statistics related to service quality such as delay, delay variation, packet collision and packet loss. The
Virtual Source (VS) algorithm, on the other hand, utilises the Virtual MAC to estimate application level
service quality. The Virtual Source allows application parameters to be tuned in response to dynamic
channel conditions based on “virtual delay curves”. We provide a comparison of VMAC with VQML:

� VQML is a software-based intermediate layer between MAC and networking layer to provide QoS

support. This contrasts to VMAC which essentially modifies the MAC algorithm in order to form a
fully distributed wireless differentiated services network.

� Distributed virtual algorithms require a distributed, differentiated service capable MAC which implies
that it requires modification to the wireless card’s device driver. This contrasts to VQML, which does
not require any modification to the device drivers, and hence VQML provides a cross-platform
protocol architecture which interoperates with any wireless MAC protocol.

� VQML provides a seamless interface for communication and hides the details of MAC protocol. Thus,
as we port the architecture on top of different MAC protocols, only two units require changes. They
are, namely, the UPI and DDI. This contrasts to VMAC which mandates significant changes to the
device driver in order to adapt to different wireless MAC protocols.

� Because VMAC was implemented within the device driver of the wireless device, it can not be
seamlessly ported to other wireless devices. Thus, the algorithm must be completely re-written for
each wireless device. VQML, on the other hand, is less restricted in this regard as it is not aware of

 15

the underlying MAC protocol. Hence, it provides a seamless interface for communication and can
easily be ported to different wireless devices.

� There is an advantage, however, of implementing the algorithm in the MAC layer. VMAC is capable
of capturing all “overheard” layer two transmissions (e.g., CTS, RTS, ACK packets, even with CRC
errors). Hence, it is capable of correlating these data into useful traffic statistics and thus providing
service differentiation for delay sensitive and best-effort traffic. VQML, on the other hand, lacks
these functionalities. It cannot estimate the availability and the utilisation of network resources since
it does not collect traffic statistics from the network.

6 Conclusion

We have designed, implemented, and tested a virtual MAC layer, called VQML, to provide MAC
independent QoS to multimedia applications over wireless LANs. The tests were carried out for video
streaming applications. Our results show that VQML can achieve good QoS for the video application in
the presence of background file transfer traffic.

Acknowledgement

The project was funded by a UNSW University Research Support Program (URSP) grant, 2001.

References

[1] A. Veres, A. Campbell, M. Barry, L.H. Sun, “Supporting Service Differentiation in Wireless
Packet Networks using Distributed Control,” IEEE JSAC, Vol. 19, No. 10, 2001.

