Active Protocol Label Switching (APLS)

William Lau and Sanjay Jha
Network Research Laboratory
School of Computer Science and Engineering,
The University of NSW, Kensington Sydney 2052 Australia
wlau,sjha@cse.unsw.edu.au

UNSW-CSE-TR-0207

July 2002

THE UNIVERSITY OF
NEW SOUTH WALES

] ]
5
2 [ |

S

SYDNEY-AUSTRALIA



Abstract

Modern layer 3 networking technologies have mainly been designed
for performance and for network providers. This report proposes a new
network architecture called Active Protocol Label Switching (APLS)
that combines the performance of current label switching technology
with novel concepts that cultivate service provisioning. Novel features
such as Virtual Label Space, APLS micro-instruction architecture, and
micro-policy based forwarding provide a more powerful network model,
facilitate better network level service engineering, and give tremen-
dous flexibility to both network and service providers. The thrust
of our study is to construct an APLS test-bed using open hardware
and software and later use this test-bed for experimenting various fea-
tures/options available with APLS.This report also describes our pro-
totype implementation of APLS under Linux.



1 Introduction

Information, the origin of knowledge and the heart of decision making. The
world is now in the age where having the right information at the right time
means money, power, and even to the point of saving life. The past decade
has seen a rapid change in the way information flows and one of the most
influential seen today is Computer Networks.

The Information Technology (IT) boom over the past decade has changed
the way Internet is structured and used. The Internet now connects mil-
lions of computers together comprising a very diverse range of networking
technologies, computer technologies, and wide geographical coverage. The
advances in technologies have seen great improvement in bandwidth with
Cable, ADSL, Satellite, and Optical solutions. Wireless (WLAN) and mo-
bile technologies (GPRS, 3G) have also gathered paste, and it will not be
long before ubiquitous access to the Internet becomes a reality. The con-
sequence of these technological advancement is the change in applications
of the Internet. Recent new applications include Virtual Private Networks
(VPNs), file sharing, instant messaging, and video broadcast etc. The future
will see integration of more variety of sophisticated services into the Inter-
net, therefore, the next generation of Internet applications will be service-
oriented.

This project puts faith in giving the network a larger role to play in
service provisioning and focuses on changing the IP model to become more
service-oriented. This requires introduction to a new label switching tech-
nology called Active Protocol Label Switching (APLS). APLS is designed
on top of IP for large scale service provisioning and delivers a model where
the network providers delegate label space and traffic engineering controls to
service providers. The result is a more flexible label switching architecture
that highly promotes service provisioning inside the network itself thereby
creating a powerful basis for value-added facilities.

The road map for this paper is as follows: First, the basis for a service-
oriented network will be analyzed in Section 2, followed by the design of
APLS in Section 3. The implementation of a prototype on Linux is explored
in Section 4 and related works are discussed in Section 5. Finally, the
conclusion is given in Section 6.

2 Service-Oriented Network

The modern Internet comprises of hundreds of thousands of services. These
services range from community services to commercial services and may in-
clude a hybrid of free and fee based. Examples of services are: stock trading,
online banking, online shopping, online gaming, audio/video streaming, file
sharing, IP telephony, and more recently Video On Demand (VoD). What



has made Internet such a successful and attractive medium for services?
Lets analyse what the Internet means to the businesses and to consumers.

2.1 Businesses and Consumers

The virtual world that Internet creates provides many opportunities to ex-
isting and new businesses. These opportunities sprung from:

e Business reach: Location on a virtual world is not important any-
more, the only restriction is location of the real world where red tape
(legislation, tax etc.) exists. It is easy for business to reach customers
on all corners of the Internet provided they successfully advertise to
targeted consumer base (knowledge of their existence). Internet has
made Internationalisation easier.

e Relatively low operational costs: Internet provides many oppor-
tunities for businesses to lower their operational costs. One example
would be self-service business websites where services can be auto-
mated and utilised 24 by 7. Business can also lower resources cost as
evidenced in financial sites that provide electronic copies of prospectus
and forms. The savings here is the reduced print, mail, and staff costs.
For Internet based businesses, lower operational costs are even more
apparent. These businesses do not need to have branches in different
geographical locations to reach consumers. The result is lower office
lease cost, less redundancy and better utilisation of employees, and
lower inventory cost because stock does not need to be piled up in
different locations.

e Location Flexibility: The position the business resides in the vir-
tual world is tied to the Internet domain name rather than physical
location or host. Therefore, it would be relatively simple to move phys-
ical location without affecting consumers’ reachability of the business
on the Internet' The change in IP address mapping to Domain Name
space is relatively fast and a temporal redirection server for the old IP
address can be arranged to smooth out the transition

e B2B communication: The reachability of Internet also means po-
tential for business to business dealings on the Internet. Suppliers
can automate up-to-date electronic price quotes while buyers can also
place orders electronically. One example would be the mobile business
where mobile dealers can activate new phone numbers through the
Internet.

e Low cost and efficient information distribution: The Virtual
Private Network (VPN) [1] concept provides opportunities for business




to improve information distribution within the organisation and also
potentially lowering the cost for such a information system. VPN
allows secure communication between business sites and also for secure
access to business sites through employee’s home. Mobile employees
(e.g. sales staff) can access up-to-date and secure information on the
move by using the wide accessibility of the Internet.

From the consumers’ perspective, the Internet provides certain values:

e Easy access: It is now easy to get access to the Internet. Access can
be from the home computer, office computer, or the popular trend of
Internet Cafe.

e Easy reach: Location on a virtual world is not important anymore,
the only restriction is location of the real world where red tape (leg-
islation, tax etc.) exists. Therefore, it is easy for business to reach
customers and easy for customers to reach the business in this virtual
world.

e Service speed: Electronic transactions and queues are relatively
faster than personal transactions in the real world.

e Convenience is the key to a lot of successful services on the Internet.
Easy access and easy reach unites to give a convenience not achievable
by other mediums. Consumers can now access services from at a loca-
tion that suit them and the only restriction is that the location must
have access to the Internet. With next generation of mobile and wire-
less technology already being deployed, this restriction will become
more and more insignificant.

The potential for Internet services is restricted by the technology that
makes up the Internet. Conventional philosophy is to fit the services around
the Internet but the philosophy in this project is to analyse the opposite, that
is, how the Internet should evolve into a service provisioning internetwork.

First, a new term called Service Engineering is introduced to define the
area of formalising the way in which services are developed and implemented
over the Internet. Service Engineering consists of two components:

e Application Level: This area focuses on improving services support
at the application level. This includes OS support, third party software
support, and the service application itself.

e Network Level: This area focuses on improving services within the
network. This can range from better QoS support to Active Pro-
grammable Network [2] (APN) support.



Current Service Engineering on the Internet only have Application Level
Support since the current network model offers only best-effort forwarding.
This paper focuses on Network Level support only.

In the following sections, the characteristics of service applications will
be investigated and then various new service provisioning network models
will be presented and analysed. The results will give the basis for forming
an improved network model for service engineering at the network level.

2.2 Service Application Characteristics

Investigating the characteristics of service applications on the Internet will
show a broader picture of what are the requirements for a network to become
service-oriented.

1. Simple versus Complex transaction: Simple transaction consists of one
request /response transaction and only spans for a very short duration
(a few milliseconds). In other words, it is a stateless transaction. A
simple example is the credit card payment.

Complex transaction consists of multiple requests that are dependent
on each other. The transaction may involve more than two parties
e.g. third party certificated transactions. Other examples are secure
financial transactions, video streaming, and interactive services.

2. Session-oriented versus non-session-oriented: Session-oriented service
requires a session to be established between the client and the service
Provider. Examples of such services are ones that require client log
in, like Internet Related Chat (IRC) or online magazine subscription.
Each session consists of multiple transactions. Transactions are oper-
ations that make up a service. Complex transaction based services are
normally but not necessarily session-oriented. Non-session oriented
services normally consist of a one-off simple transaction. Examples
are credit card payment or form submission.

3. Low bandwidth versus High bandwidth transaction: Depending on
the complexity of the service, transactions may require relatively low
bandwidth or high bandwidth. Note that the term low/high can be in
relation to percentage against network capacity.

4. Real-Time sensitive versus Real-Time insensitive: Real Time (RT)
services are sensitive to delays or jitters in the network. Bad response
time of the server in RT sensitive services can make data obsolete or
may affect the outcome of the transaction. Examples include video
streaming, IP telephony, and online trading. RT insensitive services
do not have stringent requirements for response and data transmission
time. However, clients will have certain expectation of the service’s
response time e.g., online banking.



5. Static versus Dynamic Content: Static contents refer to information
that remain the same for a relatively long period of time. Some exam-
ples of static contents are magazine and video on demand. Dynamic
contents are information that changes consistently over a short period
of time (seconds to minutes). Examples include video conferencing,
live broadcast, online trading.

6. Unicast versus Multicast: Almost all of the services available on the
Internet are unicast services. Unicast means transactions that involve
one client and one Server at a time. In Network overlay model, it is
possible for the main server to redirect the request to another server
but this is still considered as unicast since the rest of the transaction is
still one to one. Multicast refers to transactions that involve many re-
ceivers and one sender. The clients are normally the receivers who join
a multicast group. The multicast group gets served by one server who
sends data. In more complex multicast protocols, multicast groups al-
low more than one sender hence multiple servers. Examples are online
gaming and live broadcasting.

2.3 Service Provisioning Models

Service Provisioning Models show the different ways that services can be
delivered on the Internet and what role the stakeholders have in the pro-
cess. The stakeholders are listed below followed by introduction to the four
existing types of service provisioning model: Client/Server, QoS, Network
Overlay, and Active Networks.

2.3.1 Service Provisioning Stakeholders

There are three main parties in service provisioning: the Client, the Service
Provider, and the Network Provider. The definitions of these parties will be
given here and used thereafter in the rest of this report. The Stakeholders’
relationship and expectation of each other are also put into perspective.

e The Client: The Client is the consumer that pays for using a partic-
ular service over the Internet. Client will expect services to come with
low setup delay and minimum setup complexity. The service provided
should meet the minimum level of expectation of the consumers in
terms of performance, accessibility, and service support.

e The Service Provider: The Service Provider provides a particular
service to the client. Service Providers do not provide raw networking
services to the Client even though it is possible for service provider to
be involved in reselling of some networking services.



Service Provider would like to have the ability to deploy their services
faster for new clients and to be able to scale the services to a growing
client base. The deployment, scaling, and operational costs are a big
factor to realise a feasible service. The rapid change in consumer
trend, taste and fashion will require Service Providers to be robust
and dynamic. They must be able to respond to the client’s demand
or even create new markets.

e Network Provider: The Network Provider is considered as the owner
of the network for which the clients or service providers use to access
the Internet. It also applies to the owner of the network that the
service’s data transit through. Network Providers have two types of
client. The first type is the end-host consumer that requires access to
connectivity to use the Internet services. The second type is the Ser-
vice Provider that requires networking resources to service its clients
in the network or to transit through the network.

Network Providers need to have a network technology that can meet
the expectations of the Client and Service Providers. Network provi-
sioning is a commodity business where revenue from raw networking
resources such as bandwidth is lower with increasing competition as
evidenced in the current industry. Therefore, Network Providers need
to use technologies that offer not just increases in capacity, but also re-
ductions in the operational costs and generation of new revenue sources
by supporting new services.

2.3.2 Client/Server Model

This model is the most widely used on the Internet. The model basically
contains a client end-host that requests for a service from a server end-host.
The Internet is just a medium to transports the request and response data.
This service model is illustrated in Figurel. In this model, the Internet
does not offer any special functionality that the service can utilise. The
Internet only provides best effort forwarding (no differentiation of traffic)
and requires servers to adapt to the Internet environment between itself and
the client. Therefore the Internet is considered orthogonal to the service.

This model is primarily designed for services that are simple in transac-
tion (request-response) or are RT insensitive.

2.3.3 QoS Model

A lot of research has gone into extending the IP model with Quality of
Service (QoS). This QoS model requires the network providers to provide
some form of QoS mechanisms that the service providers can incorporate into
their services. This introduces dependency on the network and thus Internet
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now becomes part of the overall service. This service model as illustrated
in Figure 2. In this model, support for services is generalised in classes or
Type of Service (ToS). Each class/ToS will have a distinct behaviour and
support within the network. Service providers have some control over the
behaviour through specification of parameters.

This model can enhance services that use the client/server model and
also gives support for real-time sensitive traffic. QoS mechanisms are mostly
session-oriented and thus are more suitable for session-oriented services. The
most promising QoS approaches have been the flow-based Integrated Ser-
vice Architecture (IntServ)[3] and the flow-aggregation-based Differentiated
Service Architecture (DiffServ)[4, 5].

2.3.4 Network Overlay Model

This model contains three components: the client who requests for the ser-
vice, the Main Server that the client initially sends the request to, and the
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Resource Facilities (RF) that are strategically allocated at different edge
points of the Internet. Normally, the RF will contain servers dedicated to
respond to the client. The RFs are usually maintained and deployed by the
service provider. In this model, the Internet is not part of the service since
it acts as the best effort transport medium.

The intention is to improve QoS provided to the client. This network
overlay can provide some form of load balancing and content caching. If
RF is allocated physically closer to the client then response time can be
improved and bandwidth overhead in the network can be reduced. Services
with high bandwidth, static content, or multicasting will benefit from this
model. Network Overlay is also a good model to support multiple-party
complex transactions.

Figure 3 shows an example of a video streaming service using this model.
The client requests to the main service center (main server) which then
redirects the request to a server that will best service the client. The chosen
RF’s server starts the video stream to the client.

The QoS model can be combined with the Network Overlay model to
realise a more powerful service provisioning model. A more sophisticated
technology that uses the network overlay model is Grid Computing [6, 7].

2.3.5 Active Programmable Networks Model

APN [2] allows service provider to utilise special computation inside the
network. APN also aims to give restricted forwarding and routing control
to the service provider. The result is the potential to enhance all types of
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service as well as better support for deployment of new services.

Figure 4 illustrates a service provider using value-added processing in
strategic locations in the Internet. An example of value-added processing
could be modifying the request for load balancing and content caching.

Safaei et al. [8] proposes an APN model where the network providers
provide resources inside the network. These resources can in turn form a
more efficient network overlay structure than the Network Overlay model.
In this approach, the network provider owns and maintains the network
overlay resources. This means that service provider will not have to bear
the cost to maintain or deploy the resources thus making the model more
affordable to a larger range of services. Multiple service providers can use
the same set of resource thus increasing utilisation while receiving benefits
from economy of scales. Since the network providers deploy the resources for
general service use, they will deploy at more locations than if deployed by the
service provider. This means that the service providers can take advantage
of the increased flexibility (use what they need only) and coverage (use where
it is needed).

2.3.6 The Ideal Model

The ideal model for service provisioning must focus on criteria such as:
flexibility, control, scalability, and performance.

1. Flexibility allows the network to rapidly adopt to the latest trends of
services that comprise of different combination of characteristics. The
future beholds the unexpected.

2. Control is in respect to controlling network resources. There are two
aspects of control. The first aspect is in perspective of the network
provider where control is needed for traffic engineering and providing
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differential service. The second aspect is in perspective of the ser-
vice provider. The ideal model should provide some level of delegated
control of the network to the service provider to increase their respon-
siveness to their clients. By giving control to the people with the right
knowledge about the traffic, the network has the potential to be better
utilised.

3. Scalability and performance goes hand in hand. While providing mech-
anisms for flexibility and control, the service model should not sacri-
fice performance. The service model should also perform in all net-
work sizes including interoperation in the Internet. As the number of
supported services in the network increases, the level of performance
should not deteriorate significantly. Performance deterioration should
be a by-product of supply (network capacity) versus demand (number
of users) function.

Future networks should also provide value in the users’ context rather
than just in the traditional context of the network provider.

The simple client/service model offers performance and scalability but it
lacks flexibility and control. The QoS model offers little flexibility (flexible
in QoS parameters only) but provides excellent resource control to provide
differential services. However, it does not offer (in fact not designed for)
traffic engineering control nor does it delegates control to service providers.
Scalability of QoS architectures is yet to be proven.

The network overlay model is more of a supplementary model that can
enhance scalability and performance to certain applications. The APN
model offers greatest flexibility and has good potential for control but the
concept still needs to be proven for scalability and performance.

The complete solution for an ideal model is too large to be proposed,
designed, or implemented by a single researcher or small group of institu-
tions. What has made the Internet today is the specialisation of researchers
and developers from different fields combining their efforts to form the big
picture. Thus the approach taken in this project is to design a flexible core
service provisioning network architecture that can be extended to incorpo-
rate new technological improvements. This core architecture forms the basis
for scalable performance while promoting mechanisms to extend the network
model for flexibility and control.

3 Design of APLS

The objective of this project is to propose a network architecture that resem-
bles the ideal model for service provisioning. This will involve not just the
conventional issues of performance and scalability, but also flexibility and
control. Label switching technologies have shown great potential in terms
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of scalable performance as well as ability to support QoS mechanisms [5, 9].
Numerous research on traffic engineering over MPLS [10, 11, 12, 13, 14]
show promising use of label switching for controlling traffic. Therefore, label
switching was chosen to form the base for the proposed network architecture
called Active Protocol Label Switching (APLS).

ATM was designed with integration of both traffic and QoS in mind thus
resulted in a complex and inflexible architecture. In contrast, MPLS pro-
moted a simpler approach that gained flexibility by separating QoS mech-
anisms from the base forwarding core. Instead of designing a completely
new label switching architecture from scratch, the general label switching
concepts from MPLS are retained while several new concepts are introduced
into the architecture which together creates a service-oriented network. The
novel concepts proposed for the architecture are: APLS over IP, Virtual
Label Space, Micro-Instructions Architecture, and Micro-Policy Based For-
warding.

3.1 APLS over IP

Label switching has traditionally been seen as a separate technology from IP
but one that can support the IP protocol. MPLS is designed as a shim layer
between layer 2 (L2) and layer 3 (L3). The motivations of this approach
are:

1. Support for converging multiple network protocol traffic onto the same
network. This is one of the major selling point for MPLS and for ATM
in its early days. Converging traffic into one network will eliminate
the need to maintain several networks in parallel thereby reducing
operational and infrastructure costs [15, 16] for network providers.

2. Frame relay and ATM operates at the same layer, therefore, migrat-
ing from these legacy networks are relatively easier technically. Many
works [16, 17, 15] are already done on achieving migration and inter-
operation.

During the design of APLS, this fundamental attribute of MPLS was
challenged and an alternative position was proposed. The proposed position
for the shim layer is between the network layer and the transport layer
as illustrated in figure 5. The direct consequence of this radical change
is that APLS is now dependent on the network layer. Although APLS
can be generalised to work over different network layers, this project will
focus specifically on APLS over IP. The reasons are that IP is the protocol
expected to dominate networking traffic in near future and that IP is a
subnet independent protocol layer which is already running on many high
performance subnets.

Fig. 6 shows an abstract APLS packet format.
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Figure 5: MPLS and APLS Protocol Stack
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Figure 6: Abstract APLS packet format

First, the advantages for using this alternative approach in APLS:

1. Being on top of IP, APLS can exploit the IP header fields that are
usually redundant for IP over MPLS (or IP over ATM). Two fields
that APLS utilises are Time-To-Live (TTL) and Differentiated Ser-
vices Code Point (DSCP). The result is a reduction of label size or an

increase in the label space. It is also possible to use the checksum field
in IP if per hop checksum in APLS is desired.

2. APLS network supports normal IP forwarding in parallel with label
switching. This is made possible because APLS labels are placed after
the IP header. The Label Switch Routers (LSRs) will determine from
the IP header (via a flag in the IP header) whether a packet requires
APLS forwarding or the default IP forwarding. Packets requiring la-
bel switching will bypass normal IP forwarding components and are
handled by APLS.

3. Network providers can incrementally deploy APLS within an IP net-
work. Label switching architectures that work below the network layer,
like MPLS, requires setting up an entirely new separate network in
parallel with existing IP network. This can lead to substantial cost
for upgrade and for maintaining two networks. The results are higher
cost and complexity. APLS on the other hand, allows the LSR to
be diffused into the network incrementally. Following the traditional
upgrade process (Ring Effect in figure 7) of network providers, new
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high speed APLS LSRs will be deployed in the core and the replaced
IP routers will be pushed towards the edge. At this point, the APLS
LSRs will only support high speed normal IP forwarding. Once enough
LSRs are deployed, network providers can start setting up APLS LSPs
to utilise the performance advantage of label switching.

4. APLS can support simple and safe migration from IP to label switch-
ing. Incremental deployment and coexistence with IP means that net-
work providers can experiment with APLS before moving commercial
traffic to label switching. The process involved in migrating traffic
from IP forwarding to APLS forwarding is simple. Once the ingress
LSR are setup to map a FEC to a LSP, all packets in that class will
start being label switched. If problems occur, the FEC can be removed
and the traffic for that FEC will revert back to normal IP forwarding.
This simple recovery process makes migration relatively safer. Sim-
ple and safe migration give network providers motivation to speed up
adoption of APLS.

5. If TP network and APLS network are left to coexist then network
providers can take advantage of the robust IP network for backup
during fault scenarios. This allows traffic to continue to flow while
affected and problematic LSPs are re-established.

The major disadvantage of APLS is that it supports only IP protocol.
However, this downside may not be too significant for the following reasons:

1. IP currently have already dominated network traffic and the growth
of the Internet will see IP completely dominate the traffic in just a few
years time [18]. IDC research [19] indicates that Internet traffic will
surpass voice traffic in 2002 and will be eight times more than voice
traffic by 2005.

2. Different network protocol traffic can be transported over APLS. The
cost of this method is the addition of a dummy IP header. Considering
the percentage of the traffic that requires this additional overhead
and the gradual phasing out of legacy networks, the network cost is
minimal and temporary.

3. APLS can also interoperate with popular legacy networks like Frame
Relay and ATM easily due to the label similarity between these tech-
nologies.

4. Amdahl’s Law:

Optimize the Common Case.
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Figure 8: MPLS Label

In the short-medium term, MPLS’s approach will take advantage over
APLS for supporting the still significant non-IP networks. However, in the
medium-long term, APLS’s approach takes advantage of MPLS.

APLS will need to be transparent to the user therefore the method that
distinguishes an IP packet from APLS packet must not require end-host
involvement. The best solution is to use a dedicated bit flag in the main IP
header and a good candidate is a unused bit in the TOS/DSCP field. An
alternative is to use the IP options, however, this becomes problematic when
firewalls and encryption mechanisms (IPSec) are added to the equation.

When LSR receives a packet, it checks for version of IP and then checks
whether it is an APLS packet. At this point, the packet should be either
passed on to the APLS layer for label switching, or is forwarded by normal
IP.

3.2 Virtual Label Space

The MPLS label [20] is shown in Fig.8. MPLS uses a flat label space, that
is, the label space is just an identifier with no embedded structure.

ATM has a hierarchical label space consisting of two parts: VPI and
VCI. The VPI component can be used for aggregate forwarding of a group
of VCIs. The label by definition is the label switching architecture’s protocol
header. Like any other protocol, it may contain various fields and one of
the most important one is the label space. Label space refers the field that
is used as the key? for looking up forwarding information inside the LSRs.
It is also the field that gets swapped with another identifier that is the key
to the next LSR.

The current label switching network providers all inherit high operational
costs to setup and maintain label paths (circuits). Service providers that
leases label paths not only will get passed part of these costs, they will also
incur further cost for interacting with the network provider. This interaction
introduces longer delays to realise the requests.

Due to business confidentiality or security reasons, service providers may
not be able to give network providers sensitive traffic information needed to

2QoS fields may also be used
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customise the network to better meet their demands. The black box na-
ture of modern network limits service providers’ knowledge on the current
conditions of the network. As a result, no one has the complete knowledge
required to better utilise the network or reduce cost. As mentioned in sec-
tion 2.3.1, Service Providers need the responsiveness from network providers
and the lower operational costs to make the service feasible.

A novel concept proposed here is called Virtual Label Space (VLS).
VLS aims to solve this problem by making the network more open to the
service provider. This will not only reduces cost for both parties but also
results in better utilisation of the network. VLS introduces a hierarchical
label space consisting of 3 components:

e Service Identifier(SID): For each service provider registered with
the APLS network provider, a unique service identifier is allocated to
the service provider. The owner of the service identifier has control of
the Effective Virtual Space (EVS) consisting of the rest of the VLS.
The SIDs are global within the APLS domain and will not be switched
between LSRs. SID is the means for identifying the service provider and
the associated privileges. SID 0 is allocated for the network provider’s
general traffic.

e Aggregate Identifier(AID): This aggregate identifier works in a sim-
ilar way to that of the VPI in ATM for the purpose of aggregate for-
warding.

e Flow Identifier(FID): This identifies a unique data flow within the
aggregate flow.

From perspective of the service provider, the whole label space of the
network consists of the AID and the FID while the SID is just a number for
identification. The service provider is exposed to a virtual label space while
the network provider may control the real label space that consists of SID,
AID, and FID.

Figure 9 illustrates the VLS components and the generic lookup method
for VLS. SID is used as an index into the table of EVSs and the entry points
to the table of aggregates. The AID is use to index the aggregate table to
get the AID entry. If this AID is activated for aggregate forwarding, the
entry will contain the forwarding information. Otherwise, the entry will
point to the table of flows. The FID then indexes into that table and the
entry contains the forwarding information.

The purpose for the SID is to allow delegated label switching control
to the privileged service provider. Consequently, this potentially opens up
every LSR for service provider to control (unless control is disabled by the
network provider). Following are the advantages of this approach:

e Service Providers can do its only traffic engineering, that is, manipu-
lating LSPs.
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e The granularity of control is per VLS label in each LSR, therefore,
offers unprecedented flexibility. Examples of flexibility such as QoS
and APN support are described in section 3.3.2.

However, the flexibility has some disadvantages as discussed below:

e Security issues in respect to delegating control. This involves general
security issues such as authentication and access control, and new issues
that come into play e.g. limiting damage that non-conformance use of
VLS can do to the network.

e The need for complicated resource management. There is limited re-
source in each LSR hence some way of allocating resource are needed.

e SID increases label overhead.

VLS offers new flexibility into label switching and the only restrictions
come down to security and resources. Both issues are beyond the scope of
this report.

3.2.1 Aggregate Forwarding

APLS uses a field inside the label space called AID for aggregate forwarding.
This concept is basically the same as VPI in ATM. The idea is to logically
group flows together (flows with same AID and SID) and switching them
as an aggregate flow. LSR that does aggregate switching only manipulates
the SID and AID fields thereby reducing the working set of labels and also
reduces the lookup time. Fig. 10 illustrates how aggregate forwarding works.
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Figure 10: APLS Aggregate Forwarding using AID

In this example, an IP packet heading to network 192.0.1.0 enters APLS at
Label Edge Router A (LER A). LER A maps the packet to the FEC that
specifies the LSP to use. The label in APLS is represented by 3 decimal
numbers separated by semicolons. The 3 numbers represent SID, AID, and
FID respectively. LER A adds the label 1:2:1 to the packet and forwards it
to LSR B which then performs lookup and swaps the label with 1:4:7 and
forwards the packet off towards LSR C. Consider LSR C as a hot spot for
traffic belonging to SID 1. Therefore, the service provider of SID 1 configures
LSR C to do aggregate forwarding for SID 1. LSR C will only use the SID
and AID part of the label for lookup and only the AID field will be swapped.
Since 1:4 is mapped to 1:3 in the aggregate table, the packet will have label
1:3:7 upon leaving LSR C. Once reached the LER D, the packet exits the
APLS network. Note that none of the LSRs in the network change the SID
in the label and all non-aggregate LSRs swap both the AID and the FID.

In APLS, aggregate forwarding is an optional mechanism where the in-
terpretation of the AID field can be optional. If network provider chooses
to a deploy APLS implementation that supports AID then it will be able to
take advantages of AID aggregate flow. Otherwise, the AID will be inter-
preted as part of the FID space.

VLS allows aggregate forwarding with subtle flexibility in contrast with
ATM. In respect to aggregate forwarding in ATM, a LSR is either dedi-
cated for aggregate forwarding (does it for all labels) or does normal label
forwarding only. VLS offers aggregation to be done at the granularity per
SID, that is, per service provider per LSR. Therefore, depending on the
service’s traffic pattern, the service provider can form customised aggregate
flow paths. Service providers can setup an edge to edge aggregate path if a
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traffic highway is desired. For example, in Figure 10, LSR C does not need
to be an aggregate LSR for other service providers, it is only the decision
made by service provider of SID 1 that labels of SID 1 are to be aggregate
switched at LSR. C.

MPLS supports aggregate forwarding via the use of label stacking. Label
stacking can be used to establish LSP tunnels in some part of the network.
By directing multiple LSPs to use the same LSP tunnel, aggregate forward-
ing can be achieved. If a MPLS packet’s top label (the label at top of the
stack) is mapped to a LSP tunnel, then this LSR is the entry point of a tun-
nel and the tunnel’s label will be pushed onto the packet’s label stack. As
the MPLS packet traverses through the tunnel, the intermediate LSR will
treat this packet as a normal MPLS packet and performs label switching
on the top label only. Once the MPLS packet reaches the LSR at the end
point, the top label is popped off and the next label on the stack is used for
label switching.

In contrast with ATM’s approach, label stacking does not require ded-
icated aggregate switches and have control at the granularity of per label
per LSR. ATM’s approach increase complexity since only the labels with
common AID can be aggregated together. This will require careful label
space planning otherwise aggregating will be difficult to achieve in the fu-
ture. However, the ATM approach is more efficient then using LSP tunnels.
LSP tunnels require at least one additional label overhead per packet that
traverses the tunnel.

In MPLS, labels used in different hierarchical levels belong to the same
label space. That is, incoming labels must be unique in the LSR regardless
of which hierarchical level it belongs to. The reason behind this behaviour
is that the operations done on the labels are independent of the hierarchical
level. Therefore, the scalability of aggregating in MPLS is limited by the
label space size.

Label stacking is a mandatory feature of APLS while AID support is
optional. APLS domains that support AID leave the decision to the service
provider to make i.e., which approach best suits its requirement.

Another possibility is to explore controlling aggregate forwarding at
granularity of per AID. This offers finer control to the service provider at
the expense of higher complexity.

3.2.2 APLS Label Stack

APLS’s label structure is different to that of MPLS. The positioning of
APLS over IP allows APLS to utilise the IP header to its advantage. The
APLS label consists of two components, the label space and the auxiliary
space. Figure 11 shows the APLS label makeup.

The label space is the VLS that identifies the LSP and it is hierarchically
structured into SID, AID, and FID. SID determines the number of service
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Figure 11: APLS Label Specification

provider that APLS can lease VLS thus the size of SID defines the scala-
bility of the network in terms of service provisioning. The combination of
AID and FID gives the effective label space that service providers can work
with. This determines both the scalability of the service using VLS and the
APLS network. With the rate that Internet is growing and the potential it
offers, it would be a disaster for any network technology to under estimate
the scale the Internet and services in the future (e.g. IPv4 address prob-
lems). Therefore, APLS label is designed more generously to assure future
scalability. SID is defined to use 24 bits which means theoretically, APLS
supports up to 16777215 VLSs. The effective label space given to service
providers to control is defined to be 32 bits. With the support of LSP-tree,
12 bits more than MPLS’s, and 4 bits more than ATM’s, service providers
can be assured that scalability is not an issue of the network architecture,
but rather the hardware itself.

The auxiliary space currently consists of two sub-components: the S flag
and the EXP bits. Like MPLS, APLS supports label stacking. The one bit
S flag resembles the bottom of stack status field in a MPLS label. The EXP
field consists of the remaining 7 bits that are reserved for potential use by
future enhancements.

Time-To-Live (TTL) field as seen in the MPLS label is not needed in
APLS since the IP header already supply this. DSCP field in the IP header
can be used to implement QoS on APLS without the need to use the EXP
field. EXP can be used to enhance the limitation of the small DSCP field.

Using the IP header field will have consequences and the most significant
of these is the invalidation of the checksum when TTL or DSCP is modified.
One choice is for every LSP hop to redo the checksum of the IP header but
this will increase processing overhead of label switching. The other choice
that is chosen by APLS is to delay re-validating the checksum until the
packet exits from the APLS domain. The advantage is that core LSRs do
not do checksums and these checksums are only done at the less critical edge
area of the network.

To reduce label overhead when using label stacks, SID does not need to
be included in labels other than the label at the top of the stack. This is
because SIDs are global within the APLS domain (or Autonomous System).
Thus non-top label entries are 40 bits each. Switching SID within the APLS
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domain will not be allowed due to the need to isolate VLS from each other.
If the service provider has VLSs in two adjacent APLS domains, then it is
desirable for APLS to allow SID switching across APLS domains.

3.2.3 Multiple Data Structure Support

This is another optional feature of APLS. It is possible for network providers
to offer service providers control of their own label data structures. The main
advantage to the service provider is in terms of performance. Separating
data structure reduces the average lookup times for packets belonging to
the SID. This is achieved through breaking away from the large default data
structure. Network provider can offer a range of data structures with each
data structure catering for different conditions. E.g. a large service provider
will use a larger part of the EVS thus it will choose a data structure that
performs the best for that scenario.

Further research needs to be done in analysing what effect supporting
multiple data structure will have on the LSR as a whole.

3.3 APLS Micro-instructions Architecture (AMIA)

Micro-Instructions concept has been around for a long-time, mainly used in
computer architectures. The goal is to offer a set of simple instructions that
can be combined to form a more complex and higher level set of instructions.
What Micro-Instructions can offer to APLS is flexibility to reconfigure label
operations. The application of Micro-Instructions to label switching archi-
tecture is not new. A MPLS implementation in Linux[21] uses a form of
instruction set label operation architecture. However, Micro-Instructions is
not part of the MPLS architecture design and is not generalised offer more
then just implementation flexibility.

APLS Micro-instructions Architecture (AMIA) is novel in its generalised
application to label switching. The objective of AMIA is to give flexibility to
customise label operations and the basis to integrate complementary tech-
nologies onto APLS networks.

3.3.1 AMIA Core Micro-Instruction Set

APLS core functionality is label switching thus the core instruction set in
AMTIA involves supporting the following basic label operations:

e POP: pops a label from the top of the label stack.
e PUSH: pushes a label in the top of the label stack.
e FWD: forwards the packet to the network interface.
e DLV: delivers packet to the IP layer.

Using the micro-instructions to form the basic label operations:
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e Core Switching: This is the operation of the core LSRs. First, the
LSR pops the top label off the packet’s label stack and then uses the
label to do the forwarding lookup. The resulting forwarding entry
contains the outgoing label, and the network interface to use. The
LSR then pushes the outgoing label onto the label stack and switches
the packet to the network interface. Thus the sequence of micro-
instructions are POP, PUSH, and FWD.

e Ingress Switching: This is the operation for packets entering APLS
networks. The ingress LER decides the FEC for this incoming IP packet
(routing decision). The FEC indicates the LSP to use which includes
the outgoing label and the network interface information. The LER
will push the outgoing label onto the packet’s label stack and switch
the packet to the network interface. Thus the sequence is PUSH and
FWD.

e Egress Switching: This is the operation for packets reaching the end
of the LSP. First, the LER pops the top label off the packet’s label stack
and then delivers the packet to the IP layer for IP forwarding/routing.
Thus the sequence contains POP and DLV.

e Penultimate Hop Popping: Penultimate LSR refers to the LSR
before the egress LER for the LSP. The Penultimate Hop Popping[22]
operation is the same as that of Core Switching except no label will
be pushed onto the packet’s label stack. Thus the sequence consists of
POP and FWD.

For performance, frequently used pattern of micro-instructions can be
combined into one complex micro-instruction. For example, ingress switch-
ing can be done with a micro-instruction and does both PUSH and FWD.

Sequence of micro-instructions is mapped to the FEC and Incoming La-
bel entry to define the label operation. IP packet entering the APLS domain
through a LER is mapped to a FEC that is associated with a sequence of
micro-instructions. The micro-instructions determine the forwarding be-
haviour of the IP packet which normally consists of pushing a label into
the packet and forwarding the modified packet to the next hop LSR. Upon
receiving an APLS packet, LSR finds the entry for the Incoming label using
the top label. The entry contains a sequence of micro-instructions that is
executed to forward the packet.

3.3.2 AMIA Extended Micro-Instruction Set

These micro-instructions are considered optional and is designed to support
complementary technologies. The only micro-instructions that are proposed
at this stage are for supporting QoS architectures and Active Programmable
Networks (APN).
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The micro-instructions i-APN and i-QoS instruct APLS that the packet
for this LSP need special processing. APLS will then invoke the handler code
that interacts with the complementary technology. For example, APN nor-
mally requires the use of more general processor to realise the programmabil-
ity thus the use of a separate processors for APN is highly possible. APLS’s
i-APN is an interface to invoke a handler to communicate with the APN.
The handler is implementation specific.

In this way, it is possible to enable and disable complementary technolo-
gies at a very fine granularity of per LSR per incoming label. This offers
another degree of flexibility into APLS. For example, it is possible to config-
ure selective LSRs within each LSP to use APN. If the last part of the LSP
have high error rate, APN that does Forward Error Correction (FEC) can
be setup at LSRs on that last part only. It is also possible to select which
LSP should use QoS and what type of QoS.

A discussion on supporting QoS and APN follows.

3.3.3 QoS on APLS

An example of how QoS can be integrated with APLS using AMIA is given
here. Per LSP QoS can be setup easily by using CR-LDP [23]. For each
LSR in the LSP, CR-LDP injects the i-QoS micro-instruction along with
QoS architecture specific parameters. Executing the i-QoS micro-instruction
invokes the QoS Handler with arguments such as the QoS parameters, EXP
bits, and the DSCP field of the IP header etc. The QoS Handler in turn
determines which output queue the packet lines up to.

3.3.4 APN on APLS

The standard problems when designing APN architectures is to identify
active packets(packets that needs special processing) and also identifying
which Execution Environment (EE) to serve the active packet. Various
prominent solutions are shown below.

e Reference approach: ANEP Protocol[24] uses Protocol Identifier
field in IP header to identify ANEP packet. The ANEP is a protocol
designed for APN support. It includes a Type ID field to demultiplex
between different EEs (different APN architecture). Nygren et al. [25]
and Wetherall et al. [26] use a similar approach which uses some header
to identifier the EE.

e Tag approach: Simple Active Packet Forwarding (SAPF)[27] intro-
duces a shim layer on top of the link layer. A tag is injected at the
front of the packet to demultiplex between EEs. The tag becomes a
global identifier for the EE in the network domain. In SAPF, IP is just
another network architecture implemented in a EE. Although SAPF
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reduces overhead and increase forwarding efficiency for active packets,
but it requires every packet within the SAPF network to use labeling.

e Connection-oriented approach: In this approach, a loose connec-

tion between the source and destination needs to be set up. Loose
connection means that the packet must traverse a selected set of APN-
enabled routers before reaching the destination. The loose connection
involves setting up states in the APN routers such that the packet will
be forwarded to the next determined place until reaching the destina-
tion node.
After the loose connection is established, the source sends IP packet to
the first APN router in the connection. When the IP packet reaches
the APN router, the router will lookup its connection state to see what
special processing is required and what is the next hop destination
which can be another APN router or the ultimate destination. When
forwarding to next hop, the destination address is switched with the
next hop’s destination address. The packet is then IP routed to the
next hop destination.

e Filter approach: PRONTO[28] and ORE[29] use filters such as UDP/TCP

port number or destination address to retrieve packets for the APN on
a per hop basis. Note that when the filter includes the source address
then it becomes very similar to the connection-oriented approach, but
the difference is that Filter approach does not include connection setup
mechanisms since it is per-hop.

The ANEP protocol resolve identification problems by introducing a
header on every active packet while SAPF introduce a smaller header (label)
for every packet in the network. SAPF is also very hard to deploy since it
requires every router in the network to be changed. The Connection-oriented
approach introduces complexity with connections including setup overhead,
but eliminates the need for a per active packet overhead. However, it has
scalability problems for supporting connections in large networks. The filter
approach does not require any header or control overhead as seen in other
approaches, but the downside is that granularity of control is very coarse.
Filter approach is also less intrusive since it offers transparency to the end-
host i.e. the end-host’s network software does not need to be modified.

APLS extends IP to become LSP-oriented and AMIA can control APN
behaviour at the granularity of per LSR within each LSP. The result is
that when setting up LSP, it is possible to also setup the use of APN for
that LSP. This incurs additional setup overhead but eliminates the need
for per packet overhead. Although granularity is not as fine as connection-
oriented approach, however, there is no scalability issue for LSP on large
network®. On top of this, APN on APLS offers transparency to the end-

3Scability issue for APN in general still exists e.g. when special computation speed is
slower then forwarding speed.
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Figure 12: APN support in AMIA

host but without sacrificing control.

Figure 12 illustrates APN on APLS. For each LSR on the LSP that is
selected to do special APN computation, i-APN is injected into the label’s
sequence of micro-instructions for that LSR. The sequence for the core LSR
B would be: i-APN, PUSH, FWD. This sequence means that APN will
do some content manipulation but would not override APLS forwarding
behaviour. If the sequence is like LSR C: i-APN. This means that the APN
will override the forwarding behaviour and thus forwards the packet itself.

To interoperate with other APN networks, APLS can also work with
ANEP. This will only require the i-APN to use a handler that understands
ANEP. The general concepts of APN on APLS remains the same.

3.4 Micro-Policy Based Forwarding
APLS like MPLS supports multi-path routing and multi-path forwarding.

e Multi-path routing: occurs when multiple LSPs are mapped to the
same FEC. This can be useful for traffic engineering, setting up LSPs
for backup, and load balancing.

e Multi-path forwarding: occurs when multiple outgoing labels for
same or different network interface are mapped to the same incoming
label. This can be useful to setup alternative partial paths for sections
of the LSP that frequently goes down, or for load balancing at critical
points in the network. Multicasting protocols can use this for creating
multicast LSP-tree[30].
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The MPLS standard does not define how these multi-path mechanisms
are used. Therefore, a Micro-Policy (MP) based approach is introduced
here. A list of labels is assumed to be associated with the FEC entry or the
incoming label entry. A MP function must be associated with this entry if
more than one outgoing label are mapped to the entry. The MP function
selects the outgoing label to use on per-packet basis. Due to the per-packet
execution nature, MP function must be small enough to run at wire speed.

Although it is possible to put some programmability to the network
through customisable MP functions, however, programmability is better
achieved with the Micro-Instruction Architecture introduced in section 3.3.
For high performance, MP functions would most probably be placed in
firmware in the routers. Thus a well-defined set of MP functions should
be offered to ensure flexibility. However, if Field Programmable Gate Ar-
rays (FPGAs) are used to implement the MP functions then it is possible
for network providers to customise the MP functions.

Examples of MP functions are:

e First in List: This is useful when backup LSPs exist but only one
LSP is ever used at a time.

e Round Robin: This is for a simple load balancing scheme.

e QoS: using part of the EXP bits in the APLS label to determine which
LSP to use.

e Statistical: using certain statistics of the LSR or the LSPs to de-
termine which path to use. This can be a power basis for dynamic
forwarding adaptation.

e Broadcast: use all the outgoing labels. This is for multicasting.

It is also possible to use MP functions that look into the IP header for
additional information for better decision making. For example, the DSCP
field can be used by the QoS MP function.

Requirements for Traffic Engineering (RFC2702)[10] suggest the use of
preference rules for multi-paths. In this approach, preference rules are ap-
plied to select a path during infrequent events such as path establishment
or failure scenarios. MP-based forwarding focuses on per-packet granular-
ity of control. In comparison, preference rules can be more heavyweight
but with a coarse grain of control whereas MP-based forwarding are more
lightweight but has finer grain of control. Rather than perceiving the two
approaches as competing with each other, these two approaches can com-
plement each other. A possible scenario is to use preferences rules to control
MP-based forwarding e.g., preference rules can determine which path goes
to the front of the path list when First in List policy function is in place. If
QoS MP function is in use, preference rules can determine the EXP bits to
LSP mappings.
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3.5 Controlling APLS

APLS is a forwarding architecture that needs to cooperate with other tech-
nologies to form a complete network architecture. The forwarding informa-
tion that APLS uses is controlled and distributed by the control architecture.
The control architecture can consists of multiple protocols that specialise in
different functions of control. For example, LDP may be used for distribute
labels, and RSVP-TE[31] may be used for resource reservation and traffic
engineering.

The introduction of service provider control into the forwarding archi-
tecture opens up several control-model possibilities:

1. All service providers use the same standard LDP. This LDP functions
as the automatic and dynamic distributor of labels. A RSVP-TE like
protocol will coexist to allow service provider to explicitly create LSPs
and use other traffic engineering functionalities. Manual logins to LSR
allows service providers to manually modify label behaviours on a par-
ticular LSR. Manual change will be necessary only if given protocols
cannot achieve certain requirements needed by the service provider.

2. All service providers use the same LDP but the LDP is designed for
APLS. This LDP should allow service providers to customise the de-
cision making process that involves their labels. This can be achieved
through the introduction of decision policy mechanism in the LDP. For
example, when LDP is attempting to distribute labels for the VLS,
the VLS’s decision policy should be used to determine what labels to
distribute. When receiving distributed labels information of the VLS,
the VLS’s decision policy should be used to determine what to do with
the labels.

It is possible to define a standard set of policies that service providers
can choose from and customise through parameters. More flexible ap-
proaches like service provider defined policies are also possible but raise
some security issues and complicate the LDP significantly.

3. Merwe et al.[32] introduced the idea of multiple control architectures
running on the same LSR. This allows service providers to deploy their
own control architecture for their label space. This requires heavy pro-
cessing (memory and CPU) and networking (bandwidth) resources thus
is not expected to scale. Therefore, only privileged service providers
should be allowed to deploy their own control architecture. An alter-
native is for network providers to support a set of control architectures
with each service provider choosing the one they want their VLS to
use. Thus in this model, multiple service providers share a set of con-
trol architectures.
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4 Linux Implementation of APLS

We have built a proof-of-concept prototype in Linux kernel 2.5.2. Linux was
chosen as the platform because it is open source and is supported by a vast
amount of related research and developments that APLS may exploit in the
future.

An abstract implementation design is discussed first followed by the main
components design.

4.1 APLS Abstract Implementation Design

The abstract implementation design of APLS can be see in 3 dimensions.
The control flow can be shown in the first two dimensions while the third
dimension shows the data flow. Figure 13 shows the 3 dimensions APLS
design flatten into a 2 dimensional layout. The vertical flow is for control
while the horizontal flow is for data forwarding.

The core of the APLS implementation is the forwarding engines:

e Ingress Forwarding Engine: This engine is for the ingress LER
nodes that are required to map packets to FEC and map FEC to LSPs.
The sequence of micro-instructions associated with the FEC/FTN is
executed here.

e Core Forwarding Engine: This engine is for the core LSR nodes
that perform the normal label switching. Egress LER node functional-
ities are also built into this engine. The sequence of micro-instructions
associated with the incoming label (ILM) is executed here.

For a normal software implementation, it is possible to integrate these
engines into one but if multi-processors or ASICs are used then parallelising
these operations for performance would be desirable.

If router supports Micro-Policy Based Forwarding then whenever multi-
path exists, the forwarding engine must execute the associated MP function
to choose a path to use. MP functions are stored in the MP Database and
invoking these functions are done through the MP Interface.

IP packet entering an APLS domain goes through the ingress forwarding
engine and becomes a APLS packet if a FEC to LSP mapping is found for
the IP packet, otherwise, the IP packet will be IP forwarded to the next hop.
If special processing is required, like APN, then the packet control is passed
vertically to the APN handler and from there to the execution environment.
If the APN processing overrides the forwarding behaviour then the packet
control is totally given to the Execution Environment i.e., the Execution
Environment explicitly does the label operations and forwards the packet,
or the packet gets dropped. If the APN processing does not override then
the control is later passed back to the forwarding engine and the rest of the
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label operations continue to be executed. The forwarding engine should not
be blocked while this packet is being processed by APN.

The main information base are stored in the Repository which consist
of:

e Service table: Every SID in use will have an entry in this table. Each
entry will have a reference to the incoming label table and the outgoing
label table for this SID.

e Incoming label table (ILM): Each SID will be allocated its own
Incoming label table. The Incoming label table uses the AID and FID
as the key to find the entry.

e Outgoing label table (NHLFE): Each SID will be allocated its
own Outgoing label table. Since outgoing labels need to be unique if
the labels are from the same network interface hence the key for this
table consists of the AID, FID, and a unique identifier for the network
interface.

e FEC table (FTN): When IP packet enters the APLS domain, the
packet must be mapped to a FEC. The FEC table contains an entry
for each FEC in used by APLS. The key for this table depends on how
FEC is defined in the implementation. A common FEC is the use of
the longest match destination network prefix.

The forwarding engines access the Repository through a well-defined
Repository Interface.

On the other side of the control spectrum is the Control Architectures.
APLS only supports the interaction with multiple control architectures si-
multaneously, other kind of support are outside the scope of this project
(refer to Section 5.6 for more information). Control architectures control the
data forwarding through manipulating the control information used by the
forwarding engines. This includes, the label mappings, micro-instructions,
and micro-policy. The control architectures access the Repository through
the APLS Control Interface.

4.2 APLS Implementation

An introduction to the implementation of the three main components: Ingress
Forwarding Engine, Core Forwarding Engine, and the Repository is given
along with the Repository and APLS Control Interfaces.

The implementation of the core concepts: AMIA and the Micro-Policy
Based Forwarding are also discussed.

4.2.1 APLS Micro-Instruction Architecture (AMIA)

The APLS Micro-Instruction Architecture (AMIA) is used in two places
The first place is the FEC table where each entry will contain a sequence
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Micro-Instruction Specification
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Figure 14: Micro-Instruction Specification

of micro-instructions that must be executed by the Ingress Forwarding En-
gine. The second place is the Incoming Label table where each entry will
contain a sequence of micro-instructions that must be executed by the Core
Forwarding Engine.

Each micro-instruction will have the format as shown in Figure 14. The
first part of the instruction is the opcode which consists of 32 bits and the
last two parts are the operands that consists of 32 bits each. The hardware
used is a 32 bits architecture hence the opcode is rounded up for alignment.
Operands used in this implementation are normally pointers hence 32 bits
are the minimum required. Note that this is a software implementation
hence there is no notion of registers. Both operands are for arguments of
the micro-instruction. Output is assumed to be store in some shared variable
that persists over the execution of the micro-instructions.

The POP micro-instruction (i-POP) removes a label from top of the label
stack and puts it in the shared variable label. This i-POP will also implicitly
retrieve the entry associated with this incoming label and reference it in the
shared variable entry.

The PUSH micro-instruction (i-PUSH) pushes a label onto the label
stack. There is no operand for i-PUSH because it depends on the previous
i-POP. That is, the outgoing label is mapped to the incoming label entry,
therefore, i-PUSH will use the shared variable entry to get the outgoing label
to push. This micro-instruction assigns the network interface associated with
the outgoing label into the shared variable netintf.

The FWD micro-instruction (i-FWD) forwards the packet onto a net-
work interface. One operand is used to indicate the network interface to use
but this operand is optional. If this operand is not NULL, then the speci-
fied network interface will be used. Otherwise, i-FWD assumes dependency
on i-PUSH. That is, the network interface specified in the shared variable
netintf is used.

The DLV micro-instruction (i-DLV) delivers the packet to the IP layer
for IP forwarding.

4.2.2 Ingress Forwarding Engine

On receiving an IP packet, a LER will lookup the FEC table to determine
if the packet should use normal TP forwarding or the use APLS forwarding.
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int apls_ingress_engine(struct apls_fec *fec_entry,){
struct ip_packet packet){

for each micro—instruction in fec_entry do{
case micro—instruction is PUSH:
label = choose_outgoing_label(fec_entry);
if (first_label_pushed)
set_S_flag(label);
push_outgoing_label(packet,label);
mark_packet_APLS(packet);
case micro—instruction is FWD:
decrement_TTL(packet);
if (packet_not_apls(packet))
do_checksum(packet);
forward_packet(fec_entry,packet);

}
return SUCCESS;

Figure 15: Ingress Forwarding Engine

If APLS forwarding is indicated then a LSP is mapped to the FEC entry.
It is possible that multi-path routing is used where multiple LSP is mapped
to one FEC entry but this will be discussed later in Section 4.2.5.

If APLS forwarding is indicated then the APLS Ingress Forwarding En-
gine will gain control of the IP packet. The simplified operation for the
Ingress Engine is shown as pseudo code in Fig. 15

For the Linux implementation, the IP layer’s FIB table is used as the
FEC table and each entry in the table contains the function to call when
a FEC match occurs. The function can point to the normal Linux IP for-
warding function or the APLS Ingress Engine function. By default all, FIB
entries use the IP forwarding function unless explicitly overrided by the con-
trol architecture. For example, when BGP receives a new network route it
may decide to use IP forwarding or to use APLS forwarding. If APLS for-
warding is decided then the LER will associate a label to this route and
distribute it using the LDP.

In effect, APLS and IP share the FEC table but each FEC can only use
one type of forwarding. If FEC uses APLS then the FEC entry will reference
a APLS data structure. This data structure contains information like LSP,
sequence of micro-instructions, and the network interface.

4.2.3 Core Forwarding Engine

When an APLS packet is received by the IP layer, the packet control will
be passed on to the APLS Core Forwarding Engine. The Core Engine will
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execute the micro-instructions associated with the top label of the packet.
The simplified operation for the Core Engine is shown as pseudo code in
figure 16.

4.2.4 Repository
There are three data structures in the repository:

e Service table: The prototype is not expecting the use of a large
number of SID and hash table supports this scenario well. A hash
table with overflow chain is used for this table. Best case requires one
memory access to get the entry. Worst case is O(n) where n is the
number of SID in use.

e Incoming label table (ILM): The prototype expects to support a
large number of incoming label per SID thus need a data structure that
can grow with usage. A multiple-level tree is used with 8 bits per level.
For all cases, it requires four memory access to get the entry.

e Outgoing label table (NHLFE): The prototype expects to support
a large outgoing label table thus the same strategy for Incoming label
table is used.

e FEC table (FTN): Linux IP’s FIB table is used also for the APLS
FEC table thus FECs are identified by network prefix. Linux FIB table
uses multiple hash tables.

More research needs to be done to choose the best performing data struc-
ture for the tables in the repository. The current prototype chooses simple
and effective data structures as an interim solution. More complex data so-
lutions like LC-trie [33] and Patricia tree [34] will be explored in the future.
For the FEC table, the current well-implemented FIB table from Linux is
in used but for more edge on performance, more complex structures [35, 36]
need to be investigated.

The two interfaces for accessing the Repository are described below:

e Repository Interface: The Repository Interface is an interface for
internal components of APLS such as the forwarding engines. Internal
components only need read access to Repository’s information while
control protocols that are external to APLS will need both read and
write access. External access interface is discussed in the next section.
The Repository Interface is designed to be independent of the data
structures in use, therefore, changes in the Repository can be made
transparent to other components. The list of the current Repository
Interface functions are listed in Fig.17.

There is no interface function for accessing the Outgoing Label Table
since the FEC table and Incoming Label Table entries have direct ref-
erence to the Outgoing Label Table entries. This referencing is done
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int apls_core_engine(struct apls_packet packet){

label = pop_top_label(apls packet);
entry = get_incoming_label_entry(label);

loop:
for each micro—instruction in entry do{
case micro—instruction is PUSH:
out_label = choose_outgoing-_label(entry);
if (packet_stack_empty(packet)) 10
set_S_flag(out_label);
push_outgoing_label(packet,out_label);

case micro—instruction is FWD:
decrement_TTL(packet);
if (packet_stack_empty(packet)){
do_checksum(packet);
unmark_packet_APLS(packet);

forward_packet(entry,packet); 20

case micro—instruction is DLV:
if (packet_stack_empty(packet)){
do_checksum(packet);
unmark_packet_APLS(packet);
}
else
/*do not deliver APLS packet to IP*/
return ERROR;
30
deliver_ip(packet);

case micro—instruction is POP:
if (packet_stack_empty(packet))
return ERROR,;
label = pop_label(packet);
/*control is transfer to the popped label*/
entry = get_incoming._label_entry(label);
goto loop;
} 40

return SUCCESS;

Figure 16: Core Forwarding Engine
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/*Given a SID, this function returns a reference to the entry,
*locks the entry, and returns a reference to the lock associated
*with the entry. The lock is separate to the entry since the lock
*does not have to be at granularity of one lock per entry.

Y/

int asrv_getEntryLock(unsigned int sid,

struct apls_service* entry,rwlock_t** lock);

/*Given pointer to the Incoming Label Table and the label
*to lookup for, returns the entry corresponding to the label

*

void* apls_ilm_retrieve_entry(void** tree, struct apls_label label);

Figure 17: Repository Inteface

when an outgoing label is mapped to the FEC/Incoming Label Table
by the controlling architecture.

The FEC table is not used by any internal components. The FEC table
is consider to be at the IP layer where it maps incoming IP packets to
a FEC and the FEC entry will indicate whether normal IP forwarding
is used or APLS forwarding is used. When APLS forwarding is used,
the APLS Forwarding Engine is invoked with the FEC entry as the
parameter.

The current implementation does not support the AID aggregate for-
warding which will be reflected in the Repository Interface.

APLS Control Interface: This is the interface to the Repository for
external components, for example, the control architecture. The APLS
Control Interface contains both read and write access to the Repository
for manipulating forwarding behaviour.

The APLS Control Interface consists of four sub-interfaces, one for
each type of table in the Repository: Service Interface, Incoming Label
Interface, Outgoing Label Interface, FEC Interface. These interfaces
are shown in Figures 18, 19, 20, 21 respectively.

Note that Linux’s FIB table is used as the FEC table, hence, creating
and deleting FEC entries is done through the Linux’s interface. APLS
Control Interface only modifies the FEC entry.

4.2.5 Micro-Policy Based Forwarding

Micro-Policy Based Forwarding applies only when multi-path exists. That
is, when FEC is mapped to more than one outgoing label or when Incoming
label is mapped to more than one outgoing label. Therefore, Micro-Policy
(MP) functions are associated with the FEC and Incoming label entries
only. The associated MP function is executed by the corresponding for-
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/*********Service Interface**************/

/*Creates a new service entry for the given SID*/
int apls_service_create(int sid);

/*Deletes an ezisting service and clear all allocated resources
*to the service

Y/

int apls_service_del(int sid);

/*Set the service to be available (online) or unavailable (offline)
int apls_service_avail(int sid, int avail);

Figure 18: Service Inteface

warding engine. For example, when a LSR receives an APLS packet, the
Core Forwarding Engine uses the top label to retrieve the Incoming Label
entry. When deciding on the outgoing label to use, the engine will execute
the MP function which makes the decision and the engine will then push
the chosen outgoing label into the APLS packet.

The current implementation uses a link list for the outgoing label mapped
to the entries and the standard MP function interface is shown in figure 22.

The top label’s auxiliary bits are used for QoS related functions. Ref-
erence to the APLS packet is used for QoS functions that want additional
information from IP header.

5 Related Works
5.1 MPLS and ATM

APLS is not a completely new label switching architecture. It uses the gen-
eral label switching concepts from MPLS as the base thus can inherit many
of the enormous research and developments done on MPLS. The greatest
difference between APLS and MPLS would be the approach of positioning
within the networking stack. MPLS runs between layer 2 and 3 whereas
APLS runs between layer 3 and 4. The arguments for and against have
been put investigated in section 3.1. The new concepts VLS and AMIA
introduced in APLS, pushes for better Network Level Service Engineering
that are not seen in any existing label switching architecture.

Due to similarity of APLS and MPLS, the differences between ATM and
APLS would be very similar to the differences between ATM and MPLS.
The major differences is the use of variable size packet, LSP-tree, and label
stacking in MPLS. ATM has dominated the core networks in most carriers
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JXFFFEEEE Incoming Label Interface*******/

/*¥Adds a new incoming label into the system. The argument is
*the VLS label that includes the SID.

*

int apls_ilm_add(struct apls_label label);

/*Deletes an incoming label from the system*/
int apls_ilm_del(struct apls_label label);

/*Associate a given set of micro-instructions to the specified
*incoming label.
*/
int apls_ilm_set_instr(struct apls_label label,
struct apls_instr instr);

/*Maps an outgoing label to an incoming label. They must
*both have the same SID.
*

int apls_ilm_map(struct apls_label in, struct apls_label out);

/*Remove the mapping of an outgoing label from an
*incoming label*/
int apls_ilm_unmap(struct apls_label in, struct apls_label out);

/*Remove all mappings from an incoming label*/
int apls_ilm_unmap_all(struct apls_label in);

/*Makes the incoming label online or offline*/
int apls_ilm_avail(struct apls_label in, int avail);

Figure 19: Incoming Label Inteface

JXFHFERFEE Qutgoing Label Interface*****%%/

/*Add a new outgoing label with association to a particular

*network interface.
Y/

int apls_nhlfe_add(struct apls_label label, struct net_intf intf);

/*Deletes an outgoing label that is associated with the given
*network interface.
Y/

int apls_nhlfe_del(struct apls_label label, struct net_intf intf);

Figure 20: Outgoing Label Inteface
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/*********FEC Interface*****************/

/*Modifies the FEC entry to start using APLS forwarding
int apls_ftn_create(struct apls_fec fec);

/*Modifies the FEC entry that is using APLS forwarding to start

*using IP forwarding.
*

int apls_ftn_delete(struct apls_fec fec);

/*Maps an outgoing label to the FEC. This effectively maps
*a LSP to the FEC.

*

int apls_ftn_map(struct apls_fec fec, struct apls_label label);

/*Removes a given outgoing label mappings from the FEC*/
int apls_ftn_unmap(struct apls_fec fec, struct apls_label label);

/*Removes all outgoing label mappings from the FEC*/
int apls_ftn_unmapall(struct apls_fec fec);

/*Associate a set of micro-instructions to the FEC entry*/
int apls_ftn_set_instr(struct apls_fec fec,struct apls_instr instr);

/*Makes the FEC online or offline*/
int apls_fec_avail(struct apls_fec fec,int avail);

Figure 21: FEC Inteface

/*Returns the chosen outgoing label*/
/*Parameters: top label’s auziliary bits, reference to APLS
*packet, the list of outgoing labels.
*/
struct apls_label mp_function(unsigned char aux,
struct apls_packet* packet, struct apls_label_ele* list);

Figure 22: MP Function Interface
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but its complexity and inflexibility will hinder the future growth of services
on the Internet.

5.2 CISCO’s Universal Transport Interface (UTI)

UTTI [37] was designed for tunneling layer 2 or 3 packets within a normal
IP network. A special UTI header is inserted between layer 3 and layer 4.
This header consists of two components: Tunnel ID and the Tunnel Key.
The Tunnel ID is used to identify by the end point to identify the tunnel
and thus what actions need to be taken thereafter. The Tunnel Key acts as
the signature between the tunnel end points. UTI resembles APLS in the
positioning it takes in the network stack and the use of special header to
control forwarding. However, there are very subtle differences. UTI header
is only meaningful at the tunnel end points (edge routers) thus is not a
label switching architecture. It uses something similar to label switching to
bridge external networks to interoperate with the IP network. UTT does not
provide any mechanisms to improve the IP network in general.

5.3 ATM’s Virtual Label Space

Wang et al. [38] informally introduces ATM’s Virtual Label Space as a pro-
posed potential solution to tackle the VC Space scalability issue. This in-
volves using parallel network interfaces with each interface having its own
label space. The recommendation was to localise the use of virtual label
space to the hot spots within the network where it is needed. MPLS also
allows similar approach to implementations where it is defined as the scope
and uniqueness of labels [22]. APLS’s VLS approach is totally different.
VLS’s virtualness is directed towards the service provider and is structured
within the label itself. Thus the virtual space exists across the whole APLS
domain. Implementation may also provide different scope for VLS per in-
terface to increase the effective label space, but this is orthogonal to APLS’s
VLS concept.

5.4 BGP/MPLS VPNs

BGP/MPLS VPNs [39] is a standardised approach for realising VPN on
MPLS domains. The approach uses dedicated FTN tables for each VPN at
the LERs and uses a modified Border Gateway Protocol (BGP) to distribute
the private addresses of the VPN. APLS provides optional support of a
separate label data structure for service providers. The objective is not for
realising VPNs but for offering potential performance advantages over the
use of a single shared label data structure for all service providers. Separate
label data structure support is not restricted to LERs as in BGP/MPLS
VPN. Any LSRs within APLS network can support separate label data
structures.
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Performance issues in APLS’s multiple label data structures support are
very similar to those found in Virtual Memory [40, 41] support in OS. How-
ever, OS characteristics are different to that found in networks, therefore,
further research needs to be done to analyse the feasibility of multiple data
structures.

5.5 APN

APN [2] is seen as a complementary technology to APLS thus many con-
cepts introduced in APN can be integrated with APLS. However, some APN
uses the approach of positioning network layer architectures on top of APN
(NA0oAPN). NAoAPN contradicts with the APLS model and is considered
as a separate network architecture in itself. The advantages of NAoAPN
approach is that it gives flexibility to the Network Providers to support
multiple network architectures on the same equipment. It also allows net-
work architectures to be customised and upgraded easily. However, there
are some inherent problems with NAoAPN:

1. High performance router usually uses ASIC rather than General CPUs
hence whether it is possible to realise a high performance router for
NAoAPN is questionable.

2. Supporting multiple network architectures increase the complexity of
the network and raises the operational costs. This may be attractive
for transitioning network architectures, but what is desired by the net-
work /service providers is one unified network that has performance,
scalability, and flexibility.

3. NAoAPN approaches require special protocol like SAPF [27] to de-
multiplex between the architectures. Thus the flexibility comes at an
increase in overhead per packet.

Therefore, the major advantages of NAoAPN are the ability to customise
and upgrade the network without the need to change the base equipment.
NAoAPN will only be readily accepted when NAoAPN routers that can rival
the performance of IP/Label Switching routers are developed. The Genesis
Project [42] is a good example of the NAoAPN approach.

5.6 Tempest

Tempest [32] is very similar to APLS in the network model that it proposes.
The major difference between Tempest and APLS is the approach taken to
realise the network model.

Merwe et al. attempts to modify the ATM architecture into a service-
oriented one by separating the control from the switching fabric. Instead
of using the standard PNNI control architecture, Tempest inserts an addi-
tional layer of control. This layer controls and partitions the ATM switch’s
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resources and allocates the partitions to a logical entity called switchlets.
Tempest offers multiple control architectures, called controllers, to run si-
multaneously on one switch. Each controller will be allocated a switchlet
that offers a small virtual but complete switch to the controller.

Tempest delegates control to service providers through the control plane
of the switch. In contrast, APLS’s approach is to delegate control through
mechanisms inside the forwarding plane. By using the ATM forwarding
plane, Tempest inherits a lot of limitations that already exist. For example,
ATM’s VC scalability issue will only be deteriorated by the introduction of
partitioning of the space. The inflexibility, complexity and the high oper-
ational cost of the ATM architecture will also be passed on to the service
provider.

The use of multiple control architecture as the sole basis for service pro-
visioning has several critical problems. Firstly, the existence of multiple
controllers is transparent to the switch fabric hence Tempest will have to
manage VC partitioning and allocation. VC space partitioning and alloca-
tion is a complicated issue and gets harder to manage when different service
provider size is taken into account. Second, each service providers that want
control are required to own separate controllers. This approach is just not
scalable in terms of services it can support.

As discussed in section 3.5, APLS offers three types of control model and
one of them is multiple control architectures. VLS simplifies the operational
and deployment of control architectures by implicitly partitioning the label
space. The SIDs can be mapped globally to the chosen control architecture.
APLS can increase scalability by offering a balance of control. That is,
small service providers share the default control architecture while a small
set of large service providers can deploy private control architectures. Thus
APLS’s approach is more flexibility and scalability.

Tempest and APLS can also complement each other since they focus on
different aspect of the switch. It is possible to use Tempest to realise multiple
control architectures on APLS. Due to the fact that the ATM fabric is not
designed for service support, Tempest inherits a lot of the limitations and
needs to work around the inflexible switching fabric. Therefore, Tempest
will find a better home on a service-oriented switch fabric like APLS. The
combination of VLS and AMIA opens up more of the switching fabric for
Tempest to control.

6 Conclusion

APLS’s primary focus is to offer new mechanisms that promote service provi-
sioning while retaining the performance advantages of label switching. This
results in a label switching architecture that offers higher degree of control,
flexibility, and scalability.
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APLS’s label is 32 bits higher overhead than that of MPLS thus it is
expected that APLS will perform slightly slower than MPLS. The trade-
offs for this overhead are better service provisioning support and higher
scalability.

The concepts introduced in this paper such as AMIA and Micro-Policy
Based Forwarding are independent and can be migrated to existing label-
switching technologies such as MPLS. However, it is with the complete com-
bination including VLS and Label Switch over IP, that APLS can realise a
superior service-oriented network model.
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