The Responsive Bisimulations in the k-calculus

UNSW-CSE-TR-0205

Xiaogang Zhang and John Potter
School of Computer Science and Engineering

University of New South Wales, Australia
{xzhang, potter}@cse.unsw.edu.au

Abstract

Ongoing work attempts to model concurrent object systems using process algebra. The behaviour of
an object can be described as the composition of a process representing the basic functionality of the
object and separate processes controlling the concurrent behaviour of that object. While familiar
usually failed, the responsive bisimulation proposed by the authors in an earlier paper where the
delaying a message locally and remotely have the same effect as long as potential interference by
competing receptors is avoided, is able to capture the behavioural equivalence between object
components. With this bisimulation, an equivalence between the rn-calculus expression
(Vn)(m.ﬁ|k.n.P) and k.m.P then can be achieved. However, in the earlier paper, the responsive
bisimulation was described in the polar w-calculus, which added a few improved features for
modelling concurrent objects while maintains the syntatical simplicity similar to the normal m-
calculus, but is still difficult to express general behaviurs of concurrent objects efficiently. The k-
calculus, where locks are included as primitive, in the other hand, is more expressive and flexible in
modelling compositional concurrenct objects.

This paper presents responsive bisimulation in the x-calculus, and therefore will form an improved
base for studies on both the theory of behaviours composition and the semantics of compositional
concurrent OO programming languages.

The Responsive Bisimulations in the k-calculus

Xiaogang Zhang and John Potter
School of Computer Science and Engineering

University of New South Wales, Australia
{xzhang, potter}ecse.unsw.edu.au

Abstract

Ongoing work attempts to model concurrent object systems using process algebra. The behaviour
of an object can be described as the composition of a process representing the basic functionality of
the object and separate processes controlling the concurrent behaviour of that object. While familiar
usually failed, the responsive bisimulation proposed by the authors in an earlier paper where the
delaying a message locally and remotely have the same effect as long as potential interference by
competing receptors is avoided, is able to capture the behavioural equivalence between object
components. With this bisimulation, an equivalence between the w-calculus expression
(Vn)(m.ﬁ|k.n.P) and k.m.P then can be achieved. However, in the earlier paper, the responsive
bisimulation was described in the polar w-calculus, which added a few improved features for
modelling concurrent objects while maintains the syntatical simplicity similar to the normal m-
calculus, but is still difficult to express general behaviurs of concurrent objects efficiently. The k-
calculus, where locks are included as primitive, in the other hand, is more expressive and flexible in
modelling compositional concurrenct objects.

This paper presents responsive bisimulation in the x-calculus, and therefore will form an improved
base for studies on both the theory of behaviours composition and the semantics of compositional
concurrent OO programming languages.

1 Introduction

With the ability to directly model dynamic reference structures, process algebra such as the n-calculus ([Milner92],
[Milner96]) and its variations have been applied to modelling concurrent object systems ([Walker95], [Jones93],
[Sangiorgi96], [Hiittel96], [Zhang97]). Some researchers ([Schneider97], [Zhang98A], [Zhang98B]) have also applied it
in modelling compositional objects in aspect-oriented programming style ([Aksit92], [Holmes97]) to avoid the
inheritance anomaly [McHale94].

With the idea of [Zhang98A] and [Zhang98B] in modelling concurrent objects in the n-calculus, the behaviour of a
concurrent object can be modelled as the parallel composition of two processes: a process F which represents the
object's functional behaviour and can be expressed with the generic form F 2 []!ny(x). Mi(X), and a process C which
represents the constraints on the object's concurrent behaviour. In effect, F on its own, represents an object with no
constraints on its concurrent interactions. For example, the functionality of a buffer object can be described by the
expression Fg¥ In(x). M(x) | Ing(x). My(x), where n,(x).Mx) and ny(x). M(x) represent the behaviour of the read and
write methods respectively, each of them can have unlimited invocations executing in parallel without any concern of
interfering among them. To discipline those invocations, assume a synchronisation behaviour modelled by the control
process Gy my(x).7n(x) + my(x).1y(x), where the sum operator in fact represents a mutual exclusion lock on those
methods. Then the parallel composition of the two processes, (vn)(C; |F), will be weakly bisimilar to
RyE my(x). M(x) + my(x).My(x), as expected. However, there are two problems need to be solved.

The first problem is, the equivalence between the expected behaviour and the composed behaviour cannot be always
captured by familiar bisimulation relations. For example, the equality between processes (Vn)(m.ﬁ|n.P) and m.P is

not recognised by most known bisimulations. The necessary of this kind equivalence can be shown by the following
“real world” communication example:

In the mailroom of a business skyscraper, the property manager uses internal mail to send bills to her tenants and
collect payments. Each tenant has a locked mailbox, which located either on the mailroom wall and can be
opened from outside of the mailroom by the tenant, or on the door of the tenant's suite and a postman delivers
mails from mailroom to the tenant's suite. For the property manager, whether a tenant is classified as behaving
“good” or “bad” should only depend on whether he pays the bill on time and in cash, and where the tenant's
mailbox locates should make no difference. The manager needs only to monitor the arrival of payments to
identify the tenants' behaviour.

To describe a little bit more formally, let the process O, and O, illustrated in Figure 1-1 represent two different versions
of the internal structure of the same composed object in a state where its only method is blocked by the lock of key x
(e.g., the key for a mailbox). The only difference between them is that O, has an extra “empty” control Ctrl, (postman)
which does nothing but forwards whatever message received from channel m to the next control Ctrl; (locked mailbox).
The body (tenant) of these two can always give the same response (payment) if fed with the same message (bill). If an
unlocking signal is received via channel x, both O, and O, can accept incoming messages and process them
immediately. If some message arrives before the unlocking, O, will store it in an internal buffer (door mailbox) and
delay the process until unlocked, but O, will leave the message in the external buffer (mailroom) as it was, while
waiting for unlocking.

Ctrl, Ctrly Ctrly
For a client (property manager) who is sending the message, the m K Body Ok Body
behaviour of the target object can be measured only by observing how it~ #®\ (| ¥p = A n
responds. Therefore, the behaviour of O, and O, are identical in the 8) msg 0
client's eyes, since the responses they can give are the same (both from (@)
the same Body). However, this behavioural similarity cannot be captured unlock response unlock response
by most of the known behavioural equivalence relations, since in some */\
stage O, can perform an input action from the channel m while O, ;’ b n

cannot. Even the weak barbed-equivalence, one of the weakest, is too 8
strong for them, since O, | R and 02| R are not weakly barbed-bisimilar
for some R, such as R & m(a).

O (b)
Figure 1-1

To solve this problem, [Zhang01A] proposed the notion of responsive bisimulation, where only “localise” testing
message is considered while measures the behaviour of the target process by observing its response. A “localise”
message permits only the target process to access, even when the communication channel is visible globally. Therefore
the responsive bisimulation filters out the environmental effects, and can capture the similarity of responsive behaviours
of object processes, and more interestingly, the general behaviour of control processes. Furthermore, these relations
allow the behavioural composition of objects to be studied more easily, since we are able to derive the equivalence of a
larger collection of behaviours. For example, let C>F stands for the operation which composes an object component
process F' and a control process C, a special kind of object component process, to yield a new object component process
with expected behaviour. With the responsive bisimulation relation, we not only have the associative law, i.e.
G&(GEF)=(CG>G)>F, but also the identity law, ie., there is some empty control (identity) E such that for all F
satisfying E >F, the composed object E>F 1is equivalent to the original object F, and for all control process C
satisfying either E > C or C>E, the three control processes E>C, C>E and C are all equivalent ([Zhang01C)).

In [Zhang01A] the responsive bisimulation was studied using the polar m-calculus as the mathematical tool, which
adoptes the concept of polarised names from [Odersky95a], and then syntatically added the restriction that only the
output polar of a name may be transmitted by communication. Both these features match the nature of object-oriented
systems.

The second problem is that, the general exclution relations between object methods are difficult to be presented
efficiently and compositionally in the m-calculu and most variations, including the polar n-calculus used by
[ZhangO1A]. For example, assume an object with three methods m,, m, and mj;, and assume that from the exclusive
requirements, mutually exclusive should be maintained between method m; and m,, and fully concurrent execution is
allowed between method m; and mj;. These two requirements may be modelled in the n-calculu respectively as the two
control processes C & m(X).n(X)+my(X).nX) and G Em(X).nX) | Im;(X). ns(X).

Now consider the following different cases on addition requirements

1) Fully concurrent execution is also allowed between method m; and m3, i.e., G my(X).nX) | Ims(X). ny(X);

2) Mutually exclusive should be maintained between method m, and m3, 1i.e., GZEmy(X).nxX) + ms3(X).nx(X);

3) The same as 1), except that m, is a reading method, and should not mutually exclusive with itself, but must be
mutually exclusive with the writing method m,.

For 1), it is easy to put the addition requirement together with the previous ones to construct a composed control
process: G (m(X).m(X)+my(X).n(X)) | Ims(X).n5(X). However, it is difficult for 2) and 3), because:

a) The entire control C; has to be rewritten from scratch, without re-using of the previous controls;
b) The expression of new control becomes extremely complicated and crummy, difficult to read or even write;
¢) The expression of exclusion constraint may not be able to be written in a generic and unified or abstract form.

In contrary, the algebra of exclusion proposed by [Noble0O] can express all those easily and efficiently, for example, the
above three situations can be described in turn as i, Xm, | ms, m;Xm, |ﬁ2><ﬁ3, and m, X, |ﬁ3.

However, the algebra of exclusion is static express, unable to present the dynamical behaviour of concurrent objects. To
solve this problem, [ZhangO1B] proposed an extended calculus, the k-calculus which welds the mobility power of the -
calculus with the synchronisation expressiveness of the algebra of exclusion ([Noble00]). With the k-calculus, a control
C, will have the form C & (n,7) | Jo(&«{ Si(m)ie1 }X 1)), where & specifies the exclusion relations, and each S; gives some
scheduling information such as unlocking or early return on the ith method. As the example, for each of the previous
mentioned three situations we may write the & as:

D v (X) ke {ing,my). ni(XE) © WV i)iny(X) e {Iny, i} 17(%.K) ® (v imy(X)keD. n3(X,K);
2) v (%) ke {im,im}. n(XE) & NV r)im(X)Ke{my,imm}. ny(X,K) © WV K)iny(X) ke {myin}. ny(X,K);
3) Wi (X) ke {m,}. mi(X,K) ® (v K)imy(X) ke {iny,my}. ny(X,K) ® (v imy(X)keD. n3(X.,K);

As we can see here, the k-calculus can not only solve all the problems we have pointed, but also provider extra ability in
behaviour separation, -- the separation of S; from &

In this paper we put the two pieces together, present the responsive bisimulation in the k-calculus, and therefore form a
full base for studing of compositional concurrrent objects and the theory of composition.

The rest of the paper is structured as follows: section 2 briefly introduces the k-calculus and related notions, section 3
defines responsive bisimulation, section 4 gives some properties of the equivalences and other theoretical results,
section 5 discusses some further issues relating the responsive bisimulation with other notions, section 6 briefly
describes some applications of responsive bisimulation in modelling compositional objects with related results, and
section 7 concludes the paper.

2 The k-calculus

The K-calculus ([ZhangO1B]) is a process calculus especially suitable for modelling the composition behaviours of
concurrent objects. Like the asynchronous n-calculus ([Amadio96]), it uses asynchronous communication, i.e. an output
action does not block other actions. Like the polar n-calculus ([Zhang01A]), it adopts the concept of polarised names
([Odersky95a]), and the restriction that only output polar of a name can be transmitted by communication. In addition,
close to [Liu97], [Philippou96], [Zhang98A] and [Zhang98B], the k-calculus has a higher-order extension which is only
involved with higher-order process abstractions but excludes higher-order communication ([Sangiorgi92a],
[Sangiorgi92b]), and therefore can employ the relatively simpler bisimilarity theory of the m—calculus while providing
more power on behaviour separation.

The major significance in the k-calculus is the inclusion of lock as primitive. In the conventional CCS or n-calculi,
input-guarded processes can only be composed to play either a “one be chosen then all others have to die” game in the
mutually exclusive choice (the sum operation “+7), or “no one minds others' business” game in the parallel composition
“17. In the guarded exclusive choice of the k-calculus, however, the exclusion between branches are explicitly defined,
and the invocation of an input action can cause a lock on pre-specified branches, which may become available again

when the lock is released. The “+” and “ | ” operations then are unified into the guarded exclusive choice as two extreme
cases. This enables the k-calculus to obtain the expressibility of the algebra of exclusion ([NobleOO]) for methods
exclusion of concurrent objects, allows the separation of some major concurrency behaviours of objects to be presented
in a much more natural and clearer way. The k-calculus distinguishes the labels for communication channel names and
that for locking keys, in order to provent cross using by mistake.

2.1 The syntax of the k-calculus

In the k-calculus we distinguish two disjoint sets of label names, the communication channel names, and the key names
for locking. Let M be the set of all communication channel names, ranged over by expressions m,u,v and variables
x,y. Let "M {m:meM} and M= {m:meM} be the sets of input polar and output polar of all channel names
respectively. Let % be set of all release keys of locking, ranged over by x. Let "K# {k k€ X} and K {k:x€ K} be the
sets of input polar and output polar of all keys respectively. Then the set of all label names is A& MU X, ranged over by
n. Consequently, we have various sets of polars, such as WM& MUNM, ‘K& KUK, NE MUK NE MUK, and N NUA;
Let abe™N be polar constants, and we " be polar variables. Let both 7 and {ri,}, where I is an index set of arity n,
be abbreviations for ry,rs,...,r,. The generic process terms P in the k-calculus are generated by the following grammars:

Pu=0p|m(i) |k |V P | PP | 42(GY |AGG) [, G:=B|(vi)G|G®G, |D(a)| &P, B:=0g|18.P [1(vi)p.P
Az=(@)P, D:=()G, &:=aipG, Br=mG)L, Li=kel |(V)aJ, Ju={m)|o|M

The set of all actions a process may take can be specified by a::=m(u) | (v 0)ym() | K | 7(| 7, where 9Su and mg?.

Most process terms (P—terms) are similar to those in normal n-calculi: 0p is the inactive (terminated) process; m(u) is
the output action which sends output polars # into the channel m; (v 7)P binds the set of labels 72, and therefore both
polars of each of them, within the scope of P; P; | P, indicates two processes run in parallel; A(a) is an instance of
parameterised process agent, giving the process agent abstraction AZ(@)P is obeying (()P)@)=P{a/;,} 5 is a
process variable. For the rest two terms, & is the action which emits the unlock signal within the scope where the name x
is bound; and A°(G) is the guarded exclusive choice (GEC choice), where G defines the exclusion behaviour which can
place some locks on the process itself, and /4 records the lock status. For the choice terms (G—terms), B is a choice
branch; G,®G; is the choice composition; (@)G and D(a) are abstraction and instance of choice agent respectively,
obeying ((@)G){a)=G{Gy}; higher order G-term agent &£«7»G accepts processes as parameters in the double
angled brackets, and obeying («i»G) «P» = G{Plij}; Og is the unreachable choice, in the future we can omit the
subscript of both 0g and 0p without any ambiguity. Unlike that in m, every branch B here always behaves as a (lazy)
replication, among them, “!(v k)" creates a fresh key « private to each replicated copy; in f.P the action prefix operator
“.” indicates the execution of action f before the execution of the continuation process P; the action (X)L, where we
stipulate that {X } N #(L) =@, produces two simultaneous events: receiving information X from the input port of channel
m, and triggering the lock L; the lock L=keJ read as “lock all input channels in J with key x”, where the exclusion set J
specifies the channels to be locked within the GEC choice and « is the key for unlocking the lock; abbreviation L=(V)eJ
indicates a lock with an anonymous key, that is, !m(x)(V)eJ.P = (v k)m(X)keJ.P for k& fu(P), in other words, it is an
unreleasable lock; M is the entire "M, the set of input polar of all channel names, and therefore enforces the locking of
every channel within the GEC choice. The other part of the GEC choice, /4, acts as a state machine maintaining and
monitoring the current status of locks, and is described in an independent language. Different /4 grammars will give
different locking schemes and locking status evolution paths, but will not interfere with semantic or syntax of the G
language, and vice versa. In one of the simplest such locking scheme, where duplicate locks upon the same channel with
the same key will have the same effect as such a single lock ([ZhangO1B]), is defined by the grammar
A=) | (L) FAA and the structural equivalencies rules are shown in Figure 2-1.

Istr-SMM (Summation)

Ud=da; Ady =4y M(A1) = (4D,
Istr-EMP (Empty lock) : ke

(

\

ked) =l J;
keJy, keJy) =\ ke(J,UJy));
I:lJ lZQJ = Zl, ZZJ 5

Istr-LKC (Combination) :
Istr-GRP (Grouping)

Figure 2-1 Structual equivalence of locking status terms

Notation 2-1: Some auxiliary operations/functions (the formal definitions can be found in [ZhangO1B]) are
needed for integrating a /4 language into the x-calculus:

guard(G) : gives the set of all branches’ input prefix channel names in G, and defined by

guard(fm(X) L.P) ¥m; guard(V 1)G) & guard(G); g1ardGy ® G2) ¥ guard(G) Y guard G») }.;

lock(Jx,A) . gives the truth value for whether /4 indicates all the input polars appeared in J are locked by «;

Iser(A) : gives the set of all channel names for which their input polars are indicated by A as locked;

keys(A) : gives the set of all key x for which there exists some J#& such that bk x,A)=true;.

addAL,A) : gives the new locking status after adding L to the original locking status A.

AIL : gives the new locking status after removing L from the original locking status A.

We usually use 4 €[] to represent an empty lock, and for any A language, we always require that:
bk,))=False, e\)=, keys(\)) =0, addlL,|))=\L] and UJ/L=L).

Notation 2-2: If me lsex(A), we say that A allows the commitment on’in, denoted as A |m;

if meLenA), we say that A blocks the channel in, denoted as A¢imn.

If for some J'SJ, J'£@ and hck(J', k, A), we say that A can commit keJ, denoted as 4| keJ;
otherwise we say that he /4 cannot commit on K over J, denoted as A4keJ.

If for some J2 /ser(A), A] KeJ, we say that A can commit K; denoted as 4|5
otherwise we say that he 4 cannot commit on &; denoted as A¢k

In the form of labelled transition, we denote A 7L, A" for ng lenA) and A'=addALA); and

AKeJ A" for AlkeJ and A =Alkel.

Notation 2-3: Similar to the polar n-calculus, besides the functions fz, &» and » for identifying the sets of free,
bound and all names respectively of a P—term, G—term or action, we also use more specified functions, such as
fin, bin, in, fon, bon and on to identify free, bound and all input or out polars. Further more, as in the k-calculus we
distinguish communication channel names and keys, we also use finer grained functions, fue, bne, ne, fine, bine, ine,
Jone, bone and one for communication channels only, and fzk, buk, nk, fink, bink, ink, fonk, bonk and onk for keys
only.

Notation 2-4: The following process abbreviations are for convenience and can simplify expressions:

m@@). P =)o@ V)alm].P), [1mG).Pi=l)o(@) (Velmil. P, Yini). P)o@ tny(i) (v)e M. P;)
(). P £) o(tm(@) (V)e@.P), [1'mii). Pi=l) o(Rliny(@) (v)e . Py).

These abbreviations give an illustration of that for input-prefixed processes, the standard parallel and sum compositions
in conventional m-calculus become special cases of GEC choice in the k-calculus. Further more, as these abbreviations
suggested, encoding a polar m-calculus term into the k-calculus is very simple, and has been done by [ZhangO1B].
However, so far we have not found any straightforward technique for the opposite direction. In fact, the polar n-calculus
can be considered as a sub-calculus of the k-calculus.

2.2 The semantics of the k-calculus

The structural equivalences and labelled transitions in the k-calculus are shown in Figure 2-2 and Figure 2-3. The
central idea of the operational semantics in this calculus is presented by rules tr-IN, tr-CHOI, tr-RELS, tr-SYNC1 and
tr-SYNC2. Compare with the n-calculus, we can see that:

1. an input action (i) invokes a new copy of continuation process P from a GEC choice and triggers a lock L
which may change A, the locking state of GEC choice, an unlock signal & may also change the locking state
A, but does not change the GEC choice context;

2. expressions for different aspects, such as current state, exclusion relation and behaviour of the continuation,
can therefore be separated naturally and intuitively.

Summation

str-SUM1; P, |0, = P,: G,®0¢ = G,

str-SUM2: P, | P, = P2| Py; G1®G2 = G2®G1

str-SUM3: P, | (P,| Py)= (P, | Py Ps; G18(G,®G3) = (G18G)®G;
Null

str-NUL: A°(0g) =0;
str-DISJ: addliceJ, A)°(G) =A°(G) if guard G)NJ=2

Instance
str-INS: ()PXa)=P{z); ((DGKa)=G{alz)
Scope
str-SCP1: (vn)P=P, if ne fu(P); (vn)G =G, if ne i(G);
W(vx)B.P=Ip.P, if ke fu(B.P)

str-SCP2: (v n;) (Vn)P=(Vny)(Vn)P; (v ny) (Vv n))P=(v ny,n,)P
str-SCP3: (v mym(3)=0p; (vm)!m(X)L. P = 0g;

(v K)k=0p; (V) A(G)=(V K)A°(0g), if lock(guardG), k, 1) is true;

vV A(GRGY=A(G, if lock(guardG), k, A) and x& fu(G')
Str-SCP4: Ao((v K)G)=(v 1)A°(G), if k& keys(A);
v P P,=(vn)(P| Py, if nef(Py); (V)G ®G=(v n)(G,®G,), if nefu(G,)
Str-REN: (v) P=(V) (P{"2ly), if nyet fulP)

Figure 2-2 Structural congruence rules for the k-calculus

P m{), P, med

wOUL @, e, vop @, P wSIG L,
tr-IN: AL, A (r.CHOL G %5(v (P A(G), xe(G)

o AQV KL PY I (viO (P AV <ML P)) (G @G Ls(v 1)(P| A(G,8G)
rRELS; [EHA where J2uuriG) trpARL: — T

A(G) £ 4+(G) rlo 2 Plo
r-SyNC1: P YOI, P QIn@, 0! 3\ Q)=2 rSyNCy PSP 00
vm©Plo) L vm)(vo) (Pl Vol L voeElo)

tr-RES: p L) P: n ﬁ](72(0() =0 tr-STRUC: P’l = Pl; Pl L) P2, P2 = P’2

(v WP &5 (v #i)P P| %, P,

Figure 2-3 Labelled transition rules for process terms in the k-calculus

Justification for our calculus is given in Section 5 where we further discuss modelling of composite objects.

As a normal treatment in this literature, throughout this paper the rule str-REN is often applied automatically and
implicitly over fresh names to avoid name clash. For example, a name n,¢ f#(P) may be picked up automatically so that
the process (v ny)(Ai,n,) | (Vv n)Pi{™2ly }) can be used to replace (Vv n)(ASn,1) | (v ny)P;) without mention.

Remark 2-5: Similar to the polar n-calculus, in the the k-calculus the 7 action is truly internal, that is, neither
visible nor interruptible by external observers. Therefore, the name restrictions in rule tr-SYNCI and tr-SYNC2
are required. Without it, the synchronisation will not be considered as an internal action, but a two steps action,

suchas P|Q voym@)., . m@, (vo) (Pl Q) or P|Q k5. K5 P|Q, where both steps are visible for external
observers. This strong requirement on 7 actions is necessary for guaranteeing the standard rule fu(v)=bn(t)=<
([Amadio96]) valid, and is necessary for preserving t actions in output polars substitution.

As usual, let ()* represent that the contents in () repeating zero or many times, then the weak transitions are defined as:
Definition 2-6: P5 P iff P(Ls)*P: PX P iff PL .% . L P, where att

Reduction relation, a familiar concept in this literature, is defined in a non-standard way in the k-calculus:
Definition 2-7: P— P iff (v m)P Zs(v m)P for some m; P=P iff (v m)P=L (v m)P for some m.

Clearly, P L3P implies P— P, and P=L P' implies P= P, and therefore a variant of the rule tr-SYNC]1 can be
written as: if P (VOm@@), P' and Qm@, Q" where 5Nfu(Q)=2, then P | 0—s (v&) (P Q). Beside the reason we
have just discussed, the distinguish between internal action and reduction is also necessary for the new bisimulation
relation, and we will find out later.

Definition 2-8: The strong commitments are defined as:

Process P can commit the action a, denoted as P|a, if there exists some P'such that P25 P,

Process P can commit on input polar i, denoted as P|in, if there exists some input action a= (i) s.t. Pla;
Process P can commit on output polar 7, denoted as P, if there is some output action a=(v D)m () s.t. Pla;
Process P can commit the action sequence (, denoted as P, if P, %, .. %)P: or as an abbreviation, P_{y P

The weak commitments ¥, is obtained by replacing — with — and | with { though out.

Definition 2-9: Process P is a derivative of process P, if there exists some finite sequence ¢ such that P _1’>P'.

3 Responsive bisimulation in the k-calculus

In object-oriented systems, the lock/unlock actions are usually internal activities of objects, and therefore may not be
visible from outside. However, while study on a component process of a system or object, these activities have to be
observed. In the k-calculus, the distinction between names for locking keys and for communication allows us to take
two different positions in observing processes interactive behaviours:

1.ignore all locking/releasing actions, and adopted the same set bisimulation relations developed in the polar n-
calculus;

2. take locking/releasing actions into account and therefore produce the “k-variation”, an even finer version, for
each of those bisimulation relations.

Thus, variations of bisimulation relations will be doubled. For every those bisimulations, each k-version bisimulation is
a subset of its non-k-version counterpart. And in the polar n-calculus, which is a sub-calculus of the k-calculus, the k-
version and non-k-version bisimulations will coincide respectively.

Generally say, the k-version bisimulations are needed for measuring properties of object components, when non-k-
version bisimulations are intersted in measuring overal behaviour of composd objects.

The barbed bisimulation ([Milner92b],[Sangiorgi92b]) is a rather weak relation, which traces the state changes of a
process during the course of reductions, and observes which channels available for communication. As a polarised
process calculus, in the x-calculus only output polars (of both communication channels and locking keys) are

considered as observable, therefore we adopt a version of barbed bisimulation similar to that in [ZhangO1A] for the
polar n-calculus.

Definition 3-10 (barbed bisimulation): A symmetric relation S on P-terms is a (strong) barbed bisimulation if
whenever PSQ then Pla implies Qla for all a€ M, and P—sP implies Q' such that Q—Q' and PSQ.

Let ~, be the largest strong barbed bisimulation. The notion of weak barbed bisimulation =, is obtained by
replacing everywhere the transition | with U, and — with — throughout.

For k-versions, the strong and weak barbed x-bisimulation ~,;, and ~,, respectively, are obtained be extend
a€EMU KUK in the above definition.

ince barbed bisimulation cannot identify what messages being communicated, it is too rough to measure process’s
behaviour. Better measurements are needed.

Definition 3-11: In the k-calculus, process context ¢[.] is given by ¢£::=[.] |(v neé | Z\P |/1°(!(v K)f. €3G).

Definition 3-12: Let ¢].] be process context, then we define the barbed equivalences and their k-versions as
strong and weak barbed equivalence: P=,Q if VE.].(CP]1~ullQ)); P=,0 if Ve Ol.(CP1=vCllQ));
strong and weak barbed k-equivalence: P=,0Q if VE|.].(€IP]~wllQ]); P=Q if V[Q].(@lPl=wllO)).

Or, for the still weaker versions similar in [Amadio96], let R be arbitrary process, then we define that
strong and weak barbed 1-equivalence: P=, Q if VR.(R | P~yR |); P=y,Q if VR.(R | P~yR | P);
strong and weak barbed x1-equivalence: P=,,Q if VR.(R | P~.R | Q); P=40 if VR.(R | P~4R | P);

As pointed out by [Zhang01A], weak barbed equivalence is too strong for compositional objects, as illustrated by the
example in Figure 1-1, where O, and O,, the two different versions of the same object component, can be expressed in
the k-calculus as O, % (Vv n) (!?n(x).‘n<5c>| (Ke[h])o("n&x)L.Body)) and O,¥ |ke[n])(Mnx)L.Body) be two different

versions of the same object component. If only output actions are detectable, then within o\l R 0, R
an environment where the input polar of the same channel m is not used elsewhere, the . . ,
behaviour of O, and O, can be considered as the same by an external observer. But this

similarity of the observation behaviours cannot be captured by the weak barbed 0ilp@w) Qlmxq) 0.lp@)
equivalence, nor even barbed 1-equivalence. The weak barbed equivalences fail in at

Figure 3-1
least two ways:

First, they cannot distinguish between a message sent out from the target process and a message sent to the target
process by another agent but buffered in the environment. For example, given the message m(p), then we have

O\lmp)=0, and O,|m(p)—=0Q,, where 0, (vn)(me)nx)| ke {n})*(1hG)L. Body) | n(p)) and Q,%0,|m(p).
Since Q,4m while Q,Um, therefore 01|7n<p> %b02|7n<27>, that is, O,%y,; 0,.

Second, it cannot prevent input names clash between the testing environment and the processes being tested. For
example, let REn(x).x(g) |7n<p), then as shown in Figure 3-1, O, |R can take two different reduction paths:

cither O,|R = (v n) (mG)n(x) | ke[n]) *(1nG)L. Body) | n(p) [m(x)x(g) or O,|R=0,|p(g),
while 02|R has only one reduction path, 02|R=02|p<q). Therefore 01|R %b02|R, that is O,%y, 0,.

Another failure in the strong version is, the barbed bisimulation treats synchronisation actions occurred in public
channels as single step reduction, and therefore dis-matches them with uncompleted synchronisions which have delay
on inputing side.

We need a different technique to measure the observation behaviours, weak enough to ignore the unrelated information
and strong enough to distinguish the similarity in responses perceived by outsiders. As with barbed bisimulation, we
must note that the state changes of a process caused by internal actions, and we must also be able to detect which
communication channels are available for output in all evolved states. What is more, in order to distinguish states, we

need to be able to observe what each of the messages output by the process is. The ot-bisimulation, defined in the same
way as that in [ZhangO1A], can provide this degree of observation:

Definition 3-13: The (strong) or-bisimulation is a symmetric relation S on processes such that whenever PSQ
then P-%P implies Q-%3Q" and PSQ for all action « in the form of either a=(v0)m(#) or a=t, and

bn(a) N f(Q)=2.

The k-version, (strong) xoz-bisimulation, is a strong ot-bisimulation S such that whenever PSQ then P-%,pP'
implies Q-%Q" and P'SQ forall a€XUX

The weak ot-bisimulation and weak kot-bisimulation are obtained by replacing —%5 with =% everywhere above
respectively. We denote ~,, be the largest ot-bisimulation, and =~ be the largest weak ot-bisimulation, ~,. be
the largest kot-bisimulation, and ~,,, be the largest weak kot-bisimulation.

Lemma 3-14: Each of k-version and non-k-version ot-bisimulations, S, is preserved by restriction, that is, PSQ
implies (v n)PS(v n)Q.
Proof: This can be proven by show that € {((v 7)P, (vi)Q): PSQ} is a S. Here we only give the proof for the
strong k-version, S S~,,,, all others can be proven similarly. Assume (v #1)P _05P" for some arbitrary action a,
where o is not a communiction input action (i.e., o# m()), then it is only possible in one of the following two cases:

1. iNfl@)=2 and P-%5P" By rule tr-RES, (v 1)P-25 (vi1)P", so P'=(vii)P" By PSQ, we have Q-4,Q" and
P'5Q" By tr-RES, (v i1)Q-%5 (v i1)Q", and we have ((v)P, (vii)Q)eZ,

2. a is an output action of the form o=(v0)m(it) where m¢i and 0,=AN(1-0)#@, and PIMWP" By PSQ,
we have QmW),0" and P'SQ" Let 0=n—0,, by rule str-SCP2 and str-SUM2, (v A)P =(V 3)(V 0,)P
and (VA)Q=(V3,)(V3,)Q. By the tr-OUT, we got (V3,)(V3,)P-4%5(V3,)P" and (v 3,)(V5)Q-%s (v 5,)Q,
however ((v3,)P" (vi)Q)eR

By the definition of xot-bisimulation S, we have < S. |
The ot-bisimulation gives a measurement on processes’ states by observing available reductions and output actions, but

can not determine how a process responses to incoming messages, since communicating input actions are not observed.
To determine responsive behaviours, we introduce a new term for specifying input messages.

Notation 3-15: We add the auxiliary P-term [in(%)]P, the localisation of the sent message m (%) with process P,
into the process syntax. Properties for this term are shown in Figure 3-2.

Structural equivalence :
IStr NULL [in{u)] 0 =0; IStr_IND ([m(w))P) | [0) E[‘in(‘ﬁ)](P| Q), it mefin(Q);
IStr LOC (v m) [m(i)]P = (v m) (mit) |p); IStr_SUM2' [m(i)][1(D)]P = [n(0)][mi)]P;

Transition :

ITr SYNC3 PI@p ITr INV ~ P-% P ofm(@
[n(aylP Zs P [n(@)IP % (@) P'

Figure 3-2 Localised output action.

The term [n(i)]P couples P with the message # which is buffered in channel, and unobservable from outside, even
though the output polar 72 may have been known by outsiders. We may consider the difference between m(ii) |P and
[m(@)]P as that, in the former the m(#) is an outging message to be bufered into the channel m, while in the latter,
[m(@)] is a buffered message arriving from the channel m and waiting to be picked up by P. The [m(#@)] privatises

neither polar in nor m, but the message 7. In other words, the [(%)] is like the mailbox on the right side in , with the

message u in it, and only P or its derivatives may (but not have to) consume this message. That is the reason why the
input polar 7 rather than output polar 7 appears in [in{u)]|P.

The term [m(@)]P is not for modelling processes, but only designed to express rl-bisimulation relations between
processes. In this sense, we may read [(u)]P as “the behaviour of the black box P while provided with the test message
% via channel m”, and this behaviour depends on whether and when P or its derivatives able to access the input port .
From this point of view, the using of input polar i rather than output polar 7 is necessary to prevent an input polar
substitution, caused by input prefixing, changes the static behaviour of P.

The rule ITr_SYNC3 added a new case for defining the 7 action. Unlike in rule tr-SYNCI, here is no name restriction is
required. However, since only the input polar, i, of the channel name m is involved, and the reservation of 7 actions is
maintained input prefixing.

Corollary 3-16: The following conclusion can be immediately drew from the rules in Figure 3-2:
(HIf Pm@), P then (vm)P=(vm)[m(i)]P (3) Plim implies ([m{@)]P)|t;
(2) Py implies ([m(u)]P)4a if a#t, or, a=t but P{m; @) ([m¢@y)P)gm(w).

Now we can begin to introduce new behaviour equivalence relations.

Definition 3-17: Let 7[.] be the responsive testing context of syntax 7::=[.] | [m(7)]7, then we define
the strong and weak responsive equivalence: P=,Q iff V7.(7|P]~,710]), P=,Q iff V7.(7[P]=,7.0));
the strong and weak xr- equivalence: P=,.0 iff V7.(7[P]~w:71Q]), P=,0 iff V7.(7[P]=:71Q]).

This definition gives a quite clear description about the meaning of equivalence in responsive behaviour, but is not so
useful since it requires the exhaustive testing over the infinite set of responsive testing contexts. A more practical
definition is the r1-bisimulation, named so because the structurally comparable to the 1-bisimulation in [Amadio96].

Definition 3-18: The strong (or weak) r1-bisimulation is a strong (or weak, respectively) ot-bisimulation S if
whenever PSQ then [m{@)|PS[m{u)]Q for all [mn(@)].

We denote the largest strong rl-bisimulation as ~,;, and the largest weak r1-bisimulation as ~,,.

The «-versions, strong and weak xrl-bisimulation ~,,; and =,,,, are defined by replacing ot-bisimulation with
its k-version, the kot-bisimulation, in the above definition.

Lemma 3-19: The responsive equivalence and rl-bisimulation are coincide for both x-version and non-k-

version, i-e-; ~rrl= ke Rkl Sk Ay and A==
Proof: Proven by induction. We only show ~,,,.==,, here, and all other cases can be proven in similar way.

~a S = Let P~,,10, then we can write 75[P] ~17[Q] where 7,%1.].
Assume 7,[P] ~,17[Q] is held for some responsive testing context 7;.
By the definition of ~,,,, for all [in(i1)], we have 7[P]~,17u[Q] for each of 7, E[m(i)] 7.
By induction, and notice ~,,, S ~,,, from the definition of ~,,;, we conclude that,
P~,1Q implies V7.(7[P]~,,.710]), thatis, P=,,0Q, by the definition of =,,.

~1= =g Let P=,,Q, then it implies P~,,,Q because 7)[P]~ . 70lQ] for 7,¥[.], thatis, =,&~.
It also implies [m(@)]|P~ . [m{u)]Q for all [m(i)], because 7,[P]~x:7:(Q] for each 7,% [n{u)][.].
And still, it implies for each responsive testing context 7, if we write 7,27 7,[.]] then 7,[P]~,..7:[0Q],
In other words, V7.(7[[m{(@)]P]~ . 7[[m(@)]Q]). That is, P=,,Q implies [n(i)]P=,[m{i)]Q for all
[im(@)]. Therefore =,,&~,, by the definition of ~,,;. [

It is easy to verify that O,~,,0, and O,=,,;0, hold for the processes O, and O, mentioned in the example at earlier of
this session. The rl-bisimulation providers a test platform for measureing behavioural equivalence from outside of
target processes.

However, while responsive equivalences and rl-bisimulations provide a good base for describing similarities of
responsive behaviours, they tell little about why or when two processes may offer similar behaviours. For closer study,

w¢e

need an inside view observing input actions.

Definition 3-20 : The (strong) responsive bisimulation is a (strong) ot-bisimulation S such that whenever
PSQ then P, P implies either Q M@0 and PSQ, or Q-I1>Q" and P'S [im(i)]Q.

The weak responsive bisimulation is obtained by replacing transitions with weak transitions everywhere. We
denote ~, and =, be the largest strong and weak responsive bisimulation respectively. Clearly, ~,&~,.

The k-versions, strong and weak xr-bisimulation ~,, and =,,, are defined by replace ot-bisimulation with «ot-
bisimulation in the above definitions. Clearly, ~,,E~,;.

Lemma 3-21: The responsive bisimulation and rl-bisimulation are coincide for both k-version and non-k-
VEIsion, i.e., ~=~ 1, M= R, ~, =~ and ==,

Proof: Here we only show that for ~,,=~,,;, and other cases can be proven in a similar way.

~
Kr

~

Kr

S~ Let 2L {([m(@)]P, [m(it)]Q):PSQIUS for S=~,, Assume [n(ii)]P-%5P" for some an arbitrary action
a, by the rules in Figure 3-2 and by Corollary 3-16 (4), it is only possible in the following two cases:

(1) P25P" and o#in(i), then P=[m(i)]P" Since P~,,Q, we have
either Q450" P'~,,Q0" and [m(i)]Q %[m(@)]Q", and therefore ([in(i)|P", [n(i1))Q")€R;
or a=n(0), Q550" P'~,[n(®)Q, that is, [m(@)]P M@D), [in(@)]P" and [m(it)]Q -Ls[m(@)]Q" By
rule 1Str_SUMY', [()[in(@)] Q"= [m(i)][() Q" therefore ([m(IP", (D) ()] Q"€ 2

(2) o=t and PM@)P] then by P~,Q it implies
either QM@0 [m(#)]Q-L>Q and P~,,Q, thatis (P, Q)€R since B2~
or Q¢m(i), then Q-T5Q and P'~ [m(i)]Q, thatis (P, [m(i)]Q)€R since B2 ~,,;

Then by definition of ~,,, we have S~,,, that is, P~,,Q implies [m(%)]P~[m{u)]Q. Because
~S ~wor and because [n(i)] is arbitrary here, we have ~,,S~,,; by the definition of ~,,,.

o~

o1t Let P~,0, then [in(i)]P~,[m@@]Q for all [in(@)]. Assume P-%P' for some action a:
If ais a non-input action, then Q-%5Q" and P~ ,,, Q"

If a=m(i), then [W(ﬁ)]PL)P' By [m(a)|P~m[m(1)]Q and [‘in(‘@]QL)Q': it must be
either Q@Q’ and Q"=Q. But P~,,,Q since ~ S~y Let ={(P,Q), (P.Q)}, then 2/S~ .5
or QL>Q' and Q”E[m<_ﬁ>]Q’ But P"\'Kar[m<_ﬁ>]Q’ since ~ xS ~ xore Let 22={(P’ Q)a (P: [711<_1/7>] Ql)}a
then 2,S ~ s

Let =~ URUR,, then S~,,, since ~, S ~,,, then we have RS ~,, by the definition of ~,,. =

Corollary 3-22: The responsive bisimulation and responsive equivalence are coincide for both x-version and non-
K-version, i.e., ~,==,, RG=E=,, ~==,and ®, ==,

4 Properties of the responsive bisimulation

In this section we explore some formal properties of our newly defined responsive bisimulation and establish
connection with some conventional bisimulations, which include, their preservability in parallel composition, name
substitution and GEC choice, their congruency for autonomous processes.

Corollary 4-23: The responsive bisimulations are preserved by localisation. That is, let S be any of ~,, =,, ~,,
or =,,then PSQ implies [m(i)|P S[m(u)]Q forall [in(i)].
Proof: Let be the corresponding rl-bisimulation (~,;, =,1, ~1 OF =) respect to S, then by Lemma 3-21,
PSQ implies PRQ, which then implies that [in(@)]P R[m(u)]Q for all [m(i1)] according to the definition of rl-
bisimulation, then again by Lemma 3-21, we have [m(@)]P S [im(i1)] Q.]

Lemma 4-24: The responsive bisimulations are equivalences.
Proof:Here we only give the proof for the strong k-version ~,,, and all other cases can be proven similarly.

Reflexive : P~,,P forany P, according to the definition of ~,,;

Symmetric: if P~,,0 then Q~,P, by the definition of ~,,;

Transitive : Let P,RP, and P,&RP;, where R, € ~,, and &< ~,,, and therefore P,(&,&,)P;. For arbitrary action
a, if o is not an input communication act, then

P,-%5P, implies P,-%5P, and P, @ P,, which further implies P3-%5P; and @, P,, that is, P,(2,2,) P;.
If o is an input communication act, say a=mn(i), and P, 7"(173 P, then we may have either

PZM@PZ and P2 P, &M@}f} and P& P, and therefore P,(2,2,)P,;
or P, P and PR P, P3-LsP, and & [m(ii)|P;, and therefore P(2%y) [m ()| P;
or P,ZyP and P2 [m(@)]|P, P+ 5P, and B2 P, By ~,,=~ ., we have 2,S~,,1, 5O
(@) P2 [m{ii)| P, and therefore P(2,2,)[m(ii)]P;. By the definition, (2,2,)S ~ . n

There is a problem: the responsive bisimulations are not be preserved by parallel composition in general. For instance,
with the O, and O, of the previous example, we have O,~,0,, but (O, | 0y)*, (0, | 03) for Oz])o(lm(D)L.R),
because the occurrence of input polar in in O; has changed the ability of O; on receiving message from in. However, as
mentioned at the beginning of this paper, the purpose of our study is about object modelling, and as the nature of object
systems, the ownership of each input port should be unique. For example, the object identity of an object is uniquely
owned by no one else but that object; each method of each object is also uniquely identified so that no message would
be delivered to wrong destination. In general, as mentioned in the previous session, each input polar has a static scope
(or ownership), and will never appears outside this scope.

When responsive bisimulation is strictly restricted within the problem domain, objects modelling, where the responsive
bisimulation is needed, then its preservation in parallel composition can be guaranteed, as shown later.

Definition 4-25: Let n be the input polar of a communication channel name m, P be a process for which
mé€fin(P), and € be the context E[.]Z (vir) (Env | [.]) where m¢fin(Env) while m may or may not be a member
of 71. We say that, P is an owner of n (or say, in is owned by P) with respect to the environment Env;

Env is an environment free of i (or say, n-free environment);

&l[.] is an In-safe environment context, or in-safe environment for short.

Ann-safe environment only allows the process in the hole to consume a message sent along the channel m, ensuring no
interference from the environment. It reflects the fact that the responsive behaviour of a process can be measured only
when messages sent to it are guaranteed not to be intercepted by some other process.

Definition 4-26 A process P is safe for Env, and the environment Env is said to be safe for P, if P is the owner
of all mé€fin(P) respect to the environment Env, i.e., fi(P)Nfin(Env)=23. We may call P an safe process, when the
behaviour of P is only considered within environments which are safe for P.

A process P is autonomous if fin(P)=0.

Lemma 4-27: The process safety is preserved by evolution. That is, if fin(P)Nfin(Env)=2 holds for processes P
and Env, then fin(P)Nfin(Env')= holds for all P'and Env, which are derivatives of P and Env respectively.
Proof: Simply because the input polar of a channel cannot be transmitted by communication.]

Corollary 4-28: An autonomous process and all its derivatives are safe to any system.

When modelling objects in the kx-calculus, all method bodies can be considered as autonomous, since after parameters
passed through the method interface, further input (if any) can only be performed via channels that were initially private
and informed to the senders by the forked method body. An object itself is initially autonomous while creation, until its
name, the unique identification, is exported to its environment. Its method names can also be considered as initially
private to the object, and then exported to the caller during each method call. For example, similar to [Walker95] and
[Zhang97] amongst others, the method call o.m; (a;, a,) may be modelled as (v mset) (o{mset) |*mset(‘ﬁ1).ml<‘al,zz2>),
and on the object side the encoding will look like (v m) (Yo(mset). mset (in) | Ae(®!‘mi(%)Li.Bodyi]).

Proposition 4-29: The responsive bisimulations are preserved by parallel composition for safe processes. That
is, to each of the k-version or non-k-version responsive bisimulations S, whenever PSP, implies (P1|P)S (P2|P)
for all P which satisfying fin(P) N (fin(P1) U fin(P,)) =O.

Proof: Here we only show that for the weak x-version SS~,,, all other cases can be proven similarly.

Let =; be the congruence induced by the commutativity and associativity laws for parallel composition “ | ” in Figure
2-2 and rule IStr_SUM?2' in Figure 3-2, and let relation 2% {(P, | P, P, f,P): (PIQW,.PZ)/\(ﬁn(P)ﬁ(ﬁn(PJ P))=0)}U=,,.

Let Q€ P, | P and Q,¥ P2| P, and 0,=25Q) for some action @, by Py=,,P,, it must in one of the following three cases:

(1) P, &P, P,=%sP; and Pi=,, P, and therefore Q\=P} | P, 0,=%s Q) for Q=P | P;

(2) P=4s P, and therefore Q\= P, | P and 0,2 Q) for 0= P, | P

(3) a=m(@), P, P;, P,LsP, and P\~ ,[m(i)]P;, by the autonomous condition fin(P) N (fin(P,) U fin(P2)) =D,
it must be me fin(P) and therefore ['m(ﬁ)]Pél PE[’?n(’ﬁ)](Pél P), thatis, O\=P; | P, and 0,0, for Q;gPH P;

Theﬂ cases with syI}chronisation, svuch as PlLﬁﬂ—'M@.P; and PMP: or lea and POVOImiZL P. or
PP, and PP, or PK.P; and PLs P, have been covered by theses three above cases, according to
Remark 2-5, and therefore need not to be considered separately.

Since (Q), 05)€R for cases 1-2, and (Qy, [m(i)]05) € Be=, for the third case, therefore 2is a ~,, upto =p. [

Let o denote a name substitution of the form o={%/}, which is over output communication polars only, otherwise
standard. Whenever applied to a process or an action, bound names (in pairs of both polars) are automatically renamed
to avoid conflict. We do not need to consider substitution over input polars nor locking/releasing keys, because they can
not be sent through channels in the k-calculus, and clearly the safeness of processes is preserved by the output polar
substitution.

Proposition 4-30: The responsive bisimulations are preserved by output polarity name substitution. That is, to

each of the k-version or non-k-version responsive bisimulations S, PSQ implies PoSQo for all o={u/5).
Proof: Again these can be proven by showing % {(Pg, Qo): PSQ}U S is a S upto =p. Here we only show that for
the strong k-version, SE~,,, all others can be proven similarly. Lets exam all the possible actions that Po may take:

Po V§)711§'L723P”; it is only possible when there exists some P"such that Po= (v $)(m(ii) | P, by the transition rules
listed in Figure 2-3 and Figure 3-2. Remember the implicity renaming over fresh names to avoid
name clash, and notice that the substitution only effects to free output polars, then there must exist

some ¢, ¥ and P'~such that m=vco, =06, P=Ps and P=(v3)@(®)|P). Clearly, PV 3P,
it implies Q(V8)(®).Q" and P~,Q since P~,Q, this further implies there exists some Q' s.t.
Q=(v3)((®)| Q). Therefore, Qo=(v3)m(@)| Q) and Qo(vIM@ 5. This matches (Po, Qo)€R

as required.

PO‘M)P”Z since the substitution ¢ only affects to free output communication polars, this transition is only
possible when P[m(0) where 0 satisfies %=00. By the transition rules, it is only possible when P
is in the form P=(vilp) (Ape(!(V K)?n(f)Lp.P1®GE)|P2) where meiip, and Ap1Le yfp, and PM@P

where P'=(Vitp, k) (Ape(1(v K) @) Lp.PL®Gp) | P, {U/5}| P). 1tis easy to verify that P’=Pp.
Since P~,,Q, we have that, PW(_QP' implies

either Q'm(_ﬁg Q" and P~,Q. Itis only possible when Q=(Viig)(Ag°(!(V©K)Mm(F)Lg.Q1®Gq) | Q)
where meifig, AgMloydo, and Q=(Viig.K)Ue!(V () Lo.Q®GH| 0 (V5 Q). Tt is
casy to see, Qam(U).0 and (Po, Q0)€R,

or Q-Is0 and P~,[m{®)]Q. Since in the x-calculus, as in normal n-calculus, names in an
internal action 7 is always hidden, so Qo-ZsQ¢. Notice ([m(D)]Q")o=[m(i1)]Q'c, we have
(Po,([m(0)]Q)o)€R, or, (Po,[m))(Q0)€R;

Pok,P" by transition rules, it is only possible when PJEI‘(| P, since output polar subsititution does not
affect releasing keys, therefore there must exist some P’ such that P=Ps and P=k|P. This implies
P_K,P. Since P~,,Q, we have QK50 and P~,,Q. Again by transition rules, it is only possible
when Q=i | Q. thatis Qo=k|(Qb. Therefore QaKksQ7 and we have (Ps, Q7)€@ as required.

Po Kp" since the substitution ¢ only affects to free output communication polars, this transition is only
possible when P|k By transition rules, the process P must be in the form PE/IPO[GP]|P1,
Jy=gnardGy), ApKeJoyty, Therefore, PP, where P=Ap(Gp) | P.. Since P~,,Q, this impies Q &0’
and P~,,Q. By transition rules, process Q must be of the form Q=Ay(Go)| 0, Aok%Joy A, and
Q'= A4y(Gy)| 0, where Jo=guardGy). 1tis easy to see, P=Ps and Qo KQo. Therefore (Po, 00)€R.

PoI,P" since the substitution ¢ only affects to free output communication polars, therefore this transition is
only possible when PZI,P. By the transition rules, it must be in one of the following cases:

either there exist some process P and complementary output-input action pair ‘a=(v Sym{u) and
‘a=m(i1) such that, P=(vS,m)(P,|m@)), pm@), F, and P=(vs,m)P. By previous results
within this proof, it is easy to see that PoIy((vS,m)P)o, thatis P'=Po;

or there exist some process P, and complementary lock-unlock action pair & and & such that,
P=(vk)(P|&), PEP, and P=(vx)P. By previous results within this proof, it is easy to see
that PoIy((vx)P) o, thatis P'=Po.

Since P~,,Q, we also have that PZ,P implies QTyJ and P~,Q. Then with the same way above,
we always have QoZsQ's. Therefore (Po, Qo)€Z.

Put all these cases together, we have that, is a ~,, upto =p. [

Proofs for other properties of the responsive bisimulations also have the similar difference with those for standard
bisimulations or conventional m—calculi, and we have to provide them all instantially.

Proposition 4-31: The responsive bisimulations are preserved by restriction. That is, to each of the k-version or
non-k-version responsive bisimulations S, whenever PSQ implies (vi)PS(vi)Q for all 1.
Proof: These can be proven by showing < {((vi)P, (vi)Q): PSQ}U S is a S upto =, where = be the structural
congruences in Figure 2-3 and Figure 3-2. Again we only show that for strong k-version SE~,,, and all other cases
can be proven similarly. Lets exam all the possible transitions that (v#)P may take:

(vii)PSIm() P* Giving the implicity renaming has removed all fresh name clash, let 9=fiN# and 7i,=7-7, then
we have (V)P =(v0)(Vii,)P. From the structural congruence rules and transition rules, this
transition is only possible when me7i, 7S$ and there exists some P’ such that P=(v7) (P'|‘m<‘1,7))

where 7=§-3. By rule t-OUT, tr-RES and t-PARL, we have P(V i), P and P=(Viiy) P.
This implies ~Q§W!m§’u2;Q' and P~,Q since P~,Q, by rule tr-OUT and tr-RES we have
(vin)Q (VSm(u), (v1,)Q, it matches ((V7i,)P, (vii,)Q)€R as required.

(vi)Pm@LP" it is only possible when mgfi and Plin(@). Let PM@).P; by rule t-RES, (vi)PI@) v)P,
that is, P’=(vi)P. From P~,Q, the transition PP’ implies

either QM@0 and P~,,Q. By rule t-RES, (vi1)Qm@(vii)Q, therefore ((v7i)P.(vii)Q)€ R,

or Q03,0 and P~,[m@@]Q. Then (vi)QZ,(vi)@Q by rule tr-RES, and it also match
(VAP (v ([m(@)]Q))€R as required.
(Vi))PEP" it is only possible when xg7 and PA&P: that implies Q&Q' and P~,Q. since P~,,Q. From
rule tr-RES, P=(vi)P and (vi)QK(vi)Q, and therefore ((v71)P,(v1)Q)€R as required.

(vi)PKP" by rule tr-RES, tr-RELS and str-SCP3, it is only possible when x&ii and P&P, that implies
Q0KQ and P~,Q, since P~,Q. Fromrule tr-RES we have P=(vi))P' and (vi)QK(Vi)Q,
and therefore ((v)P, (v)@)€ 2 as required.

(Vi)PZ,P" it is only possible when PZIyP, then we have QI,Q and P~,Q, since P~,,Q.From rule tr-
RES we have P=(vi)P' and (vi1)QIy(vi)Q, and therefore ((vi)P,(vi)Q)e 2 as required.

Put them together, by the definition, 2 is a ~,, upto =.]

The following proposition is equivelant to say, in the term of ordinary m—calculi, the responsive bisimulations are
preserved by input prefix, replication, choice and, outside the m—calculi scope, lock, for autonomous processes.

Proposition 4-32: The responsive bisimulations are preserved by GEC choice for autonomous processes. That
is, to each of the k-version or non-k-version responsive bisimulations S, if P, and P, are autonomous processes,
then P,.SP, implies D[P)| SD|P,| for all process context 2[.] of the form D[.]&A(!(v k) (xX)L.[.|®G).

Proof: In order to prove the proposition, we extend it to a more generic form:

Let R be an arbitrary process, R; and R, be arbitrary safe processes (this means ﬁn(R1| R)N(fin(R)Ufin(G)J {m})=0)
satisfying R,SR,, and k, be set of keys, if we can prove that, “P,SP, implies (v ;Zl)(@[P,]| RIR)S(v El)(D[Pzﬂ R| R,
for all suchD[.], R, R, R,, and k,”, then this proposition can be concluded by letting R=0, R,=0, R,=0 and x,=2.

Let safe(P,m,G,R) be a function giving the truth value of /fin(P)N(fin(R)Vfin(G)U{m})=2, let P, be the set of all
autonomous processe, then we show that

2E{ (VR IOMEL POG)| R|Ry), (v &)UV K)mE)L.POG)| R|Ry)):
(P,,P€P,) A (PSP A safe R,| Rym,G,R)A (R SRy) }

isa S. To save our writing, we define the GEC context g[.]£!(v x)in(X)L.[.]®G, that is, D[.]=41°(4].]), and write
0= (v R)U(AP RIR)=(vE)@PIIRIR) and Q= (v &)UA(FAPDRIR)=(v Z)@IPIIRIR,),

and then show “whenever PSP, implies Q;5Q,” by induction over all possible actions. Here we only show that for
S¢CS ~, all others can be proven similarly.

Whenever Q;-%5 Q) for some action «, then it must satisfy fn(a)NKk,=@, and is only possible in one of the following
four cases:

1), R%sR, then Q1 (v &)(@[PI| R |R) and 0,250, O (v ©)(@[P)| R |Ry), and (), 0heR

2), R-%R,, then Q' (v &,)(D[P] | R| R)). If a is not a communication input action, then Ry%R; and R\SR, since
R.SR,. Therefore 0,250, where 05 (v&)(@[P]| R|RY), and (O}, 0)eR

3), A°(41P])]a, lets exam all the possible action a:

o=K’, it must be x'¢x, and A’?_@@A:, where JS{m}UguardG), by rule t-RELS we have
Qi (v &)U AFPDI RIR) and 0,K50; where @yt (v &)(A“(AIPD)| R| Ry), therefore (1, 0)€R,

a=m(T), it must be AMMEA" and Q= (v &) (A (AP RI R, P{iz}) and A=addll, 1), then Q, can also
commit the same action such that Q,-%5Q; and QY (Vv &,,x) (A *(GPy]) |R|R,| P{it5}). Since P, and
P, are autonomous, and therefore Pl{i’fg} and Pz{i%z} are, this further implies that R1|P1{77!/5; } and
R|P{i5} are safe, that is, safe((R, P, }) | (Ry| Py{lifz}),m,G,R) is true. Since PSP, and R.SR,, by
Proposition 4-30 and Proposition 4-29, we have (R,| P{#51)S (R,| P:{i)), therefore (Q, 0%)€Z:

a=m(T) where m#m, it must be A(G)-%5(v&")(A(G)| P), then O} (v %, x")((g P (PIR)R)), and we
can have 0,-%50} and Qv% (v &) (A" (1P | (P| R)| Ry). Therefore, (0}, 0))€R.

4), o is a T action caused by a synchronisation action between D[P}, R, R,, following the rule tr-SYNC2. This in turn
can be only possible in the following sub-cases which satisfy x'ex;:

A(GIPD)K, it mustbe AKYA" where J< {m}Ugnard(G), and
cither RASR, then Q)% (v &) (A (AP RIR;) and Q,E50) where Qb (v &) (A (4P IR Ry),
therefore (Q}, Q) €Z;
or R-KSR, then Q12 (v &) (A(4IP])| R|R}), and we have R,K5R, and R,SR, since R,SR,.
Therefore 0,-£505 where Q32 (v £)(A*(41P)| RI RY), and we have (Q), Q€2

RER RALR, and we have R,A5R, and R,SR, since R,SR,. That is, 0\ (v%)@[P]|R|R) and 0,150,
where 0% (v %) (D[P |R| R), therefore (Q),0)€R:

Put them together, we have =S by the definition of ~,.]

For generic safe processes the situation becomes complicated, because the safe condition can be broken when an
safe process is duplicated by replication, and needs closer studies in the future works. When replications are erased
by lock, then the preservation will be certain:

Lemma 4-33: For cach k-version or non-k-version responsive bisimulation S, if P, and P, are safe processes,
then P,.SP, implies D[P,|SD[P,] for all process context of the form D[.]&€A(!m) (V)eJ.[.]®G) where méeJ.
Proof: Similar to that of Proposition 4-32 but simpler, since only one copy of P, and P, involved.]

Proposition 4-34: For autonomous processes, the responsive bisimulations are congruences. That is, for each of
the k-version or non-k-version responsive bisimulations S, if P, and P, are autonomous processes, then PSP,
implies [P,]S [P,] for all process context ¢].].

Proof: Immediately concluded by put Proposition 4-29, Proposition 4-30 and Proposition 4-32 together.]

5 Discussion

5.1 Coincidence between some variations of responsive bisimulation

The early, late and open concepts used for bismulations in standard n-calculus, may apply to responsive bisimulation.

Definition 5-36: Each of the following variations of responsive bisimulations is a (strong) ot-bisimulation S :

The (strong) early responsive bisimulation is a (strong) ot-bisimulation S if whenever PSQ then P7"~(77); P
implies V3 30" s.t. either QM@ Q" and P(V4}S QVh), or Q-55Q and P(VH)S ([m(@]Q) (V)

The (strong) late responsive bisimulation is a (strong) ot-bisimulation S if whenever PSQ then Pmsﬁ); P
implies 3Q s.t. either QMW Q" and V3, PV} SQVh), or Q550 and V9, PV} S(Im@Q) (V)

The (strong) open responsive bisimulation is a symmetric relation S on processes if whenever PSQ then for
any output communication polar substitution o={}/}, we have
Po-%5P" implies 3Q' s.t. Qo-%50Q" and PSQ., where either a=(v0)ym(i) and 0NmQ)=2, or a=t;

Pm@P" implies 3Q" s.t. either QoM@ Q" and PSQ or Qo-LsQ and PS[m(@)Q.
such that whenever PSQ then P-%,P' implies Q-%Q and PSQ for all action « in the form of either
a=(vO)m(u) or a=t, and bn(a)Nm(Q)=2.

For early and late responsive bisimulations, the k-versions are defined by replace ot-bisimulation with kot-
bisimulation in the above definitions. For open responsive bisimulations, the k-versions are defined by including
KUK into the range of a.

However, as the k-calculus is an asynchronised process algebra, these variations are not necessary for it, since they
coincide with the standard version of responsive bisimulation.

Lemma 5-37: The early, late and open responsive bisimulations all coincide with the standard version of
responsive bisimulation.
Proof: The proof is trivial. For the non-k-versions, let S, be strong (or weak) responsive bisimulation, S be any of
strong (or weak, respectively) early, late and open responsive bisimulations, then we got

PSQ implies PS,Q, by letting y=u; and PS,Q implies PSQ, by applying Proposition 4-30.

Similarly we can prove it for the k-versions. |

5.2 Relation with some conventional bisimulations

Most familiar bisimulation relations which are widely used in convensional n-calculus can be also defined in the k-
calculus, with the similar style as we did for the polar n-calculus ([ZhangO1A]).

Definition 5-38: The (strong) ground bisimulation is a (strong) ot-bisimulation S if whenever PSQ then

pm{@), P implies either Q M@, Q'

The (strong) early bisimulation is a (strong) ot-bisimulation S’ if whenever PSQ then
pm@@) P implies V§3Q st QMm@LQ and P{VH}S OVh);

The (strong) late bisimulation is a (strong) ot-bisimulation S if whenever PSQ then
pm@@) P implies 30 s.t. QMA@LQ" and V§ (PVE}S QKD

The (strong) open bisimulation is a (strong) ot-bisimulation S if whenever PSQ then
for any output name substitution o={V4}, P6-%5P" implies 3Q' s.t. Qo-245Q'and PSQ;

For each of them the weak version is obtained by replacing transitions with weak transitions everywhere, and the
K-version is defined by replace ot-bisimulation with kot-bisimulation in the above definitions. We denote ~
(=) and ~, (=,) be the largest strong (weak) k-version and non-k-version ground bisimulation respectively.

Kg

Lemma 5-39: The ground bisimulation, early bisimulation, late bisimulation and open bisimulation are all
coincided in the k-calculus.
Proof: First, the ground bisimulations are preserved by output polarity name substitution, this can be proven in a
way similar to that for Proposition 4-30, except no need to check the cases involving localisation, then the lemma is
followed. |

Corollary 5-40: The ground bisimulations are responsive bisimulations, thatis, ~,&~, and =,E~

Proof:Directly concluded from the comparison of their definitions. |

re

The asynchronous bisimulation of [Amadio96], which emphasises the possible delay of message delivery (output) and
allows the sent message moving around within a communication channel without real information exchange, can also be
described in the k-calculus:

Definition 5-41: The (strong) asynchronous bisimulation is a (strong) ot-bisimulation S if whenever PSQ
then P7’1(_17)a P' implies either Q)m(_ﬁ)a Q0 and P~,0, or 0550, and P'S(mn(ii) | o).

Again, the weak asynchronous bisimulation is obtained by replacing transitions with weak transitions
everywhere, and the k-version is defined by replace ot-bisimulation with kot-bisimulation. We denote ~,, (~y,)
and ~, (=,) be the largest strong (weak) k-version and non-k-version asynchronous bisimulation respectively.

As pointed out in [Zhang01A], both the responsive bisimulation and asynchronous bisimulation describe asynchronous
communication by allowing message delay. They are overlapped, but none of them contains another, as shown in the
Figure 5-2. The asynchronous bisimulation is not interested in because the following reasons:

1. We are interested in the delay of input rather then that of output;

2. To capture the delay of output, the asynchronous bisimulation allows competition on grabbing messages from
the same input port, which can disturb the detection of responsive behaviours;

3. Combining both output delay and input delay will make the theory unnecessary complicated.

In contrary, the responsive bisimulation concentrates on the delay of input. In the view of object-oriented programming,
the delay in the delivery is not visible for either sender or receiver, and is also out of their control. The delay of input,
however, is controllable for the receiver, and, as pointed out by [McHale94] and [Zhang98B], the existence of the
interval between the event of a message arriving an object and the event of the message processing starts, provides a
synchronisation control point for compositional concurrent object. In other words, the responsive bisimulation is quite
natural to compositional objects.

5.3 Relation between k-version and non-k-version bisimulations

For each bisimulations we have studied in the k-calculus, its k-version is a subset of its Ng > Nr—> Ry
non-K-version, according to their definitions. Generally, when modelling objects, the scope / / $ /
of a lock key x should not cross object boundary, and therefore the & and X actions that an A%~ _ K N; R NU; ~
object can take are internal to that object and can not be detected from outside. The locking T/ A T /’ " T /' o

and unlocking signals represent a special kind of communication, or, co-ordination, ~ 5~ 5 ~
between components within an object, and responsible for whether, why, when and how

Figure 5-1

messages be delayed from inputting to the object. Taking the internal view of objects, the
K-version bisimulations guarantee the similarity of co-ordination mechanism, and therefore ~a ———>_or
the replaceability of object components. In contrary, non-k-version bisimulations confirm / /
the similarity of overall behaviour between objects, without knowing the details of the co- £ N

. Ka —— —> ~ ot
ordination mechanisms. When measurement of the behaviour of objects or object groups is / T /‘V
restricted to external view, then the k-version and non-k-version of a bisimulation will g >~
coincide. Figure 5-2

The Figure 5-1 and Figure 5-2 summarise some bisimulation relations discussed so far, from the strongest one, ~, to
the weakest, ~,;, where each arrow respresnets a “S”, or “is a subset of”’, relation.

5.4 The relation between the responsive bisimulation in the polar n-calculus and in the k-calculus

The concept of responsive bisimulation was simpler when described in the polar n-calculus, than that in the k-calculus.
That is because: 1) only has the simplest choice cases to handle; 2) the k-version of responsive bisimulation is merged
into the non-k-version, since the locking signals either become ordinary communication, or are hidden by the synatx of
choice; 3) smaller syntax.

As we have already pointed at the beginning, the polar n-calculus, which is a sub-calculus of the k-calculus, is not an
idea tool for modelling compositional objects. From object modelling point of view, the responsive bisimulation in the
polar n-calculus actually overlaps with both the k-version and non-k-version of that in the k-calculus. However, the
definition of responsive bisimulation in the polar m-calculus has no difference with the non-k-version responsive
bisimulation in the k-calculus, and therefore providers a simplified platform to describe the properties of the latter.

6 Application

In the client’s eyes, the objects O; and O, of the Figure 1-1 are behaviourally the same. With the responsive
bisimulation, we express this as O, =, 0,.

By adopting the higher order G-terms, the behaviour of concurrent objects modelled in the k-calculus can be separated
even further. The behaviour of a generic form of object may be modelled as

O & ()) o(&dTn)), where G2« i» (51) i1 (v 6) (D) keJ;.n 0, K)

& expresses purely for the exclusion, 7 are the method names and M represent the behaviours of methods’ body. We
may consider the context within the () brackets represents the static behaviour (interface/definition) of objects, since it
never change with reduction. For a compositional object, the model becomes

Oc (i) (v i) (Cl.) | F(iy),
where F2 (7))o £ «Mx7)), E= (1) Oser 1SSt Ty D) (V)@ D iS55I D)
ce th’_ﬁ) L J o(@«{ Si<71i> ifl}»<+’;l>]’ EE« ﬁ))(?}"l) ®i€l ‘(V K)mi(rgm;gf;rm,?m, %) k@Ji- ;71‘<T9m;9f,?m;tm,%,k>

F presenting the functionality of Oc in the form of an object without any constraint, the higher order G-term £ gives no
exclusion constraint, C presents the concurrency constraints and consists the exclusion control & and the schedulers S.
An example of scheduler can be S;& (713,50 oty OK) (V SpyFstn) (‘sml 8085 oy 0 |§n. Ta(T) . (FlT) | 1 (Tnl&))). In
this model, the scope of the lock/unlock signal x is never beyond the controller C. An extension to concurrent object-
oriented programming languages based on this model is presented in [ZhangO1D]. Now we can use O¢ =, Og to
express the behaviour equivalence between the compositional object O¢ and the non-compositional object Og. Here we
are able to use ~, rather than =,, because in these models the locks are private to objects.

To investigate the properties of object composition further, we introduce some more terminologies and symbol.

Definition 6-42: The safe process P is an object component process with source set ‘m, where {m}=fin(P), if
Pla forall a€tm.

The object component process C with source set 7 is a control process with socket set and plug set m, if
{in}<fi(C), {m}N{7i}=>, and for each i where ";€%i and m;€7n, there exist processes C, C" and action
sequence ¢ which satisfies {7,7}Nfu(t)=2, such that C(f,fn)y m@ (C;, CL,C" and C"|mi).

We define the generic empty control process as E & (7,/m) | o(E «{S; (ny) }ierX 7)) where
empty exclusion: & £ «pn(7n) ®ie1 (v &) T1i(s, 50,1,) (V). 1{8,Sp,1,1,0)
empty scheduler: S & (m,5,85,t,1,0).(v 8t ,r Ym(3' 36,17 ,0).3".5 |‘if’(’17).7’<ﬁ) |72)

Given a control process D with socket set X and plug set ¥ and an object component process Q with source set
Z,let C ¥ §y)D and P £)D, we use the abbreviation C& P to denote (n) (Vv 1) (C{fn,7) | P(n)) for all m
and n, where {m,n}N fi(D) =2 and {m,n}N fu(P) =2.

One of the deserved properties of the composition is identity law. With ground bisimulation, [Zhang98A] has proven
the identity law for right side C&E =, C, but the left side law (E& C ~, C) is not generally true. With the responsive
bisimulation, however, identity law is held for both sides: E&C =, C&E =, C, proved by [Zhang01C]. This property
not only gives the mathematical elegance, or reflects the fact that adding an empty behaviour to a server object will
make no difference in the clients' eyes, but more importantly, it means that we can always add new constrains to the
existing control with relatively simple composition, without introducing unexpected side effect in behaviour. For
example, assume the control process C; describes and only describes the exclusion between ¥, and 5, and the control
process C, describes and only describes the exclusion between 71, and i3, then C; & C, will provider both exclusion
between 71, and in,, and that between ’n, and in;, but no other exclusion will be accidentally added or removed. In a
more formal and generic form, let &« (%) ier (v x))xi(D) Kalin(Dk), E'Za(¥) ier (v Ky (D) & oJ | (DR
and S=S"¢ G33urL LK) (V siruh) GG sertL |51 (3] 01(@) . @) | & (1.7))))), then, proven by [Zhang01C],

vp(U"(é«{S;@i) ierp)) | U"(é'«{sk_’”& ie)XD))) =, L o(Ge S () ier} X))
where G () Oier (v k)%:(D) Kie(J:UT).n{Dk) and ;8.

In other words, the effect of composition on the exclusion is to union the corresponding exclusion sets within each
choice branch. For different S; and S'}, especially when they give conflict descriptions about the same subset of methods,
we may not be able to find such simple form of stand alone & and S; to express the composed behaviour, but the
underneath principle remains the same. [Zhang01C] and [Zhang01D] have shown that, from the unlock scheduling point
of view, the number of S; types is finite, and the composition effects can also be grouped to finite number of types,
which can be useful for compile time reasoning and code optimisation. Figure 6-1 shows some more examples about
application of the identity law in compositional object modelling. The example shown in the left digram indicatess that
the same effect of this control can be constructed by three different ways: using the empty control E to extend the scope
of controller C to 7, adding the constraint decribed by C to the empty control E; using two independed controllers C
and E,,.

n il 7l n n n

ESCx,C¥E~C|E (Ciiinp1) & Exiinpa)) & Copin) =, (i)
where 7= 71, p=p1U po.
Figure 6-1

Another proven property of composition is the association law, held for both ground bisimulation ([Zhang98A]) and the
responsive bisimulation ([Zhang01C]): (C,&C;)& C3=,C&(C,>C5) and (Ci&C)& C3=,Ci& (G C3).

7 Conclusion

This paper has presented the responsive bisimulation and variations in the k-calculus. For object systems, where the
input name clash can be eliminated, the responsive bisimulations are preserved by parallel composition, output name
substitution and choice, can even be congruence.

With the responsive bisimulation, we can have a broader and more generic studies on the behaviours of composed
concurrent objects, at where existing bisimulations may fail, enable us to establish the theory of composition with
elegant properties and the semantic of an extension to concurrent object-oriented programming languages.

Unlike that in the polar m-calculus, the responsive bisimulation in the k-calculus is splitted into the k-version, the
version with the internal vision of objects, and non-k-version, the version with external vision. Maintaining a k-version
responsive bisimulation in object components level will guarrantee the non-k-version responsive bisimulation in the
whole object.

References:

[Aksit92] Mehmet Aksit and Lodewijk Bergmans “Obstacles in Object-oriented Software Development”, OOPSLA 92
Conference Proceedings, volume 27 of ACM SIGPLAN Notices, pages 341-358, New York, October 1992

[Amadio96] Roberto M. Amadio, Ilaria Castellani and Dacide Sangiorgi, “On Bisimulations for the Asynchronous nt-calculus”, in
Proceedings of CONCUR96, LNCS volume 1119, Springer Verlag, 1996

[Holmes97] David Holmes, James Noble, John Potter, “Aspects of Synchronisation”, in Christine Mingins, Roger Duke and
Bertrand Meyer, editors, Technology of Object-Oriented Languages and Systems TOOLS 25 - Proceedings of The
25th International Conference TOOLS (TOOLS Pacific'97), pages 7-18, Melbourne, Australia, November 1997.

[Honda91] Kohei Honda and Mario Tokoro, “An Object Calculus for Asynchronous Communication”, in P. America, editor,
ECOOP91, LNCS vol 512, pages 133-147, Springer-Verlag, 1991.

[Honda92]

[Hiitte196]

[Jones93]

[Liu97]

[McHale94]

[Milner92]

[Milner92b]

[Milner96]
[Merro98]

[Merro00]

[Nestmann96]

[Noble00]

[Odersky95a]

[Odersky95c¢]

[Philippou96]

[Philippou97]

[Pierce95]

[Pierce96]

[Ravara97]

[Sangiorgi92a]

Kohei Honda and Mario Tokoro, “On Asynchronous Communication Semantics”, in M. Tokoro, O. Nierstrasz, and
P. Wegner, editors, Object-Based Concurrent Computing 1991, LNCS vol 612, pages 21-51, Springer-Verlag, 1992.

Hans Hiittel and Josva Kleist, “Objects as mobile processes”, Aalborg University, August 1996. URL:
http://www.cs.auc.dk/~kleist/ObjMobile

CIliff B. Jones, “A m-calculus Semantics for an Object-based Design Notation”, in E. Best, editor, Proceedings of
CONCUR™93, volume 715 of Lecture Notes in computer Science, pages 158-172. Springer Verlag, 1993

Xinxin Liu and David Walker, “Concurrent Objects as Mobile Processes”, to be appeared in G. Plotkin, C. Stirling,
and M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin Milner, MIT Press.

Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Expressive Power, Genericity and
Inheritance”, PhD. Thesis, Department of Computer Science, Trinity college, University of Dublin, Ireland, October
1994. URL.: ftp://ftp.dsg.cs.tcd.ie/pub/doc/dsg-86.ps.gz

Robin Milner, Joachim Parrow, David Walker, “A Calculus of Mobile Process” (Parts I and II), Journal of
Information and Computation, 100:1-77, September 1992. URL: http://www.dcs.ed.ac.uk/lfcsreps/EXPORT/89

Robin Milner and Davide Sangiorgi, “Barbed Bisimulation”, in W. Kuich, editor, Proceeding of 19th ICALP, volune
623 of Lecture Notes in computer Science, Springer Verlag, 1992

Robin Milner, “The n-calculus”, hand-written tutorial. Computer Science Tripos, Cambridge University 1996

Massimo Merro and Davide Sangiorgi, “On Asynchrony in Name-passing calculi”, In 25th ICALP, volune 1442 of
Lecture Notes in computer Science, pages ??. Springer Verlag, 1998

Massimo Merro, “Locality and Polyadicity in Asynchronous Name-passing Calculi”, In Proceedings of FOSSACS
2000, Berlin, Germany, volume 1784, pages 238-251, Lecture Notes in Computer Science, Springer Verlag, 2000

Uwe Nestmann and Benjamin C. Pierce, “Decoding Choice Encodings”, Journal of Information & Computation,
163: 1-59, November 2000. URL: http://www.brics.dk/RS/99/42

James Noble and John Potter, “Exclusion for Composite Objects”, In Proceedings of OOPSLA 2000, Minneapolis,
Minnesota USA, ACM press, 2000

Martin Odersky, “Polarized Name Passing”, in Proceedings of 15" Foundations of Software Technology and
Theoretical Computer Science (FST&TCS'95), Bangalore, India, December 18-20, 1995. URL:
http://lampwww.epfl.ch/~odersky/papers

Odersky, M. “Polarized bisimulation”, In Proceedings of Workshop on Logic, Domains, and Programming
Languages, Darmstadt, Germany, 1995

Anna Philippou and David Walker, “On Transformations of Concurrent-Object Programs”, Theoretical Computer
Sciences, to appear. Extended abstract in Proceedings of CONCUR'96, papers 131-146, Springer 1996

Anna Philippou and David Walker, “A Process-Calculus Analysis of Concurrent Operations on B-Trees”, Technical
report, University of Warwick, UK, 1997

Benjamin C. Pierce, David N. Turner, “Concurrent Objects in a Process Calculus”, In Takayasy Ito and Akinori
Yonezawa, editors, Theory and Practice of Parallel Programmin (TPPP), LNCS 907, pages 187-215. Springer, April
1995. URL: http://www.cis.upenn.edu/~bcpierce/papers

Benjamin C. Pierce, David N. Turner, “PICT: A Programming Language Based on the n-calculus”. URL:
http://www.cis.upenn.edu/~bcpierce/papers

Anténio Ravara and Vasco T. Vasconcelos, Behavioural types for a calculus of concurrent objects. In C. Lengauer,
M. Griebl, and S. Gorlatch, editors, Proceddings of 3rd International Euro-Par Conference, LNCS 1300, pages 554--
561. Springer-Verlag, 1997

David Sangiorgi, “From n-calculus to Higher-Order n-calculus, and Back™, In Proceedings of TAPSOFT’93., LNCS
668, Springer Verlag, 1992. URL: http://www-sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/mypapers.html

[Sangiorgi92b] David Sangiorgi, “Expressing Mobility in Process Algebras: First-Oreder and Higher-Order paradigms”, PhD

thesis, Computer Science Department, University of Edinburgh, UK, 1992. Available from URL: http://www-
sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/mypapers.html

[Sangiorgi95]

[Sangiorgi96]

[Sangiorgio6b]

[Sangiorgi97]

[Schneider97]

[Walker95]
[Zhang97]

[Zhang98A]

[Zhang98B]

[ZhangO1A]

[ZhangO1B]

[ZhangO1C]
[ZhangO1D]

David Sangiorgi, “Lazy functions and mobile processes”, INRIA Technical Report RR-2515, August 1996. URL:
http://www-sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/mypapers.html

David Sangiorgi, “An Interpretation of Typed Objects into Typed m-calculus”, INRIA Technical Report RR-3000,
August 1996. URL: http://www-sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/mypapers.html

David Sangiorgi, “Locality and Non-interleaving Semanitics in Calculi for Mobiule Processes”, Theoretical
Computer Science, 155:39-83, 1996

David Sangiorgi, “The Name Discipline of Uniform Receptiveness”, In 24th ICALP, volune 1256 of Lecture Notes
in computer Science, Springer Verlag, 1997

Jean-guy Schneider and Markus Lumpe, “Synchronizing Concurrent Objects in the ”, Proceedings of Langages et
Modeles a Objets '97, Roland Ducournau and Serge Garlatti (Ed.), Hermes, Roscoff, October 1997, pp. 61-76.

David Walker, “Objects in the n-Calculus”, Information and Computation, 116(2): 253-271 (1995)

Xiaogang Zhang and John Potter, “Class-based models in m-calculus”, in Christine Mingins, Roger Duke and
Bertrand Meyer, editors, Technology of Object-Oriented Languages and Systems, TOOLS 25 (TOOLS Pacific'97),
Melbourne, Australia, 24"-27" November 1997, pages 238-251, IEEE Computing Society Press, 1998. URL:
ftp://ftp.mpce.mq.edu.au/pub/mri/people/xzhang/papers/class97.ps.gz

Xiaogang Zhang and John Potter, “Compositional Concurrency Constraints for Object Models in n-calculus”,
Technical Report C/TR-9804, Macquarie University, Sydney, Australia, 1998. URL:
ftp://ftp.mpce.mq.edu.au/pub/mri/people/xzhang/papers/TR98-04.doc

Xiaogang Zhang and John Potter, “A Compostion Approach to Concurrent Objects”, in Jian Chen, Mingshu Li,
Christine Mingins and Bertrand Meyer, editors, Technology of Object-Oriented Languages and Systems, TOOLS 27
(TOOLS Asia'98), Beijing, China, 22™-25" September 1998, pages 116-126, IEEE Computing Society Press, 1998.
URL: ftp://ftp.mpce.mq.edu.au/pub/mri/people/xzhang/papers/tools27.ps.gz

Xiaogang Zhang and John Potter, “The Responsive Bisimulations in the polar w-calculus”, Technical report UNSW-
CSE-TR-0203.

Xiaogang Zhang and John Potter, “A Constraint Description Calculus for Compositional Concurrent Objects”,
Technical report UNSW-CSE-TR-0204.

Xiaogang Zhang and John Potter, “Compositional Concurrent Objects”, Technical report of CSE UNSW, Aug. 2001.

Xiaogang Zhang and John Potter, “A Compositional Concurrent Object Model, -- From Theory to Practise”,
Technical report of CSE UNSW, Augest 2001, in preparation.

