
The Responsive Bisimulations in the ��������� 	�
��
��
��������
�
�������������� �"!����#�$�%������
��'&(�����)�*!����+�,��������-$.0/213��
�-4�5�����6����-7�"!����#�$�%������-

UNSW-CSE-TR-0203

Xiaogang Zhang and John Potter
School of Computer Science and Engineering

University of New South Wales, Australia
{xzhang,potter}@cse.unsw.edu.au

Abstract

Ongoing work attempts to model concurrent object systems using process algebra. The
behaviour of an object can be described as the composition of a process representing the
basic functionality of the object and separated processes controlling the concurrent
behaviour of that object. However, familiar bisimulations, including the weak barbed
equivalence, are too strong to capture the behavioural equivalence between object
components. This paper proposes the responsive bisimulation, an even weaker bisimulation
relation which considers that delaying an incoming message locally has the same effect as
delaying it externally, as long as potential interference by competing receptors is avoided.��� ��������� �
	�� ��� ��
�������� ��������������
�� ����������� �!	�����"#�$� ������� %&�����'�(
)�&
)�*�$+�,�-.�$�.�/� ���

(ν n)(m.0 k.n.P)
and k.m.P then can be achieved. The responsive bisimulation is congruence for the family of
processes which model objects.

The Responsive Bisimulations in the ��������� 	�
��
��
���������
�������������� �"!����#�$�%������
��'&(�����)�*!����+�,��������-$.0/213��
�-4�5�����6����-7�"!����#�$�%������-
(Revised Version)

Xiaogang Zhang and John Potter
School of Computer Science and Engineering

University of New South Wales, Australia
{xzhang,potter}@cse.unsw.edu.au

Abstract

Ongoing work attempts to model concurrent object systems using process algebra. The behaviour
of an object can be described as the composition of a process representing the basic functionality of
the object and separated processes controlling the concurrent behaviour of that object. However,
familiar bisimulations, including the weak barbed equivalence, are too strong to capture the
behavioural equivalence between object components. This paper proposes the responsive
bisimulation, an even weaker bisimulation relation which considers that delaying an incoming
message locally has the same effect as delaying it externally, as long as potential interference by
competing receptors is avoided. 859 :<;):<;=9 >@?=9 >�9 A'BDC<EF:�9 G3H3I'EJHLKNM�BF9 ONEJCPKNHJQNKR?JKN:<STKUKNHL:+;3K V�QWE3C+QFB�C�B�>
expression (ν n)(m.X k.n.P) and k.m.P then can be achieved. The responsive bisimulation is
congruence for the family of processes which model objects.

1 Introduction
Y Z+[<\ [P\J]_^N`JZPa+Z<[#bc[<d e3Z+f�]NgU[Pa#bchid3eF]Na$eJbFj3^NhiZ<gkf�]Nl�]Uf�]NjJgN]kmn[<f�oJgW[+o3f�]Umqp�rJf�dFgN]Umqms^Ua<tJ]N`3f�^_mqoFgN\ ^Wm*[<\F] uvgN^Na<gNoJaPo3m
([Milner92], [Milner99]) and its variations have been applied to modelling concurrent object systems
([Walker95], [Jones93], [Sangiorgi96], [Hüttel96], [Zhang97]). Some researchers ([Schneider97], [Zhang98A],
[Zhang98B]) have also applied it in modelling compositional concurrent objects in the aspect-oriented
programming style ([Aksit92], [Holmes97]) to avoid the inheritance anomaly [McHale94].

One of the important issues in these object modelling endeavours is to identify the similarity between some
composed behaviours and the expected behaviour. There are many known bisimulation techniques available
for various purposes. For example, the weak ground bisimulation and many others can recognise the equality
between processes (ν n)(m.w n.P) and m.P, by ignoring the internal forwarding. However, those familiar
bisimulations can fail for some behaviours, such as (ν n)(m.x k.n.P) and k.m.P, which we want to be
equalised for compositional objects. The necessary of this kind equivalence can be shown by the following
“real world” communication example:

In the mailroom of a business skyscraper, the property manager uses internal mail to send bills to her tenants and
collect payments. Each tenant has a locked mailbox, which located either on the mailroom wall and can be
opened from outside of the mailroom by the tenant, or on the door of the tenant’s suite and a postman delivers
mails from mailroom to the tenant’s suite. There are a couple of techniques the manager may adopt to classify the
behaviour of a tenant. Most traditional bisimulations require the manager to monitor everything around the
mailroom, including when each item of mail is taken away. Therefore, whether the mailbox is at the mailroom or
not will make difference. Even with the barbed equivalence (its definition will be shown in section 3), for which
the manager needs only to examine which mails (both incoming and outgoing) are in the mailroom, the mailbox’s
location still will make a difference for those tenants who lost their key: for some the bill remains in mailroom,
while for others the bill has gone. In fact, the manager is not interested in those details at all; she only wants to

know about the arrival of payments and classify tenants who pay the bill on time, and in cash, as behaving
“good”, and so on.

To describe the problem a little bit more formally, lets review the idea of [Zhang98A] and [Zhang98B] in���������	�	
	����
�����
���������������������
�����
����	��� !
�"��	
����	���$#$%&���'������"�(�
	�����)��*&"'
�����
����+�������,���-����
.�,
."������/���������	�	����"����	���
parallel composition of two processes: a process F which represents the object’s functional behaviour and can
be expressed with the generic form F ∏!ni(01).Mi2�3154 , and a process C which represents the constraints on
the object’s concurrent behaviour. In effect, F on its own, represents an object with no constraints on its
concurrent interactions. For example, the functionality of a buffer object can be described by the expression
FB !nr(

1).Mr6 187 !nw(1).Mw9 18: , where nr(
1).Mr; 18< and nw(1).Mw= 18> represent the behaviour of the read and

write methods respectively, each of them can have unlimited invocations executing in parallel without any
concern of interfering among them. To discipline those invocations, assume a synchronisation behaviour
modelled by the control process Cs mr(

1).? r@ 18A + mw(1).B wC 18D , where the sum operator in fact represents a
mutual exclusion lock on those methods. Then the parallel composition of the two processes, (ν n)(CsF),
will be weakly bisimilar to Rs mr(

1) .MrE 18F + mw(1).MwG 18H , as expected. More complicated and generic
method exclusion relations, besides mutual exclusion locks, can be simply modelled and composed inI�J�K�L.M	N�OPMRQ�ITSUK�V�IXWYKZO�[]\�^�L�IXM	Q�I -calculus ([Zhang01A]) is used. The -calculus is an extended calculus
which welds the mobility power of the π-calculus with the synchronisation expressiveness of the algebra of
exclusion ([Noble00]).

Let the process O1 and O2 illustrated in Figure 1-1 represent two different versions of the internal structure of
the same composed object in a state where its only method is blocked by the lock of key . The only
difference between them is that O1 has an extra “empty” control Ctrle (the postman) which does nothing but
forwards whatever message received from channel m to the next control Ctrll (the locked mailbox). The body
(a tenant) of these two can always give the same response (a payment) if fed with the same message (a bill).
If an unlocking signal is received via channel , both O1 and O2 can accept incoming messages and process
them immediately. If some message arrives before the unlocking, O1 will store it in an internal buffer (the
door mailbox) and delay the process until unlocked, but O2 will leave the message in the external buffer (the
mailroom) as it was, while waiting for unlocking.

For a client (the manager) who is sending the message, the
behaviour of the target object can be measured only by observing
how it responds. Therefore, the behaviour of O1 and O2 are
identical in the client's eyes, since the responses they can give are
the same (both from the same Body). However, this behavioural
similarity cannot be captured by most of the known behavioural
equivalence relations, since in some stage O1 can perform an input
action from the channel m while O2 cannot. Even the weak
barbed-equivalence, one of the weakest, is too strong for them,
since O1R and O2R are not weakly barbed-bisimilar for some
R, such as R _a` ab .
In this paper we propose the notion of responsive bisimulation to recover this kind of equivalence. The basic
idea can come up from two different viewpoints. One view is, when testing the behaviour of a process, to
“localise” each test message that was sent by some client and buffered in the environment, so that it can only
be accessible by the target process, but not be visible to the observer and mistaken as an output from the
target process. Another view is, when determining the similarity between process evolution trees, the delay
of incoming messages at the input end is tolerant. In section 3 we will show these two views are equivalent.

One of the major results of this paper is that, the responsive bisimulation is a congruence for the family of
processes which model objects. This is the consequence of the fact that replication preserves the responsive
bisimulation for this family of processes. The preservation is also held by parallel composition for an even
larger category of processes, and held by other operations for all situations.

Another interesting result, revealed in Proposition 3-22, is that, a persistently available receptor with an
internal forwarder can be ignored.

Figure 1-1

m
n

unlock response

msg
O2

p
n

m

unlock response

msg
O1

(a)

(b)

O1

Ctrle

m

msg
p

Body

n

Ctrll

O2

Ctrll

m

Body

n
msg

With ability to derive the equivalence of a larger collection of behaviours, the responsive bisimulation can
capture the similarity of responsive behaviours of object processes, and more interestingly, the general
behaviour of control processes. As one of the major significance, it permits a deep study on the properties of
object composition. For example, lets denote C F for the operation composing an object component
process F with a control process C, a special kind of object component process, to yield a new object
component process with expected behaviour. With the responsive bisimulation relation, we not only have the
associative law, i.e., C1 (C2 F) (C1 C2) F, but also the identity law, i.e., there is some empty control
(identity) E such that for all F composible with E, the composed object E F is equivalent to the original
object F, and for all control process C compatible with E, the three control processes E C, C E and C are
all equivalent ([Zhang01C]).

In this paper the responsive bisimulation is presented in the ��������� 	�
����

�����������������������
�������������� 	�
����

��������
with polars. This allows us presenting the features essential for responsive bisimulation, without the full
complexity of the ������
��!�
!�" . Its extension to the #�$�%�&
$�'�&
'�(will be studied further in [Zhang01B].

The rest of the paper is structured as follows: section 2 briefly introduces the)�*�+
,�- .�/�,�+�/�0�+
0�1 and related
notions; section 3 defines responsive bisimulation; section 4 gives some properties of the equivalence and
other theoretical results; section 5 discusses some further issues relating the responsive bisimulation with
other notions; section 6 briefly describes some applications of responsive bisimulation in modelling
compositional objects with related results; and section 7 concludes the paper.

2 The 24365�798 :�;<7=5>;<?45�?4@BA p-calculus)

The C=D�E�F�G HJI�F�E
ILKMENK�OQP p R�S�T�U
S�V�U
V�WYXZS�T�[]\�^_S�`�[�WYa
b�^�c>^�bdT�WeTfW�V�\�S�T�U
S�V�U
V�WQ`�gZh�i�^jT�WYk�[�S�i�c�`�[�`�V�W R�S�T�U
S�V�U�V�W
([Amadio96] and [Hüttel96]), with the restriction that for any input guarded term m(lm).P, in P no free
occurrence of a name in nm can be used as the channel name (subject) of an input action. This restriction is
enforced syntactically by introducing the input and output polars of a name.oqp�res�t�u�v�w�p�x�y�v�y�z�t {�w�s�|
w�z�|
z�t~}

a-calculus) itself, as pointed out in [Amadio96], is a subcalculus of the�������������>� �������
�����
���������
�����
�����>�������>�������
�����������������
���������������������������������������J�����
�����������B�������
���B���������N� ����¡¢��������
���
a-calculus have no polarity, and can be transmitted through communication channels for receivers to use

in either input actions or output actions. The same name m can be used as the subject of either an output
action £¥¤L¦§©¨ or an input action m(ª§), distinguished by the presence or absence of an overbar. When an output
and an input action with the same name as the subject can take place in parallel, then a communication may
be committed.

Polarised names were introduced by [Odersky95a], where each name has either an input or output polarity,
both can be transmitted in communication, and also both can be used as subject of any action (with a rule that
a term will be inactive if the polarity is wrong, that is, when a name with input polarity is used as subject of
output term, or a name with output polarity used as subject of input term). Since both polarities can be
transmitted, the matching operator, for testing name identity and guaranteeing the desired commitment, has
to involve a pair of names with the same identity but opposite polarities.

In our «�¬�­
®�¯ °�±�®�­�±�²�­
²�³�´¶µ�²�³Y·�®�³�¸
¹º·
»�¼ a-calculus, output is non-blocking and is not used as prefix. And
similar to [Odersky95a], in the ½�¾�¿
À�Á Â�Ã�À�¿
Ã�Ä�¿
Ä�Å a name m, that can be considered as a reference to a
communication channel, has two polars, the input polar Æ and the output polar Ç , which can be considered as
the input port from, and the output port to, respectively, the channel m. The main difference from
[Amadio96] and [Odersky95a] is that, in the È�É�Ê
Ë�Ì Í�Î�Ë�Ê
Î�Ï�Ê
Ï�Ð , only output polar of names can be transmitted
through a communication channel. [Ravara97] and others have adopted a similar restriction, but in the polarÑ�Ò�Ó�Ô
Ò�Õ�Ô�Õ�Ö this restriction is enforced syntactically. As a consequence, only output polar substitution can be
caused by input prefix, while that in [Odersky95a] may involve names with both polarities and in
[Amadio96] will affect both input and output usage of a name.

One of the advantages in using polars to enforce this restriction rather than using the implicit restriction as
that in [Ravara97] and [Merro00], we believe, is the simplicity and clearness in describing and proving some

properties of bisimulations, such as when expressing a bisimilarity between process P and Q being
maintained between m(�) .P and m(�).Q.

The notion of polarised ports is a base for many forms of communications, including postal mail, email and
telephone. It also providers a base for semantics of message passing and the object-oriented computation
model. The following scenario illustrates communication over polarised ports:

A new email account was established for agent A, with a mailbox
�

A for A to receive emails and an
email address � A for A to give to other people. The first mail A found in this mailbox was a greeting
message which included the system administrator’s email address � S. Then A sent a mail to � S asking
about agent B’s email address, and the reply was “� B”. Then A sent a message to � B saying “My email
address is � A, I have a confidential document for you”, and got a reply “Please send the document to
my another email address � B2”.

It is easy to see from this scenario, the input polar of a name, such as mailbox 	 A, cannot be sent; the output
polar,
 A, of the same channel can be transmitted, but the receiver cannot use it for receiving messages. It is
not only making no sense for A to tell B “Here is an email address � A2, you should use it to receive my next
email”, but also means that the behaviour of B would depend on whether � A2 is a valid emailbox, which B
should not be responsible for. In other words, if input polars can be transmitted, then an agent’s behaviour
will no longer be predictable from its structure. This issue can be demonstrated more intuitively when the -
calculus is introduced ([Zhang01A],[Zhang01B]), where an input port can be locked/unlocked, and a change
of an input name may also change the locking status.

For modelling object system, the prohibition of transmitting input polars can be also described as “the
ownership of an input port (or reference) cannot be transferred”. We will see the need of this again later.

Another important treatment in the
�������� ����������������� is that the silent action becomes a derived action and
restricted to be internal. Section 2.2 will give detailed description and discussion about this issue (see rule
tr_INTL, Remark 2-3 and Notation 2-6).

2.1 The syntax of the � ��!�"$# %'&�"�!�&�()!�(*
Let + be the set of all names, and ranged over by name expressions , , - , . , / and variables � , 0 . Let
++ { 1 : - + } and −+ { 2 : - + } be the sets of input polars and output polars respectively. Let polar
expressions 3 , 4 and variable 5 range over the set of all polars, ++ −+ . Both 6r and {ri I}, where I is an index
set of arity n, are abbreviations for r1,r2,…,rn. The generic process terms P in the 7�8�9;:�< =?>@:�9�>�A�9�A�B are
generated by the following grammars:

P ::= CEDGFHJI (ν Kn)PP1 | P2!BGALNMa O , G ::= 0B(ν Pn)GG1+G2, B ::= Q (RS).P

The set of all actions a process may take is specified by ::= T (UV)(ν W/)XZYG[\$]  , where ^/ _. and m∉ `/ .

Here 0 is the inactive (terminated) process; aZbGcdfe is the output action which sends output polars gh into the
channel m; (ν in) P binds the set of names jn, and therefore both polars of each of those names, within the
scope of P; P1 | P2 indicates two processes run in parallel; AkGlam is an instance of parameterised process agent;
giving the process agent abstraction A (n5)P is obeying ((o5)P)pGqar P{ sa/ t5 }; B is an input-guarded process;
!B is the replication and G is the exclusive choice, both have to be constructed from input-guarded processes.

Notation 2 u 1: As usual, we need auxiliary functions vxw , y{z and | to identify the sets of free, bound and
all names, respectively, of a term or action. As a calculus with polars, we also need more specified
functions to identify polars. For process term, we define:

}�~
(���N����) ; ��� ((ν �n)P) { �- } ��� (P); ��� (P1P2) ��� (P1) ��� (P2);���
(!B) ��� (B); ��� (� (��).P) {m} ��� (P); �� (G1+G2) ¡�¢ (G1) £�¤ (G2);¥�¦
((§¨ , ©ª)P) { «. } ¬�­ (P);®°¯�±
(²´³Gµ¶¸·) ; ¹°º�» ((ν ¼n)P) { ½- } ¾°¿�À (P); Á°Â�Ã (P1P2) Ä°Å�Æ (P1) Ç°È�É (P2);

�����
(!B) ����� (B); ��	�
 (� (
�).P) ����� (P); ����� (G1+G2) ����� (G1) ����� (G2);�����
((� , !")P) { #$ } %�&�' (P);

(*) (+-,/.021) {m, 3$ }; 465 ((ν 7n)P) { 89 } :*; (P); <6= (P1P2) >*? (P1) @*A (P2);B*C (!B) D*E (B); F6G (H (IJ).P) { KL } M6N (P); O6P (G1+G2) Q6R (G1) S*T (G2);U6V ((WX , YZ)P) { [\ }]*^ (P);_a`*b
(cedgfhji) ; kal*m ((ν nn)P) { o9 } paq*r (P); sat*u (P1P2) vaw*x (P1) y�z*{ (P2);|a}*~
(!B) �a�*� (B); �a�*� (� (��).P) { �L } ���*� (P); �a�*� (G1+G2) ���6� (G1) ���6� (G2);�a�*�
((�� , ��)P) { �$ } ���6 (P);

For actions, we define:¡�¢
((ν £\)¤¦¥/§¨ª©) { «\ }; ¬�­ (® (¯°)) {m}; ±�² () ;³�´�µ
((ν ¶\)·¦¸g¹ºj») { ¼\ }; ½�¾�¿ (À (ÁÂ)) ; Ã�Ä�Å () ;Æ*Ç ((ν È\)É¦ÊgËÌjÍ) {m} { Î\ } { Ï$ }; Ð6Ñ (Ò (ÓÔ)) { ÕÖ }; ×6Ø () ;ÙaÚ*Û
((ν ÜÝ)Þ¦ß/àáªâ) {m} ({ ãÝ } { äÖ }); åaæ*ç (è (éê)) ; ëaì*í () ;

And for both P terms and actions, we defineîðï�ñ
(t) ò�ó (t) ôöõ�÷�ø (t); ùûú6ü (t) ý6þ (t) ÿ������ (t);���
(t) 	�

� (t) ����� (t); ��� (t) ���
� (t) ����� (t); � (t) ��� (t) �! (t) "�# (t) $�% (t).

Notation 2 & 2: The generic form of output actions (ν 'Ý)(*),+-/. may be abbreviated as 021435/6 when 7Ý = ,
as 8 (9:) when ;Ý = <Ö ; and as = when >Ö = or ?Ö is not of interest. The input guarded term @ (AB).P
may be abbreviated as C . P when DE = or FE is not of interest. The standard abbreviation
∏Pi P1P2…P2 and ∑Gi G1+G2+…+G3 are also used throughout this paper.

2.2 The semantics of the GIHKJMLON PRQSLKJTQSUIJMU�V
The structural equivalences and labelled transitions are shown in Figure 2-1 and Figure 2-2.

Remark 2 W 3:Rule tr_INTL gives the meaning of the internal action . It can be equivalently written
as: If P(νXÝ )Y Z\[] →̂P and Q _ (`a →) Q where bÝ c�d (Q)= , then (ν m)(PQ) → (ν m)(ν eÝ)(PQ).

In rule tr_INTL, the name restriction (ν m) over communication channel is necessary for preserving internal
actions in name substitution, and therefore preserving any bisimulation involving action, under the input
prefixing f (gh). P i,jlk2mnkpoqkqrlsqoqtMmSuwvyx�zS{ rl|SmStM|S}KtT}qx�~�vM��m�squ�oq|�z�x�x P is able to perform a synchronisation action,
then for any input prefixing m(�E) and names �Ö , after the transition m(�E).P� (�Ö→) P{ �Ö / �E }, the process P{�Ö / �E } can
always be able to perform a synchronisation action, since both polars of a name will be substituted. But this
will not be true for the �q�K�T�S� �����S�M�S�K�M�q� , where the input prefixing � (��). P will cause a substitution only on
the output polars, and without the name restriction the ability of P to perform an “internal” action can be
altered by such a substitution, and as the consequence, the � �l�q�M ¡�T¢¤£q¥M¦S§M�y�p¨ will not be preserved by input
prefixing. The argument here is, only when a communication take places via a channel which is not visible
nor interruptible from external observers, then it can be considered as a true internal action. It is only from
this point of view, that the standard rule ©�ª () «¤¬�­ () ® ([Amadio96]) can make sense.

Definition 2 ¯ 4: As usual, let ()* indicate the contents in () repeating zero or finitely many times, then
the weak transitions are defined as: P° ± P iff P(→)*P; P² ³ P iff Ṕ µ . →. ¶ · P, where ¸ .

¹»º�¼q½q¾S¿yÀMÁpÂÄÃRº�ÅTÆS¿yÀMÁqÂqÇKÆÉÈ�ÆSÊ¤ÀMÅTÀMÆ�Ã�¾SÁqÂK¾SºSËK¿ÌÀMÂÍ¿MÎKÀMÏÐÅMÀy¿Mº�ÃwÆS¿y½qÃRºSÇKÀTÏÑ¼qº�È�ÀMÂqº�¼ÒÀMÂÍÆÓÂqÁpÂqÔlÏ�¿MÆSÂq¼KÆ�ÃR¼ÒÕÖÆ\×¤ÀMÂÄ¿TÎqº
p-calculus:

Definition 2 Ø 5: P→ P iff (ν m)P→(ν m)P for some m; P ÙyÚ P iff (ν m)P Û Ü (ν m)P for some m.

Summation
str-SUM1: P10 P1; G1+0 G1

str-SUM2: P1 P2 P2 P1; G1+G2 G2+G1

str-SUM3: P1 � P2P3) � P1P2) P3; G1+ � G2+G3) � G1+G2) +G3

Scope
str-SCP1: (ν �n)P P, if �n ��� (P) = ; (ν 	n) G G, if
n �
� (G) =
str-SCP2: (ν m) �������� 0; (ν m) � (��).P 0
str-SCP3: (ν �m) (ν �n) P � ν �m, �n) P; (ν �m)(ν �n)P ν !n)(ν "m)P
str-SCP4: (ν #n) P1P2 (ν $n)(P1P2), if %n &(' (P2)= ; (ν)n)G1+G2 * ν +n)(G1+G2), if ,n -(. (G2) =
str-REN: (ν /n) P (ν 0m)(P{ 1m/ 2n}), if 3m 4�5 (P)=

Instance
str-INST: ((67)P) 8:9a ; P{ <a/ =7 }

Figure 2-1 Structural congruence rules for the >@?BADCFE GIHFCFAJHLK@AJKBM

tr_OUT:
· ,NPORQSUT


VXW

YZ →[0P

P 
\

]_^` →a P, m bdce
(ν fe)P(νge )h ikjl →m P

tr_IN:
·n

(op).P 
q

(rs →) P{ tu / vw }

tr_RES: P → P, xn y
z () =
(ν {n)P → (ν |n)P

tr_REP:
B 
}

(~� →) P
!B
�

(�� →) P!B

tr_PARL:
P → P

PQ → PQ
tr_CHOI: G1 

�
(�� →) P

G1+G2 
�

(�� →) P

tr_INTL: P(ν�e )� �_�� →� P, P
�

(�� →) P
(ν m)P → (ν m)(ν �e)P

tr_STRUC: P1 P1, P1 → P2, P2 P2

P1 → P2

Figure 2-2 Labelled transition rules for process terms in the �B�@�J�F� �I�F�F���F�@�J�B�
Clearly, P→P implies P→P, and P� � P implies P � P and, therefore, a variant of the rule tr_INTL can
be written as: if P (ν e )¡ ¢_£¤ →¥ P and Q 

¦
(§¨ →) Q where ©e ª�« (Q)= , then PQ →(ν ¬e) (PQ). Besides the

reason we have just discussed, the distinction between internal action and reduction is also necessary for the
new bisimulation relation, and we will find out later.

The action does not appear as a guard of the B term in the syntax of the ­B®:¯D°F± ²I³F°F¯�³F´@¯J´Bµ , but can be treated
as a derived notation.

Notation 2 ¶ 6: -guarded processes are abbreviations defined as follows, where m∉·�¸ (P) and m∉¹�º (G):
.P (ν m) (» .P¼); .P +G (ν m) ((½ .P+G)¾); ! .P (ν m) (¿ .(P! .P)À)

Definition 2 Á 7: The strong commitments of process P are defined as:
P can commit the action , denoted as P , if there exists some P such that P→P.
P can commit on input polar Â , denoted as P Ã , if there exists some input action = Ä (ÅÆ) s.t. P ;
P can commit on output polar Ç , denoted as P È , if there is some output action =(ν Ée)ÊÌË�ÍÎÐÏ s.t. P ;
P can commit the action sequence Ñ = 1, 2,…, n, denoted as P Ò , if P →a1 .→a2 .….→an P, or P→Ó P for

short.
The weak commitments , are obtained by replacing → with Ô and with throughout.

Definition 2 Õ 8: Process P is a derivative of P, if there exists some finite sequence Ö such that P→× P .

2.3 Mapping between the p� ���������	�
���
���	� a-calculus

�	�����
p �
� a �	����� a �
� p�

0 � p a 0; 0 ! a p 0;"
(ν n)P # p a (ν ni,no) ($ P % p a&
' o(()).* i+-,)/.); 0 (ν n)P 1 a p (ν ni,no)(2 P 3 a p4 5 o(67). 8 i9;:<>=);?A@CB;DE>FHG

p a I oJLKM oN ; OQPSR-TM�UWV a p X oY-Z[i, \] ô ;_a`
(bc).P d p a ' i(e) o). f P g p a; h n(i)).P j a p k i(lm i, no o). p P q a p;r

P1 | P2 s p a t P1 u p av P2 w p a; x P1 | P2 y a p z P1 { a p| P2 } a p;~
!B � p a !� B � p a; � !B � a p !� B � a p;�
G1+G2 � p a � G1 � p a+ � G2 � p a. � G1+G2 � a p � G1 � a p+ � G2 � a p;�
A�;�� , ��L��� p a � A � p a�;�M i, � o¡ ; ¢ A£-¤M�¥W¦ a p § A ¨ a p©;ª« i, ¬­ i, ®¯ o, °± o² ;³
(´µ , ¶·)P ¸ p a (¹) i, º» o) ¼ P ½ p a; ¾ (¿))P À a p (ÁÂ i, ÃÄ i, ÅÆ o, ÇÈ o) É P Ê a p;

Figure 2-3 ËÍÌ�Î
Ì/Ï�Ð-Ñ�Ò�Ó�Ô/Õ�Ö
Ò�×ØÔ�ÙÚÎ
Û�Ñ a ÜÞÝ�ß�à
Ý�á/à
á�âSß�ã�ä p-calculus

åçæéèëê/ì�í�î�ïñð
ò�ïôó�í/õ
ö÷îéøúù�û/øýü�îþè
ó/ð
øúÿ ð
ò�ï�ì ð
ò�ï
p
���

a mapping will be exactly the same as the direct mapping,
except the second clause, which should become

�
(ν n)P � p a (ν n) � P � p a in the direct mapping.

Since the �
	
�
��� ���������������
�������������
�����
���
������	��! �"�#$���&%�'
��"��(
'�	
��� ���������)�
���
�&*,+�#�'
#��-���.���/	
�
#��(
��#)���)	
'
�����
0�#�01�-�/	
2 �"�#3�/�
�
�40
	
21����'1	��5 �"�#.���&%
'
�)"��(
'
	
��� �����)�����
�����6�)��'7���
��	1�����
�
%1 �	8 �"
#.�
	������ �����)�����
����� in its restricted domain.
For example, the ground bisimulation, early, late and open bisimulations all coincide in the 9�:<;�=
>�?�@/A
=
A
B�: C
calculus, as well as in the D
E�F
G�H I�J�G�F�J�K
F
K�LNMPORQ�S$G�L&T
U�J�Q�H(E
U
E�K�L IVJ)G�F�J�K
F�K
L�W
X�L�S�F�Y(Z�G�L6D
E�W�U�X�S)[1E�K
X\W�U [Amadio96], is]_^�`
a
b�]�c
b)`
c�`�^ed�fhg�i
jk^�g
])l
m
]�n(m o�b�]�c�b�`�c
`
^�prqts
g�iug�i
jkn(j�^&g�n-s�b�g�s�d�l
^eg�i
]�gRd�`
g
v
`
g
^wb�]�l
l
d
gRa
jx`�^�j�my]�^ev
n-j)f-s�z{d�n3d
l|]b�i�d
s�b�j}v
d�s�l
g/~���i
j�n(j�f/d�n(j�ph��j�l�j�n(s
b|v�n-d
v
j�n(g
s�j)^_b�d�l
b�c�`
m
j�m�f-n(d���g�i�j|^�g
]�l
m
]�n(m o�b�])c�b�`
c
`
^�b�]�l�]�c�^�d�]�v�v
c���g�d�g�i�j])^<��l
b�i
n(d�l
d�`
^ o�b�]�c�b)`
c�`�^�]�l
m8g�i�j$v
d�c�]�n o�b�]�c�b�`�c�`
^ .���
�

p-calculus is also a subcalculus of [Odersky95a] ���_�
�������(���&�)� �����������
�
�
�_�(�.�{�
�)�
�� ��u�� ¡��� o), and all¢�£)¤(¥1¦�§�¨w¢�©
£
p ª�«�¬7­
®$¯�°�±-®�ª�²�³�´7ª)µ
¬
¶�®�±-²�®)¯w°�¬�²�µw²�·�® o.

¸º¹(»
¼
p ½�¾ o ¿ÁÀ(Â
Ã o Ä�Å pÆ

0 Ç p o 0; È 0 É o p 0;Ê
(ν n)P Ë p o (ν n) Ì P Í p o; Î (ν n)P Ï o p (ν ni,no) (Ð P Ñ o pÒ Ó o(ÔÕ). Ö i×,ØÙ!Ú);Û�Ü�ÝßÞà!áãâ

p o n!ä!åæ�ç è ; é n!êßëæ4ì<í o p î oïßðñ i, òó oô ; õ n?ö,÷æ4ø<ù o p 0;úüû
(ýþ).P ÿ p o � � (��ºç). � P � p o; � n?(�� ?, �» !).P 	 o p
 i(�� i,
� o). � P � o p; � n!(�� ?, �» !).P � o p 0;�

P1 | P2 � p o � P1 � p o� P2 � p o; � P1 | P2 � o p � P1 � o p� P2 o p;!
!B " p o *# B $ p o; % *B & o p !' B (o p;)
G1+G2 * p o + G1 , p o+ - G2 . p o. / G1+G2 0 o p 1 G1 2 o p+ 3 G2 4 o p;5
A6879 , :;=<?> p o @ A A p o B8CD ?, EF !G ; H AI8JDLK?M o p N A O o pP8QR i, ST i, UV o, WX oY ;Z
([\ ,]^)P _ p o (`� ?, a» !) b P c p o; d (e�)P f o p (gh i, ij i, kl o, mn o) o P p o p;

Figure 2-4 qsrutvrxwzy8{z|u}z~x���v|u��~u��tv�u{ o ���z�z�v�z�����u���z�x� p-calculus

�������x�u�u�����v�u�¡ ��x¢v£¤��¥§¦u¨x¥ª©z�«�v x�v¥§¬­�v�u�®�¯�v�u�
p °v± a mapping will be exactly the same as the direct mapping,

except the second clause, which should become ² (ν n)P ³ p a (ν n) ´ P µ p a in the direct mapping.

Since the ��������� �
	�����	��
������������������	�����	������
���������
�������� �	��
�!�� ����
� �
	�����	"��������#%$
�� ����&��	'�
�(�������!�����"��	"�� �	�����)
��)*�&�(��+�����,�(�����-)���+*���� *�
�.���
�'������ �	"�
�!�� ����
� �
	��"��	������
�/	"�� 0�������*���
�����*���1�����'���
����� �
	��"��	������
� in its restricted domain.
For example, the ground bisimulation, early, late and open bisimulations all coincide in the 2�354�6�7�8
9(:�6�:�;
3 <
calculus, as well as in the =�>�?�@�A B
C�@�?�C�D�?�D�EGFIHKJ
L'@�E5M�N�C�J
A(>�N�>�D
E B
C�@"?�C�D�?�D�E�O�P�E�L�?�Q!R�@"E/=�>
O�N
P�L�S*>
D�PTO�N [Amadio96],U�V�WXV�Y�Z�[�W�\�[�Y�\�Y
V�]�^`_�a�bcV�_�W�d�e�W�f(e g
[�W�\�[�Y�\�Y�V�hjiXU�_�ak_�a�bXf(b�V�_�f&U�[�_�U�]
d�Vl_�a�W"_m]�Y�_�n�Y�_�Vl[�W�d
d�]�_oZ
bcY�V�b�epW�V,n�f&b�^&U�qp]�f�]
drW[�a�]�U�[�bsn�]
U�d�_(tvuKa�b�f!b�^(]
f!b�hxw
b�d�b�f!U�[yn�f&]�n�b�f!_�U�b"Vp[�]�d�[�\�Y�e�b�ez^&f!]�{|_�a�byV}_�W�d�e�W�f!e g
[�W"\�[�Y�\�Y�V~[�W�dzW�\�V}]�W�n�n�\���_�]z_�a
bW"V5��d�[�a�f!]�d�]
Y�V g
[�W�\�[�Y�\�Y
V�W�d�e�_�a
b�n�]
\�W�f g
[�W�\�[�Y
\�Y�V

. However, most results of this paper for the ��������� �
calculus �����
�������"�1�"�������
���������"�������
���������
�"�������*���������������!�&�������
�������
�����X�������������������������!���
�����
�������"�������G¡

3 Responsive bisimulation in the ¢/£¥¤!¦¥§ ¨�©T¦v¤(©%ª/¤&ª/«
The barbed bisimulation ([Milner92b],[Sangiorgi92b]) is a rather weak relation, which traces the state
changes of a process during the course of reductions and observes which channels are available for
communication. We adopt the version of [Amadio96] ¬!­�®�¯�°0¯�±�²�°�³�´�®!­�°�­�µ
± ¶
³�¯�·�³�µ�·�µ
±G¸

Definition 3 ¹ 9: A symmetric relation º on P-terms is a (strong) barbed bisimulation if whenever
P» Q then P a implies Q a for a −¼ , and P→P implies Q such that Q→Q and P½ Q.

Let ¾ b be the largest strong barbed bisimulation. The notion of weak barbed bisimulation ¿ b is
obtained by replacing the transition with , and → with À throughout.

However, since barbed bisimulation cannot identify what messages are communicated, it is too rough to
measure process’s behaviour. Better measurements are needed.

Definition 3 Á 10: The process context Â [Ã] is given by Ä ::= [Å](ν Æn) Ç È |P!É (ÊË). Ì Í (ÎÏ). Ð +G.
From this syntax, the hole [Ñ] occurs at most once in a process context expression. By filling this hole
in Ò [Ó] with the process Q, Ô [Q] constructs a new process expression.

Definition 3 Õ 11: Let Ö [.] be a process context, the strong and weak barbed congruences are defined
as P × bQ if Ø [.].(Ù [P] Ú b Û [Q]); P Ü bQ if Ý [.].(Þ [P] ß b à [Q]);
and the weaker versions similar to [Amadio96]: let R be an arbitrary process, the strong and weak
barbed equivalence are defined as: P á b1Q if R .(RP â bRQ); P ã b1Q if R .(RP ä bRP).

Weak barbed equivalence is too strong for compositional objects, as illustrated by the example in Figure 1-1,
where O1 and O2, the two different versions of the same object component, can be expressed in the å�æ�ç�è�é ê
calculus as O1 (ν p)(!ë (ì).ílîðï�ñ (ν n)(ò .!ó (ô).õoöø÷où !ú (û).Body)) and O2 (ν n)(ü .!ý (þ).ÿ������ !� (�).Body) .
If only output actions are detectable, then within an environment where there is no other place that the input
polar of the same channel m is used, the behaviour of O1 and O2 can be considered as the same by an external
observer. But this similarity of the observation behaviours cannot be captured by the weak barbed
equivalence. The weak barbed equivalence fails in at least two ways.

First, it cannot distinguish between a message sent out from the target process and a message sent by another
agent to the target process but buffered in the environment. For example, given the message �
	 �
� , then
O1������� Q1 and O2������� Q2, where Q1 (ν s)(!� (�).������� (ν n)(.!! (").#%$�&�' !(()).Body)*�+ ,�-) and
Q2 O2.�/�0
1 . Since Q1 has entered an undetectable status, while in Q2 the message 243 5�6 remains to be a
detectable “output action”; that is, Q1 7 but Q2 8 , therefore
O19�:�;�<>= bO2?�@BA�C , that is, O1DBE bO2.

Second, it cannot prevent input names clash between the testing environment
and the processes being tested. For example, let R F (G).HJI�K%L M
N O�P , then, as
shown in Figure 3-1, O1R can take two different reduction paths, either

O1R

O1QSR TVU Q1W (X).Y[Z \V]

O2R

O2̂̀ _ aVb
Figure 3-1

O1R O1������� or O1R Q1� (�).	�

��� , while O2R has only one reduction path, O2R O2������� .
Therefore O1R � bO2R, that is O1 ��� bO2.

Another failure in the strong version is, the barbed bisimulation treats synchronisation actions occurred in
public channels as single step reduction, and therefore cannot match them with uncompleted
synchronisations which have delays on inputting side.

We need a different technique to measure the observation behaviours, weak enough to ignore the unrelated
information and strong enough to capture the similarity in responses perceived by outsiders. As with barbed
bisimulation, we must note the state changes of a process caused by internal actions, and we must also be
able to detect which communication channels are available for output in all evolved states. Moreover, in
order to distinguish states, we need to be able to observe what each of the messages output by the process is.
The � ���������! #"�$�%'&(���*) , similar to that in [Amadio96], can provide this degree of observation:

Definition 3 + 12: The , -bisimulation is a symmetric relation - on processes, for which whenever
P. Q then P→P implies Q→Q and P/ Q, where is a non-input action and 021 () 354 (Q)= .

The weak 6 7�8�9�:;9�<#=�>�?'@�9!6BA is obtained by replacing → with throughout. We denote the largest
(strong) C D�E�F!G�F�H#I�J�KML(F�C�N as OQP , and the largest weak R S�T�U!V�U�W#X�Y�ZM[(U�R�\ as]Q^ .

Lemma 3 _ 13: Every ` acb*d�e�d�f#g�h�iMj�d�`�kml is preserved by restriction, i.e., P n Q implies (ν on)Pp (ν qn)Q.
Proof: This can be proven by show that r {((ν sn)P, (ν tn)Q): Pu Q} is a v . Here we only give that for the
strong case w xzy , the weak case can be proven similarly.{}|�~������#�'���!~ ���'�M���'�B���������B���'���'���

n, P and Q combination, we always assume that the rule str-REN is
automatically and implicitly applied over the fresh names �n to avoid name clash. For example, assume
P (ν n)(A��� ,�}� (ν n)P1), then a name m∉�5� (P1Q) will be picked up automatically and the expression
(ν n)(A�!� ,�� (ν n)P1) will be treated as (ν n)(A¡!¢ ,£�¤ (ν m)P1{¥m/ ¦n}) implicitly without mention.

Assume (ν §n)P→P for some arbitrary non-input action , by inducting over transition rules, this is only
possible in one of the following two cases:

1. n̈ ©5ª ()= and P→P . By rule tr_RES, (ν «n)P→(ν ¬n)P , so P (ν ­n)P . By P ® Q, we have Q→Q
and P ¯ Q . By tr_RES, (ν °n)Q→(ν ±n)Q . Therefore ((ν ²n)P , (ν ³n)Q) ´ ;

2. is an output action of the form =(ν µ¶)·¹¸»º¼�½ where ¾À¿ÂÁn and Ã¶ 1= ÄÅ (ÆÇ − È¶) É , and P
Ê

Ë�ÌÍ →Î P . By
P Ï Q, we have Q 

Ð
Ñ�ÒÓ →Ô Q and P Õ Q . Let Ö¶ 2= ×n− Ø¶ 1, by rule str-SCP3 and str-SUM2,

(ν Ùn)P (ν Ú¶ 1)(ν Û¶ 2)P and (ν Ün)Q Ý ν Þ¶ 1)(ν ß¶ 2)Q. By the tr_OUT, we got (ν à¶ 1) (ν á¶ 2)P→(ν â¶ 2)P and
(ν ã¶ 1)(ν ä¶ 2)Q→(ν å¶ 2)Q , however ((ν æ¶ 2)P ,(ν ç¶ 2)Q) è .

By the definition of é êcë*ì�í�ì�î#ï�ð�ñMò(ì�é�ómô , we have õ ö .

The ÷ ø�ù�ú�û;ú�ü#ý�þ�ÿ��(ú!÷�� gives a measurement on processes’ states by observing available reductions and output
actions, but cannot determine how a process responds to incoming messages, since input actions are not
observed. To determine responsive behaviours, we introduce a new term for specifying input messages.

Notation 3 � 14: We add the auxiliary P-term [���	�
��]P, the localisation of the sent message
������� with
process P, into the process syntax. Properties for this term are shown in Figure 3-2.

The term [���	����]P is not for modelling processes, but only designed to express responsive bisimulation
relations between processes. It couples process P with the message �� which is buffered in channel m and
unobservable from outside, even though the output polar � may have been known by outsiders. The essential
purpose of this term is to hide the message ���� !�" from external observers, so that it will not be mistaken as an
output from P. This will be discussed further in Session 5.

Structural equivalence :
lStr_NULL [��������] 0 0; lStr_IND ([��	�
���]P)Q [
�������](PQ), if m∉����� (Q)
lStr_LOC (ν m)[��������]P (ν m)(���� !�" P); lStr_SUM2 [#�$�%&�'][(*),+-�.]P / 021435�6][7�849:�;]P
Transition :

lTr_SYNC2
P 
<

(=> →) P ,
[?�@�AB�C]P → P

lTr_INV
P → P DFE (GH)

.

[I�J,KL�M]P → [N�O�PQ�R]P
Figure 3-2 Localised output action.

The rule lTr_SYNC2 added a new case for defining the action. Unlike in rule tr_INTL, here the name
restriction is not required. However, since only the input polar, S , of the channel name m is involved, and the
preservation of actions is maintained by input prefixing.

Corollary 3 T 15: The following conclusion can be immediately drew from the rules in Figure 3-2:
(1) If P 

U
V
WX
→Y P then (ν m)P (ν m)[Z\[4]^�_]P; (3) P ` implies ([a�b�cd�e]P) ;

(2) P implies ([f�g,hi�j]P) if k , or, = but P l ; (4) ([m�n�op�q]P) r (st).

Now we can begin to introduce new behavioural equivalence relations.

Definition 3 u 16: Let v [.] be the responsive testing context of syntax w ::=[.][xzy,{|�}] ~ , then we define
strong and weak responsive equivalences as: P � rQ iff � .(� [P] � o � [Q]); P � rQ iff � .(� [P] � o � [Q]).

This definition gives a quite clear description about the meaning of equivalence in responsive behaviour, but
is not so useful since it requires the exhaustive testing over the infinite set of responsive testing contexts. A
more practical definition is the r1-bisimulation, so named because it is structurally comparable to the
1-bisimulation in [Amadio96].

Definition 3 � 17: A strong (or weak) r1-bisimulation is a strong (or weak, respectively) � �
bisimulation � such that whenever P� Q then [�\�,����]P � [�\�4����]Q for all [�\�4����].
We denote the largest strong r1-bisimulation as � r1, and the largest weak r1-bisimulation as � r1.

Lemma 3 18: Responsive equivalence and r1-bisimulation coincide, that is, ¡ r1 ¢ r and £ r1 ¤ r.
Proof: We only show it for the strong case here, and the weak case can be proven in similar way.
¥

r1 ¦ r: Proven by induction. Let P § r1Q, then we can write ¨ 0[P] © r1 ª 0[Q] where « 0 [¬].
Assume ­ i[P] ® r1 ¯ i[Q] is held for some responsive testing context ° i.
By the definition of ± r1, for all [²z³,´µ�¶], we have · i1[P] ¸ r1 ¹ i1[Q] for each º i1 [»\¼4½¾�¿] À i.
Since Á r1 ÂÄÃ from the definition of Å r1, we can conclude that, P Æ r1Q impliesÇ

.(È [P] ÉÄÊ Ë [Q]), that is, P Ì rQ, by the definition of Í r.

Î
r1 Ï r:Let P Ð rQ, then P ÑÓÒ Q, because Ô 0[P] ÕÓÖ × 0[Q] for Ø 0 [Ù].

Also, we have [Ú�Û,ÜÝ�Þ]P ß o [à\á,âã�ä]Q for all [å\æ4çè�é], because ê 1[P] ëÓì í 1[Q] for each î 1 [ï\ð4ñò�ó][ô].
This implies õ .(ö [[÷�ø�ùú�û]P] üÓý þ [[ÿ�������]Q]), since � 2[P] �
	 � 2[Q] for each � 2
 [� 1[�]] . I.e.,

P � rQ implies [��������]P � r[��������]Q for all [�� �!"�#]. Therefore $ r % r1 by the definition of & r1.

It is easy to verify that O1 ' r1O2 holds for the previously mentioned examples. The r1-bisimulation provides a
test platform and measures behavioural equivalence from outside of target processes.

While responsive equivalence and r1-bisimulation provide a good base for describing similarities of
responsive behaviours, it can tell little about why or when two processes may offer similar behaviours. For
closer study, we need an inside view observing input actions.

Definition 3 � 19: A (strong) responsive bisimulation is a (strong) � �������	��
���
������������ such that
whenever P� Q then P 

�
(�
�
→) P implies either Q 

�
(�
�
→) Q and P � Q, or Q →Q and P � ["!$#%'&]Q.

The weak version is obtained by replacing transitions with weak transitions everywhere. We denote (r

and) r to be the largest strong and weak responsive bisimulation respectively. Clearly, * r + r.

For the previously mentioned example, we can also easily verify that O1 , rO2. It is no surprise, since:

Lemma 3 - 20: The responsive bisimulation and r1-bisimulation coincide, that is, . r / r1 and 0 r 1 r1.
Proof: We only show that for the strong case here, and the weak case can be proven in a similar way.
2

r 3 r1: Let 4 {([57698:<;]P, [=7>�?@'A]Q):PB Q} C for D = E r. Assume [F"G9HI<J]P →P for some an arbitrary
action , by the rules in Figure 3-2 and by Corollary 3-15 (4), it is only possible in the following
two cases:

(1) P→P and KML (NO), then P=[P"Q$RS<T]P . Since P U rQ, we have
either Q →Q , P V rQ and [W7X�YZ<[]Q →[\"]$^_'`]Q , and therefore ([a"b9cd<e]P , [f7g$hi'j]Q) k ;
or =l (mn), Q →Q, P o r[prq�st'u]Q, that is, [v"w$xy'z]P

{
(|
}
→) [~"�$��'�]P and [�"����'�]Q →[�"�9��'�]Q.

By rule lStr_SUM2 , we have [�r�$��<�][�"�$��<�]Q [�"�$��'�][���9� ¢¡]Q, therefore
([£7¤�¥¦<§]P, [̈r©9ª«¢¬][­7®9¯°'±]Q) ² ;

(2) = and P
³

(´
µ
→) P, then by P ¶ rQ it implies

either Q
·

(¸
¹
→) Q, [º7»�¼½'¾]Q →Q and P ¿ rQ, that is (P, Q) À since Á Â r;

or Q Ã (ÄÅ), then Q →Q and P Æ r[ÇÉÈ9ÊË'Ì]Q, that is (P, [Í"Î$ÏÐ'Ñ]Q) Ò since Ó Ô r;

Then by definition of Õ r, we have Ö × r, that is, P Ø rQ implies [Ù"Ú$ÛÜ'Ý]P Þ r [ß"à$áâ'ã]Q. Becauseä
r åçæ , and because [èêé9ëì'í] is arbitrary here, we have î r ï r1 by the definition of ð r1.

ñ
r ò r1: Let P ó r1Q, then [ô7õ�ö÷<ø]P ù r1[ú"û$üý'þ]Q for all [ÿ�������]. Assume P→P for some action :

If is a non-input action, then Q →Q and P � r1Q;

If is an input action, =� (
), then [����
���]P →P. By [��������]P � r1[��������]Q and [����� �!]Q →Q ,
it must be

either Q
"

(#
$
→) Q and Q Q. But P %'& Q since (r1)'* . Let + 1={(P,Q), (P,Q)} then , 1 -'. ;

or Q →Q and Q [/10324�5]Q. But P 687 [9;:�<=�>]Q since ? r1 @8A . LetB
2={(P,Q), (P,[C1D�EF�G]Q)}, then H 2 IKJ ;

Let L = M r1 N 1 O 2, then P Q'R since S r1 T'U , then we have V W r by the definition of X r.

Corollary 3 Y 21: The responsive bisimulation and responsive equivalence coincide: Z r [r, \ r] r.

That is, the two different viewpoints mentioned in the introduction, are united into one concept.

Another interesting coclusion is:

Proposition 3 ^ 22: P _ r (ν `)(!a (bc).dfe�gh�i P{j /k }) for all P and m, where n is a fresh name for P.
Proof: It is trivial to varify.

4 Properties of the responsive bisimulation

We now investigate some formal properties of responsive bisimulation.

Corollary 4 � 23: The responsive bisimulations are preserved by localisation. That is, let
�

be either � r

or � r, then P� Q implies [���	�
��]P
 [���	����]Q for all [���	����].
Proof: Let � be either � r1 or � r1, corresponding to � respectively, then by Lemma 3-20, P� Q implies
P � Q, which then implies that [�� "!#�$]P % [&�'"()�*]Q for all [+�,	-.�/] according to the definition of r1-
bisimulation, then again by Lemma 3-20, we have [0�1"23�4]P 5 [6�7"89�:]Q.

Lemma 4 ; 24: The responsive bisimulations are equivalences.
Proof: Here we only give the proof for < r, and the weak case can be proven similarly.

Reflexive : P = rP for any P, according to the definition of > r;
Symmetric : if P ? rQ then Q @ rP, by the definition of A r;
Transitive : Let P1 B 1P2 and P2 C 2P3, where D 1 E r and F 2 G r, and therefore P1(H 1 I 2)P3. For arbitrary

action , such that P1 →P1,

If is not an input communication act, then

P1 →P1 implies P2 →P2 and P1 J 1P2, which then implies P3 →P3 and P2 K 2P3, ie., P1(L 1 M 2)P3.

If is an input communication act, say =N (OP), and P1 
Q

(→Ru) P1, then we may have either

P2 
S

(T
U
→) P2 and P1 V 1 P2, P3

W
(X
Y
→) P3 and P2 Z 2 P3, and therefore P1([1 \ 2)P3;

or P2
]

(^
_
→) P2 and P1 ` 1P2, P3→P3 and P2 a 2 [b�c	de�f]P3, and therefore P1(g 1 h 2) [i�j"kl�m]P3;

or P2 →P2 and P1 n 1[oqpsrt�u]P2, P3 →P3 and P2 v 2 P3. By w r x r1, we have y 2 z r1, so
[{q|"}~��]P2 � 2 [�q�s����]P3, and therefore P1(� 1 � 2) [���	����]P3. By the definition, (� 1 � 2) � r.

A problem is apparent: the responsive bisimulation is not preserved by parallel composition in general. For
instance, with O1 and O2 of the earlier example, we have O1 � rO2, but (O1O3) � r(O2O3) for O3 !� (��).R,
because the occurrence of input polar � in O3 has changed the ability of O1 to receive messages on � .
However, as mentioned at the beginning of this paper, the purpose of our study is about object modelling,
and as the nature of object systems, the ownership of each input port should be unique. For example, the
identity of an object is uniquely owned by no one else but that object; each method of each object is also
uniquely identified so that no message would be delivered to wrong destination. In general, each input polar
has a restricted scope (or ownership), and is never exported outside this scope.

When responsive bisimulation is strictly restricted within objects modelling, the problem domain where it is
needed, then its preservation in parallel composition can be guaranteed. To show this, we first formalise the
restriction needed on input polars.

Definition 4 � 25: Let � be the input polar of a communication channel name m, P be a process for
which m ����� (P), and � be the context � [.] (ν ¡) (Env[.]) where ¢¤£¦¥�§©¨ (Env) while m may or may
not be a member of ª¡ . We say that,

P is an owner of « (or say, ¬ is owned by P) with respect to the environment Env;
Env is an environment free of ­ (or say, ® -free environment);¯

[.] is an ° -safe environment context, or ± -safe environment for short.

An ² -safe environment only allows the process in the hole to consume a message sent along the channel m,
ensuring no interference from the environment. It reflects the fact that the responsive behaviour of a process
can be measured only when messages sent to it are guaranteed not to be intercepted by some other process.

Definition 4 � 26: A process P is safe for Env, and the environment Env is said to be safe for P, if P is
the owner of all

� �����
(P) with respect to the environment Env, that is, �	��
 (P) ��
�� (Env)= . We may

call P a safe process, when the behaviour of P is only considered within environments which are safe
for P.
A process P is autonomous if ����� (P)= .

Lemma 4 � 27: Evolution preserves process safety. I.e., if ����� (P) ����� (Env)= holds for some process P
and Env, then ����� (P) ����� (Env)= also holds for all P and Env, which are derivatives of P and Env
respectively.

Proof: Simply because the input polar of a channel cannot be transmitted by communication.

Corollary 4 28: An autonomous process and all its derivatives are safe for any system.

!#"%$'&)(+*%,%$�-.-0/0&%12*%3546$'798;:</.&)80"=$
p-calculus, all method bodies can be considered as autonomous, since after

parameters passed through the method interface, further input (if any) can only be performed via channels
that were initially private and informed to the senders by the forked method body. An object process itself is
initially autonomous until creation, when its name (the unique identification) is exported to its environment.
Its method names can also be considered as initially private to the object, and then exported to the caller
during each method call. For example, similar to [Walker95] and [Zhang97] amongst others, the method call
o.m1(a1,a2) may be modelled as (ν mset)(>@?BA setC D set(EF).G 1H�I 1,J 2K), and on the object side the encoding
will look like (ν Lm) (!M (N set). O set PRQSUT ∏!V i(WX).Bodyi), where method names Ym are initially private.

Proposition 4 Z 29: The responsive bisimulations are preserved by parallel composition for safe
processes. That is, let [be either \ r or] r, then P1̂ P2 implies P1P _ P2P for all P which satisfy
(̀�a�b (P1) c�d�e (P2)) f	g�h (P) = .

Proof: Here we only show that for i r. The strong case can be proven similarly.

Let P be the congruence induced by the commutativity and associativity laws for parallel composition “”
in Figure 2-1 and rule lStr_SUM2 in Figure 3-2, and let relationj

{(P1P,P2P) : (P1 k rP2) (l	m�n (P) (o�p�q (P1P2))=)} r r. Let Q1 P1P and Q2 P2P, and Q1 s t Q1 for
some action , by P1 u rP2, it must in one of the following three cases:

(1) P1 v w P1, P2 x y P2 and P1 z rP2, and therefore Q1 P1P, Q2 { | Q2 for Q2 P2P;
(2) P } ~ P, and therefore Q1 P1P and Q2 � � Q2 for Q2 P2P;
(3) =� (��), P1 ����(��B�) P1, P2 � � P2 and P1 � r[��������]P2, by the safety condition ����� (P) (����� (P1) �	��� (P2))= , it must

be m∉�� �¡ (P) and therefore [¢¤£�¥¦�§]P2P [̈¤©�ª«�¬](P2P), that is, Q1 P1P, and Q2 ­ ® Q2 for Q2 P2P.

The cases where either P1 ¯(ν° ±²´³) µ¶¸· ¹�º »¼@½ P1 and P ¾¿ÁÀ(ÂÃBÄ) P, or P1 ÅÆÈÇ(ÉÊBË) P1 and P Ì(νÍ Î²5Ï) ÐÑ¸Ò Ó�Ô ÕÖ�× P, have been covered by
theses three above cases, according to Remark 2-3, and therefore need not to be considered separately.

Since (Q1, Q2) Ø for cases 1-2, and (Q1, [ÙÛÚÝÜÞ�ß]Q2) à P for the third case, therefore á is a â r upto P.

Let denote a name substitution which is over output polars only, otherwise standard. Whenever applied to a
process or an action, bound names (in pairs of both polars) are automatically renamed to avoid conflict. We
do not need to consider substitution over input polars because they can not be sent through channels in the

p-calculus. Clearly the safety of processes is preserved by the output polar substitution.

Proposition 4 ã 30: The responsive bisimulations are preserved by output polar substitution. That is, letä
be either å r or æ r, then for all ={ çè / éê }, Pë Q implies ì íïî .

Proof: These can be proven by showing ð {(ñ , ò):Pó Q} ô is a õ upto öR÷ùø=ú'ûüú ý%úÿþ0ø%ú��´þ.û����9þ��%û�� 	
congruence in Figure 2-1 and Figure 3-2. Here we only show that for
 � r, and the weak case can be
proven similarly. Lets exam all the possible actions that � may take:

P (ν
��
)� 
����
→
�
P:it is only possible when P ≡(ν ��)(�

���� P), by the transition rules listed in Figure 2-2 and

Figure 3-2. Remember the implicity renaming over fresh names to avoid name clash, and
notice that the substitution only effects to free output polars, then there must exist some � , ��
and P such that � = � , �� = �� , P =P and P≡(ν ��)(���
��! P). Clearly, P (ν"� )# 

$�%&
→' P, it

implies Q (ν(� )) 
*,+-

→. Q and P / rQ since P 0 rQ, this further implies there exists some Q
s.t. Q≡(ν 1�)(2�3
45!6 Q). Therefore, Q ≡(ν 7�)(8�9
:;�< Q) and Q (ν=� )

>

?�@A

→B Q . This matches
(P , Q) C as required.

P 
D

(EF →) P : it is only possible when P G (HI) where JK satisfies LM = NO . Let P 
P

(Q
R
→) P, it is easy to verify

that P ≡P . Since P must be of the form either P≡(ν S�)(!T (UV).P1P2) or
P≡(ν W�)((X (YZ).P1+G)P2), then by P [rQ, this implies

either Q 
\

(]
^
→) Q and P _ rQ , then we have (P ,Q) ` as required, and it is easy to verify

that Q 
a

(bc →) Q , with the same way as above;

or Q→Q and P d r[egfihj!k]Q. Since in the lnmporqts uwvxqtorvtynozy|{~}|qt{������nmps���qto u�vtqto�vtyporyn{~}
�r�n�
channel name of an internal action is always bound, so Q →Q . Notice
([�g�i��!�]Q) ≡[���
����]Q , we have (P ,([���i��!�]Q)) � , or, (P ,[���i ¡£¢](Q)) ¤ ;

P →P : it is possible only when there exist some process P1 and complementary output-input action
pair (ν ¥�)¦¨§|©ª�« and ¬ (­®) such that, P ≡(ν ¯� , m)(P1°�±
²³�´), P1

µ
(¶· →) P1, and P ≡(ν ¸� ,m)P1.

Clearly, there must exist some P2 and ¹º such that P1=P2 , »¼ = ½¾ , and P≡(ν ¿� ,m)(P2ÀÂÁiÃÄÆÅ).
That is, Ç¨ÈiÉÊÌË 

ÍÏÎ

ÐÑ
→Ò 0, P2 

Ó
(ÔÕ→) P2, then, by rule tr_INTL, we have P→P, where P≡(ν Ö� ,a)P2.

By P × rQ, this implies Q→Q and P Ø r Q. This is only possible when there exists some
Q2 and complementary output-input action pair (ν ÙÚ)Û�Ü
ÝÞàß and á (âã) such that,
Q≡(ν äÚ ,n)(Q2å�æ
çè,é), where Q2 

ê
(ëì→) Q2, therefore Q ≡(ν íÚ ,n)(Q2 î�ïiðñ ò) and Q2 

ó
(ôõ →) Q2 .

By rule tr_INTL, Q →Q , and again we have (P , Q) ö as required.

Corollary 4 ÷ 31: The responsive bisimulations are preserved by input prefix. That is, let ø be eitherù
r or ú r, then Pû Q implies ü (ýþ).Pÿ�� (��).Q for all � (��).

Proofs for other properties of the responsive bisimulations also have the similar difference with those for
standard bisimulations, and we have to provide them instantly.

Proposition 4 � 32: The responsive bisimulations are preserved by restriction. That is, let � be either	
r or
 r, then P� Q implies (ν ��)P
 (ν ��)Q for all �� .

Proof: These can be proven by showing � {((ν ��)P, (ν ��)Q): P� Q} � is a � upto ����������� ��"!#���
structural congruence in Figure 2-1 and Figure 3-2. Here we only show that for strong case $ % r, and the
weak case can be proven similarly. Lets exam all the possible transitions that (ν &�)P may take:

(ν '�)P(ν
(�
)) 
*,+-

→
.

P: Giving the implicity renaming has removed all fresh name clash, let /� 1= 0� 12 and 3� 2= 4�657�
1, then we have (ν 8�)P ≡ (ν 9� 1)(ν :� 2)P. From the structural congruence rules and

transition rules, this transition is only possible when m∉ ;� , <� 1 =� and there exists some P
such that P≡ (ν >?)(P@BADCE6F) where G? = H�JILK� 1. By rule tr_OUT, tr_RES and tr_PARL, we
have P (νM

?
)N 
O�PQ

→
R

P and P ≡(ν S� 2) P. This implies Q (νT
?
)U 
V�WX

→
Y

Q and P Z rQ since
P [rQ, by rule tr_OUT and tr_RES we have (ν \�)Q (ν]

�
)̂ 
_�`a

→
b

(ν c� 2)Q, it matches
((ν d� 2)P, (ν e� 2)Q) f as required.

(ν g�)P 
h

(i
j
→) P : it is only possible when m∉ k� and P l (mn). Let P 

o
(p
q
→) P, by rule tr_RES,

(ν r�)P 
s

(t
u
→) (ν v�)P, that is, P ≡(ν w�)P. From P x rQ, this implies

either Q 
�

(�
�
→) Q and P � rQ, then by rule tr_RES, (ν ��)Q 

�
(�
�
→) (ν 	�)Q, and

((ν
�)P, (ν ��)Q) � as required;

or Q→Q and P
 r[��������]Q, then (ν ��)Q→(ν ��)Q from rule tr_RES, and we
have ((ν ��)P, (ν ��)([��������]Q)) � as required.

(ν �)P→P : it is only possible when P→P, then by rule tr_RES, (ν !�)P→(ν "�)P, that is, P ≡(ν #�)P.
By P $ rQ, we have Q→Q, and by rule tr_RES, (ν %�)Q→(ν &�)Q, and
((ν '�)P,(ν (�)Q)) as required.

Put them together, by the definition, * is a + r upto ,

Proposition 4 - 33: The responsive bisimulations are preserved by choice. That is, let . be either / r

or 0 r, then G11 G2 implies (G1+G)2 (G2+G) for all G.
Proof: The proof is trivial, since for both sides the first action must be an input action in any case.

Proposition 4 3 34: The responsive bisimulations are preserved by replication for autonomous
processes. That is, let 4 be either 5 r or 6 r, P1 and P2 be autonomous processes, then P17 P2 implies
!8 (9:).P1; !< (=>).P2 for all input prefix ? (@A), and ! .P1B ! .P2.

Proof: Let C p be the set of all safe processes in the environment concerned, D ap be the set of all autonomous
processes, first we show that bothE

1 {(R1!F (GH).P1, R2!I (JK).P2) : (P1,P2 L ap) (P1M P2) (R1,R2 N p) (R1O R2)} P andQ
2 {(R1! .P1, R2! .P2) : (P1,P2 R ap) (P1S P2) (R1,R2 T p) (R1U R2)} V

are W upto XZY\[^]`_aYb[dcfehgdikj�g^jdelc\Ybc\jd_amon`_apd]qm`jd_�mor\sdt^]`tap^uaik]`elY\ivcfmoY\c_dw R1 0 and R2 0. Here we only show
these for strong case x y r, and the weak case can be proven similarly.

For z 1, we write Q1 R1!{ (|}).P1 and Q2 R2!~ (��).P2, and exam all the possible transitions Q1 may take:

Q1 
�

(�
�
→) Q1: since R1,R2 � p (this implies n �\����� (R1R2)), it must be Q1≡R1P1{ �

�
/ �� }!� (��).P1, and we can

have Q2 
�

(�
�
→) Q2 where Q2≡R2P2{ �

�
/ �� }!� (��).P2. Write R1 R1P1{�

�
/ �� } and R2 R2P2{

¡
/ ¢£ },since

P1 and P2 are autonomous, and therefore P1{ ¤
¥

/ ¦§ }and P1{̈
©

/ ª« }are, then R1,R2 ¬ p. By Proposition 4-
30 and Proposition 4-29, R1 ­ rR2, we have (Q1, Q2) ® 1;

Q1 
¯

(°
±
→) Q1: where ²´³¶µ . It is only possible when R1

·
(¸
¹
→) R1 and Q1≡R1!º (»¼).P1. From R1 ½ rR2, this implies:

either R2 
¾

(¿
À
→) R2, R1 Á rR2 and Q2

Â
(Ã
Ä
→) Q2 where Q2≡R2!Å (ÆÇ).P2. Notice Lemma 4-27, we have

R1,R2 È p, therefore (Q1, Q2) É 1;
or R2 →R2, R1 Ê r[Ë�ÌÎÍÏ�Ð]R2 and Q2 →Q2 for Q2≡ R2!Ñ (ÒÓ).P2. Again R1,R2 Ô p by

Lemma 4-27, since [Õ�ÖØ×ÙÛÚ]Q2≡ [ÜÞÝØßàÛá]R2!â (ãä).P2 according to rule lStr_IND, we have
(Q1, [å�æ�çè�é]Q2) ê 1;

Q1 →Q1: where is a not-input action. It is only possible when R1 → R1 and Q1≡ R1!ë (ìí).P1. From
R1 î rR2, this implies R2 →R2, R1 ï rR2 and Q2 →Q2 where Q2≡ R2!ð (ñò).P2, again, with
Lemma 4-27, we have (Q1, Q2) ó 1.

Put them together, since all the possible transitions Q1 →Q1 are covered by the above cases, by the
definition of ô r we have õ 1 ö r.

That ÷ 2 is a ø r upto ùoú`ûýüdþ ÿ ����� û��\ûýú ÿ��
	��
�\ú�� � ú����

Proposition 4 � 35: For autonomous processes, responsive bisimulations are congruences.
Proof: Immediately concluded by the combination of Proposition 4-29, Proposition 4-30, Corollary 4-31,
Proposition 4-32, Proposition 4-33, Proposition 4-34 and Corollary 4-23.

5 Discussion

5.1 Privatise message versus privatise input port

Some readers may wonder the need for the new term [��������]P; can the same effect be achieved by separating
the scope of input and output polars, and configuring � as private? It cannot.

What [�

����] does in the term [��������]P is to privatise neither polar � nor � , but the message �� . The input
polar � has not consumed this message yet, and the output polar � can remain public so more messages can
be sent via it. Especially, any message emitted via � by P itself must be considered as part of observation
behaviour of [��� �!�"]P. The separating of polars’ scope has nothing to do with this issue, though may help in
describing the concept of “safe process”. We chose not to include this separation because this may require
introducing another operator, polar matching, which will increase the complexity of expressions rather than
simplify them.

We may consider the difference between the term [#�$ %&�']P and (*)�+,�- P as that, in the former [.�/ 01�2] is a
buffered message arriving from the channel m and waiting for P or its derivatives to pick it up (but not have
to), while in the latter, the 3*4�56�7 is an outgoing message to be buffered into the channel m. From an external
observer point of view, the sent message [8�9 :;�<] in the former is invisible, while the message =*>�?@�A in the
latter can be mistaken as an output from the target process P. In this sense, we may read [B�C DE�F]P as “the
behaviour of the black box P while provided with the test message GH via channel m”, and this behaviour
depends on whether and when P or its derivatives are able to access the input port I .

For some readers, the role of term [J�K�LM�N]P can be understood as a weak responsive bisimulation of
(ν O)(P�Q RS�T !U (VW).X�Y Z[�\ P{] /̂ }), which is directly concluded from Proposition 3-22. We believe that our
choice on introducing the new term [_�`�ab�c]P gives a clearer and simpler description of semantic than using
(ν O)(d�e fg�h !i (jk).l�m no�p P{q /r }).

The using of input polar s rather than output polar t in [u�v�wx�y] is because that it is a message arriving from
channel m rather than being sent to channel m. It is also necessary for preventing an output polar substitution,
caused by input prefixing, to change the testing result for the static behaviour of P. Think of it in this way:
[z�{
|}�~] is a sent message, and you cannot change the destination address of mail after it is sent.

5.2 Delay of input versus delay of output

The asynchronous bisimulation in [Amadio96] emphasises the possible delay of message output (or more
precisely, delays during the delivery), and considers message retransmission with the same communication
channel as ignorable. Its definition written in the ��������� ����������������� is:

The (strong) asynchronous bisimulation is a (strong) � ������������������������� � for which whenever P¡ Q
then P

¢
(£
¤
→) P implies either Q

¥
(¦
§
→) Q and P ¨ Q, or Q →Q, and P © (ª¬« ­®�¯ Q).

The weak version is obtained by replacing transitions with weak transitions everywhere. We denote ° a

and ± a be the largest strong and weak asynchronous bisimulation respectively.

Both the responsive bisimulation and asynchronous bisimulation describe asynchronous communication by
allowing message delay. We do not include the asynchronous bisimulation for a couple of reasons:

1. We are interested in the delay of input rather than that of output;
2. To capture the delay of output, the asynchronous bisimulation allows competition on grabbing

messages for the same input port, which can disturb the detection of responsive behaviours;
3. Combining both output delay and input delay will make the theory unnecessarily complicated.

In contrary, the responsive bisimulation concentrates on the delay of input. In the view of object-oriented
programming, the delay in the delivery is not visible for either sender or receiver, and is also out of their
control. The delay of input, however, is controllable for the receiver, and, as pointed out by [McHale94] and
[Zhang98B], the existence of the interval between the event of a message arriving at an object and the event
of the message processing starting, provides a synchronisation control point for concurrent objects. In other
words, the responsive bisimulation is quite natural for compositional objects.

The asynchronous bisimulation and the responsive bisimulation overlap, but neither contains the other. For
example, given m∉����� (P), then the processes � .� P and P are clearly weakly asynchronous bisimilar, but
not weakly responsive bisimilar, while the processes (ν �)(� . 	 
 .� .P) and � .
 .P are clearly weakly
responsive but not asynchronous bisimilar. The result given by Proposition 3-22, as a counterpart of the
asynchronous bisimulation conclustion � .� P � a P, is another example where weakly responsive bisimilar
does not agree with weakly asynchronous bisimulation.

It is also worth to noting that the 1-bisimulation, which was proven to be equivalent to the asynchronous
bisimulation and defined as “an � �����������������! ����#"%$ where P& Q implies (P')(+*,.-)/ (Q021435.6) for all 7)8+9:.; ” in
[Amadio96], becomes irrelevant in the <#=?>�@BA CEDF@F>�DFG?>�G#H , because an unbound synchronisation is no longer
considered as a action, as discussed in Remark 2-3. Apart from this, the major difference between I 1 andJ

r1, which has some structural similarity, is that, K r1 examines how processes respond to various inputs by
filtering out the effects of the environment's behaviour, whereas L 1 treats processes as part of the
environment during the testing.

5.3 Message localisation verses non-blocking input prefix

Though the localisation term [MON+PQ.R]P seem not fimiliar for most of readers, there is a comparable concept.
The notion of non-block input prefix was introduced by [Parrow97] and [Victor98], and was adopted by
[Merro98] where it is also called “delayed input prefix” for a term m(Sx)P. While there are some similarity in
the structure of their inference rules, the concepts are different. First, the box [TOU+VW.X] in [Y[Z4\]_^]P represents a
particular message buffered in channel m, and ù are free names in [a[b+cd_e]P, and P does not have to have the
ability to consume this message. In contrast, m(fx)P indicates the potential ability of inputting any message
from channel m while it does not prevent P to perform other actions which are not along bound names gx.
Second, [hji?kl.m]P describing an envirnment state for testing the responsive behaviour of process P, while
m(nx)P tries to model a process behaviour itself.

5.4 Porcess safety verse name hidden

Since the responsive bisimulation is mostly useful only for safe processes, which own the receptors they use,
a question arises: can the same effect of the responsive bisimulation be achieved by limiting which names or
polars can be visitable in a bisimulation relation? We are not seeking such an approach because the following
difficulties, among many others:

1. A bisimulation relation associating with certain names is not useful in comparing processes behaviour in
generic. For example, to inference the behaviour similarity between PR and QR from that between P
and Q, the names associated may have to be changed, that is, they cannot be measured under the same
kind of relation.

2. The both sets of the names which a process own and does not own the input polar are dynamic and
infinite during the course of reduction. For example, the reduction from (ν o)(Pp)qsr.t)(νo )u v w →x P may
add a new public name n, to the owned name set.

3. An output action y2z?{|.} , performed by the target process should always be observed for determining the
responsive behaviour, no matter whether the target process own the input polar ~ or not. Therefore no
such a name m or polar � should be hidden.

5.5 Relation of the responsive bisimulation with some conventional bisimulations

Since the ��������� �
	�����	��
������������������	�����	������
���������
�������� �	��
�!�� ����
� �
	�����	"��������#%$
�� ����&��	'�
�(�������!�����"��	"�� �	�����)
��)*�&�(��+
�����,�(�����-)���+*���� *�
�.���
�'������ �	"�
�!�� ����
� �
	��"��	������
�/	"�� 0�������1���
���2�3���*�����4���
����� �
	��"��	������
� in its shrunken domain.
For example, the ground bisimulation, early, late and open bisimulations all coincide in the 5�687�9�:�;
<(=�9�=�>
6 ?
calculus, as well as in the @�A�B�C�D E
F�C�B�F�G�B�G�HJILKNM
O�C�H�P�Q�F�M
D!A�Q�A�G
H ERF"C�B�F�G�B�G�H�S�T�H�O�B�U!V�C�H/@�A
S�Q
T�O"W*A
G�TXS�Q [Amadio96],Y�Z�[\Z�]�^�_�[�`�_�]�`�]
Z�a�bdc�e�f4Z�c�[�g�h�[�i(h j
�[�`��]�`�]�Z�kXl\Y�c�e1c�e�f\i(f�Z�c�i&Y�_�c�Y�a
g�Zmc�e�["cna�]�c�o�]�c�Zm_�[�g
g�a�cp^
f4]�Z�f�hq[�Z,o�i&f�b&Y�rqa
i�a�gs[
�e�a�Y��fto�a
Y�g�c(uwvxe�f�i!f�b(a
i!f�kzy
f�g�f�i!Y�_{o�i&a�o�f�i!c�Y�f"Zq_�a�g�_�`�]�h�f�h|b&i!a�}~c�e�f{Z�c�[�g�h�[�i!h j
�["`��]�`�]�Z�_�[�g|[�`�Z�a�[�o�o�`2��c�a|c�e
f
["Z8��g�_�e�i!a�g�a
]�Z j
�[�`�"]�`�]
Z�[�g�h�c�e
f�o�a
`�[�i j
�[�`��]
`�]�Z

.

One of the conclusions from [Amadio96] is that, the ground, early, late and open bisimulations all coincide���0���
�������������
�!�������
� �
�������������
�J���n���*���������&�����
�����������0�������0���,�������������
���0�&���w���������
����� �
���"���������
�
.

To keep the syntactical consistence, we redefine those similar bisimulation relations in the �������� ¡R¢"����¢�£���£
¤ .

Definition 5 ¥ 36: The (strong) ground bisimulation is a (strong) ¦ §R¨�©�ª�©�«*¬�­�®"¯�©�¦
°'± if whenever P² Q
then P

³
(´µ →) P implies either Q 

¶
(·¸ →) Q . And the weak ground bisimulation is obtained by

replacing transitions with weak transitions everywhere. We denote ¹ g and º g be the largest strong and
weak ground bisimulation respectively. Clearly, » g ¼ g.

This definition has adopted the ground style of [Sangiorgi95], that is, no name substitution is needed in the
input clause.

Lemma 5 ½ 37: ground bisimulations are preserved by output polarity name substitution.
Proof: Similar to that for Proposition 4-30, except no need to check the cases involving localisation.

Definition-5 ¾ 38: The (strong) early bisimulation is a strong ¿ À
Á�Â�Ã�Â�Ä*Å�Æ�Ç"È�Â�¿
É'Ê if whenever PË Q then
P
Ì

(ÍÎ →) P implies ÏÐ Q s.t. Q
Ñ

(ÒÓ →) Q and P{ ÔÕ / Ö× }Ø Q{ ÙÚ / ÛÜ };
The (strong) late bisimulation is a strong Ý Þ
ß�à�á�à�â*ã�ä�å�æ�à�Ý
ç'è if whenever Pé Q then

P
ê

(ëì →) P implies Q s.t. Q
í

(îï →) Q and ðñ (P{ òó / ôõ }ö Q{ ÷ø / ùú });
The (strong) open bisimulation is a strong û ü
ý�þ�ÿ�þ���� ����� þ�û	��
 if whenever P� Q then

for any output polar substitution ={

�
/ �� }, � →P implies Q s.t. Q →Q and

P� Q ;
The weak versions of those bisimulations are obtained by replacing transitions with weak transitions
everywhere. We denote the largest strong early, late and open bisimulations with � e, � l and � o

respectively, and denote the largest weak early, late and open bisimulation with � e, � l and � o

respectively.

Lemma 5 � 39: Ground, early, late and open bisimulations all coincide.
Proof: The proof is trivial. Let � g be strong (or weak) ground bisimulation, Let � be any of strong (or weak,
respectively) early bisimulation, late bisimulation or open bisimulation, then we got

P� Q implies P� gQ, by letting �� = ! ; P" gQ implies P# gQ, by applying Lemma 5-37.

Corollary 5 $ 40: The ground bisimulations are responsive bisimulations,
that is, % g & r and ' g (r.

Proof: Directly concluded from the comparison of their definitions.

The Figure 5-1 shows the relations between some bisimulations in the polar
)+*-,�.�*�/0.1/32 , where the arrow means “is a subset of”.

r r

4
5

r r

687

e l o g

a

9
e : l ; o < g

=
a

Figure 5-1

6 Application

With the responsive bisimulation, behavioural equivalence can be recovered for compositional objects. As
already pointed out, the objects O1 and O2 of Figure 1-1 are behaviourally the same in the client’s eyes, which
now can be expressed as O1 � rO2. Also, for the mailroom example, whether a tenant is “good” or “bad” will
be no longer related to where his mailbox is located.

Generally, with the idea of [Zhang98A], let I be the index set, I1,I2,…,In be disjoint subsets of I where
I1 I2 … In I, then the functional behaviour of a concurrent object and a control process can be modelled
in the �������	�
��
�	���	������� respectively as

F (��) ∏i I !� i(��).Mi, where Mi represents the body of the ith method;
C (�� , ��)(C1C2…Cn), where each Ck has the form of either Ck ∑i Ik

�
i(��). � i� �!#" or Ck ∏i Ik!$ i(%&). ' i(*)+-, .

Then when composing C with F, we have (ν .m)(C/ 01 , 2354 F6 78:9
) ; rR where

R R1R2…Rn, with each Rk has the form of either Rk ∑i Ik < i(=>).Mi or Rk ∏i Ik!? i(@A).Mi.

In other words, the control process C defines the exclusion behaviour for methods separately from the
functional behaviour F, and both are enforced in the composed object.

The above is only a simplified description. In the more sophisticated model ([Zhang98A], [Zhang01C]), a
scheduler for each method is contained in the unified form of control elements:
Ck ∑ B i(C n,D n,E n, FG).(ν sm,rm,tm)Si, where HI are the parameters (i.e., the message) of the function call, s,r,t are
signal channels for the synchronisation points during the method execution: start, value return, and
termination respectively.The follows are three scheduler examples:

Si J nK iLNM f,O m,P m,Q m, RS-T U m.V m(WX).Y m.(Z n[\]-^ _ nCk)) `-` Mutually exclusive;
S i a nb icNd f,e m,f m,g m, hi-j k m.l m(mn).(o np*qr#s t m.(u nCk))) v-v Mutually exclusive with early return;
Si w nCkx iy{z f,| m,} m,~ m, ��-� � m.(� m(��).� n�*��#� � m.� n)) �-� Non-exclusive, non-constraint.

Here the role of Ck in the Si expressions can be regarded as the “unlock point”. [Zhang01C] and [Zhang01D]
have shown that, from the unlock scheduling point of view, the number of Si types is finite, and the
composition effects can also be grouped to a finite number of types, which can be useful for compile time
reasoning and code optimisation.

In [Zhang01C] and [Zhang01D] the concurrent object model is described using the ���	�
���	������� ([Zhang01A]),
which is much more expressive and flexible on behaviours composition/separation. Also, more complicated
controls can be described in the same unified form, andunlock points Ck will no longer have to appear in Si

expression explicitly. However, this is out of the scope of this paper.

To investigate the properties of object composition further, we need some more terminologies and symbols.

Definition 6 � 41: A safe process P is an object component process with source set �� , where �m=���N� (P),
if P � i for all mi �m.

The object component process C with source set ¡ is a control process with socket set ¢£ and plug set¤¥ , if ¦m §©¨«ª (C), ¬m ­n= , and for each i where ® i ¯° and ± i ²³ , there exists some processes C, C
and action sequence ´ satisfying { µn, ¶m} ·�¸N¹ (º)= , such that C»*¼½ , ¾¿ÁÀ


Â

i(Ã
Ä
→) C, C→Å C and C Æ iÇ ÈÉ-Ê .

We define the generic empty control process as E (ËÌ , ÍÎ)∏i I !Ï i(ÐÑ).Ò iÓ*ÔÕ×Ö
Given a control process D with socket set ØÙ and plug set ÚÛ and an object component process Q with
source set ÜÝ , let C (Þß , àá)D and P (âã)Q, then we denote (äm)(ν ån)(Cæ çè , éê-ë Pìîínï) with the
abbreviation C P, for all ðm and ñn where { òm, ón} ô©õ (D)= and { öm, ÷n} ø©ù (Q)= .

One of the desired properties of the composition is the identity law. With ground bisimulation, [Zhang98A]
has proven the identity law on the right C E ú gC, but the left identity law (E C û gC) is not generally

true. With the responsive bisimulation, however, the identity law holds for both sides: E C � rC E �
rC,

proven by [Zhang01C]. This property not only gives mathematical elegance, or reflects the fact that adding
an empty behaviour to a server object will make no difference in the clients’ eyes, but more importantly, it
means that we can always add new constrains to the existing control with relatively simple composition,
without introducing unexpected side effect in behaviour. For example, assume the control process C1

describes and only describes the exclusion between
�

1 and � 2, and the control process C2 describes and only
describes the exclusion between � 2 and � 3, then C1 C2 will provider both exclusion between � 1 and � 2,
and that between � 2 and 	 3, but no other exclusion will be accidentally added or removed.

Figure 6-1 shows some more examples using the identity law in compositional object modelling. The
example shown in the left diagram indicates that the same effect of this control can be constructed in three
different ways: using the empty control E to extend the scope of controller C to
� , adding the constraint
described by C to the empty control E, using two independent controllers C and E0.

Another proven property of composition is the association law, held by both ground bisimulation
([Zhang98A]) and the responsive bisimulation ([Zhang01C]), that is: (C1 C2) C3 � g C1 (C2 C3) and
(C1 C2) C3
 rC1 (C2 C3).

7 Conclusion

This paper has presented the responsive bisimulation, which can capture responsive behavioural equivalence
between compositional concurrent objects, by allowing the delay of input actions. For object systems, where
input name clash can be eliminated, the responsive bisimulations are preserved by parallel composition,
output name substitution and choice, and can even be congruence.

The responsive bisimulation can be understood in different ways. Apart from the view of “input delay”,
another view is that, when testing the behaviour of the target object, or black box, the only precondition we
need to know is what messages have been provided to it, and the only postcondition we should examine is
the response from the target object. We have proven these different views are equivalent.

With the responsive bisimulation, we can have a broader and more generic study of the behaviour of
concurrent components, where existing bisimulations fail to give us the desired equivalence. Our approach
enables us to establish a theory of concurrent objects with elegant compositional properties and provides a
semantic basis for an extension to concurrent object-oriented programming languages.

References:

[Aksit92] Mehmet Aksit and Lodewijk Bergmans “Obstacles in Object-oriented Software
Development”, OOPSLA’92 Conference Proceedings, volume 27 of ACM SIGPLAN
Notices, pages 341-358, New York, October 1992

E C � r C E � r CE0 (C1 ���� 1, �� 1 � E1 ���� 2, �� 2 �) C2 ��� , !"$#&% r C '�() , *+-,
where ./ 2= 01 − 23 1, 45 = 67 1 89 2.

Figure 6-1

:
r ; r

E

C

<=

>?
E

C

@A

BC

C E0

DE

FG

H
r I r C

JK

LM

N
p2

O
p1

C2

C1 E1

PQ
1 RS 2

TU

VW

C2

C1

XY
1

Z[

\]
2

^_

p̀1

[Amadio96] Roberto M. Amadio, Ilaria Castellani and Davide Sangiorgi, “On Bisimulations for the
Asynchronous -calculus”, in Proceedings of CONCUR’96, LNCS volume 1119, Springer
Verlag, 1996

[Holmes97] David Holmes, James Noble, John Potter, “Aspects of Synchronisation”, in Christine
Mingins, Roger Duke and Bertrand Meyer, editors, Technology of Object-Oriented
Languages and Systems TOOLS 25 - Proceedings of The 25th International Conference
TOOLS (TOOLS Pacific'97), pages 7-18, Melbourne, Australia, November 1997.

[Honda91] Kohei Honda and Mario Tokoro, “An Object Calculus for Asynchronous Communication”, in
P. America, editor, ECOOP’91, LNCS vol 512, pages 133-147, Springer-Verlag, 1991.

[Hüttel96] Hans Hüttel and Josva Kleist, “Objects as mobile processes”, Aalborg University, August
1996.

[Jones93] Cliff B. Jones, “A -calculus Semantics for an Object-based Design Notation”, in E. Best,
editor, Proceedings of CONCUR’93, volume 715 of Lecture Notes in computer Science, pages
158-172. Springer Verlag, 1993

[McHale94] Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Expressive
Power, Genericity and Inheritance”, PhD. Thesis, Department of Computer Science, Trinity
college, University of Dublin, Ireland, October 1994.

[Merro98] Massimo Merro and Davide Sangiorgi, “On Asynchrony in Name-passing calculi”, In 25th
ICALP, volune 1443 of Lecture Notes in computer Science, pages 856-867. Springer Verlag,
1998.

[Merro00] Massimo Merro, Josva Kleist and Uwe Nestmann, “Local -Calculus at Work: Mobile Object
as Mobile Processes”, In Proc. of IFIP TCS2000, Sendai, Japan, Aug. 2000. LNCS vol. 1872,
pages 390-408, Springe.

[Milner92] Robin Milner, Joachim Parrow, David Walker, “A Calculus of Mobile Process” (Parts I and
II), Journal of Information and Computation, 100:1-77, September 1992.

[Milner92b] Robin Milner and Davide Sangiorgi, “Barbed Bisimulation”, in W. Kuich, editor, Proceeding
of 19th ICALP, volume 623 of Lecture Notes in computer Science, Springer Verlag, 1992

[Milner99] Robin Milner, “Communicating and Mobile Systems: the -calculus”, Cambridge University
Press,1999

[Noble00] James Noble and John Potter, “Exclusion for Composite Objects”, In Proceedings of
OOPSLA 2000, Minneapolis, Minnesota USA, ACM press, 2000

[Odersky95a] Martin Odersky, “Polarized Name Passing”, in Proceedings of 15th Foundations of Software
Technology and Theoretical Computer Science (FST&TCS'95), Bangalore, India, December
18-20, 1995. URL: http://lampwww.epfl.ch/~odersky/papers

[Odersky95c] Odersky, M. “Polarized bisimulation”, In Proceedings of Workshop on Logic, Domains, and
Programming Languages, Darmstadt, Germany, 1995

[Parrow97] Joachim Parrow and Björn Victor, “The Update Calculus”, In Michael Johnson, editor,
Proceedings of AMAST’97, Sydney, Australia, Dec. 13-17th 1997, LNCS 1349, pages 409-
423, Springer 1997

[Ravara97] António Ravara and Vasco T. Vasconcelos, Behavioural types for a calculus of concurrent
objects. In C. Lengauer, M. Griebl, and S. Gorlatch, editors, Proceedings of 3rd International
Euro-Par Conference, LNCS 1300, pages 554--561. Springer-Verlag, 1997

[Sangiorgi92b]Davide Sangiorgi, “Expressing Mobility in Process Algebras: First-Order and Higher-Order
paradigms”, PhD thesis, Computer Science Department, University of Edinburgh, UK, 1992.

[Sangiorgi95] David Sangiorgi, “Lazy functions and mobile processes”, INRIA Technical Report RR-2515,
August 1996.

[Sangiorgi96] Davide Sangiorgi, “An Interpretation of Typed Objects into Typed -calculus”, INRIA
Technical Report RR-3000, August 1996.

[Sangiorgi96b]Davide Sangiorgi, “Locality and Non-interleaving Semanitics in Calculi for Mobiule
Processes”, Theoretical Computer Science, 155:39-83, 1996

[Schneider97] Jean-guy Schneider and Markus Lumpe, “Synchronizing Concurrent Objects in the Pi-
Calculus”, Proceedings of Langages et Modèles à Objets '97, Roland Ducournau and Serge
Garlatti (Ed.), pp.61-76, Hermes, Roscoff, October 1997.

[Victor98] Björn Victor, “The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes”,
PhD thesis, Dept. of Computer Systems, Uppsala University, Sweden, June 1998

[Walker95] David Walker, “Objects in the -Calculus”, Information and Computation, 116(2):253-271,
1995

[Zhang97] Xiaogang Zhang and John Potter, “Class-based models in -calculus”, in Christine Mingins,
Roger Duke and Bertrand Meyer, editors, Technology of Object-Oriented Languages and
Systems, TOOLS 25 (TOOLS Pacific'97), Melbourne, Australia, 24th-27th November 1997,
pages 238-251, IEEE Computing Society Press, 1998.

[Zhang98A] Xiaogang Zhang and John Potter, “Compositional Concurrency Constraints for Object
Models in -calculus”, Technical Report C/TR-9804, Macquarie University, Sydney,
Australia, 1998.

[Zhang98B] Xiaogang Zhang and John Potter, “A Composition Approach to Concurrent Objects”, in Jian
Chen, Mingshu Li, Christine Mingins and Bertrand Meyer, editors, Technology of Object-
Oriented Languages and Systems, TOOLS 27 (TOOLS Asia'98), Beijing, China, 22nd-25th

September 1998, pages 116-126, IEEE Computing Society Press, 1998.

[Zhang01A] Xiaogang Zhang and John Potter, “A Constraint Description Calculus for Compositional
Concurrent Objects”, Technical report UNSW-CSE-TR-0204.

[Zhang01B] Xiaogang Zhang and John Potter, “On Responsive Bisimulations in the � ���������	�
��� ”, Technical
report UNSW-CSE-TR-0205, 2002.

[Zhang01C] Xiaogang Zhang and John Potter, “Compositional Concurrent Objects”, in preparation.

[Zhang01D] Xiaogang Zhang and John Potter, “A Compositional Concurrent Object Model, -- From
Theory to Practise”, in preparation.

