
An Efficient IP Matching Tool using Forced Simulation

P. S. Roop A. Sowmya S. Ramesh Haifeng Guo

Department of EEE School of CSE Department of CSE Department of CS

University of Auckland University of New South Wales Indian Institute of Technology State University of New York

Auckland - 1 Sydney, 2052 Bombay 400 076 Stony Brook, NY 11794-4400

p.roop@auckland.ac.nz sowmya@cse.unsw.edu.au ramesh@cse.iitb.ernet.in haifeng@cs.sunysb.edu

UNSW-CSE-TR-0112-December 2001

December 10, 2001

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Related Work . 4

2 Forced Simulation: Formal Framework for Matching 5

2.1 Reusing a general purpose port, Intel 8255 . 5

2.1.1 Reuse via Interface . 6

2.2 Formalization . 7

2.3 The IP Matching Problem . 8

2.4 Condition for Matching: Forced Simulation . 8

2.5 Results . 9

3 Logic Programming Based IP Matching Tool 10

3.1 Encoding of forced simulation in XSB . 10

3.2 Complexity . 12

4 Interface Generation using the XSB Justifier 13

5 Results of using the MatchMaker Tool 14

6 Conclusions 15

1

List of Figures

2.1 Abstract behaviour of Intel 8255 . 5

2.2 Intel 8255 in mode 2 . 6

2.3 The port of a lathe controller . 7

2.4 An Interface Process . 8

4.1 Justification evidence for (a) external move (matching) (b) forced move (forcing) 13

Abstract

Automatic IP (Intellectual Property) matching is a key to reuse of IP cores. This report presents an efficient

IP matching algorithm which can check if a given programmable IP can be adapted to match a given specifi-

cation. When such adaptation is possible, the algorithm also generates a device driver (an interface) to adapt

the IP. Though simulation, refinement and bisimulation based algorithms exist, they cannot be used to check the

adaptability of an IP, which is the essence of reuse. The IP matching algorithm is based on a formal verification

technique called forced simulation. A forced simulation based matching algorithm is implemented using a logic

programming environment, which provides distinct advantages for encoding such an algorithm.The prototype tool,

MatchMaker, has been used to reuse several programmable IPs achieving on an average 12 times speedup and 64

% reduction in code size in comparison to previously published algorithm.

Chapter 1

Introduction

1.1 Motivation

Design reuse has been the focus of research [7, 10] mainly driven by the increasing complexities of modern

systems. Other major factors influencing this revolution are immense competition from competing vendors and

consequently less time to market, the need for more open (generic) solutions of the Internet era, and most im-

portantly the need for developing solutions that can be easily verified-often referred to as design for verifiability

[3]. The advantages of design reuse are improved productivity, better performance and, more significantly, better

quality products.

In a recent survey on digital design reuse [7] several key factors for successful reuse of Intellectual Property (IP)

cores have been identified. These include, among others, the need for synthesis techniques to support the reuse

of predesigned IP blocks. The authors also identify a need for enabling reuse of a set of prevalidated IPs from a

library. We believe that, these features are not appropriately addressed in current synthesis tools.

To automatically reuse IPs during synthesis, a subset of IPs is normally indexed from a database. Subsequent

to indexing, matching is essential to identify the exact IP (a device �) that is functionally equivalent to the design

function (�). Zhang et al. [14] have proposed a fuzzy logic based scoring and aggregation technique for indexing

IPs from a distributed database that may possibly match a given � . After indexing, precise functionality matching

is not proposed as part of this work and the authors suggest simulation as a means for precise IP matching.

Simulation can be a tedious and time consuming activity. In addition, exhaustive simulation may not guarantee

that the selected IP is the desired one. This problem is even more severe with programmable or parameterisable

IPs which may not exactly match � but can be programmed via a device driver (an interface) to match � . In

this report, we propose an algorithmic technique for automatically deciding whether a given � matches � . The

algorithm, when successful, automatically generates an interface � that can adapt � to match � . The basis of this

algorithm is a formal verification technique developed by us called forced simulation [11] and hence is guaranteed

to produce correct matches. In this report, we recast forced simulation into a logic programming framework called

XSB [1] for the following reasons:

3

1. Ease of implementation: the resulting XSB code is extremely compact and readable. In contrast to about

1500 lines of Java code spanning 5 classes to compute forced simulation using partition-refinement based

approach [11], we used just 82 lines of XSB code.

2. Efficiency: the complexity of the XSB based algorithm was less by a factor of ��� , the size of the function

specification. As a result we achieved an average speed up of about 12 times compared to the implementation

in [11].

3. Interface generation as a side effect: XSB justifier was used to obtain an interface without a second pass

over the constructed forced simulation relation. Also, when the matching fails, the justifier can be used to

discover the reasons for failure.

1.2 Related Work

The task of IP matching is similar to simulation/refinement based verification in the sense that both need to

establish whether a given IP (an implementation) meets all requirements of a specification. Several simula-

tion/refinement techniques [2, 8], have been proposed in literature. During IP matching, however, a generic

implementation often needs to be matched to a given specification. This is the essence of reuse. None of the

existing simulation techniques can be used to adapt a generic implementation for a given specification. Forced

simulation overcomes these limitations.

Forced simulation is a bisimulation variant and hence standard partition-refinement based bisimulation algo-

rithms [4] may be adapted for computing forced simulation [11]. In this report we demonstrate the advantages of

using XSB, a tabled logic programming system, to implement a formal IP matching tool. XSB has already been

used for building efficient model checkers and bisimulation checkers [12]. We employed some features such as

tabling and constraint propagation to build an efficient matching tool.

This report is organized as follows: In chapter 2 we develop the formal framework for IP matching using

forced simulation. In chapter 3 we show how the matching algorithm can be encoded in XSB logic programming

environment. In chapter 4 we show how the XSB justifier is used to automatically generate the interface after

successful matching and also to explain failed matches. In chapter 5 we present some results of using the matching

tool-kit developed in XSB and compare this to a conventional partition-refinement based implementation in Java.

The final chapter is devoted to concluding remarks.

4

Chapter 2

Forced Simulation: Formal Framework for

Matching

This chapter presents the formal framework of forced simulation as the basis of the matching algorithm. Since

we saw obvious advantages of encoding the rules for computing the forced simulation relation as a logic program,

we had to redefine the rules in an equivalent form to facilitate such an encoding. Hence, the theory of forced

simulation as presented here is equivalent though different from [11].

At the outset, we present the ideas using an example of a programmable port.

2.1 Reusing a general purpose port, Intel 8255

Intel 8255 [6] is a general purpose 8-bit parallel port. It can be used to interface I/O devices to a CPU. It has

three 8-bit ports called PORT-A, PORT-B, and PORT-C, of which PORT-A and PORT-B are I/O ports, whereas

PORT-C can be used as both an I/O port and control lines, depending on the mode of operation.

0 1 2

3

4

mode-1

mode-2

D:
dev-init in-mode0

mode-0

in-mode1

in-mode2

Figure 2.1. Abstract behaviour of Intel 8255

Intel 8255 may be programmed to be in one of the following modes (Figure 2.1 shows the abstract behaviour of

the three modes and Figure 2.2 is the detailed behaviour in mode 2, which is the mode of interest to this example):

1. mode 0 (Basic input-output mode): CPU may read contents of a port or write some data to it.

5

2. mode 1 (Strobed input-output mode): This is mainly for reading or writing from a port using handshake

protocol.

3. mode 2 (Bidirectional Bus): This mode is like mode 1 except that it can be used for bidirectional data

transfer, while mode 1 is unidirectional.

4 28 29 30 31 32 33 34 35 36 37

38

39

40

41

42

43

44

mode2

INTE1=1

INTE2=1

STB=0

IBF=1

STB=1 INTR=1

RD=0

DB=[PORT-A]

IBF=0

INTR=0

WR=0

PORT-A=[DB]

WR=1

OBF=0

ACK=0

OBF=1

ACK=1

INTR=1

Figure 2.2. Intel 8255 in mode 2

Consider the following specification of a lathe controller port. Figure 2.3 provides an abstract description of a

typical port in a lathe controller. The function of this port is to read instructions written in a tape reader and then

transfer these to the CPU in a handshaking fashion. The CPU interprets these instructions and writes appropriate

lathe instructions to the port, which are read by the lathe to perform the appropriate lathe action. Figure 2.3 gives

the abstract description of each transition of the handshaking sequence as comments.

2.1.1 Reuse via Interface

Let � be the lathe controller port as shown in Figure 2.3 and let � be Intel 8255 as shown in Figure 2.1 and

2.2. In order for � to match � we need a device driver (an interface, �) which can dynamically adapt � in the

following way:

1. When � is in state 0, � must provide the device initialization command dev-init followed by required mode

word in-mode2 to bring � to state 4. Such actions of the interface is known as forcing. After � reaches

state 4, � must continue to force INTE1=1, INTE2=1, which are extra control signals of � not present in � .

Forcing is not just required from the initial state but may be applied in any other state when required (such

as say forcing of IBF=0 when � is in state 35). In the interface, forcing signals are enclosed in [] to clearly

distinguish them from other signals.

2. When � reaches state 29 and � is still in state 0, the interface must enable matching of transition � � �

in � with transition �� � �� in �. Such actions of the interface is known as matching. While matching,

6

0 1 2 3 4 5 6

7

8

9

10

11

12

arc1 arc2 arc3 arc4 arc5
arc6

arc7

arc8

arc13

arc9

arc10

arc11

arc12

arc13: INTR=1/*interrupt CPU to signal that one cycle of data transfer is over

arc12: OBF=1 /*ack back to lathe from port -- two way handshaking*/

arc11: ACK=0 /*acknowledgement from Lathe*/

arc10: OBF=0 /*signal lathe to read instruction */

arc9: WR=1 /*write complete*/

arc8: PORT-A=[DB] /*CPU writes instruction to Lathe*/

arc7: WR=0 /*CPU wants to now transfer instructions to lathe*/

arc6: INTR=0 /*reading of data is finished; port withdraws interrupt request*/

arc5: DB=[PORT-A] /*contents of port are placed on data bus*/

arc4: RD=0 /*CPU wants to read port to get tape data*/

arc3: INTR=1 /*port interrupts the CPU to transfer tape data*/

arc2: IBF=1 /*port sends acknowledgement to tape reader*/

arc1: STB=0 /*tape reader has sent data to port */
F:

Figure 2.3. The port of a lathe controller

disabling may also be required when � has extra transitions from the matching state, not present in � (not

required in this example).

The interface must perform such forcing and matching steps until the desired behaviour is realized. Such an

interface is shown in Figure 2.4.

This example raises the following additional questions:

1. Given arbitrary pairs of � and �, how do we decide whether an interface exists or not?

2. Given an interface for known pair of � and �, how can we be sure that � implements all behaviours in � ?

In other words, how do we know that the interface is correct?

To address these issues, we propose a formalization of the above problem as illustrated in the next section.

2.2 Formalization

In order to be able to answer the questions posed in the previous section, we model � , � and � using labelled

transition systems [9] (which are standard models of reactive processes). We then define a new simulation called

forced simulation over � and � and show that forced simulation is a necessary and sufficient condition for � to

match �.

Definition 1 A process is described by a labelled transition system (LTS) which is a tuple of the form� �� �������,

where: � is a finite set of states, �� � � is a unique start state, � is a finite set of events or signals and

�� � � � � � is the transition relation.

In this report, we assume that all processes are deterministic. Let LTSs � �� �� � ��������� and � ��

��� ��������� stand for the function and device processes respectively.

7

[dev-init]

[in-mode2]

[INTE1=1]

[INTE2=1]
<0, 29,

<1, 30,

<2, 32,

<3, 33,

<4, 34,

[IBF=0]

<5,36,

<6, 37,

<8, 39,

<9, 40,

<10, 41,

<11, 42,

[ACK=1]

<12, 44,

<7, 38,

<0, 0, dev-init. in-mode2. INTE1=1. INTE2=1 >

<0, 1, in-mode2. INTE1=1. INTE2=1 >

<0,4, INTE=1. INTE2=1>

<0,28,INTE2=1>

ε>

ε>

<2, 31, STB=1>

ε>

ε>

ε>

<5,35,IBF=0>

ε>

ε>

ε>

ε>

ε>

ε>

ε>

<12, 43, ACK=1>

ε>

Figure 2.4. An Interface Process

Definition 2 An interface process is a process whose set of events is � � ��	��	 � ��.

The new set of signals of the form �	� are the special signals that force the transitions labelled 	 in the device.

2.3 The IP Matching Problem

The IP matching problem is formalized as follows:

Definition 3 A device � can implement a function � (� matches �) if there exists an interface � such that

	�

�
�� where � is Milner’s weak bisimulation [9] and

 is a parallel composition operator [11].

In the following section we define forced simulation as a relation between the states of � and � and then

establish that it is a necessary and sufficient condition for IP matching.

2.4 Condition for Matching: Forced Simulation

A pair � and � are said to be forced similar if there exists a relation � relating states of � to some states in �.

Two states �� and �� are related over R if either they are directly related or related via a forcing sequence �.

Two states �� and �� are directly related if for every transition ��
�
� ��� in � , there is a matching transition

��
�
� ��� in � and further ��� and ��� are also related over R. In this case, 	�� � ��
 � ��.

Two states �� and �� are related via a forcing sequence � if there exists a successor state ��� in � such that ��� is

reachable from �� via path � and further �� and ��� are directly related. In this case, 	�� � ��
 � �.

Whenever �� and �� are related, we shall say that the states of the tuple (�� � ��) match.

8

Consider the example of � and � from section 2.1. State 0 in � (denoted ���) is not directly related to state 0

in � (denoted ���) as they do not have matching transitions. However, ��� is directly related to ���� as they have

matching transitions and their successors ��� and ���� are directly related. As ���� is reachable from ��� by a path

triggered by events
�� 	 ����� �� 	 ��
��� ����� � �� ����� � �, ��� and ��� are related by a forcing

sequence. It is easy to examine that ��� is related by forcing sequences to ���, ��� and ����. We can continue in

this manner to relate states of � and � to build a relation called force simulation, defined below.

Definition 4 Given LTSs � and �, a relation � � �� � �� is a forced simulation relation (in short, an

f	simulation relation where ����� is a shorthand for 	�� � ��
 � �) provided:

�� � �� �� � �� 	����� � 	������
 � 	
� � ��� ��� � ��� � ��
�
� ���������

�

�
)

where
�� � �� �� � �� 	������ �
��
�
� ��� �
��

�
� �����

�

���
�

�).

Forced simulation, as originally proposed [11], required a forcing sequence � to be associated with a device

state �� that will force it to be similar to a function state �� . Intuitively, the role of the forcing sequence is to

indicate the sequence of inputs required to guide �� to a successor state, ���, reachable from �� such that ��� has

similar behaviour as �� . However, for logic programming encoding, carrying around explicit �’s is a bottleneck.

The above definition overcomes this.

Definition 5 � ����	 � whenever there exists an f	simulation relation between them.

2.5 Results

The following two theorems establish that forced simulation is a necessary and sufficient condition for IP

matching (where � and � are represented as LTSs).

Theorem 1 Given � ����	 � there exists � such that � � 	�

�
.

Theorem 2 If there exists a well-formed and deterministic interface � such that � � �

� then � ����	 �.

The proof of both these theorems are constructive and appear in [11]. Theorem 1 and 2 forms the formal

basis (necessary and sufficient condition) for IP matching. As is obvious, a key to IP matching is identifying an

appropriate interface to adapt the IP. The first step is to identify a forced simulation relation and then construct an

interface from this. The next chapter demonstrates how and why a logic programming tool is employed for these

tasks.

9

Chapter 3

Logic Programming Based IP Matching Tool

Forced simulation is an extension of a standard verification technique called bisimulation [9]. Normally, bisimu-

lation algorithms are implemented using bottom-up partition refinement [4]. We have already developed a similar

bottom-up algorithm for forced simulation [11]. This algorithm starts by constructing a global relation � which is

initialized to �� � �� � ��	�
 where ��	�
 is the set of all reachable states in �. Let ��� � ��� denote the

number of states of � and � respectively. The size of this set � is this �	��� � ��� � ���

�
 since ��	�

is �	���

�
. ��	�
 is required for computing the forcing sequences. After computing � the algorithm refines it

by using partition-refinement like algorithm until a greatest fixed point is reached. The complexity of this imple-

mentation has been shown to be �	���� � ���

� ��
 where � denotes the maximum number of transitions in

�.

Unlike bottom-up algorithm [11] that constructs the maximal relation and refines it until the greatest fixed point

is reached, XSB operates in a top-down manner, i.e., explores only states that are required to prove (or disprove)

that a given pair of (�� � ��) are forced similar. This local decision making results in a reduction in complexity by

a factor of ��� . XSB based encoding is very small, simple and hence readable. This happens because, unlike the

top-down implementation which requires classes to be written for creation, manipulation and traversal of graph

data structures, XSB uses a set of facts to represent the graphs corresponding to � and �. Also forced simulation

is encoded as a set of rules. Additionally, XSB justifier can be used to construct the simulation interface.

3.1 Encoding of forced simulation in XSB

We encode the dual of forced simulation as a tabled logic program using XSB. This is essential since XSB

is a least fixed point engine whereas forced simulation is computed as a greatest fixed point (we compute the

greatest forced simulation relation between � and � when it exists). The rules for a pair of states to be not-forced-

similar are directly encoded as XSB clauses. Input datasets � and � are encoded as a set of facts representing the

adjacency matrix of the corresponding LTSs.

In the following, we provide the formal definition and the corresponding encoding in XSB. Suppose � is a

forced simulation relation, then �, the dual of �, is defined as :

10

�� � �� �� � �� 	����� � 	������
�

	
� � ��� ��� � ��� � ��
�
� ���������

�

�

where, ������ �
��
�
� ��� �
��

�
� �����

�

���
�

�

Also, note that since � is a deterministic LTS, we can rewrite the above by replacing the
 quantification to a

giving:

������ �
��
�
� ��� �
��

�
� �����

�

���
�

�.

This definition essentially encodes the fact that a pair 	�� � ��
 are not forced similar (denoted �����) when ��

is not directly forced similar to �� (denoted ������) and all reachable states ��� from �� are also not directly forced

similar to �� . A given pair 	�� � ��
 are not directly forced similar whenever �� has a transition that cannot be

matched to any transition from ��.

� is the least model of the above formula. We encode � as a logic program in XSB as follows:

:- table nfsim/2.

nfsim(SF, SD) :-

nfsim_e(SF, SD),

findall((SD,SD1),

(reach(SD,SD1), SD\=SD1), SL),

all_nfsim_e(SF, SL).

all_nfsim_e(_, []).

all_nfsim_e(SF, [(SD, SD1)|R]) :-

nfsim_e(SF, SD1),

all_nfsim_e(SF, R).

nfsim_e(SF, SD) :-

trans(SF, A, _),

\+ trans(SD, A, _).

nfsim_e(SF, SD) :-

trans(SF, A, SF1),

trans(SD, A, SD1),

nfsim(SF1, SD1).

where nfsim/2, a tabled predicate, denotes the dual relation �, and nfsim e/2 the relation ��. findall(X,
Goal, List) collects all the instance of X to List such that Goal is provable. If Goal is not provable, List
will be an empty list []. Predicate all nfsim e/2 is used to verify the relation �� between a state in �� with
each state from the given list of states in �� where \+ stands for negation. The tabled predicate reach/2 is used
to determine reachable successors and is encoded as:

:- table reach/2.

reach(S, S1) :- trans(S, _A, S1).

reach(S, S1) :- trans(S, _A, S2),

reach(S2, S1).

An LTS � �� ������� is encoded as a set of facts in a logic program � such that whenever � �
� �, then

trans(�, 	, �) is in � . Note that since �� � � � as well as 	 � � are from a finite set, they can be represented

in a logic program by ground terms.

11

Thus, given the coding of forced simulation, and two LTSs � and � with their respective start states ��� and

���, the query, to check whether � ����	 � is satisfied or not, is nfsim(���, ���).

3.2 Complexity

The complexity of the XSB implementation is �	��� ���� ������
. The first 3 terms come from the

standard nfsim e computation and the extra ��� term comes from the fact that there are up to ��� reachable

states from every device state. In a realistic implementation with XSB system, the tables are organized using trie

[13] data structures, giving close to unit-time lookups in practice. This is �	���
 times faster than previously

published implementation of forced simulation.

12

Chapter 4

Interface Generation using the XSB Justifier

XSB justifier [5] is to give evidence, in terms of a proof, for the query evaluation result by post-processing the

tables created during query evaluation. Based on XSB justifier, we implement a forced simulation interface gen-

erator by defining a few rewriting rules from the justification results in logic programming level to the interface in

forced simulation problem level. The generated interface is essentially a justification of an LTS-based device � to

realize the specified LTS-based function � if there is a f-simulation relation � ����	 �, or a partial simulation

that points out from which state no further simulation can be made if there is no f-simulation between � and �.

We use the same example described in section 2.1 to illustrate how to generate an interface � to validate Intel

8255 parallel port � to simulate a lathe controller port � . Two types of moves, external move and forced move,

have to be explicitly shown in generated interface � , where the former is mapped from the justification evidence as

shown in Figure 4(a), while the latter from the evidence shown in Figure 4(b). The details of justification evidence

can be found in [5]. Thus, an interface (Figure 2.4) for the lathe controller port example can be generated by

mapping the justification evidences to their corresponding moves, where the moves in [] are for forced moves, and

the rest moves are external moves.

False

(b)

nfsim_e(SF,SD1)

nfsim(SF, SD) False

all_nfsim_e(SF,SL) False

nfsim(SF, SD)

nfsim_e(SF,SD)

trans(SF,A,SF1)
trans(SD,A,SD1)

nfsim(SF1,SD1)

(a)

False

False

False

reach(SD,SD1)

findall((SD,SD1),
(reach(SD,SD1),SD\=SD1),SL)

Figure 4.1. Justification evidence for (a) external move (matching) (b) forced move (forcing)

13

Chapter 5

Results of using the MatchMaker Tool

We have developed several examples to test the IP matching algorithm. We selected certain general purpose

programmable devices such as Intel 8254 and Intel 8255. These devices can be easily reused by human designers

by writing device drivers which supply appropriate mode and command words to select the desired mode. We

wanted to verify if our approach can automate such tasks. We also selected a number of reactive controllers

such as vending machines, coffee brewers and automobile cruise controllers to illustrate the reusability of such

controllers. All these examples were encoded as labelled transition system specifications as � and � pairs. We

then tested these examples using our new XSB based matching tool, MatchMaker, and a published Java based

implementation (based on partition-refinement) [11].

The XSB based implementation has a total of 82 lines of XSB prolog code for forced simulation computation. In

contrast, the JAVA implementation had a total of about 1200 lines of JAVA code for forced simulation computation

(excluding the code required for interface generation) using the bottom-up partition-refinement based approach

[11]. Since, XSB is prolog based, no extra code needed to be written for setting up the graph data structure and

for traversal (which is required in JAVA). This led to considerable time saving in terms of building the prototype.

The performance comparison of the XSB implementation versus the published Java based implementation is

summarized in Table 5.1. Both the implementations were tested on a Pentium III 800 MHz workstation. On an

average, the XSB implementation was 12 times faster than the Java implementation.

Table 5.1. Results of using the matching algorithm
� � no of states in � no of states in� secs(XSB) secs(Java) speedup

lathe controller port Intel 8255 13 45 0.1800 0.4900 2.72

handshake protocol Intel 8255 10 45 0.0300 0.4400 14.66

down-counter Intel 8254 8 54 0.1000 0.4100 4.1

simple coffee brewer complex coffee brewer 7 15 0.0400 0.3800 9.5

coffee vending machine beverage vending machine 3 9 0.0190 0.3900 20.52

stamp VM postal accessory VM 5 7 0.0110 0.2600 23.63

manual car controller cruise controller 4 9 0.0220 0.2800 12.72

14

Chapter 6

Conclusions

In this report, we have presented a new formal verification technique called forced simulation as a basis for

matching a design function � to a IP �. Whenever a forced simulation relation exists between a pair of ��� an

interface � can be constructed to adapt � to match � . Forced simulation forms the formal basis for automatic

IP matching, which is a key task in automated IP reuse and integration. We believe that this is the first such

attempt to provide a formal verification based algorithmic technique for IP matching, which is being currently

tackled manually through simulation [14]. If the IP library consists of pre-validated components then the proposed

approach entails a considerable saving of verification effort.

We have built a IP matching tool MatchMaker, using the XSB system and tested it by reusing several IPs from

the domain of embedded systems. To achieve this, forced simulation had to be adapted for efficient encoding

in XSB. The XSB based prototype performs better than conventional implementation of forced simulation [11]

in terms of code size (XSB based implementation was 64 % smaller in size measured as LOC) and efficiency

(complexity reduction by a factor of size of � and about 12 times average speedup).

Though the proposed approach is a novel technique for IP matching at the functional level, it has several

limitations. Firstly, it is entirely non real-time being LTS based and has no mechanism for matching real-time

constraints. Secondly, it is well suited to matching control units and data path matching is yet to be solved.

Finally, we have to integrate this matching tool with existing IP reuse environments such as JAVA CAD.

15

Bibliography

[1] The xsb logic programming system v1.7, 1997. Available by anonymous ftp from ftp.cs.sunysb.edu.

[2] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer science, 82(2):253–

284, 1991.

[3] P. Camurati, F. Corno, and P. Prinetto. A methodology for system-level design for verifiability. In Conference

on Correct Hardware Design and Verification Methods ’93. Springer Verlag, 1993.

[4] J. C. Fernandez. An implementation of an efficient algorithm for bisimulation equivalence. Science of

Computer Programming, 13, 1990.

[5] H-F. Guo, C.R. Ramakrishnan, and I.V. Ramakrishnan. Speculative beats conservative justification. In In

Proc. 17th International Conferencene on Logic Programming (ICLP), pages 150–165, 2001.

[6] Intel peripheral datasheets for 82c55 programmable peripheral interface.

http://developer.intel.com/designer/datashts, 1995.

[7] J. Jussel. System-on-a-chip reuse platforms can dramatically shorten design cycles. Electronic Design,

48(21), 2000.

[8] N. Lynch and F. Vaandrager. Forward and backward simulations part I: Untimed systems. Information and

Computation, 121(2):214–233, Sept. 1995.

[9] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.

[10] D. Monjau and M. Sporer. Reuse-oriented design of embedded systems. In Fourth International Conferene

on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, Brighton, UK, 2000. IEEE.

[11] Author names supressed. Forced simulation: A technique for automating component reuse in embedded

systems. ACM Transactions on Design Automation of Electronic Systems, 2001.

[12] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. W. Swift, and D. S. War-

ren. Efficient model checking using tabled resolution. In 9th International Conference on Computer Aided

Verification, 1997.

16

[13] I. V. Ramakrishnan, Prasad Rao, Konstantinos F. Sagonas, Terrance Swift, and David Scott Warren. Efficient

access mechanisms for tabled logic programs. JLP, 38(1):31–54, 1999.

[14] T. Zhang, L. Benini, and G. De Micheli. Component selection and matching for ip based design. In Design

Automation and Test in Europe, Munich, Germany, 2000. IEEE.

17

