Towards Patterns of Web Services Composition

B. Benatallah!, M. Dumas?, M-C. Fauvet’*, F.A. Rabhi!

1 School of Computer Science
University of New South Wales, Sydney NSW 2052
boualem@cse.unsw.edu.au

2 Cooperative Information Systems Research Centre
Queensland University of Technology, Brisbane QLD 4001

3 School of Information Systems, Technology and Management
University of New South Wales, Sydney NSW 2052

4 On leave from LSR-IMAG, University of Grenoble, France

UNSW-CSE-TR-0111
November 2001

Abstract

The ability to efficiently and effectively share services on the Web
is a critical step towards the development of the on-line economy. Vir-
tually every organisation needs to interact with manifold other organi-
sations in order to request their services. Reciprocally, an organisation
providing a service is often required to interact with a large and dy-
namic set of service requestors. The lack of high level abstractions and
functionalities for Web service integration has triggered a considerable
amount of research and development efforts. This has resulted in a
number of products, standards, frameworks and prototypes addressing
sometimes overlapping, sometimes complementary aspects of service
integration.

In this report we summarise some of the challenges and recent de-
velopments in the area of Web service integration, and we abstract
some of them in the form of software design patterns. Specifically we
present patterns for both bilateral service-based interactions, multilat-
eral service composition, and execution of composite services both in
a centralised and in a fully distributed environment. The report also
shows how these patterns map into a variety of implementation tech-
nologies including object-based approaches (e.g. CORBA and EJB),
EAI and ERP suites, cross-enterprise workflows, EDI and XML-based
B2B frameworks.

1 Introduction

The growth of the Internet has unleashed a wave of innovations that are re-
shaping the way organisations interact with their partners and customers. In
particular, the concept of electronically-accessible service (also known as e-
service or Web service) has gained a considerable momentum as a paradigm
for supporting both Business-to-Consumer (B2C) interaction and Business-
to-Business (B2B) collaboration.

In a nutshell, the term (Web) service as used in this report, denotes an
abstraction of a set of computational and/or physical activities intended to
fulfill a class of customer needs or business requirements. In other words, a
service provides an interface to access functionalities offered by information
systems, application programs, and business processes. Typical examples of
services include booking an airline ticket through a HTML-based interface,
or providing access to a database of wheather forecasts through a CORBA-
based interface.

Following the recent explosion in the number of Web-accessible services,
established enterprises are continuously discovering new opportunities to
form alliances with other enterprises, in order to share their costs, skills and
resources by offering integrated services (also called composite services). An
example of an integrated service is an accounting management system that
uses payroll, tax preparation, and cash management services as components.
The component services may be outsourced to business partners, and these
business partners can in turn outsource part of the activities involved by the
delivery of a service to other businesses or organisations.

The ability to efficiently and effectively share services on the Web is
a critical step towards the development of the on-line economy. Virtually
every organisation needs to interact with manifold other organisations in
order to request their services. Reciprocally, an organisation providing a
service is often required to interact with a large and dynamic set of service
requestors.

Unfortunately, the technology to organise, abstract, search, compose,
evolve, analyse, monitor, and access Web services has not entirely kept pace
with the rapid growth of available opportunities. Indeed, the development
of integrated services is still largely ad-hoc, time-consuming and requiring
a considerable effort of low-level programming. This approach is clearly
tedious and hardly scalable because of the volatility and size of the Web.
Worse, as service integration is done in an ad hoc manner, it is likely to
rely on proprietary solutions, thereby rendering inter-service coordination a
difficult task.

The lack of high level abstractions and functionalities for Web service
integration has triggered a considerable amount of research and develop-
ment efforts, both in the academia and in the industry. This has resulted
in a number of products, standards, frameworks and prototypes addressing
sometimes overlapping, sometimes complementary aspects of service inte-
gration. In particular, numerous XML-based standards for describing, ad-
vertising, retrieving and inter-connecting services have been defined, and

some of these standards have been adopted, or are expected to be adopted
by manifold commercial products, including catalog management suites and
business process managers. Although the emergence of these standards is
undoubtedly a significant step towards facilitating service integration, the
need to provide tools and methodologies supporting the rapid service inte-
gration of dynamic services still subsists.

In this report we summarise some of the challenges and recent develop-
ments in the area of Web service integration, and we abstract some of them
in the form of patterns. Specifically we present patterns for both bilateral
service-based interactions, multilateral service composition, and execution
of composite services both in a centralised and in a fully distributed envi-
ronment. Due to the emerging nature of the topic addressed in this report,
these patterns are still in an early stage of development, and could rather
be called “proto-patterns”.

The remainder of the report is organised as follows. In section 2 we pro-
vide an overview of related fields such as application integration, workflow
management and Web service development. Section 3 describes patterns re-
lated to service request, provisioning, and outsourcing. Section 4 introduces
patterns related to the specification of composite services involving multi-
ple partners, while section 5 describes patterns of execution of composite
services. Finally, section 6 provides some concluding remarks.

2 Review of enabling technologies

Service composition is an active area of research and development in dif-
ferent fields including component-based frameworks, cross-enterprise work-
flows, Electronic Data Interchange, XML-based B2B frameworks, and agent-
based frameworks. While these approaches provide solutions for different
application domains, our discussion will concentrate on service composition
requirements. We note that these approaches are not orthogonal. Indeed,
in many cases, they rely on each other. For instance, workflows may use
mediators, agents may use XML, etc.

2.1 Component-based Frameworks

Component-based mediators for e-commerce applications (e.g., OFFER,
EMP, and GEM) [Dog98, Dog98, Dog99, Whi97] typically rely on distributed
object frameworks such as CORBA, DCOM, EJB, and other state-of-the
art technologies such as Enterprise Application Integration (EAI) (e.g., IBM
MQSeries) and Enterprise Resource Planning suites (e.g., SAP R/3), database
gateways and transaction monitors [Bro00]. Briefly stated, components are
software modules that can be independently developed and delivered. They
are designed to interoperate with each other at runtime and can be developed
using different technologies. Salient features of component-based systems in-
clude integration with legacy applications, interoprability across networks,
and portability on different hardware and software platforms [BSZ98]. In
general, components represent high-level services such as business objects.

4

Component-based mediators focus on the integration of a small number of
tightly coupled services. In addition, This approach puts emphasis on the
syntactical integration (e.g., wrapping heterogeneous systems).

Enterprise Application Integration (EATI) suites (e.g., IBM’s MQSeries
and TibcoSoftware’s TIB/Active Enterprise Suite, TSI Software’s Mercator
product, and IBM SanFrancisco) provide standard data and application inte-
gration facilities (e.g., pre-built application adapters, data transformations,
and messaging services among heterogeneous systems). Another solution
to application integration is ERP systems. ERP systems promise a single,
homogeneous solution for a number of back-office applications. Again ERP
suites provide static integration of enterprise applications within the scope
of the suite. In many situations it is required to integrate applications pack-
aged using different autonomous ERP systems, integrate ERP applications
with legacy systems, etc. More specifically in B2B e-commerce this inte-
gration is required both within and across enterprises. Some EAI suites
provide messaging services among ERP systems. For instance TSI Soft-
ware’s Mercator product offers messaging services among the ERP systems
SAP R/3 and PeopleSoft. The differences between component-based medi-
ators, ERP systems, and EAI suites cannot easily be identified. However,
they all introduce a common layer that spans the participant systems. This
layer (middelware) a common data representations and application APIs to
access the heterogeneous participant systems.

2.2 Cross-enterprise Workflows

Traditional workflow systems are based on the premise that the success of an
enterprise requires the management of business processes in their entirety.
Indeed, an increasing number of organisations have already automated their
internal process management using workflows and enjoyed substantial ben-
efits in doing so. Traditional workflow systems are not very effective for the
needs of composite services and their complex partnerships, possibly among
a large number of highly evolving services. Current research efforts in the
workflow area promise to deliver a next generation workflow systems that
has the ability to easily thread together cross-organisational business pro-
cesses, supporting the integration of diverse users, applications, and systems
[YPOO].

The purpose of cross-organisational workflows is to automate business
processes that interconnect and manage communication among disparate
systems. Early projects in this direction (e.g., InterWorkflow, WISE, Flow-
Jet) focus mostly on the integration of a known and small number of tightly
coupled business processes [Ge099, Ga99, GT98, DR99]. New emerging ser-
vice composition projects (e.g., CMI, EFlow, CrossFlow, Mentor, CPM,
SELF-SERV, and ADEPT consider loosely coupled services [VLD00, CHO1,
BDSNO02]. They consider some critical requirements of B2B e-commerce
such as dynamic selection, adaptability, and external manageability of ser-
vices.

2.3 Electronic Data Interchange - EDI

EDI is commonly defined as the interoganisational application-to-application
transfer of business documents (e.g., purchase orders, invoices, shipping no-
tices, billing and payment information) between computers. EDI documents
are structured according to a standard and machine-processable format (e.g.,
ANSI X12 and UN/EDIFACT)[ADGY98]. Trading partners exchange busi-
ness documents via a Value-Added Network or VAN, using an EDI standard
as follows. The document must be created in the business application of the
sender (e.g., an invoice document). The mapper software is used to describe
the relationship between the information elements in the application and the
EDI standards. The EDI translator software converts the document into an
EDI message according to the agreed upon standard. The translator wraps
the EDI message in an electronic envelope that has an identifier for the re-
ceiver. The actual transmission of the electronic envelope is achieved by the
communication software which maintains the phone numbers of the trading
partners and performs dialing and exchanges. The VAN reads the identifier
on the envelope and places it in the mailbox of the receiver. At the receiver
side, the reverse process occurs.

EDI depends on a moderately sophisticated technology infrastructure.
This infrastructure is based on proprietary and expensive networks (added
value networks), mainframes, and ad-hoc development, where direct com-
munication between two organisations can be used to exchange electronic
documents. EDI has been mostly used for the automatic transfer and pro-
cessing of documents in industries such as goods transportation, food manu-
facturing, and automobile production, in which organisations trade on high
volumes. EDI although adopted by several organisations as an electronic
commerce approach, it remains not affordable by the majority of the busi-
ness community. EDI is limited in its ability to enable the integration of a
large number of dynamic services. It is mainly used to communicate stan-
dardised business documents.

EDI has been extended recently in many directions. In particular, the
combination of EDI and Internet removes the cost of using proprietary net-
works. Among existing efforts in this direction, we mention the Open Buying
on the Internet (OBI)[Bus01]. OBI is standard that laverages EDI to define
an Internet-based procurement framework. More precisely, OBI is intended
for high-volume, low-dollar amount transactions, which account for 80% of
the purchasing activities in most organisations. These are transactions for
Maintenance, Repair, and Operations (MRO) materials, office supplies, lab-
oratory supplies, and other indirect materials (i.e., those that are not used in
a production process) [Bus01]. OBI relies on the ANSI X12 EDI standard to
describe the content of order documents (i.e., OBI order requests and OBI
orders). Order documents are encapsulated in OBI objects (or messages).
OBI objects encapsulate also other non-EDI messages such as digital signa-
tures of buying and selling organisations. It uses the SSL (Secure Sockets
Layer) over HTTP for secure communications between partners. It also uses
digital signatures and digital certificates for ensuring the authenticity and

integrity of messages.

2.4 XML-based B2B Frameworks

XML is emerging as the standard for exchanging data over the Internet. It
provides a simple and extensible tag-based language that can be use d to
represent all forms of digital information (i.e, structured database records,
unstructured documents and everything in between). XML promise several
features for Interoperability of both data and services across applications
and platforms. Encoding business information in XML will eliminate the
need for one-to-one information translation. XML will provide a common
format to publish business information. By publishing publicly business in-
formation in XML, businesses would allow unpredictable interactions with
each other. XML-based frameworks, protocols, and standards (e.g., SOAP,
BizTalk, RosettaNet, cXML, eCO, and XML-based Web Service Descrip-
tion Language - WSDL, Universal Description, Discovery, and Integration -
UDDI) aim at providing a common building blocks (e.g., vertical ontologies,
message representation, service advertisement and discovery) for all classes
of Internet applications [Bus01].

One way to support B2B interoperability is to describe the semantics
and structure of data and operations of services using XML and domain
ontologies. Briefly stated, an ontology defines terms that can be used to de-
scribe entities (e.g., service properties, operations) of a specific domain (e.g.,
healthcare, finance, travel) and relationships among terms [Bou99]. Several
industries (e.g., RossettaNet for Information Technology products) devel-
oped their common ontologies. In this approach, an organisation creates
and publishes the XML documents that describe its offers, requirements,
assumptions, and terms for doing business. Partners can interact with each
other after inspecting, understanding, and using each other’s definitions.
The vision of this approach is to allow the use of services without prior
agreement, and without help of external mediators. The establishment of
a new relationship with existing partners does not require any additional
work for this partner. This feature is essential to allow the dynamic forma-
tion of trading communities. The business process of the trading commu-
nity is specified by the shared document definitions. The partners in the
trading community are interconnected in terms of largely agreed upon doc-
uments. The business logic implementation at a partner side is invisible to
other trading partners. Of course a complete integration solution along the
line of using XML requires standardised meta-data tags for industry sectors
(ontologies), mappings between different ontology descriptions, and means
for processing XML documents and invoking the appropriate services (e.g.,
workflows, applications, and legacy systems) to handle requests.

It should be noted that several e-commerce platforms that rely on XML-
based standards and protocols have emerged recently including IBM’s Web-
Sphere, WebMethods, Sun Open Network Environment — Sun ONE, and
BEA Collaborate. The focus of these platforms is mainly on describing, ad-
vertising, and discovering services. Very little work has been done on service

composition. For example, WebMethods and Sun ONE provide workflow-
based support to static composition of services.

2.5 Discussion

Without loss of generality, interoperability in B2B e-commerce applications
concerns three layers, namely, communication, content, and business process
layers. Component-based frameworks focus more on interoperability at the
communication layer in the context of tightly coupled services. They are
mainly appropriate to integrate intra-enterprise services. EDI focuses more
on point-point interoperability at communication and content layers in the
context of loosely coupled services. It is appropriate to integrate inter-
enterprise services with long-term and static trading relationships. XML-
based frameworks vary in their support of interoperability at the different
layers. In general, they focus on interoperability at communication and
content layers in the context of loosely coupled Internet-based services. Few
efforts such as RossettaNet and ebXML provide support for interoperability
at the business process layer. Although, workflow-based systems focus on
interoperability at the business process layer in the context of tightly coupled
services, emerging efforts in this area aim at supporting all interoperability
layers in the context of inter-enterprise services.

3 Elementary service-based interactions

In this section, we review some issues that arise when an organisation wishes
to consume and provide services from/to other organisations. We first dis-
cuss the context under which these issues appear, and we then introduce
two architectural patterns addressing specific aspects.

3.1 Context

In the setting of B2B e-services, the interaction between a service provider
and a service consumer entails an interaction between the information sys-
tems of the underlying organisations. Being developed by separate teams,
for different purposes, and perhaps at different times, these information sys-
tems are certainly heterogeneous both from the managerial and from the
technological viewpoints. For similar reasons, given two services S1 and S2
provided by two distinct organisations, one can expect that everything from
the business rules up to the document formats of S1, differ from those of
S2. Hence, an organisation requiring an external e-service needs to make
sure that its information system is capable of interoperating with that of the
prospective providers, and more importantly, that this connection is loose
enough so that alternative providers can be accommodated in the future.
On the other hand, any e-service provider needs to make sure that its in-
formation system has a clearly defined interface to this e-service, and that
the information systems of the consumers are properly interacting with this
interface.

At a lower level, this issue of information systems interaction becomes
that of application and workflow interoperation. Indeed, the consumption of
a B2B e-service is by definition initiated by a business application (possibly
acting within a workflow), and similarly, the processing of this request is
performed by another application or workflow. These applications or work-
flows, which are located in different organisations, interact through messages
containing business documents. Here, we are interested in the case where
this interaction is carried out through an open and volatile network such as
the Internet. Key questions that arise in this context are:

fl How does a service consumer and a provider come to know each other?

f How does the provider can describe the interface to its service? How
does the service consumer gets to understand this interface?

fil How does the provider and the consumer adapt their systems to inter-
act with each other?

Al How is the security and consistency of the business exchanges ensured?

In the sequel, we present two patterns dealing with these issues.

3.2 The External Interactions Gateway Pattern

Problem Description An organisation needs to interact with others in
order to consume and provide services. Each of the services provided by
the organisation, as well as each external service consumed by the organi-
sation, has its own interaction requirements (e.g., document formats, data
model, domain ontologies, message sequencing), which can change over time
following changes in business rules. The number of services consumed and
provided is large and volatile. Some of the applications which provide and
consume services within the organisation are implemented by legacy systems
which cannot be modified in order to accommodate new interaction require-
ments. Even those applications that can undergo modifications, require a
considerable amount of programming effort to adapt to new requirements.

Forces The specific issues that arise in this situation are:

1 Assuming that the data model and format in which a business docu-
ment is generated differs from that in which it is interpreted, how and
when is the conversion between formats operated? How and by whom
is this conversion implemented?

fl Assuming that the applications use different interaction protocols (e.g.,
different message names, semantics and sequencing), how are these
protocols aligned? How can the proper interaction between the appli-
cations be enforced?

i Given that the applications belong to different organisations, and that
they are likely to exchange critical business information, how is the
confidentiality, integrity and non-repudiation of these exchanges en-
sured?

Example. A French company “Traduit-Tout” provides translation ser-
vices in several languages: English-French, French-English, Spanish-French
and French-Spanish. The English-French and Spanish-French translations
are entirely handled by a business process within the company. The French-
English and French-Spanish translations are first treated internally, and once
a draft of the translation is produced, it is sent for proofreading to partner
companies in UK and Spain respectively. These partners are statically se-
lected, but from times to times, a given partner may be replaced by another
one.

The “Traduit-Tout” company therefore provides 4 services (the 4 kinds
of translations), and consumes 2 services (the proofreading services from
its partners in UK and Spain). Although statically selected, the partner
companies may be replaced by others at certain points in time. Also, the
partner companies change their business rules from times to times, and this
may result in changes to the interface of the services that they provide (e.g.,
the list of accepted document formats is extended or the list of accepted
messages and their inter-relationships is modified). Similarly, from times to
times the company changes its own service interfaces, whether to enhance
or to simplify them, or to cope with internal policy changes.

Solution The basic idea of the pattern is to separate a service offer from
its underlying implementation. On the provider side, this means separat-
ing the implementation of a service (e.g., a standalone program, a software
component, or a workflow), from the interface to this service. On the re-
questor side, a distinction is introduced between an abstract and concrete
service requests. An abstract service request is a need for a capability at a
particular point in time (e.g., the need to translate a document from French
to English by next week), while a concrete service request is an invocation
to a specific service offered by a given provider (e.g., a request for the F-E
service offered by “Traduit-Tout”).

The mapping from service interfaces to service implementations on the
one hand, and from abstract requests to concrete requests on the other, is
carried out by a dedicated software entity, subsequently refered to as the
External Interactions Gateway (EIG).

Figure 1 summarises this approach in the context of the “Traduit-Tout”
company. Any request for a service emanating from an application or work-
flow within “Traduit-Tout”, goes through the EIG of this company. Sym-
metrically, every request for any of the four services provided by “Traduit-
Tout” transits through the EIG.

The internal architecture of the EIG is depicted in figure 2. The idea of
this architecture is to view the security, the document format heterogeneity,

10

Internet

|
s N :
Traduit-Tout’s Information System !
|
| Client A
Workflow E-F |
|
|
/ |
|
Workflow S-F \ | ItEXteTal gl :
nteractions [
[|
/ Gateway L Spanish
Workflow F-E ! Proofreader
|
|
! .
Workflow F-S | English
! Proofreader
\ J :
: Legend ‘
. ——® Service request E-F English-French
: @ . S-F Spanish—-French
: Organisation i
: F-E French English
: |:| Software module S-F French—Spanish

Figure 1: The EIG of the “Traduit-Tout” company.

and the the conversational protocol heterogeneity, as orthogonal aspects,
and to handle these aspects in three separate layers, namely the security
manager, the document format manager, and the conversational protocol

manager.
| Security Manager

composed of Document delegates to document

EIG Format Manager converter
Conversational delegates to protocol

Protocol Manager coverter

Figure 2: Internal architecture of an EIG.

The document format manager handles conversions of inbound and out-
bound messages. For example, if an internal application provides an inter-
face based on xCBL [Com00], and this application needs to interact with an
external service which expects documents in ¢cXML [¢XM], the conversion
between these two formats is handled by the document format manager.

The conversational protocol manager acts both as a conversation con-
troller and a conversation translator. As a controller, the conversational pro-
tocol manager processes inbound and outbound messages related to business
conversations. For each message that it processes, the controller identifies

11

the current stage of the conversation to which this message relates, and
checks that the message’s type is appropriate. If so, the controller forwards
it either to the appropriate implementation of a service (if it is an inbound
message), or to the appropriate business partner (if it is an outbound mes-
sage). As a protocol converter on the other hand, the conversational protocol
manager translates sequences of messages in a given protocol into equivalent
sequences in a different, though compatible protocol. The need for this type
of conversions arises when independent tasks or messages are carried out in
different orders by different external services. For example, a given service
offer may require a login procedure to be performed prior to any access to
the service’s functionalities, while another service offer with similar capa-
bilities may provide access to some functionalities of the service without
password verification, and only require a full login procedure for accessing
other functionalities. This is the case of the auctioning services offered by
Yahoo! and eBay?. In eBay, it is possible to consult detailed data about
past and ongoing auctions without going through a login procedure; login
is only required for placing a bid. On the other hand, in Yahoo, a login
procedure is required before accessing the data about the auctions.

Last but not least, the security manager handles security issues. In
particular, this module maintains a set of public and private keys, encrypts
and decrypts inbound and outbound messages, and stores these messages in
a log so as to ensure traceability and non-repudiation.

Internally, the document format manager is architectured as an aggre-
gation of modules with identical interfaces, each specialised in a given type
of conversion. For example, a document format manager may be composed
of two converters, namely “xCBL to ¢XML” and “cXML to xCBL”. De-
pending on the type of conversion required, the document manager decides
which converter it should use. The number of converters attached to the
document manager is variable, thereby catering for extensibility.

In theory, the conversational protocol manager can also be architecture
as a composition of a set of controllers and converters. However, to the best
of our knowledge, this idea has not yet been explored in details.

Implementation aspects In the following, we present techniques for han-
dling document format and conversational protocol heterogeneity: two of the
three aspects addressed by the EIG. The issue of security is not discussed
here as it can be handled using established cryptography techniques, secure
communication protocols (e.g., SSL), and message logging.

The issue of handling document format heterogeneity at the syntactical
level is more or less well addressed by existing technologies such as XML and
RDF parsers and generators. It is important to note however, that these
technologies do not address the issue of semantic integration, which is still
an open area of research.

In the context of XML-based business document standards for exam-

"http://www.yahoo.com
http://www.ebay.com.

12

ple, the XSLT language provides a means for expressing transformations
from documents abiding to a given standard, into documents abiding to
another standard. The specification of these transformations in XSLT is
however quite cumbersome, especially when the granularity and ordering of
the document elements in the source standard differ from those in the target
standard. Several approaches can be envisaged to cope with this difficulty.
For instance, Microsoft’s BizTalk 2000 (see section 2.4) uses XSLT as the
underlying transformations language, but provides a graphical tool on top
of it (namely BizMapper). However, whilst BizMapper hides the details of
the XML syntax, it does not reduce the complexity of the mappings that
need to be specified. An alternative approach based on separation of con-
cerns is proposed by [OF01]. The authors suggest to introduce a distinction
between the syntax and the data model of a standard. The syntax of a
document standard is specified as an XML DTD or an XML schema. The
data model is specified in the RDF Schema Language. The transformation
of a document XD in a given XML standard S, into a document XD’ in
another standard S’ is carried out in three steps, each of which involves a
set of XSLT rules:

fl Abstraction: translate XD into an RDF document RD abiding to the
data model of S.

fl Conversion: Translate RD into another RDF document RD’ abiding
to the data model of S’.

i Refinement: Translate RD’ into an XML document XD’ abiding to
the syntax of S’.

[OF01] shows in the context of four existing XML business document
standards, that the transformations involved by these three individual steps
are simpler to build and maintain, than a direct transformation from XD
into XD’. In particular, the development of a translator from xCBL to cXML
using this approach is sketched. The authors also point out that the trans-
formations involved by the abstraction and the refinement steps are reusable.

In contrast to document format heterogeneity, the issue of handling
conversational protocol heterogeneity is still widely open. Indeed, while
B2B standards defining conversational protocols have recently emerged (e.g.,
RosettaNet’s PIPs [Ros]), the issue of mapping a conversation in a given
protocol into an “equivalent” conversation in another protocol is an open
problem.

[KLKDO1] advocates the use of the Web-Service Conversation Language
(WSCL) for specifying conversational protocols. The authors show that
these specifications can be used to automatically build conversation con-
trollers, which is one of the two components of the conversational protocol
manager.

[SCDSO01] describes an approach to extend existing workflow technology
in order to handle both document format and conversational protocol het-
erogeneity in B2B interactions. Specifically, given a structured description

13

of a B2B protocol standard (e.g., a description of a RosettaNet PIP in XMI),
a process template is generated which encodes the sequencing of activities
that is required in order to handle a conversation in that standard. This
process template can then be refined by a developer into a full workflow
implementing a given business process. At runtime, this workflow interacts
with external service providers through a conversations manager (the equiva-
lent of the EIG), which handles the conversion of internal workflow variables
into external documents. The conversations manager also processes inbound
documents and it either forwards them to the appropriate running workflow
instances, or it initiates new workflow instances for treating them.

Known implementations and related patterns. Several architectures
for the EIG have been reported under different names: the Proxy Gateway
of [GAHLOO], the Semantic Integration Engine of [BusO1] and the Trade
Partners Conversations Manager of [SCDSO01].

The EIG specialises the Gateway Pattern [BMRT96] by explicitely ad-
dressing the issues of document format and conversational protocol hetero-
geneity. The EIG can also be seen as a combination of the Facade pattern
with the Proxy pattern [GHJV95]. On the one hand, the EIG acts as a proxy
which handles calls to remote servers on behalf on an application. On the
other hand, the EIG offers a unified entry point to a set of services offered
by an organisation. Notice that the scope of the EIG is far more specialised
than those of the above two patterns. In particular, the EIG addresses the
issues of security management, conversational protocol heterogeneity, and
document format heterogeneity.

3.3 The Contract-Based Outsourcing Pattern

Problem Description Outsourcing is the process whereby a provider
of a service delegates all or part of the provisioning of an instance of a
service to other providers. Outsourcing involves the following participants:
a requestor, a delegator, and one or several delegatees. From the viewpoint
of the delegator, outsourcing can be seen as one or several outbound service
requests, caused by an inbound service request. From a global point of
view, outsourcing can be seen as a simple form of inter-organisational service
composition. Indeed, the delegator and the delegatees can be seen as forming
an alliance for provisioning a global service.

One of the main problems that arises during outsourcing, is that the
delegator is responsible vis-a-vis of the original service requestor for the
provisioning of the overall service. If one of the delegatees fails during the
delivery of its service, the delegator must undertake some kind of compen-
sation action, or at least, it must notify this failure to the original requestor.
For this reason, it is essential that the rights and responsibilities of each
party are well defined before the outsourcing takes place. Since the par-
ticipating organisations are independent from each other and have different
objectives, the definition of these rights and responsibilities should be for-
malised as one or several contracts, possibly obtained through bilateral or

14

multilateral negotiations.

This pattern deals with the issue of negotiating and enacting contracts
for service provisioning, focusing on the case where part of the service is
outsourced. The pattern is however general enough to cope with the case
where no outsourcing takes place.

Forces and example Given that contracts need to be negotiated and
enacted on-the-fly, the following questions arise: (i) how can a contract be
established (i.e., negotiated) without or with minimal human intervention?
(ii) how can the fulfillment of a contract be automatically enforced?

For example, the translation office “Traduit-Tout” (see previous pattern)
receives orders with various requirements. Each of these orders has a set of
terms attached to it, which specify parameters such as the deadline for
delivering the instance of the service triggered by this order, the pricing, the
modalities for billing and payment, several kinds of penalties and guarantees,
etc. The terms of small orders are set by pre-established contracts, while
the terms of bigger orders are generally negotiated on a per case basis.

In order to ensure the fulfillment of the obligations set by the contracts
that it passes, “Traduit-Tout” requires its partners (i.e., the proofreading
agencies) to abide by some terms. Two cases arise here: either these terms
are set by pre-established contracts, or the terms are negotiated on a one-
by-one basis. The former case arises during the processing of small orders,
while the latter case is typical of important orders. In fact, when negotiating
an important order with a client, “Traduit-Tout” may need to negotiate at
the same time with the proofreading agencies, in order to make sure that
it can meet the terms that the client is requesting. Given that important
orders often have particularly tight deadline, it is highly desirable that the
negotiation process is carried in the shortest possible time.

Solution The relationship between the requestor, the delegator, and the
delegatee(s) are formalised through bilateral contracts. In other words, there
is one contract linking the requestor with the delegator, and one contract
linking the delegator with each delegatee.

A contract is esentially a planned set of actions and interactions that
need to be undertaken during the delivery of a service. Contracts are speci-
fied in an executable language (whether rule-based or procedural) and their
fulfillment is monitored by a contract enactment module. The contract en-
actment module analyses the sequences of messages exchanged between the
business partners during the execution of a service, and detects any devia-
tions from the planned course of actions. The contract enactment module
can be hosted by the service requestor and providers themselves, or by a
neutral third party.

In order to avoid building contracts from scratch, contracts for a given
service are abstracted into contract templates. In a nutshell, a contract
template is a function which generates a contract given a set of contract
parameter values, which capture the variable part of a class of contracts.

15

The relationship between these parameters can be fixed or negotiable. For
example, the “Traduit-Tout” company may establish that the size of a doc-
ument and the price of its translation are fixed by a formula (e.g., 10 cents
per word), or it may leave this relationship open to negotiation.

Contract templates are included in the advertisement of a service offer.
These advertisements are stored either in a local catalog hosted by a service
provider, or in a common catalog (also known as a service marketplace).
An individual or an organisation requiring a given service, sends a query
to one or several catalogs and selects a set of service offers which satisfy
its requirements. If the contract template(s) of the selected offer(s) allow
so, the requestor undertakes one or several negotiations with the providers
referenced in the selected offer(s). Eventually, a contract emanates from this
process, and this contract is fed into a contract enactment module.

The negotiation between the potential consumer and the provider can
be manual, semi-automated, or fully automated. In general, the degree
to which a negotiation can be automated depends on the nature of the
negotiable parameters. If the number of parameters is fixed and their values
are numerical, a high degree of automation can be attained. If on the other
hand new parameters are allowed to be introduced during the course of a
negotiation, or if the domain of the parameters are not known in advance,
then the negotiation must involve human actors. Still, even if human actors
carry out the actual negotiation, their interactions and their decision-making
can be facilitated by software tools.

As a concrete example, when “Traduit-Tout” needs to outsource a ser-
vice such as proofreading a document, it queries a number of service cata-
log(s) and retrieves the offers, together with their contract templates, which
have the potential to satisfy its requirements (e.g., in terms of pricing and
delivery times). After selecting one of these offers, the accompanying con-
tract is instantiated by providing a set of parameters such as the size of
the document to be proofread, the degree of specialisation of the docu-
ment, and the time frame. In the case of special requirements (e.g., tight
deadlines), “Traduit-Tout” may need to negotiate with one or several proof-
reading agencies instead of just selecting and instantiating a given contract
template. For example, in order to negotiate a special contract with a client
for translating a large document in a very short time frame, the “Traduit-
Tout” company may need to know if any of its proofreading partners would
be willing to proofread the resulting translation in an extraordinarily short
delay. This example points out the fact that the negotiation between the
original requestor and the delegator may take place at the same time as the
negotiation between the delegator and the delegatee.

Implementation aspects In the general case, the effective representation
and the automated enforcement of business contracts for service outsourcing
remains an open question. Currently, e-business enabling products such as
Microsoft’s BizTalk and Extricity’s Alliance (see section 2), do not address in
any way pricing and payment, legal issues, agreements regarding arbitration,

16

or recovery from partner failures.

Known implementations Partial implementations of this pattern have
been developed in the CrossFlow, MEMO, and ADEPT projects (see sec-
tion 2).

In CrossFlow [The01, GAHLOO], contracts are statically specified by the
service providers and advertised in a service marketplace. A potential ser-
vice requestor (whether a terminal requestor or an organisation wishing to
delegate part of its responsibilities) selects offers from the marketplace and
instantiates their accompanying contract templates (there is no support for
negotiation). Once the contract is instantiated, it is enacted by a set of
cooperating modules deployed in the participating organisations. Contracts
are not dynamically negotiated in CrossFlow.

The MEMO project [QS00] advocates the idea that the service mar-
ketplace, called the Electronic Commerce Broker Service (ECBS) by the
authors, should provide support for structured and mediated negotiations
between humans acting on behalf of the consumer and the provider organ-
isations. Specifically, negotiations are conducted through the exchange of
standardised messages whose semantics is based on speech-act theory. These
messages transit through the ECBS, thereby allowing their storage for fu-
ture references. Alternatively, if the trust and confidentiality offered by
the ECBS is not a requirement, the negotiation can be conducted without
any intermediation. Still, the structure, sequencing and semantics of the
messages exchanged during the negotiation is fixed.

The ADEPT platform [JNF+00, JFNT00] goes a step further towards the
automation of negotiations for service provisioning, by proposing an agent-
based approach to this problem. Specifically, agents in ADEPT negotiate
on behalf of their organisations using a one-to-many negotiation framework
based on multi-attribute utility theory. An agent acting on behalf of a
consumer organisation simultaneously negotiates with several other agents
representing potential service providers. Each agent tries to find a deal
which maximises its own utility function, which encodes the preferences and
business constraints of the organisation that it represents. For space reasons,
we do not enter into details about this negotiation framework. The reader
is referred to [SFJ97].

4 Service composition

In this section, we discuss about how a composite service can be built,
whether statically or dynamically. We start with static composition, in
which the “plan” of the composite service is known a priori (i.e. alliances
are fixed). We then move into dynamic service composition, which relies on
service discovery techniques.

17

4.1 Context

The fast and dynamic integration of business processes is an essential re-
quirement for organizations to adapt their business practices to the dynamic
nature of the Web. Business partners may need to form permanent (long
term) or temporary (short term) relationships. In the former type of re-
lationship, components are known in advance and alliances are statically
defined. The latter form of partnership does not assume an a priori trading
relationship among partners. An e-service would in this case need to dynam-
ically discover partners to team up with to execute the required transactions.
Thus, this type of dynamic integration (also called on-the-fly integration)
requires support for automated partner discover and fast e-service integra-
tion.

4.2 Service Composition Pattern

Problem We distinguish between elementary and composite services. El-
ementary services are pre-existing services, whose instances execution is en-
tirely under the responsibility of the previously discussed pattern. As an
example, we consider an organisation who wants to offer an on-line travel
planner called “Travel Solutions”. This planner aims to provide users build
their own itinerary in a given city. To do so, the organisation requires to
integrate the following independant services:

f Flight booking: to search for a flight and when the more suitable flight
is found to proceed the booking and the paiement. This service can
be assigned to an individual provider (e.g. an airline company).

1 Accommodation booking: to search for different styles of accomoda-
tion (hotels, hostels, bed & breakfast, camping, etc). This service is
assigned to a community of providers. This community federates en-
tities such as public central booking and private booking sites. When
an execution request is addressed to the community, its representative
forwards it to one of its members.

i Tourist attractions searching: this service gives information about the
mains tourists attractions (schedules, venues, etc.).

fil Bicycle hire and car rental booking: the idea is to give the user the
choice to ride a bike or to drive a car. This choice is based upon the
distance from the booked accomodation to the major tourist attrac-
tions. Both of these services are assigned to an individual provider.

fil Event attendance planner which is decomposed into two others: events
searching and tickets purchasing (if ticket pre-purchasing is required
for the selected events).

To offer a value-added composite service, organisations face the problem
of identifying the characteristics of the services that need to be composed
and the nature of their interactions.

18

Service
Component

binds to

composed of
Elementary Composite
Service Service

has

Control and Data
Flow Spec.

Figure 3: Basic elements of service composition

Forces. In summary, the following are important characteristics of static
composition:

fl How do you describe interactions amongst services without referring
to any implementation or execution model 7 A high-level approach
that allows fast integration and easy maintenance is needed.

fl How do you support arbitrary nesting of composite services ?

fl How do you maintain a high level specification of a composite service
while ensuring its executability ?

Solution. The solution defines composite services recursively as an aggre-
gation between other composite services and elementary services, which are
referred to as component services (see figure 4.2). This aggregation specifi-
cation must include descriptions about these two aspects:

fil control-flow: establishes the order in which the component services
should be invoked, the timing constraints, the signals that may inter-
rupt or cancel their execution, etc.

fil data-flow : captures the flow of data between component services

Implementation Aspects A natural way for describing the control-flow
of composite services, is to adapt to this purpose an existing process-modeling
language, and especially one of those which have proven to be suitable for
workflow specification. In a nutshell, a workflow consist of a set of activ-
ities with explicitly specified control and data flow between activities. An
activity may invoke a transaction or some specific application (in our con-
text a service). There are numerous workflow specification languages based
upon different paradigms. In fact, each commercial Workflow Management
System (WfMS) implements its own specification language, with little effort
being done to provide some degree of uniformity between products. In this
respect, the Workflow Management Coalition (WIMC) [C0a96] has defined

19

a set of glossaries and notations that encompass many of the concepts and
constructs provided by existing workflow specification languages. Unfortu-
nately, these efforts have had a very limited impact. To add to the lack of
uniformity, most of the existing workflow specification languages, including
the one defined by the WEMC, lack a formal semantics, making it difficult to
compare their capabilities and expressiveness in order to make an objective
choice between them [ABtHKO0].

The use of formal notations for workflow specification has been consid-
ered in e.g. [Aal98] and [MWWT98]. [Aal98] discusses several advantages
of using Petri-nets for describing the control-flow perspective of workflows,
among which their expressive power. However, many designers find the
Petri-net formalism difficult to grasp. Moreover, Petri-nets do not provide
any means for structuring a specification into recursive compositions. As
a tradeoff between expressiveness on the one hand, and ease of use and
modularity on the other, [MWW™98] advocates the use of statecharts in-
stead [HN96]. The main argument is that statecharts are based upon finite
automata and Event-Condition-Action (ECA) rules, two paradigms which
are easy to comprehend. Finally, the statechart formalism has been inte-
grated into the Unified Modeling Language (UML) [RJB99], as the founda-
tion of many intra and inter-object process modeling constructs.

A statechart is made up of states and transitions. Transitions are la-
beled by ECA rules. The occurrence of an event fires a transition if (i) the
machine is in the source state of the transition, (ii) the type of the event
occurrence matches the event description attached to the transition, and
(iii) the condition of the transition holds. When a transition fires, its action
part is executed and its target state is entered. An event occurrence can be
the reception of a signal, or a change in the system’s clock (i.e. timeouts).
The event, condition, and action parts of a transition are all optional. A
transition without an event is said to be triggerless. The outgoing transi-
tions of a state are exclusive, that is, for a given event only one of them may
fire. Hence, if there are two or more transitions with the same source state
and the same event specification, their conditions are disjoint. For example,
the statechart depicted in Figure 4 specifies the composite service “Travel
Solutions” described earlier.

As stated out before, the objective of cross-organisational workflows (see
Section 2.2) is to automate business processes that interconnect and man-
age communication among disparate systems. In this approach, the descrip-
tion of the composite service can be defined collaboratively among partners.
However, the enactment of a composite may be either be centralised or
distributed across the participant partners.

Component-based frameworks (see Section 2.1) provide for the connec-
tion and coordination of data and operations among services. The descrip-
tion of a composite service is worked out and agreed to offline. After that,
the global description of a composite service is generally spread through the
implementation code of every component. Thus the composition of services
in this approach is mainly ad-hoc.

Document-based approaches such EDI (see Section 2.3) and XML-based

20

Travel Solutions [Attractions near
accommodation]

Attractions ® Bicycle Hire
Search (AS) (BH)

Flight Booking Accom. Booking Car Rental
H[(FB) '[(AB) (CR)

[not Attractions near
[not FlightFound]

accommodation]
. Events plannin
D Simple state (:) Initial pseudo-state Events Search | [not needPre—| purchasmg]
Final pseudo-state (ES)
@ Compound state o) 'p- Ticket Purchasmg

— Transition Condition

Events Planner
(EP)

Figure 4: Example of a control flow specification using statecharts

frameworks (see Section 2.4) the interactions among the components of a
composite service is specified by the shared document definitions. The com-
ponents are interconnected in terms of agreed upon documents. The business
logic implementation at a partner side is invisible to other trading partners.
Interactions between components (partner services) may be carried out ac-
cording to a specific B2B standard (e.g., EDI, OBI, RossettaNet, cXML)
or bilateral agreements. B2B standards define formats and semantics of
messages (e.g., request for quote, purchase order), bindings to communi-
cation protocols (e.g., HT'TP, FTP), business process conversations (e.g.,
sequencing), security mechanisms (e.g., encryption, non-repudiation), etc.

Known implementations In the following, we briefly illustrate the com-
position of services in the context of the following e-service platforms: The
Collaboration Management Infrastructure (CMI) [SGCBOOQ], the eFLOW
project [CIJT00], the Web Base of Internet Accessible e-Services (WebBIS)
[BMB100], and SELF-SERV [FDBP01, BDSN(02]. CMI is a platform for
modeling and managing inter-enterprise business processes. A service is
modeled by state machine that specifies that possible states of a service and
their transitions. Transitions are caused by service operation (also called
service activity) invocations or internal service transitions.

EFlow is a platform for the specification, enactment, and management of
composite e-services. A composite service is modeled by a graph, which de-
fines the order of execution among the nodes in the process and may include
service, decision, and event nodes. Service nodes represent the invocation
of a basic or composite service, decision nodes specify the alternatives and
rules controlling the execution flow, while event nodes enable service pro-
cesses to send and receive several types of events. WebBIS is a platform for
modeling, managing, and evolving e-services. WebBIS adopts an ECA-rule
(Event Condition Action) approach for defining composite e-services. ECA
rules are used to specify interactions between a composite service and its
components. Encoding the business logic of services as ECA rules is espe-
cially attractive to support the customization and increase in the flexibility
of composite services. Indeed, rules can be added, modified, or removed to

21

reflect changes in both operational (e.g., server load) and market environ-
ments (e.g., user requirements).

In SELF-SERYV, a subset of statecharts has been adopted to express the
control-flow perspective of composite services. In this approach, states can
be simple or compound: a simple state corresponds to the execution of a
service, whether elementary or composite. Accordingly, each simple state is
labeled by a description of a service offer, and the set of parameters that
are to be passed to this service upon instantiation. When a basic state is
entered, the service that labels it is invoked. The state is normally exited
through one of its triggerless transitions, when the execution of the service
is completed. If the state has outgoing transitions labeled with events, an
occurrence of one of these events provokes the state to be exited, even if
the corresponding service execution is ongoing (i.e. this execution is can-
celled). In SELF-SERV, the data-exchange perspective is implicitly handled
by variables: parameters of services (inputs and outputs) and events (con-
sumed and produced by services).

4.3 Service Discovery Pattern

Problem The problem relates to Web-based service integration in large,
autonomous, heterogeneous, and dynamic environments. For B2B e-commerce
to scale to the Internet, there is a need for automated integration with
all relevant partners, established a priori or on demand. For example, a
conference trip business process may need to be composed from several
tasks including hotel booking and flight reservation. In an ad-hoc
composition approach, a human must select the services that can execute
the tasks hotel booking and flight reservation. After that, the ser-
vices may be invoked independently and the results are manually combined.
It is also possible to create a custom-code to compose the services.

On-the-fly B2B integration and interoperation is better supported by
establishing online marketplaces for e-services. These marketplaces should
provide capabilities for brokering and dynamic collaboration with partici-
pants of the marketplaces. Instead of statically binding e-services to each
other, marketplaces should dynamically discover new e-services with the
right set of features and bind them at run time. Selecting a partner should
consider the available e-services, characteristics, organizational policies and
resources that are needed to accomplish the integrated e-service.

Forces Insummary, the following are important characteristics of dynamic
composition:

1l What type of information is needed to identify service components at
run-time ?

fl Given a high level specification of the composite service (see previ-
ous pattern), how to you integrate these component services in the
provision of this composite service 7

22

Service
Component

produces|

Discovery

makes query

composed of

Control and Data
Flow Spec.
Figure 5: Basic elements of service discovery

Solution The pattern for dynamic composition consists of the following
elements:

1 An automated service discovery facility: given that component services
are described using software-interpretable information (i.e, using meta-
data or ontology languages), this facility provides means (e.g., service
discovery engine) to locate component services based on constraints
over their meta-data.

fl A composite service specification allows component services to be au-
tomatically discovered and integrated.

Implementation Aspects A number of industry efforts to define stan-
dards that provide common building blocks for e-service discovery and in-
tegration emerged recently including UDDI (Universal Description, Discov-
ery, and Integration), WSDL (Web Services Description Language), and
ebXML [BusO1]. UDDI provides an XML-based registry for advertising
businesses and services. The advertisement and discovery of services and
businesses in UDDI exploit keywords categorisation. The registry organises
advertisements as white and yellow pages. An advertisement of a business
includes name, key information, categorisation, and offered services. An
advertisement of a service includes name, key information, categorisation,
and multiple bindings (i.e, technical information that is relevant to access
the service). WSDL is an XML-based languages for describing the content
and capabilities (i.e, messages and operations) of e-services. Services can be
defined using abstract terms. Bindings between abstract descriptions and
concrete implementations (e.g, specific data formats and protocols) can also
be defined. ebXML has similar features with UDDI. However, it focuses
on business processes from a workflow perspective. Currently, these stan-
dards focus on service discovery and advertisement. They do not provide
service composition capabilities. They essentially aim at providing common
building blocks among all e-service platforms.

It should be noted that several agent-inspired efforts that aim at pro-
viding supports for discovering and composing e-services are underway. In

23

the recent years, several markup languages (e.g., DAML+OIL, DAML-L)
have been developed with the purpose of realising the Semantic Web Vision
including markup for Web services discovery and composition [Web].

Known implementations In the following, we briefly illustrate the dy-
namic discovery and composition of services in the context of the following
e-service platforms: The Collaboration Management Infrastructure (CMI)
[SGCBO00], the EFlow project [CIJT00], and the Web Base of Internet Ac-
cessible Services (WebBIS) [BMB00].

CMTI’s service definition model features the concept of a placeholder ac-
tivity to cater for dynamic composition of services. A placeholder activity
is an abstract activity replaced at runtime with a concrete activity type,
that must have the same input and output data of those defined as part
of the placeholder. A selection policy is specified to indicate the activity
that should be executed in place of the placeholder. For example, a generic
reference service can be configured to use available activity implementations
by providing a selection policy that plugs in the implementation for each ac-
tivity interface. If multiple providers offer implementations for an activity
interface, the selection policy may use a broker to choose the implementation
that offers the best quality of service.

In EFlow, the definition of a service node contains a search recipe. A
search recipe is a query represented in a query language. When a service
node is invoked, a search recipe is executed in order to select a reference
to a specific service. After that, operations of the selected service can be
invoked.

WebBIS proposes a concept called push-community as a solution to the
problem of integrating dynamic e-services. A push-community describes the
capabilities of a desired service without referring to any specific service. In
this sense a community defines a request for service. In order to be ac-
cessible through a push-community, services can register with it to (fully
or partially) offer the desired operations. This involves the definition of the
mappings between operations defined in the community and those defined in
the actual services. An actual service can register with one or several push-
communities of interest. It can also leave these communities at any time.
In this approach, the task of composing a complex service is gracefully dis-
tributed by enabling each provider to contribute to one or more communities
without knowledge of the details of other participating services. The means
by which a community chooses a member to execute an operation is speci-
fied via a selection policy. A selection policy is specified using ECA rules. A
selection policy can be based on 1-N negotiation protocol (e.g., an auction),
or any ranking algorithm involving parameters such as customer’s profile,
service’s reliability, etc.

24

5 Composite Service Execution

In this section, we discuss the execution of a composite service assuming
that its control and data semantics are already defined.

5.1 Context

Let us consider again the example of the “Travel Solutions” composite ser-
vice, whose control flow semantics have been described in figure 4.. We
assume that this service is hosted and executed by a given provider. When
it is invoked by a user, its execution involves the activation of all its com-
ponent services which are potentially hosted on remote providers.

For instance, a “Travel Solutions” service request triggers the execu-
tion of both services “Flight Booking” and “Attractions Search”. When
“Flight Booking” completes its execution, the service “Accomodation Book-
ing” should be executed next. When both “Accomodation Booking” and
“Attractions Search” services are completed, a check is made on whether
the selected accomodation is either close or far from the main tourist at-
tractions. The service “Bicycle Hire Booking” is triggered in the former
case and the service “Car Rental Booking” is triggered in the latter case.

The whole execution of the “Travel Solutions” service is carried out in
a distributed manner. The issue addressed here is to determine a suitable
execution model for a composite service. There are two possibilities (leading
to two different patterns):

fil the components of a composite service are coordinated by a central
scheduler executed by a single provider which hosts the composite
service.

fil the entities participating in a composite service coordinate the ex-
ecution through peer-to-peer communication. The execution of the
composite service is carried out independently from the provider by
which it is hosted.
5.2 Service Execution with Central Authority Pattern

Problem Description. Assuming that the composite service control se-
mantics are already determined (see section 4.2), it is possible to derive
an execution order of the component services from any of the well known
notations (e.g. workflows, Petri nets and statecharts).

In this context, the following questions arise:

1 When should a component service be invoked?
1 What should be done after a component service is invoked?
fl When should its execution be completed?

f What should be done after its execution is completed?

25

Control and Data
Gateway Flow Spec.
derived from
Composite

Service
Scheduler

invokes

Figure 6: Basic elements of service execution with central authority

Forces. The key question which arises in this context is mainly: how to
ensure that a service execution (whether composite or native) is carried out
faithfully to the service specification?

Solution. Assuming a composite service S, there is one dedicated provider
for this service. This provider should host a Composite Service Scheduler
(scheduler in short) which could be partially or totally derived from the
semantics of the service (see figure 5.2). This scheduler is responsible for:

fl Initiating the execution of the components of S according to the control-
flow associated with S. To do so, S’s scheduler invokes each of S’s com-
ponents (or their gateway if they are native services) in the order and
under the conditions specified in the control-flow.

1 While the service S is available, the scheduler receives and processes
service requests.

i The scheduler is also responsible for handling and processing data
according to the data semantics of the composite service.

In other words, the scheduler is typically a software module which de-
termines when should one of its components be initiated, and what needs to
be done when an external event received while the service is available. The
coordination model behind this approach is depicted in figure 5.2, which
shows the scheduler associated to the service “Travel Solutions” linked to
several other services (the service’s components). As it is shown for “Events
Planner” service (linked to both “Events Search” and “Ticket Purchasing”
services) the above process may be carried out recursively thereby leading
to a tree-structure.

Implementation Aspects An executable semantics of statecharts has
been described in [HN96]. The same method could be applied to partially or
totally generate a scheduler responsible for carrying out the overall execution
of a composite services which control-flow is described as a statechart. It
could also be applied to some extent when the control flow is expressed via
a Petri net. In the latter case, the composite service recursive definition

26

| :
|
Travel Solutions I .
I - - —e service request
Scheduler e
- (
Gateway : Gateway Event Planner
I Scheduler
I
I
I
I
I
I

\
|
|
|
l ‘
Flight Booking Bicycle Hire : :
Native Service : ! RN -
|

Native Service
%
Attractions search Accom. Booking Ticket Purchasing Events Search
Native Service Native Service Native Service Native Service

Figure 7: Example of a centralised execution of the “Travel Solutions” ser-
vice

is not supported. Workflows are generally based upon a centralised engine
which is responsible for scheduling the execution of the tasks composing the
workflow.

On the other hand, distribution and communication can be handled by
most of the component-based frameworks (see section 2). Finally, XML can
be used as the format for exchanging data (services’ inputs and outputs).

Known Implementations. ADEPT [JNF'00] is a multi-agent system
designed to support inter-organisational workflows. In ADEPT, a workflow
can be recursively decomposed into sub-workflows, leading to a tree struc-
ture. Each sub-workflow in ADEPT, is assigned to an autonomous agent.
When the agent responsible for a workflow, wishes to invoke a sub-workflow,
it has to negotiate with the agent(s) that provide(s) it

EFlow [CIJ100] is a platform for specifying, enacting, and monitoring
composite services. The execution model is based on a centralised process
engine, which is responsible for scheduling, dispatching, and controlling the
execution of the composite services. But, Eflow does not support recur-
sive definition of composite services (E.g. there is only one composition
level). The same remarks apply to the Collaboration Management Interface
(CMI) [SGCBO00].

5.3 Peer-To-Peer Execution Pattern
This pattern specialises the pattern “service execution with central author-

ity” by addressing the issue of efficiency.

Problem. In the pattern for “service execution with central authority”
execution of a composite service is dependent on a central scheduler. In such
situation, the scheduler associated to a composite service communicates with

27

Gateway Control and Data
Flow Spec.
0.N

invokes derived from

delegates control to

Coordinator
1.N 1

Composite
Service
Scheduler

invokes

Figure 8: Basic elements of peer-to-peer service execution

each of the service’s components: a first communication is established to
trigger the execution of a component and another one to notify the scheduler
that the component has been completed.

Forces. To avoid this potential bottleneck the question we want to address
here is: how to limit as much as possible the number of messages exchanged
during the execution of a composite service 7

Solution. We introduce a peer-to-peer execution model, as a solution to
the recurrent problem of inter-service coordination. This means that the re-
sponsibility of coordinating the execution a composite service is distributed
across the providers which host the components of the composite service.

The execution of a composite service is not only dependent on a cen-
tral scheduler as in the previous pattern but rather on software components
(called coordinators) hosted by each of the providers participating in a ser-
vice composition (see figure 5.3). These software components interact in
a peer-to-peer fashion in order to ensure that each instance of a compos-
ite service is executed in accordance with its control-flow and its data-flow
specifications.

Therefore, the provider of a component service ST should host a coordi-
nator responsible for:

f Initiating the execution of the service ST whenever all the precondi-
tions are met.

A Notifying the completion of this execution to the coordinators of the
services which potentially need to be executed next.

1 While service ST is active, receive notifications of external events,
determine if ST should be exited because of these event occurrences,
and if so, interrupt the service execution if it is ongoing, and notify
the interruption to the coordinators of the services which potentially
need to be executed next.

All communications with native services are carried out through the
gateways of these services.

28

4 /

Travel Solutions | - - L\ ’

-) N :

Coordinator TS Gateway Travel Solutions Gateway Travel Solutions :
Coordinator FB Coordinator AB }

|

|

|

|

|

|

|

\
Travel Solutions | Flight Booking Accom. Booking
Scheduler ! Native Service Native Service

\
\
\
h I) -

Gateway Travel Solutions Gateway Travel Solutions
Coordinator AS Coordinator BH S~
Attractions search Bicycle Hire
Native Service Native Service

| Legend: k
1 . } Event Planner Travel Solutions
‘\ - - - - -& service request i Sehoduler Coordinator EP

iig

-

Figure 9: Example of a distributed execution of the “Travel Solutions” ser-
vice

Example. An example illustrating the entities participating in the ” Travel
Solutions” composite service execution is depicted in figure 5.3.

When the coordinator of the “Travel Solutions” service receives an exe-
cution request, it sends a message to the coordinators of the services FB and
AS. Upon receiving these messages, these coordinators invoke their associ-
ated services. When the service that books a flight completes its execution
its coordinator sends a message to that of the service AB. This latter in-
vokes the service that books an accommodation, waits for its completion,
and sends a message to the coordinators of the services CR and BH. In the
meanwhile, the coordinator of AS sends its completion message to the co-
ordinators of CR and BH too. These completion messages contain the data
that must be exchanged between these services, as per the data exchange
perspective of the “Travel Solutions” specification. Using these data, the
coordinators of BH and CR evaluate the condition “attractions near ac-
commodation” appearing in the labels of their incoming transitions, and
accordingly, they decide which service has to be executed next. Assuming
that the attractions are far from the accommodation, it is the service CR
that has to be executed. Once this service completes its execution, its co-
ordinator sends a message to the coordinator of the service EP. Assuming
that the notation adopted to express the control flow support recursive def-
inition, the coordinator of the service EP sends an execution request to the
coordinator of the composite service responsible for searching events. The
execution of the service EP is carried out in the same way. Upon completion,
its coordinator sends a message to the coordinator of the “Travel Solutions”
service, thereby concluding the overall execution.

Implementation Aspects. Building the coordinators from a specifica-
tion of a composite service as either a statechart or a Petri nets involves

29

answering the following questions:
i What are the preconditions for triggering the execution of a service?

fl When the service execution is completed, what are the services that
may potentially need to be executed next?

The behaviour of a coordinator could therefore be captured using two
sets: one set of preconditions such that the service execution is triggered
when one of these preconditions is met, and another set of postprocessing
actions that indicate which coordinators need to be notified about the fact
that a service is being completed.

All communication and data exchange issues could be handled in the
same way than for the previous pattern (E.g. component-based and XML-
based frameworks).

Known Implementations. In Selfserv [BDFP01, FBDP01, FDBP01] the
execution model for composite services, in which the providers of the ser-
vices participating in a composition, collaborate in a peer-to-peer fashion in
order to ensure that the control-flow dependencies expressed by the schema
of the composite service are respected. Specifically, the responsibility of
coordinating the providers participating in a composite service execution,
is distributed across several lightweight software components hosted by the
providers themselves (as depicted in Figure 5.3).

CPM [CHO01] (Collaborative Process Manager) supports the execution
of inter-organisational business processes through peer-to-peer collaboration
between a set of workflow engines, each representing a player in the over-
all process. An engine representing a player P, schedules, dispatches and
controls, the tasks of the sub-process that P is responsible for.

In Mentor [MWWT98], although the scope of this latter proposal is
that of intra-organisational workflows, the problem addressed is that of dis-
tributing the execution of workflows expressed as state and activity charts.
The idea is to partition the overall workflow specification into several sub-
workflows, each encompassing all the activities that are to be executed by a
given entity within an organisation (assuming that this information is stati-
cally known). Each of these sub-workflows is itself specified as a statechart.
The authors present some optimization techniques that reduce the number
and the size of the messages exchanged by the sub-workflows, leading to a
“weak synchronisation” model.

6 Conclusion

This report has discussed a number of patterns for the definition and imple-
mentation of composite services. These patterns suggest a methodology for
building a new service that tackles each of these important issues separately:

A Identify native services and make them elementary services through a
gateway interface (External Interactions Gateway Pattern)

30

il Specify the control and data flow semantics of the new service based
on these elementary services or other composite services, called com-
ponent services (Service Composition Pattern).

il The new service can rely on component services identified at run-time
(Service Discovery Pattern).

il The binding of component services to service providers must clearly
define and handle the commitments and responsibilities of all parties
involved (Contract-Based Outsourcing Pattern).

fil The execution of the service must take into account performance and
efficiency issues (Service Execution Patterns).

This methodology is a step towards providing a high level abstraction in
the design, construction and maintenance of composite services. A number
of software tools are expected to support this methodology from verification
of requirements to automatic code generation.

References

[Aal9g]

[ABtHKOO]

[ADGY9S]

[BDFPO1]

[BDSN02]

[BMB+00]

W.M.P. van der Aalst. The application of Petri nets to work-
flow management. The Journal of Circuits, Systems and Com-
puters, 8(1):21-66, 1998.

W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and
B. Kiepuszewski. Advanced workflow patterns. In Proc. of
the 5th IFCIS Int. Conference on Cooperative Information Sys-
tems, Eilat, Israel, September 2000. Springer Verlag.

N. Adam, O. Dogramaci, A. Gangopadhyay, and Y. Yesha.
Electronic Commerce: Technical, Business, and Legal Issues.

Prentice Hall (ISBN: 0-13-949082-5), Inc., 1998.

B. Benatallah, M. Dumas, M.-C. Fauvet, and H.-Y. Paik.
Self-coordinated and self-traced composite services with dy-
namic provider selection. Technical report, The University
of New South Wales, School of Computer Science & Engi-
neering, 2001. Available at http://www.cse.unsw.edu.au/
“mcfauvet/selfserv.ps.gz.

B. Benatallah, M. Dumas, Q.Z. Sheng, and A.H.H. Ngu.
Declarative Composition and Peer-to-Peer Provisioning of Dy-
namic Web Services. In Proc. of the International IEEE Con-
ference on Data Engineering, San Jose, USA, February 2002.
to appear.

B. Benatallah, B. Medjahed, A. Bouguettaya, A. Elmagarmid,
and J. Beard. WebBIS: a system for building and managing

31

[BMR*96]

[Bou99]

[Bro00]

[BSZ98]

[Bus01]

[CHO1]

[CII*00]

[Coa96]

[Com00)]

[cXM]
[Dog9g]

[Dog99]

Web-based virtual enterprises. In Proc. of the 1st workshop on
Technologies for E-Services, in cooperation with VLDB2000,
Cairo, Egypt, September 2000.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System Of
Patterns. John Wiley & Sons, West Sussex, UK, 1996.

A. Bouguettaya, editor. Introduction to the Special Issue on
Ontologies and Databases, Distributed and Parallel Databases
Journal. Kluwer Publishers, 1999. 7(1).

M. Brodie. The B2B E-commerce Revolution: Convergence,
Chaos, and Holistic Computing. In in Information System En-
gineering: State of the Art and Research Themes, S. Brinkkem-
per, E. Lindencrona, and Solvberg (eds.), London, June 2000.

M. Bichler, A. Segev, and J. L. Zhao. Component-based E-
Commerce: Assessment of Current Practices and Future Di-
rections . ACM SIGMOD Record, 27(4), December 1998.

C. Bussler. B2B protocol standards and their role in seman-
tic B2B integration engines. IEEE Data Engineering Bulletin,
March 2001.

Q. Chen and M. Hsu. Inter-enterprise collaborative business
process management. In Proc. of the Int. Conference on Data
Engineering (ICDE), Heidelberg, Germany, April 2001. IEEE
Press.

F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-C.
Shan. Adaptive and dynamic service composition in eFlow. In
Proc. of the Int. Conference on Advanced Information Systems
Engineering (CAiSE), Stockholm, Sweden, June 2000. Springer
Verlag.

WorkFlow Management Coalition. Terminology and glos-
sary. Technical Report WFMS-TC-1011, Workflow Manage-
ment Coalition, Brussels - Belgium, 1996.

Commerce One Inc. XML Common Business Library (xCBL).
http://www.xcbl.org, December 2000.

cXML.org. Commerce XML resources. http://www.cxml.org.

A. Dogac, editor. ACM SGMOD Record: Special Issue on Elec-
tronic Commerce, ACM SIGMOD RECORD. ACM, December
1998. 27(4).

A. Dogac, editor. Special Issue of Distributed and Parrallel
Databases on Electronic Commerce, Distributed and Parallel
Databases Journal. Kluwer Publishers, 1999. 7(2).

32

[DR9Y]

[FBDPO1]

[FDBPO1]

[Ga99]

[GAHLO0]

[Geo99]

[GHIV95)

[GT98]

[HN6]

[JFN*00]

[INF+00]

P. Dadam and M. Reichert, editors. Proceedings of the Infor-
matik’99 Workshop on Enterprise-wide and Cross-enterprise

Workflow Management: Concepts, Systems, Applications,
Paderborn, Germany, October 1999.

M.-C. Fauvet, B. Benatallah, M. Dumas, and H. Paik. Self-
coordinated and self-traced dynamic composite services. In
Actes des 17e Journées Bases de Données Avancées, Agadir,
Maroc, novembre 2001. 21 pages.

M.-C. Fauvet, M. Dumas, B. Benatallah, and H. Paik. Peer-
to-peer traced execution of composite services. In Proceedings
of the International Workshop on Technologies for E-Services
(TES 2001). In cooperation with VLDB 2001., Roma, Italy,
2001.

D. Georgakopoulos and al. Managing Process and Service Fu-
sion in Virtual Enterprises. Information Systems, 24(6):429—
456, 1999.

P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow:
Cross-Organizational Workflow Management in Dynamic Vir-
tual Enterprises. International Journal of Computer Systems
Science & Engineering, 15(5):277-290, 2000.

D. Georgakopoulos, editor. Information Technology for Virtual
Enterprises, Proc. of the 9th Int. Workshop on Research Issues
on Data Engineering. IEEE Computer Society, March 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Readings MA, USA, 1995.

A. Geppert and D. Tombros. Event-based Distributed Work-
flow Execution with EVE. In Proc. of Middleware 98 Work-
shop, Sept. 1998.

D. Harel and A. Naamad. The statemate semantics of
statecharts. ACM Transactions on Software Engineering and
Methodology, 5(4):293-333, October 1996.

N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien,
B. Odgers, and J. L. Alty. Process management system using
ADEPT: A real-world case study. Journal of Applied Artificial
Intelligence, 14(5):421-465, 2000.

N.R. Jennings, T.J. Norman, P. Faratin, P. O’Brien, and
B. Odgers. Autonomous agents for business process manage-
ment. Journal of Applied Artificial Intelligence, 14(2):145-189,
2000.

33

[KLKDO1]

[MWW+98]

[OF01]

[QS00]

[RIBYY]

[Ros]
[SCDS01]

[SFJ97]

[SGCBOO]

[The01]

[VLDO0O]

H. Kuno, M. Lemon, A. Karp, and Beringer D. Conversations
+ interfaces =3d business logic. In Proc. of the 2nd Workshop
on Technologies for E-Services (TES), Roma, Italy, September
2001.

P. Muth, D. Wodtke, J. Weissenfels, A.K. Dittric h, and
G. Weikum. From centralized workflow specification to dis-
tributed workflow execution. Journal of Intelligent Information
Systems, 10(2), March 1998.

B. Omelayenko and D. Fensel. A two-layered integration ap-
proach for product information in B2B E-commerce. In Proc. of
the International Conference on Electronic Commerce and Web
Technologies (EC-Web), Munich, Germany, September 2001.
Springer Verlag.

C. Quix and M. Schoop. Facilitating Business-to-Business Elec-
tronic Commerce for Small and Medium-sized Enterprises. In
Proc. of the International Conference of the Institute for Oper-
ations Research and Management Sciences (INFORMS), Salt
Lake City, USA, May 2000.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Model-
ing Language Reference Manual. Addison-Wesley, 1999.

RosettaNet. Home page. http://www.rosettanet.org.

M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Integrat-
ing workflow management systems with Business-to -Business
interaction standards. Technical Report HPL-2001-167, HP
Labs, July 2001.

C. Sierra, P. Faratin, and N. Jennings. A service-oriented ne-
gotiation model between autonomous ag ents. In Proc. of the
8th European Workshop on Modeling Autonom ous Agents in
a Multi-Agent World (MAAMAW), Ronneby, Sweden, 1997.
Springer Verlag.

H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker.
Modeling and composing service-based and reference process-
based multi-enterprise processes. In Proc. of the Int. Confer-
ence on Advanced Information Systems Engineering (CAiSE),

Stockholm, Sweden, June 2000. Springer Verlag.

The CrossFlow Project. Home Page. http://www.crossflow.
org, 1998-2001.

Proceedings of the First Workshop on Technologies for E-
Services (In cooperation with VLDB2000), September 2000.

34

[Web]

[Whi97]

[YPOO]

Semantic Web. Workshop proceedings.
http://semanticweb2001.aifb.uni-karlsruhe.de.

A. Whinston, editor. Electronic Commerce: A Shift in
Paradigm, IEEE Internet Computing. IEEE, November 1997.
Special Issue on Electronic Commerce 1(6).

J. Yang and M. Papazoglou. Interoperation support for elec-
tronic business. CACM, 43(6):39-47, June 2000.

35

