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Abstract

Describes the mechanical, electronic and software design of a 10-DOF

bipedal robot which has been constructed to study control, parameterisation

and automatic expansion of the stability envelope of a complex real-time

behaviour, namely, dynamically-balanced two-legged walking. The machine

is physically complete and demonstrates reasonable reliability in movement

control including dynamically-balanced standing. High-level reinforcement

learning code is being developed to extend this to walking. The machine

offers a challenging problem domain to the flourishing machine learning

community and represents a shift in emphasis, away from learning

algorithms that work on simplified, preprocessed, artificial and static data

sets to learning heuristics which deal with noisy, real-time data collected

from sensors on a dynamic, real-world system.
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Abstract. Describes the mechanical, electronic and software design of a 10-

DOF bipedal robot which has been constructed to study control,

parameterisation and automatic expansion of the stability envelope of a

complex real-time behaviour, namely, dynamically-balanced two-legged

walking. The machine is physically complete and demonstrates reasonable

reliability in movement control including dynamically-balanced standing.

High-level reinforcement learning code is being developed to extend this to

walking. The machine offers a challenging problem domain to the flourishing

machine learning community and represents a shift in emphasis, away from

learning algorithms that work on simplified, preprocessed, artificial and static

data sets to learning heuristics which deal with noisy, real-time data collected

from sensors on a dynamic, real-world system.

1  Introduction

After a long period of slow progress, bipedal walking has  within  the past few years
enjoyed a number of notable successes, demonstrating that this means of  robot

locomotion is a basically practical, if difficult, proposition.  In particular, dynamically-
balanced walking, in which a vertical line through the centre of balance of the walking

system is permitted to stray outside the polygon formed by the feet has been
demonstrated in a number of machines (Yamaguchi et.al., 1996; Kun & Millar, 1996).

Yet further technical development will be required before robots can show the kind of
reliability, dexterity, speed and power which characterises ordinary human performance

of this skill. This work details the design of an active-balance biped called TarBaby
(Mann, 2000) which serves as a test bed for experiments contributing to this end. Once

the basic walking behaviour has been demonstrated, planned experiments aim to create a
new kind of algorithm that systematically explores the continuous sensorimotor control

space of the robot system outside an initially learned envelope of stability, then reports
the system’s functional limits of variation for specified parameters; and to discover

methods by which this information can be used to automatically generalise the robot’s
behaviour so that the envelope of stability may be safely enlarged.
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                                        Figure 1. TarBaby robot assembly and external computer

2  Design and Construction

2.1 Mechanical Structure
 

Physically, the robot consists of a pair of jointed legs linked by a hip bar supporting a
torso consisting of metal case (Figure 1). The torso contains most of the control circuitry

and a small lead-acid battery, which powers the main microcontroller. A 3-D motion
tracker providing positional feedback is mounted atop the torso. The ten motors actuating

the leg joints are powered via cable from a 30Ah laboratory power supply. Control
signals from an off-board computer are also supplied via cable.

The legs are essentially scaled-down, simplified versions of human legs. Each leg

possesses all but one of the 6 degrees of freedom in a human leg: that enabling yawing
motion of the foot. Pairs of single axis joints at the hip and ankle joints approximate the

flex-extend and adduct-abduct axes of their human counterparts. The upper member of
each joint supports a gearhead-motor/shaft-encoder assembly, with the output shaft

coupled to the lower member by a load-spreading flange. The motors are 12 volt DC
permanent magnet types that draw 2-3 Amps under normal loads. All gear ratios are

180:1, except the knees, which have a 256:1 ratio for extra torque. The foot is a 12 x 7 cm
metal plate with four force sensing resistor disks coupled to floor pads of neoprene

rubber. Cabling for motor power, shaft encoder data, and force sensor data run up the legs

                                                  



and enter the torso through bilateral holes in the hip bar. The whole assembly is 107cm in

height and weighs 12kg.

2.2 Electronic Systems

The circuitry of the robot is organised as shown the block diagram of Figure 2. The
system is designed around a 40MHz 16-bit 80C167-based  industrial microcontroller

evaluation board manufactured by Phytec. Except for this microcontroller and the motion
tracking sensor, all circuits are duplicated bilaterally.

2.2.1 Motor Driver Circuits

The principle processing load on the system is continuous monitoring of the ten shaft
encoders, which might generate pulses at frequencies as high as 6kHz. To avoid the

possibility of miscounting pulses during peak loads, and  to simplify the problem of
keeping track of shaft positions, a dual subprocessor handles the incoming encoder

pulses. The shaft encoder divider board consists of a  pair of flash-programmable 8-bit
AT90S8515 microcontrollers, each responsible for the shaft encoders of one leg. When

the 80C167 microcontroller supplies a 5-bit address specifying one encoder, the divider
board returns a 16-bit number representing the current position of the corresponding shaft

relative to the zero position at power on. The zero position can also be reset by a
command from the main controller.
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                                            Figure 2. Block diagram of TarBaby circuits



2.2.1 Motor Driver Circuits

The motors of each leg are driven by a motor driver board, consisting of five A3952SW
full-bridge pulse width modulation (PWM) motor drivers. These drivers accept enable

and direction signals,  with the controlling PWM signal from the 80C167 imposed on the

   Figure 3. Range of unloaded shaft speeds available from

   motor driver circuits.

enable line. Figure 3 shows that an unloaded 180:1 gearhead motor can be driven at duty

cycles of 20-100%. Under load, the range of usefully different speeds is considerably less
but difficult to characterise, because during walking motions, the joint loads vary over a

wide range. Power for the main microcontroller is taken from a 3Ah 12V lead acid gel
battery located near the top of the torso for a high centre of gravity of the machine, which

helps the balance problem. All other circuits are powered by a 12V laboratory power
supply via a 3m cable. 5V signal levels are supplied by individual voltage regulators on

each board. The 80C167 communicates with the system's Pentium control computer via a
9600 bps RS232 serial link at port P1. A second RS232 serial link at port P2 is used to

transfer data from the motion tracker unit.
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2.2.2 Force Sensor Circuits

Foot placement, and in particular a good contact with the supporting surface, is essential

for stable walking.  To measure pressures operating on the feet, semiconductive polymer
force sensing resistors are attached at each of the four corners of the two feet. These are

disks approximately 2.5cm in diameter, and have the property that the resistance across
them varies in direct proportion as the force applied to them increases. Figure 4 shows

how the relationship between force and resistance is linear within the range of forces
experienced during ordinary walking motion. Using a simple voltage divider connected to

a 10-bit A/D converter in the 80C167 microcontroller, a reliable indication of foot forces
can be recorded.

The force sensors drive eight 10-bit A/D converters on the main microcontroller via two
small voltage divider boards. Each board consists of four voltage dividers featuring

multiturn potentiometers for signal level adjustment of each channel.  With the weight on
the feet, forces on a given force sensor is approximately within the range of 10

3
 to 10

4
 g.

The multiturn potentiometers enable the output voltages to be shifted into the centre of
the working range of the A/D converters.

2.2.3 Body Attitude Sensor Circuits

Orientation of the robot's torso is measured by a CyberTrackII motion tracking module.

This is a self-contained, sourceless, hybrid device combining a flux-gate compass with
electrolytic fluid tilt sensors. It generates packets of data representing three angles - pitch,
roll and yaw on demand. Yaw is measured over 360° using a 3-axis magnetometer. Pitch

and roll are measured over a range of ±45° using 2-axis inclinometer. A built-in

processor performs the necessary transformations to return valid yaw values given pitch

and roll inputs. Data packets are delivered on request via a second 9600 bps serial link to
the microcontroller at port P2.

 2.3 Software Systems

The speed and memory capacity of the 80C167 microcontroller was a limiting factor. The

80C167 is not fast enough to run the learning algorithms required by the project. This
constraint mandated that processing be split between an external controlling computer

and the on-board microcontroller, with high-level commands and learning calculations
computed externally and low-level functions and servo loops computed on- board.  The

two machines communicate by a serial communications link. The link is asynchronous
and may be operated at speeds as high as 19,200 bps. This constraint required that the

controlling computer and on-board processor functionality be partitioned in order to
allow the data rate to be low enough to be accommodated on the serial link. To

summarise, the on-board 80C167 microcontroller performs the following tasks:

• providing enable and direction signals to the motor controllers
• collecting sensory and shaft encoder data

• communicating with the control program on the control computer.



while the Pentium external controlling computer is assigned the following tasks:

• commanding the service program on the on-board microcontroller.

• generating high-level motions from the approximate walking heuristic
• performing learning calculations

The software was written in C using the Keil µVision development environment for the

80C167 and Microsoft Visual C Studio for the Pentium machine.  The main() function in

the 80C167 code initialises the motor control subsystem (which includes starting a
regular interrupt routine) and then executes the server loop which provides RS-232

communications via the P1 serial port.

2.3.1 Motor Control Processes

The low-level motor control software provides functions for shaft position monitoring,
PWM generation and motor servo control. Shaft position monitoring consists of a set of

low-level service functions returning information from the shaft encoder divider board
such as the angle of a specified joint from zero point in 0.xx degree units. Each of the ten

servo channels runs a PID servo loop, ensuring that each motor reaches its goal smoothly
with a minimum of overshoot. In practice, the goal velocity is regulated by the control

host’s geometry generator (see below) since the servo controller receives new goals 50
times per second.

The motor PWM output is generated by a 10 kHz software interrupt. This allows the

power to each motor to be varied in one percent steps with an update rate of 100 pulses
per second. The allowable pulse width varies from 0% (off) to 100% (on). The motors are

controlled by a PWM signal, delivered to the motors via the H-Bridge circuits. This
arrangement allows the motor torque/speed and direction to be controlled by the

microprocessor. The PWM signal is looked up from a bit table of 100 rows, which allows
each interrupt to be kept short by requiring only a simple logical operation on the motor

control output port, according to the state of a bit in the table.

2.3.2 Sensory Loop

Sensory data is read directly from [serial] data ports P on demand, with the exception of
shaft encoder values and derived values.  The serial ports are scanned as part of the 10

kHz servo PWM interrupt. An efficient state machine controls the setting up and
acquiring of channel data in sequence.

Because the 80C167 has only a single serial port, used by the serial link to the external
computer, a second port P2 was implemented in software using an interrupt-driven state

machine to encode and decode the asynchronous serial data. This was needed to set up
and read data packets from the CyberTrackII motion tracking module.



2.3.3 Communications Link

The serial interface has been designed so that when the TarBaby is started, the serial

interface initially uses a line-oriented ASCII protocol that allows commands to be sent to
the robot by typing them on the external control computer, with the responses being

echoed in ASCII. This is used to perform basic health checks on the machine before the
external control program is started.  Then a binary protocol is used for subsequent real-

time control of the Tarbaby from the external program. A pair of mode-changing
commands switch between the ASCII and binary protocols.

The Tarbaby responds to simple goals for each motor channel and responds with the
current sensor state of the machine. A complete exchange on the serial link is completed

50 times per second. This response time requirement made the binary protocol necessary.
When operating in real-time mode, sending of commands and receiving of state from the

Tarbaby is fully overlapped and synchronised with the 50 Hz loop. Typically, when a
response is received, the external controller can process the basic geometry quickly

enough to send the updated targets down to the robot on the next or second next poll
cycle.  Setup and configuration commands from the external controller interrupt the real-

time operation so that such tasks as zeroing the leg positions can be accomplished.

The subsystem handling communications with the 80C167 microcontroller is based on a

client/server model. The client is the external control computer and the server is the
microcontroller. The server software consists of a loop which reads an input line from the

RS-232 port, P1.  Every request is exactly one line of ASCII characters.  The requests are
semi-human-readable in that the characters are all printable and numbers are represented

in the normal fashion.  However, commands are parsimoniously-chosen single characters
to reduce communication time. Every requests elicits a single line response.  If the

request is an action, the response is simply, 'ok', otherwise the requested data are returned
on a single line.

The requests available can be summarised as:

• get the version of the server software

• get motor shaft encoder values
• set/get motor torque values

• set/get PID desired shaft values
• get PID error values

• set/get PID controller constants
• set/get/use a configuration register.

The server routine is suspended every time the motor subsystem interrupt routine is
executed. As the motor subsystem is given more tasks to perform (eg. more PID

controllers activated), less computational power is available for the server. This affects
the server response times, but may be ameliorated by judicious selection of the M and T

parameters, which set the granularity of the PWM.



3  Dynamic Walking Behaviour

A good solution to the problem of active-balanced walking on two legs with small feet
could eventually lead to robots capable of  greater speed, agility and energy efficiency
than are available today. Machines with legs could potentially access locations beyond
the reach of any machine depending on wheels for locomotion. Roughly human-sized and
shaped robots that walk on two legs may be the optimal shape for moving inside
buildings designed for humans, and potentially more acceptable to their human
occupants. Dynamic bipedal walking is also an interesting problem from a purely control
engineering point of view. For these and other reasons, research on bipedal robots
continues.

An ideal solution to bipedal walking problem should satisfy the following criteria:

Simplicity. It should not unduly complicate to the mechanical or computational
complexity of the whole machine.

Efficiency. Animal locomotion systems use legs for efficient energy usage. A solution
that optimised power consumption would be attractive for self-contained robots.

Robustness. Not only should falls be minimised, but the solution should afford the best
possible performance on  uneven slopes, irregular floor surfaces and carrying different
loads.

Parameterisability. Offered as a service to higher level control functions, the solution
should offer a range of speeds, directions and possibly gait styles. Walking should be able
to be stopped and started at arbitrary times without compromising stability.

So far, bipedal robots have only partially achieved these goals. Fair control of some
active-balance bipeds has been accomplished by building a detailed dynamic model of
the moving linkages, then designing a controller that generates the joint angle vector
sequences needed to regulate stability and optimise forward velocity as derived indirectly
from inertial sensors in the torso and contact and/or orientation sensors on the feet. For
example, Raibert tackled the problem by first developing a single-legged hopper (Raibert,
1986), then generalising that to an agile hopping biped (Playter & Raibert, 1992).

Furushu and Sano used two independent dynamic models for lateral and sagittal plane
motion control in their BLR -G2 and -G3 bipeds (Furushu & Sano, 1990; Sano et.al.,
1992). Yamaguchi and coworkers (1996) designed specially-instrumented feet with
clinometers, gyroscopes and linear potentiometers for their WL-12RVII biped, which
enabled  walking speeds of up to 0.38m/sec on floor surfaces with vertical irregularities
of ±16mm and foot tilt disturbances of ±3°.

Honda’s P2 and P3 humanoids, have produced impressive results. Though not strictly
dynamically-balanced bipeds by the above definition (they keep their centre of mass
directly above their supporting foot at all times), they do depend on a complex dynamic
model based on the Zero Moment Point algorithm (Takanishi, et. al., 1990). They are
claimed to walk at speeds of up to 2km/hr, carry loads of 2 to 5kg and use staircases, and
gather information from a head-mounted vision system (Honda Motor Corp, 1996).
Smaller versions of this type of humanoid are also under development by Sony Corp.



However, this dynamic modelling approach has disadvantages. First, detailed dynamic
models are generally complicated to design, build and tune (violates simplicity).
Specifying optimal leg vectors for all possible combinations of commanded input
parameters, current postures and desired motions is certainly non-trivial. (For example,
the Honda robots use a completely pre-programmed sequence of steps in order to move.)
Second, if something in the physical system changes, the model may no longer generate
suitable movement.  Linkages and motors deteriorate, circuits behave differently with
variations in temperature or battery voltage, and environmental conditions of a robot
could be subject to uncontrollable change (violates robustness). Third, a solution
developed for a given machine could be difficult to adapt to a biped of a new and
different design.

Adaptive control methods, in particular those that can rapidly learn control functions
online from error signals fed back during practice offer hope of dealing with these
problems. In the past decade, reinforcement learning paradigms such as actual return
(Jaakola, et.al, 1995), temporal differences (Sutton, 1988) and model-based learning
(Zazala, 1996) have been combined with such adaptive mechanisms as memory-based
lookup (Schaal & Atkeson, 1994), neural networks (Warwick, 1996) and fuzzy logic
controllers (Verbrugen, et. al., 1999) to tackle the problems of robot control, which are
characterised by noisy or incomplete sensor information, non-Markovian state
dependencies and high-speed learning/performance requirements.

Neural network controllers, in particular, have contributed to robust dynamic walking in
bipedal robots. Salatian and Zheng simulated off-line and on-line neural network
adaptation of bipedal gaits used by their experimental SD-2 8-link biped (Zheng & Shen,
1990) on flat surfaces into gaits suitable for slopes (Salatian & Zheng 1992). Inspired by
that work, Kun and Miller achieved respectable parameterisability and robustness at
walking speeds of up to 10cm/s on flat surfaces with a small biped that used three
Cerebellar Model Articulation Controllers (CMAC) to learn key parameters of a side-to-
side rocking gait. Importantly, no detailed engineering models of the machine was needed
and the training times required for stable walking were short, in the order of 60 minutes
(Miller, 1994; Kun & Miller, 1996).  The TarBaby biped is in turn inspired by the work
of Kun and Miller.

From a machine learning perspective, the problem requires a vector of 10 2000-level
motor position updates approximately every 20 milliseconds as a nearly continuous
learned function of 10 counts from the shaft encoders, 8 force sensors in the feet, and 3
raw attitude values from the motion tracker. A problem space of that magnitude is
probably beyond the capability of known reinforcement learning algorithms, because i)
training visits to the problem space are necessarily sparsely distributed, so generalisation
is difficult  ii) memory demands in such systems suffer a combinatorial explosion (Sehad,
1998) and iii) on-line learning imposes serious computational demands on computation
per update cycle (but see Schaal & Atkeson, 1994).

Another challenge is thrown down by the passive dynamic systems engineers, who argue
that much of the power efficiency and adeptness of natural bipedal walking can be
explained in terms of tuned mechanical oscillators formed by the limbs and their springy
joints. To support this contention, they have designed mechanical models which achieve
limited forms of bipedal motion down slopes with no sensors, no actuators and no
electronic  control  (McGeer,  1990;  Coleman & Ruina, 1998).  This  suggests  that  with
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   Figure 5.  Sum of all four FSR signals on one foot during 5 steps generated by

    a rudimentary inverse kinematic model of walking  that was not phase-
   synchronised to the  natural dynamics of the robot  and was not tuned
   by adaptive learning.  Servo cycle labels are 1.08  seconds apart.

better mechanical design powered, controlled bipeds could be simplified. How can these
developments be accommodated in TarBaby’s design?

Rather than trying to develop a control algorithm that learns the entire transformation
from raw sensory data to motor commands, the approach favoured here aims to use
machine learning processes to modulate a simple gait generator. In the TarBaby design, a
basic generator cycles through eight phases of walking motion while respecting the
natural inverted-pendulum dynamics of the robot. Transitions from one phase to the next
in sequence are to be triggered when learned sensory thresholds are exceeded. Instead of
learning to control the joints then, the function approximators will learn how to control a
program which controls the joints.

Figure 6 shows the basic design. At the time of writing, software development has only

completely developed and tested the lowest three layers. The only fixed reflex currently
in use is a feedback loop which reads foot forces from the eight FSR sensors on the feet

and generates ankle pitch and yaw commands in order to minimise the centres of force
acting on the feet. This is done because when the robot has both feet on the floor, it will

not be maximally stable unless the ankles are adjusted so that the soles of  both feet are
flat on the floor. Centre of force is defined as follows: let the force on the single right-

front sensor of foot i be represented by the expression Fi, rf .  A  convenient  lateral  plane
center of force in the range [-32,32] may now be represented as

                                              LatCoFi    =

This will be a maximum when most of the force is on the right side of the foot and
minimum when it is on the left side. Another measure for the sagittal plane center of
force may be similarly defined such that it reaches a maximum when most of the force is
on the front of the foot.

Total Force
(right foot)

    (ForceFi + 32)/32

Fi,  rf + Fi,  rr – Fi,  lf – Fi,  lr



Figure 6.   Software architecture  consists of an approximate walking

algorithm  built  out of  kinematic functions,  which  in  turn are built

out of calls  to the sensory/servo loop and  fixed reflex motor actions.

An on-line learning process tunes the approximate walking algorithm

via  parameters such as  lean magnitude.  Reinforcement  feedback is

taken from foot force distribution and body attitude sensor data.

Interestingly, with hip and knee positions set within a range of reasonable values for
stationary standing,  the ankle motions generated by the reflex are enough to allow the

robot to balance, even if gently pushed. This bodes well for the ankle reflex loop, which
may be able to simplify the Kun & Millar (1996) design by reducing to two the number

of learning modules required for walking. These would use on-line reinforcement
learning to predict the lateral and sagittal lean magnitude (ie. side to side rocking and

back-to-forward rocking) of the machine required to permit forward steps of a given
height and reach.

4  Research Issues

What kind of adaptive function approximation can be used to tune the approximate
walking algorithm? Ideally, such a learning mechanism would be able to avoid serious
errors such as becoming trapped in local minima, deal with the (reduced) problem space
presented by the approximate walking algorithm, quickly converge on a solution during
on-line training and output updates of the learned function at high frequency once
learning achieved a satisfactory level. Cerebellar Model Articulation Controllers (Glanz,
et.al., 1991) are artificial neural networks inspired by studies of the function of human
cerebellum, a brain structure implicated in the fine-tuning of muscle activity. According
to that review, a CMAC has a number of useful characteristics, including:



•  Accepts multiple integer-valued input vectors (typically with 5 to 20 elements
valued at one of 200 levels) and returns real-valued vectors (typically 1 to 10
components).

• Generalises by returning approximately correct outputs even to input patterns it
has not seen.

•  May be capable of learning any well-behaved function to some degree of
accuracy.

• Even large CMACs can be trained in reasonable length of time compared to other
kinds of neural networks.

• Function computation time is short as it requires little calculation.

•  With standard LMS weight change equations, cannot become caught by local
minima.

We have been able to reproduce the results of a simple CMAC experiment described in
the Glanz review paper, using code obtained from the University of New Hampshire's
Electrical Engineering Department. The experiment demonstrates the power of a CMAC
to generalise and rapidly learn a non-linear function. An input vector of 1 element is
randomly assigned to an integer between 1 and 100. The desired output is one if the input
is in the range 30-70, zero otherwise. The threshold on the real-valued output is set at 0.5,
above which the actual output will be taken to signify one and below which it will be
taken to signify zero.  Figure 7 shows the result of one such learning trail. A CMAC with
10,000 receptive fields and moderate generalisation rapidly duplicates the desired
function, including, at the lower numbers of iterations, predictions for values which had
not yet appeared. In less than 500 trials the function had been faithfully reproduced.
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Experiments designed to apply the learning potential of such devices to the task of  .
Early experiments have suggested that acceleration data from the CyberTrack II attitude
sensor may be confounded by its constantly changing acceleration as the torso moves,
and it may be necessary to gyroscopically stabilise the sensor to remove this effect. This
is done reluctantly, since it tends to complicate the robot's mechanical design which is
undesirable with respect to the first principle outlined in 3. Possibly extra accelerometers
could be added to allow compensation to made in software.

Two function approximators will be used to simultaneously generate parameters which
the approximate walking algorithm will use to set lateral and forward-backward rocking
amplitude for steps of a specified length and rate. Sense data representing both body
attitude and forces operating on the feet will be used as input. Ankle reflexes will be in
operation but slightly weakened to allow flexibility of the feet during stepping. Quality of
walking will be assessed by periodic smoothness of body attitude signals, difference
between commanded and actual stepping parameters, and fall rate.
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Appendix A  Circuit Diagrams

Encoder Divider Board



Power Distribution Board

Force Sensor Boards



Motor Driver Boards


