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Abstract

Cache memories are widely used to bridge the increasing performance gap between
processors and main memories. However, cache memories are effective only when the
program ezhibits good cache locality. Analytical methods such as the Cache Miss Equa-
tions (CMEs) use mathematical formulas to provide a precise characterisation of the
number and causes of cache misses in loop-oriented programs. The information gath-
ered can be used to guide locality enhancement compiler optimisations. Unfortunately,
all existing analytical methods are limited to special forms of perfectly nested loops,
which, for example, must be free of IF statements.

This paper presents an analytical method for analysing the cache behaviour of per-
fectly nested loops containing IF statements with compile-time-analysable conditionals.
We demonstrate that our method, together with the compiler technique loop sinking, can
be used to analyse a large number of imperfect loop nests. By analysing the loop nests
in SPECfp95, Perfect Suite, Livermore kernels, Linpack and Lapack, we find that our
method enables 17% more loop nests to be analysed than previously. This represents
an important step towards analysing complex program constructs in real programs.



1 Introduction

Data caches are widely used to bridge the increasing performance gap between processors
and main memories. However, caches are effective only when programs exhibit sufficient data
locality in their memory access patterns. Both programmers and compiler transformations
often restructure a program to improve its memory behaviour. In both cases, it is necessary
to have detailed knowledge about the number and causes of cache misses in the program.

Several approaches for analysing cache behaviour can be identified. Cache simulation
techniques are accurate and can report a rich source of information about a program’s
cache behaviour. Based usually on trace-driven simulation [22], they are both time- and
space-consuming and do not provide insights about the causes of cache misses. Hardware
counters [1], although fast and accurate, are architecture-dependent and do not usually
provide information about the causes of cache misses. Analytical methods such as the Cache
Miss Equations (CMEs) [11] attempt to set up mathematical formulas to provide a precise
characterisation of the number and causes of cache misses in a program. These formulas
can be potentially exploited to guide a range of memory optimisations and improve the
simulation times of tools like cache simulators and profilers.

The CMEs [11] represent an analytical method for analysing the cache behaviour of
loop-oriented programs. These programs typically spend a considerable amount of time
operating on arrays in loop nests. The CMEs describe the relationships among loop indices,
array sizes, base addresses and the cache parameters for cache misses in a loop nest using
a set of Diophantine equations (which consists of actually both equalities and inequalities).
This characterisation makes it possible to understand the causes behind cache misses and
helps reduce these misses in a systematic manner. However, computing the ezact number of
cache misses from the CMEs is computationally expensive. Some statistics-based methods
have been reported to produce an accurate estimate of such misses [2, 12, 24]. In certain
compiler transformations, it is possible to reduce the number of cache misses by reasoning
about the causes of some cache misses expressed in the CMEs without requiring the CMEs
to be solved. Two classic applications are tiling and padding [11].

Unfortunately, the CMEs are limited to perfectly nested loops, which must be free of sev-
eral language constructs such as IF statements, subroutine calls and return statements [11].
As a result, only portions of a program can be analysed. In this paper, we overcome one of
these limitations by tackling the problem of analysing programs with IF statements.

This paper makes the following contributions. First, we present an analytical method
for analysing the cache behaviour of perfectly nested loops containing IF statements with
compile-time-analysable conditionals. These conditionals can contain common ABS, MOD,
MIN and MAX operators. In particular, we discuss the derivation of reuse vectors in the
presence of IF statements. Second, we discuss how our method can be used to analyse those
imperfectly nested loops that are sinkable by the compiler technique loop sinking. Third, we
present our experimental results in a collection of programs from SPECfp95, Perfect Suite,
Livermore kernels, Linpack and Lapack. By analysing the loop nests in these benchmarks,
we find that our method enables 17% more loop nests to be analysed than previously. This
represents an important step towards a mechanical analysis of complex language constructs.

The rest of this paper is organised as follows. Section 2 presents our analytical method,



PROGRAM COND
PARAMETER (N = 512, M = 512)
REAL*8 a(N+1,M+1), b(N+1,M+1), z(N+1,M+1)
REAL*8 vnew(N+1,M+1), unew(N+1,M+1)
DO I, = 1,N
DO I, = 1M
a(l1+1,15) = b(I1+1,I5)+ z(I1+1,I>+1) | £ Ref;
IF (I,+1,.GE.200) THEN
voew(I1,Ir+1) = 14+ z(I1,I2+1) | £ Refs
ENDIF
IF (I;.LE.100) THEN
uneW(Il,Ig) = b(Il,IQ)+ Z(Il,IQ) = Refg
ENDIF
ENDDO

ENDDO
END

Figure 1: A running example.

which works for any k-way set associative caches. Section 3 applies our method to analyse
imperfectly nested loops. Section 4 presents some experimental results. Section 5 summarises
the related work. Section 6 concludes the paper and discusses some future work.

2 Analysing Cache Behaviour

We represent a perfect loop nest of depth n with affine loop bounds as an n-dimensional
convex polyhedron in Z" called the iteration space of the loop nest. Every point in the
iteration space is known as an iteration (point) and is identified by its index vector 7’ =
(11,149, ..,0n), where iy is the index of the k-th loop (counting from the outermost to the
innermost). We write < to denote the lexicographic “less than” operator so that if 7 < 7,
then 7" executes before 7. In a sequential loop nest, all its iterations are executed in their
lexicographic order <.

We assume a uniprocessor with a k-way set associative data cache using a least-recently-
used (LRU) replacement policy. In the case of write misses, we assume a fetch-on-write
policy so that both reads and writes are modelled identically. A memory line refers to a
cache-line-sized block in the main memory while a cache line refers to the actual cache block
to which a memory line is mapped. In this paper, Mem_Lineg(i) (Cache_Setg (7)) denotes
the memory line (cache set) to which the memory address accessed by reference R at iteration
7 is mapped. In a k-way set associative cache, a cache set contains k distinct cache lines.

Let Mem_Addrg(7) be the memory address of the reference R at iteration 7. We have:

Mem_Liner(?) = |Mem_Addrr(?)/L]
Cache_Setr(?) = Mem_Liner(?) mod N

where L is the cache line size (in bytes) and N' = C/k is the number of cache sets.
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Figure 2: RISs of the three z references in Figure 1.

Like the CMEs [11], the analytical method proposed in this paper describes all cache
misses in a loop nest using a set of equalities and inequalities (collectively referred to as miss
equations). These equations describe the relationships among loop indices, array sizes, base
addresses and the cache parameters for a loop nest. They can be further manipulated to
find when and why cache misses occur in the loop nest. The information obtained can be
used to guide automatic compiler optimisations, which is beyond the scope of this paper.

When analysing [F statements, the major complication comes from the fact that different
references may be accessed in different parts of the iteration space, which may or may not
overlap. In this section, we describe various concepts and steps involved in formulating and
solving the miss equations for a loop nest. Our running example is given in Figure 1. The
three highlighted z references will be used later for illustrations. Ref; is not guarded while
Refs and Ref3; are guarded by conditionals that are affine expressions of loop indices.

The rest of this section is organised as follows. Section 2.1 introduces the concept of
reference iteration space. Section 2.2 discusses the derivation of reuse vectors and some
complications that arise in the presence of IF statements. Section 2.3 describes the miss
equations used for representing all cache misses in a loop nest. Section 2.4 gives two algo-
rithms for computing the number of cache misses from these miss equations.

2.1 Reference Iteration Spaces

We define the reference iteration space (RIS) of a reference as the set of iteration points
where the reference is accessed. If a reference is not guarded by a conditional, its RIS is the
entire iteration space of the loop nest. Otherwise, the RIS can be a subspace of the iteration
space. Figure 2 displays the RISs for the three z references highlighted in Figure 1.

Our analytical method can deal with any IF conditionals involving loop indices and
compile-time constants. These are the conditionals that can be analysed at compile-time
without relying on any runtime information about the conditionals involved. However, data-
dependent conditional expressions such as a(4,j). FQ.0 are beyond our current method and
their analysis is part of our future work. In loop-oriented programs with regular compu-



IF (el) THEN IF (el .AND. €2) THEN | IF (el .OR. ¢2) THEN

ENDIF ENDIF ENDIF

(a) (b) (c)

Figure 3: Some commonly occurring RISs (in dotted areas).

tations, almost all data-independent conditionals are affine expressions of loop indices and
compile-time constants. In all programs analysed from SPECfp95, Perfect Suite, Livermore
Kernels, Linpack and Lapack, we have not found a single case that is not affine.

If a reference is guarded by affine conditionals (containing possibly .AND., .OR. or .NOT.
operators), the corresponding RIS can always be expressed as a finite union of convex poly-
topes in Z™. Such a RIS can be manipulated by the Omega library [18] and its volume
computed using methods [5, 13, 18] for various purposes. Figure 3 depicts three commonly
occurring cases. In Section 2.4, we discuss a simple yet efficient technique used for computing
the volume of a RIS required in our statistics-based algorithm for solving miss equations.

2.2 Computing Reuse Vectors

Reuse vectors are a mathematical representation of data reuse in a loop nest [27]. They
determine the direction and distance of the reuse between uniformly generated references. A
set of references, {a1(f1(2)),az2(f2(2)), ..., am(fm(?)}, is uniformly generated if (a) all refer-
ences are to the same array variable and (b) fi(2), f2(2), ..., fm(?) are all affine functions of
loop indices and compile-time constants sharing the same linear part, i.e., fx(?) = Hi'+ hy. for
all k. For example, {a(7),a(i+1)} is uniformly generated. Sois {b(7, j),b(i+1,7),b(i,j—2)}.
But {a(i),a(2)} and {b(i,7),b(i,4),b(i,27)} are not. Scalars are considered either register-
allocated or as one-dimensional arrays of single elements each. Non-affine references like
a(i?, 7), which yields little reuse [27] and are uncommon anyway, are ignored.

Let Ry and R, be two references to the same array variable. If R, at iteration 75 ac-
cesses the same memory line as the reference R; at iteration 7, i.e., Mem_Lineg, (i]) =
Mem_Lineg,(i3), where 47 < 13, we say there exists reuse from Ry to Ry (or Ry reuses
Ry ) along direction 7 = i3 — i, and T is called a reuse vector. The reuse is temporal if
Mem_Addrg, (1) = Mem_Addrg,(i3) and spatial otherwise. (Thus, a temporal reuse will
not also be classified as a spatial reuse in this paper.) In addition, the reuse is said to be a
self-reuse if Ry and Ry are identical and a group-reuse otherwise. Thus, there are four kinds
of reuse: self-temporal, group-temporal, self-spatial and group-spatial. We shall speak of
self-reuse vectors (for self-reuse), self-spatial reuse vectors (for self-spatial reuse), and so on.

A reuse between two iterations does not imply that the reuse can be realised in the



Reusing Reference Reused Reference Reuse Vectors
Self Spatial (1,0)
Ii+1, I,+1 !
2(li+1, L) z(1, I,+1) ‘ Group-Spatial
Self-Spatial

(1,0)
(1,0)
z(1, I,+1) Group-Spatial (0,0)
(41, L) Group-Temporal (1,0)
Self-Spatial (1,0)
Group-Spatial (0,1)
IL+1, I,+1 !
z(1y, 1) (i1, Bptl) Group-Temporal (1,1)
z(Iy, Ir+1) Group-Temporal (0,1)

Table 1: Reuse vectors for the z references in Figure 1.

cache. The memory line brought into the cache at the earlier iteration may have been
evicted by other memory accesses between the two iterations before it gets reused. The
basic idea behind the miss equations is to identify the iterations in which reuse results in
cache misses. This requires all reuse vectors of a reference to be computed if all cache misses
are to be characterised in the miss equations. Ignoring a reuse vector may cause a slight
over-estimation of cache misses. The reuse vectors of a reference are computed by using Wolf
and Lam’s reuse framework [27] to provide basic reuse vectors and some extensions described
in [23] to provide additional reuse vectors specific to the shape of the iteration space and the
cache parameters used (the very information ignored in Wolf and Lam’s framework). The
reuse vectors are computed only for sets of uniformly generated references [27, 29].

When a loop nest contains IF statements, different references can be executed in dif-
ferent RISs. However, we will compute the reuse vectors for all references by ignoring the
conditionals present in the loop nest. Our justification for doing so is presented in the fol-
lowing paragraphs. Table 1 lists all reuse vectors used for the three z references highlighted
in Figure 1. For this example, the reuse vectors calculated using Wolf and Lam’s reuse
framework are sufficient. In FORTRAN, all arrays are stored in the column major order.
Thus, all three references are associated with the self-spatial reuse vector (1,0). The refer-
ence z(I; + 1, I, + 1) may reuse the same cache line that z(I;, Iy + 1) accessed one iteration
earlier of the outer loop. Hence, there is a group-spatial reuse vector (1,0) between the two
references. The other reuse vectors can be understood similarly.

The justification for ignoring all conditionals in the derivation of reuse vectors is as
follows. The self-reuse vectors are calculated for a single reference in its own RIS. Whether
the RIS of the reference is the entire iteration space or its strict subset is immaterial.

In the case of group-reuse vectors, the two references involved can have different RISs.
Some complications can arise at the boundaries of the RIS of the reusing reference being
analysed. For illustration purposes, these complications are illustrated by two extreme ex-
amples below. Figure 4 illustrates some complications in the derivation of group-temporal
reuse vectors. Ry (the reusing reference) at every point (I, I3) on the left boundary of its
RIS may reuse R; (the reused reference) at the point (30, I3) on the right boundary of R;’s
RIS along the group-temporal reuse vector (I; — 30,0). If we ignore the two conditionals to
analyse the reuse between the two references, the group-temporal reuse vector 7= (0, 0) will
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DO I, = 1,400
DO I, = 1,141 Iy
IF (I,.LE.30) THEN
A(L)
ENDIF
IF (I, + I,.GE.201) THEN

Ry | A(L)

(30,0)

ENDIF [ RIS for R,
ENDDO
ENDDO RIS for R2
(a) Code (b) RISs

Figure 4: Derivation of group-temporal reuse vectors.

describe correctly the reuse from R; to Ry,. When the miss equations for R, are formulated,
the two conditionals must be taken into account (as discussed in Section 2.3). Then this
reuse vector will be ignored since the two RISs do not overlap. As a result, the number of
cache misses for Ry on the left boundary of its RIS may be over-estimated. For practical ap-
plications, such an over-estimation is negligible because (a) the over-estimation occurs only
on a facet of a RIS (e.g., the left boundary of Ry’s RIS) and (b) the underlying reference
may reuse on the facet via other reuse vectors. In the example, Ry may reuse from itself
along the self-spatial reuse vector (1,—1). Thus, only a small fraction of these boundary
points are mis-predicted.

Figure 5 illustrates some complications in the derivation of group-spatial reuse vectors.
R, at every point (1, I) on the line segment I; —I; = 10 that is confined in the iteration space
reuses from R; along the group-spatial reuse vector (I, 1), where 2 < I < 90. When the two
conditionals are ignored, the amount of group-spatial reuse between the two references will
be approximated by (0, 1) and some other extended reuse vectors. When the miss equations
for Ry are formulated, the two conditionals must be taken into account (as discussed in
Section 2.3). Then these reuse vectors will be ignored since they does not actually describe
any group-spatial reuse. An over-estimation of cache misses in this case is negligible for the
same reasons given above when the group-temporal reuse vectors are discussed. Note that
programs like the one illustrated in Figure 5 rarely occur in practice.

We have done extensive experiments using a collection of benchmark programs. The
number of cache misses obtained from our method are always close to the actual number
of cache misses obtained by simulation. For practical loop nests with regular data accesses,
deriving reuse vectors while ignoring conditionals is a feasible approach.

2.3 Forming the Miss Equations

A reference R at an iteration 7" suffers from a compulsory or cold miss if Mem_Lineg(?) is
being accessed for the very first time and a replacement miss if Mem_Lineg(7) was accessed
before and evicted later so that it is no longer in the cache when Mem_Addrg(7) is accessed.



DO I, = 1,100 I
DO I, = 1,100 2 @)
IF (I,.EQ.10) THEN -
ALy, I +1) | &
ENDIF S g
IF (I, — I,.EQ.10) THEN A
(7] Alla. 1) 5
ENDIF ,
ENDDO !
ENDDO I RIS for R, / RIS for R,
(a) Code (b) RISs

Figure 5: Derivation of group-spatial reuse vectors.

Replacement misses encompass both capacity and conflict misses.

There are two types of miss equations: compulsory or cold miss equations and replacement
miss equations. These equations are formulated for a single generic reuse vector of a fixed
but arbitrary reference. If the reference has only that reuse vector, the solutions to the cold
miss equations represent precisely the cold misses of the reference, and the solutions to the
replacement equations represent precisely the replacement misses of the reference. If the
reference has other reuse vectors, the solutions to the two types of equations represent only
potential cache misses. How to find cache misses in the presence of multiple reuse vectors is
discussed in Section 2.4.

In this section, we describe the miss equations for a single reference R, along a single
reuse vector 7. Let R, be the reference such that R, reuses from R, along 7. Let R; be an
intervening reference that may prevent such a reuse from being realised. Here, the subscripts
¢, p and ¢ denote mnemonically “consuming”, “producing” and “intervening” references,
respectively. Let RISk, RISg, RISg, be the RISs for R., R, and R;, respectively. It is
important to note that some or all of the three references can be identical.

2.3.1 Cold Miss Equations

The cold miss equations for R, along i are to investigate if the memory line Mem_Lineg, (7)
accessed by R, at iteration 7' is accessed for the first time. It then follows that R, suffers a
compulsory or cold miss at iteration 7 along 7 if 7'is a solution to the following equations:

7€ RISk,
and
(v— 7 ¢ RISk, (1)
or
Mem_Lineg, (7) # Mem_Lineg, (T — 7))

If 7 is temporal, the second equation, which always evaluates to false (due to the temporal
reuse), is redundant. Then the cold miss equations simplify to:



v

(a) R; = Ref; (b) R; = Ref, (¢) R; = Ref,

Figure 6: The interference sets with the three z references when R, = R, = Ref; along
7= (1,0) for the running example. For illustration purposes, the point © € RISg.s, being
analysed is chosen such that ¢ RISg.s, and ©¢ RISk.s,. In each case, the interference set
consists of the solid line(s) and 7 or 7 — 7 if the corresponding point is a fat point.

7€ RIS,
T— ¢ RIS,

2.3.2 Replacement Miss Equations

The replacement miss equations for R. along 7 are to investigate if R. at iteration 7’ can
reuse the memory line that R, accessed at iteration 7 — 7" subject to the interferences of the
memory accesses from R; at all points executed between 7— i” and 7. These interferences are
known as self-interferences if R. and R; are identical and cross-interferences otherwise.

The iteration points at which an interference may occur are the points that are located
between 7 — 7" and 7’ and that are contained in RISg,. All these points belong to a so-called
interference set, denoted Jg,. Whether the two end points 7 and 7’ — 7" are included depends
on whether some or all three references are identical or not and the relative lexical order of
these references. In all cases, the reference set for R; is defined as follows:

Jr, = {J€ RIS, |T€E KT—F1>}

where ‘<’ is ‘[ if R; is lexically after R, and ‘(" otherwise and >’ is ‘[’ if R; is lexically
before R. and ‘(’ otherwise. A reference is neither lexically before nor lexically after itself.

Figure 6, a zoomed-in version of Figure 2 at its bottom-left corner, shows the interference
sets with the three z references when Ref; is analysed along 7= (1,0).

There is potentially a cache set contention if the cache set accessed by R, at 7’ (which is
the same as accessed by R, at 7 — 7 due to the reuse) is the same as any of the cache sets
accessed by R; at every )€ Jg,. The replacement miss equations for an interference at 7
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along 7" are:

Mem_Lineg, (V) = Mem_Lineg, (v — 7)
7€ RISy,
T~ 7€ RIS, (2)
Cache_Setg, (7) = Cache_Setg,(7)
J€ Jr,

where the first three lines dictate the reuse of a memory line from R, to R. along 7 and the
last two lines define all possible interferences of R. caused by R;.

In a k-way set associative cache with a LRU replacement policy, it takes at least k
different cache set contentions to cause the least-recently-used cache line to be evicted from
the cache set. However, the existence of k£ distinct solutions ji, j3, ..., jr to the replacement
equations (2) does not mean the existence of k distinct cache set contentions to the cache set
Cache_Setg, (7). It is possible that Mem_Lineg, (i) = Mem_Lineg, (j5), where 1 < k' < k.

We use the technique presented in [11] to solve these equations to find the replacement
miss points for a k-way set associative cache with a capacity of C bytes and a cache line size
of £ bytes. The basic idea is to replace the fourth line of (2) by:

Mem_Addrg, (1) = Mem_Addrg, () +nC/k +b

where n is any nonzero integer and L,s; < b < L—1—Lyss such that Losp = Mem_Addrg,())
mod L. Let S be set of solutions of the form (7,7, n) to the replacement miss equations of
R, along 7. Let " = {(7,n) | (z,7,n) € S}. Then, R, suffers a replacement miss at 7’ along
if S’ contains at least k distinct (7, n1), (¢, n2), . .., (%, ny), which represent k distinct memory
accesses via I; to k distinct memory lines all mapped to the same cache set.

2.4 Finding Cache Misses from the Miss Equations

One advantage of our miss equations is that the cache misses for different references can be
analysed independently and the cache misses for different iteration points of the same RIS
can also be analysed independently. In Section 2.3, we have presented the miss equations
for a single reuse vector of a reference. To find precisely the cache misses of a reference,
its multiple reuse vectors must be considered at once. We have employed two algorithms
(given in Figure 7) in our experiments in finding the cache misses from the miss equations.
FindMisses analyses all points in all RISs and is practical only for loop nests of small problem
sizes. FEstimateMisses analyses a sample for every RIS and is capable of analysing any
program with a good degree of accuracy.

FindMisses finds the cache misses of a reference by considering its reuse vectors in lex-
icographically increasing order <. The solutions to the cold miss equations of R along the
present reuse vector 7 are indeterminate and need to be examined further using the other
reuse vectors of the reference. All the other points can be classified into either hits and misses
using the replacement miss equations of R along 7. Once all reuse vectors are exhausted, the
points that remain indeterminate are cold misses for the reference R being analysed. The
miss ratio for a reference and that for the loop nest are calculated in the normal manner.

11



0 Algorithm MissAnalyser
1 for each reference R (in no particular order)
2 Sort its reuse vectors in lexicographically increasing order <
3 Hr =10 // set of hits for R
4 RMpg =10 // set of replacement misses for R
5 CMpr = S(R) // set of cold misses for R initially
6 for each reuse vector 7 of R in the sorted list (given in line 2)
7 CM}, = set of solutions of R’s cold miss equations along 7
i.e., set of solutions of to (1) with R, = R and
RISR, = CMpg and R, uniquely determined by R. and 7
8 for each v e (CMp — CMyp,)
9 if ©is a hit according to R’s replacement miss equations along 7
10 Hrp = HrU {7}
11 else
12 RMpr = RMp U {7}
13 CMpr =CMjp,
14 Miss_Ratio(R) = \SMe M g|

[S(R)]
15 Loop_Nest_Miss_Ratio = 2 p |RISR|x Miss-Ratio(R)

> r |RISR|

16 Algorithm FindMisses

17 for each reference R (in no particular order)

18 S(R) = RISR (i.e., R’s RIS) // analyse all points
19 MissAnalyser

20 Algorithm EstimateMisses

21 c is the confidence percentage from the user
22 w is the confidence interval from the user
23 for each reference R (in no particular order)
2/ compute the volume of RIS

25 if RISg is too small to achieve (c,w)

26 if RIS is large enough to achieve the default (¢',w') = (90%, 0.15)
27 S(R) = a sample of RIS according to (¢',w')

28 else

29 S(R) = RISk // analyse all points

30 else

31 S(R) = a sample of RISk according to (c,w)

32 MissAnalyser

Figure 7: Two algorithms for computing the cache misses from miss equations.

Since all points in a RIS are analysed, FindMisses works as long as all IF' conditionals
can be evaluated at every iteration point at compile time. These compile-time-analysable
conditionals include all expressions involving loop indices and compile-time constants only.

In lines 9 — 12 of MissAnalyser, every point examined is not a solution to the cold miss
equations (1). Thus, the replacement miss equations (2) can be simplified to:

Cache_Setg, (V) = Cache_Setg,(7)
J€ Jr,

EstimateMisses operates in exactly the same way as FindMisses except that a sample
from every RIS is analysed. This allows us to analyse programs of large problem sizes
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effectively and efficiently. The technical details for the statistical sampling technique used
in this work can be found in [24]. However, we have made some modifications to cope with
references with different RISs (Figure 2) and references with non-convex RISs (Figure 3).

EstimateMisses expects the user to enter values to the two parameters: the confidence
percentage ¢ and the confidence width w, where 0% < ¢ < 100% and 0 < w < 1 [24]. The
two input values determine the size of the sample taken from RISk and also impose a lower
bound on |RISg|. If a RIS is too small to achieve (¢, w), we either use the default values
(¢, w") = (90%,0.15) (which requires a sample size of 72 points and |RISg| > 1440 [24]) or
analyse all points in RISg (when |RISk| < 1440). The meanings of ¢ and w are such that
if we run FstimateMisses many times, the real miss ratio for each R obtained in ¢ of these
runs will lie in the interval [Miss_Ratio(R) — w/2, Miss_Ratio(R) + w/2]. However, this
interpretation does not apply to the miss ratio for the loop nest given in line 15. Fortunately,
our results are always close to those obtained by simulation.

Thus, the statistical sampling technique used requires the size of every RIS to be cal-
culated. If the IF conditions guarding a reference form a union of convex polyhedra, then
the corresponding RIS is a union of convex polyhedra because the iteration space is convex.
The number of points contained in such a RIS is calculated by slicing the RIS recursively
into regions of lower and lower dimensions until eventually every region is either empty or
a (one-dimensional) union of line segments so that the points in the region can be counted
easily. This algorithm, while exponential in terms of the dimension of the iteration space, is
very efficient for practical programs with simple loop bounds and affine conditionals. Other
methods for computing the volume of a convex polytope also exist [5, 13, 18].

If a reference R is guarded by some non-affine conditionals, then RISk can be arbitrarily
complex. There is not any general method for computing the volume of RISg. In our
implementation, we compute the volume of such a RIS by proceeding as before with all
non-affine conditionals ignored and then count only those points that satisfy all non-affine
conditionals. This simple extension has not been used in our experiments since we have not
found any data-independent conditionals that are not affine in all programs analysed.

3 Analysing Imperfectly Nested Loops

This section presents a strategy to analyse an important class of imperfectly nested loops.
We start with an imperfect loop nest of the form shown in Figure 8(a) and transform it
by loop sinking to obtain a perfect loop nest as shown in Figure 8(b). The necessary and
sufficient conditions for the legality of loop sinking can be found in [28]. Informally, loop
sinking must ensure that if an iteration of a statement would have executed in the original
program, then it is executed in the transformed program.

A perfect loop nest is considered non-analysable when (a) it has a function call, (b) it
has a return statement, and (c¢) it has a non-affine loop bound or a non-constant loop stride.

Loop sinking enables many important imperfect loop nests to be analysed now. Table 2
shows the coverage of our method for a collection of benchmark programs. For each program,
the table summarises the number of perfect loop nests analysable previously [11, 24], the
number of imperfect loop nests both sinkable and analysable now, and the relative percentage
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DO I, = L1,U;
S1
DO Ir = Ly, Us
Sa

DO I, = L, U,
ST,
ENDDO
T,
ENDDO
T
ENDDO

DOI, = L.,
DO I» = L, Us

DO I, = Ly, U,

IF (I,.EQ.L» .AND. - --
IF (I3.EQ.Ls .AND. - --

ST,

IF (I3.EQ.Us .AND. - --
IF (I,.EQ.Us .AND. - --

ENDDO
ENDDO
ENDDO

.AND. I,,.EQ.L,,) THEN S1 ENDIF
.AND. [,,.EQ.L,,) THEN S2 ENDIF

.AND. I,,.EQ.U,,) THEN T2 ENDIF
.AAND. I,,.EQ.U,,) THEN T1 ENDIF

(a) Original loop nest

(b) Transformed loop nest

Figure 8: Conversion of imperfect to perfect loop nests by loop sinking

| Benchmark | Program || Analysable Before | Sinkable & Analysable || Increase |

Tomcatv 2 0 0.00%

Swim 16 0 0.00%

Su2cor 33 ) 15.15%

Hydro2D 81 2 2.47%

Mgrid 10 1 10.00%

SPECIOS — ¢ 18 2 1L.11%
Apsi 72 19 26.39%

Turb3D 19 10 52.63%

Fppp 12 0 0.0%

Wave 141 40 28.37%

CSS 45 4 8.89%

LGSI 64 0 0.00%

LWSI 11 7 63.64%

MTSI 30 1 3.33%

NASI 105 12 11.43%

OCSI 40 11 27.50%

PERFECT SDSI 52 17 32.59%
SMSI 46 29 63.04%

SRSI 105 15 14.29%

TFSI 56 7 12.50%

WSSI 98 33 33.67%

Livermore | Kernels 12 4 33.33%
Linpack Kernels 21 0 0.00%
Lapack Kernels 443 43 9.71%
| TOTAL I 1532 | 262 [ 17.10% |

Table 2: Analysable loop nests
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Figure 9: A framework for cache miss analysis and evaluation.

increase. An imperfect loop nest that is sinkable but non-analysable is not included in our
loop statistics. The number of imperfect loop nests that are sinkable and analysable in
these benchmarks is quite large. We can analyse 262 more loop nests, which is 17.10% more
than what can be analysed previously. For programs such as Turb3D, SMSI and LWSI, the
improvements are impressive reaching 52.63%, 63.04% and 63.34%, respectively.

When collecting the above loop statistics, we find that the number of loop nests with
affine conditionals is quite small. This is not surprising since such a loop nest would have
been written as an imperfect loop nest in the first place! However, there are a large number of
loop nests (about 277) with data-dependent conditionals in the above benchmarks analysed.
Their successful analysis will be an interesting future research topic.

4 Experiments

Figure 9 depicts the framework used in finding cache misses from the miss equations and for
validating the accuracy of our method against a cache simulator. We have implemented our
method in the Coyote Miss Equation solver [23]. The required reuse vectors for a reference
are calculated using some libraries provided in Coyote. The miss equations for a reference
are generated as discussed in Section 2.3. We have written a program to obtain the base
addresses and the relative access order of references from a load-store lower-level IR, which
is produced from the Polaris IR [7] of the loop nest being analysed. The same information
obtained is fed to both our miss equation solvers and the cache simulator used.

We have analysed a range of programs from SPECfp95, Perfect Suite, Livermore Kernels,
Linpack and Lapack. We report our experimental results for the following four examples:
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#Cache Misses %Loop Nest Miss Ratio Execution

Program | Cache I7g7uTator | FindMisses | Simulator | FindMisses Error | pipe (secs)
direct 1164004 1164004 81.69 81.69 0.0 55.62
COND | 2-way 1157335 1157335 81.22 81.22 0.0 105.00
4-way 1157335 1157335 81.22 81.22 0.0 180.64
direct 81440 85193 6.13 6.41 0.28 67.09
LU 2-way 57441 70643 4.32 5.31 0.99 71.04
4-way 61278 77461 4.61 5.83 1.22 77.83
direct 287697 287700 7.17 7.17 0.0 55.24
MM 2-way 262699 262702 6.55 6.55 0.0 59.31
4-way 262699 262702 6.55 6.55 0.0 65.01
direct 802 816 0.16 0.16 0.0 1.50
LWSI 2-way 802 816 0.16 0.16 0.0 14.36
4-way 802 816 0.16 0.16 0.0 30.69

Table 3: Cache miss ratios for caches with C=32KB and £=32B and execution times of
FindMisses on a 933MHz Pentium III PC running on SunOS 5.6.

e COND: our running example (Figure 1).

e LU: LU decomposition without pivoting from Lapack (Figure 10).

e LWSI: a four-dimensional imperfect loop nest from LWSI (Figure 10).
e MM: matrix multiplication from Livermore kernels (Figure 10).

The problem sizes used for the four examples are those as specified in the programs.
We assume a cache of C=32KB with £ = 32 bytes per cache line. In all four examples,
the size of each array element is 8 bytes. Therefore, every cache line has four array elements.
The execution times of FindMisses and EstimateMisses are obtained on a 933MHz Pen-
tium III PC.

All simulation results are obtained using a trace-driven simulator.

4.1 FindMisses

This algorithm finds the cache misses from the miss equations by analysing all iteration
points (i.e., all memory accesses) in the loop nest. It is computationally expensive for large
iteration spaces since it performs essentially a compile-time cache simulation of the loop
nest. However, this algorithm can be used ideally to evaluate the accuracy of our method,
in particular, our reuse vector analysis. Table 3 compares FindMisses and a cache simulator
for caches of different associativities. The absolute error between the miss ratios in both
cases in all examples is negligible. The execution times in all cases indicate that analysing
all points is too expensive to be used at compile-time in guiding compiler optimisations.
Some further discussions about the four examples are provided below.

COND Both FindMisses and the simulator yield the same results in all cache configurations.
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PROGRAM LU

PARAMETER (N = 100) DOi=1N
REAL*8 a(N,N) DO j = i+1,N
DOi=1N DO k = i+1,N
DO j =i+1,N IF (k .EQ. i+1) THEN
a(j,i) = a(j,i)/a(i,i) a(j,i) = a(j,i)/a(i,i)
DO k = i+1,N ENDIF
a(Jvk) = a(jvk)_a(jvi)*a(iak) a“(.]ak) = a(jak)_a(jai)*a(ivk)
ENDDO ENDDO
ENDDO ENDDO
ENDDO ENDDO
END END
PROGRAM MM
PARAMETER (N=100) DOi=1N
REAL*8 a(N,N), b(N,N), ¢(N,N) DO j=1N
DOi=1N DOk =1N
DOj=1N IF (k.EQ.1) THEN
a(i,j) =0 a(i,j) =0
DO k = 1,N ENDIF
a(i,j) = a(i,j)+b(i,k)*c(k,j a(i,j) = a(i,j)+b(ik)*c(k,j
E1\I(D,Jl))O (i,j)+b(i,k)*c(k,j) EN(DJI))O (1,)+b(i,k)*c(k,j)
ENDDO ENDDO
ENDDO ENDDO
END END
PROGRAM LWSI .
PARAMETER (NS = 10, natoms = 100) %%1_2_117 ns, 11
DOUBLE PRECISION xt, yt, xc, yc, zc DOk = ’1?;’57 )

DOUBLE PRECISION zero, wsin, wcos, z, Xs
DIMENSION xc(natoms, ns), yc(natoms, ns)
DIMENSION zc (natoms, ns), xt (natoms)
DIMENSION wsin(1), wcos(1), zero(1), z(1)
DIMENSION xs(1), yt (natoms)
DOi=1,ns,1
xt(1) = xt(2)+wcos(1)
xt(3) = xt(1)
yt(2) = zero(1)
DOj=1,ns 1
yt(1) = yt(2)+wsin(1)
yt(3) = yt(2)-wsin(1)
z(1) = zero(1)
DOk =1,ns, 1
DO 1 =1, natoms, 1
xc(Lk) = xt(1)
ye(Lk) = yt(l)
zc(Lk) = z(1)
ENDDO
z(1) = z(1)+xs(1)
ENDDO
yt(2) = y6(2)+xs(1)
ENDDO
xt(2) = xt(2)+xs(1)
ENDDO
END

DO I =1, natoms, 1

IF (j.EQ.1 .AND. k.EQ.1
.AND. 1L.EQ.1) THEN
xt(1) = xt(2)+wcos(1)
xt(3) = xt(1)
yt(2) = zero(1)

ENDIF

IF (k.EQ.1 .AND. LEQ.1) THEN
yt(1) = yt(2)+wsin(1)
yt(3) = yt(2)-wsin(1)
z(1) = zero(1)

ENDIF

xc(Lk) = xt(1)

ye(Lk) = yt(l)

ze(Lk) = z(1)

IF (1.LEQ.natoms) THEN
z(1) = z(1)+xs(1)
ENDIF

IF (k.EQ.ns .AND. 1.LEQ.natoms) THEN
yt(2) = yt(2)+xs(1)
ENDIF

IF (j.EQ.ns .AND. k.EQ.ns
.AND. 1.EQ.natoms) THEN
xt(2) = xt(2)+xs(1)
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
END

Figure 10: Three examples (with original and transformed programs).




LU FindMisses over-estimates the cache misses in all cache configurations used. The mis-
predictions are due to the lack of reuse vectors to describe the reuse that exists among
the non-uniformly generated references: a(j,i), a(i,i), a(j,k) and a(i,k). For example,
a(i,i) accesses a(1,1) and a(j,i) accesses a(2,1) at the same iteration (1,1,2). Both
accesses are to the same cache line. The lack of a reuse vector to describe this particular
reuse results in the memory access a(1l,1) to be classified incorrectly as a miss. To
validate this assumption, we ran FindMisses by adding four additional group-spatial
reuse vectors: (0,0,0) from a(j, i) to a(s,1), (0,1,0) from a(i, i) to a(j, 1), (0,0,0) from
a(j, k) to a(i, k) and (0,1,0) from a(i, k) to a(j, k). The cache misses obtained for the
“direct”, “2-way” and “4-way” cases have been reduced to 81553, 64704 and 71200,
respectively. As a result, the absolute errors in these cases have been reduced to 0.00,
0.55 and 0.75, respectively.

MM FindMisses over-estimates the number of misses in all three cases by a margin of three.
The three mis-predictions are due to the lack of reuse vectors to describe the spatial
reuse between references b0(4,k) and c(k,j). The base addresses for b and ¢ are 230136 and
310136, respectively. Thus, the memory addresses of 5(98,100), 5(99, 100), b(100, 100)
and ¢(1,1) are 310112, 310120, 310128 and 310136, respectively. This implies that
all four elements reside in the same memory line (starting at 475). A simple analysis
shows that the access b(i,100) at iteration (7,1, 100) reuses this memory line brought
into the cache by the access ¢(1,1) at iteration (¢,1, 1), where 98 < ¢ < 100. Due to
the lack of reuse vectors, these three accesses to b are classified as misses.

LWSI The transformed program by loop sinking consists of five conditionals some of which
are quite complex. In our experiments, the five scalars (zero, wsin, wcos, z and xs) are
treated as one-dimensional arrays of single elements each, which happen to reside in
four different memory lines with other array variables. FindMisses over-estimates the
cache misses by 14 in all three cases due to the lack of reuse vectors to describe the
reuse among all these memory lines.

4.2 EstimateMisses

This algorithm finds cache misses from the miss equations of a reference by taking a sample
from its RIS. We have modified the statistical sampling technique in [24] so that we can cope
with references with different RISs and references whose RISs are non-convex.

Table 4 shows the accuracy and efficiency of EstimateMisses using a 95% confidence
percentage with an interval width of 0.05. In all but one case, the difference between the
estimated miss ratio and the real miss ratio is less than 1.0. The difference in the exceptional
4-way LU case is 1.12. This is due to the lack of reuse vectors for describing the reuse among
the non-uniformly generated references as discussed previously. To validate this assumption,
we ran EstimateMisses by adding the same four additional group-spatial reuse vectors as
before: (0,0,0) from a(j,7) to a(i,i), (0,1,0) from a(i,) to a(j,1), (0,0,0) from a(j, k) to
a(i, k) and (0,1,0) from a(é, k) to a(j, k). The miss ratios for the loop nest obtained for the
“direct”, “2-way” and “4-way” cases have been reduced to 6.35, 4.85 and 5.42, respectively.
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%Loop Nest Miss Ratio Execution

Program | Cache ["g7, iTator | EstimateMisses Error | pipe (secs)
direct 81.69 81.29 | 0.40 0.40
COND | 2-way 81.22 80.92 | 0.70 0.64
4-way 81.22 80.92 | 0.70 0.97
direct 6.13 6.49 | 0.36 0.68
LU 2-way 4.32 5.18 | 0.86 0.70
4-way 4.61 5.73 | 1.12 0.69
direct 7.17 7.18 | 0.01 0.12
MM 2-way 6.55 6.44 | 0.11 0.11
4-way 6.55 6.44 | 0.11 0.13
direct 0.16 0.15 | 0.01 0.35
LWSI | 2-way 0.16 0.15 | 0.01 0.50
4-way 0.16 0.15 | 0.01 0.65

Table 4: Cache miss ratios for caches with C=32KB and £=32B and execution times of
EstimateMisses on a 933MHz Pentium III PC running on SunOS 5.6 (¢ = 95% and w = 0.05).

As a result, the absolute errors in these cases have been reduced to 0.22, 0.53 and 0.81,
respectively.
The execution times in all cases are less than a second on a 933MHz Pentium III PC.
A version of Table 4 for larger problem sizes is not given because (a) the results for
EstimateMisses are similar since samples of similar sizes will be analysed and (b) many
hours of cache simulation will have to be consumed.

5 Related Work

Programs must exhibit sufficient locality to achieve good cache performance. Compiler
optimisations for improving the cache behaviour need to have detailed knowledge about the
number and causes of cache misses. Such an information can be obtained by time-consuming
cache simulation [22] and architecture-dependent hardware counters [1].

Analytical methods use mathematical formulas to provide a characterisation of a pro-
gram’s cache behaviour so that we can not only obtain the number of cache misses but
also reason about the causes of such misses from these formulas. The ultimate goal is to
develop an analytical method that can provide accurate assessments of when and why cache
misses occur using a reasonable amount of computational resources (e.g., CPU time, memory
and disk usage). Then such a method will be useful in guiding various automatic memory
optimisations and also in improving the simulation times of cache simulators and profilers.

Porterfield [17] introduces the concept of overflow iteration for predicting the miss ratio
for a fully set associative LRU cache. Ferrante, Sarkar and Thrash [8] provide closed-form
formulas to estimate the capacity misses of a loop nest. Temam, Fricker and Jalby [21] also
consider conflict misses but for a subset of array references studied in this paper. Wolf and
Lam [27] propose to use vectors to describe data reuse for uniformly generated references
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in a perfect loop nest. They also use reuse vectors to derive an estimate of cache misses to
guide their data locality algorithm. Gannon, Jalby and Gallivan [10] and Wolfe [26] discuss
the use of reference window for predicting cache misses.

The CMEs [11, 12] represent a more ambitious analytical method in an attempt to
provide a more accurate analysis of cache misses. This framework is targeted at perfectly
nested loops with affine loop bounds and data accesses. If all reuse vectors of a reference
are used, all cache misses for the reference can be found from the CMEs provided all the
points in the reference’s RIS are analysed. Unfortunately, analysing all points this way is
expensive as shown in Table 3. An efficient implementation of the CME framework based on
polyhedral theory and statistical sampling techniques is reported in [3, 24, 25]. In principle,
programs of arbitrary problem sizes can be analysed efficiently. The estimated miss ratio is
known to fall within a confidence interval with a confidence percentage.

Recognising that the CMEs are expensive to solve if all iteration points in all RISs are
to be analysed, Fraguela, Doallo and Zapata [9] rely on a probabilistic analytical method
instead. They assume implicitly that a loop nest is free of IF statements. While they have
applied their method to some imperfect loop nests, the pair of references generating the
reuse must still be confined within a single perfect loop nest. Their experimental results
indicate that their method can achieve a good degree of accuracy in estimating cache misses.
Unlike the CMEs, this probabilistic method fails to characterise precisely all cache misses in
a program. It is unclear how the causes of cache misses can be deducted from their method.

There has been a great deal of research on applying loop and data transformations to
improve the cache performance of loop-oriented codes [11, 15, 16, 19, 20, 26, 27]|. In partic-
ular, researchers have explored the use of various compiler heuristics and simple cache cost
models to choose appropriate tile sizes in the case of loop tiling [4, 6, 14, 27] and appropri-
ate padding amounts in the case of data padding [15, 20]. Analytical methods promise to
provide more accurate knowledge about cache misses to guide a range of compiler optimisa-
tions. The CMEs [11] are limited to perfectly nested loops only, which must be free of IF
statements. This paper presents an analytical method for analysing perfect loop nests with
compile-time-analysable IF conditionals.

6 Conclusion

We have presented an analytical method for analysing the cache behaviour of perfectly nested
loops containing IF statements with compile-time-analysable conditionals. In the presence
of these conditionals, different references may be executed in different parts of iteration
spaces, which are not necessarily convex. We described how reuse vectors are calculated
and how the miss equations are formed and solved. We have presented two algorithms
for finding the cache misses from these miss equations. FindMisses, which analyses all
points in a reference iteration space, is applicable to programs of small problem sizes. In
addition, this algorithm has been used to evaluate the accuracy of our analytical framework.
EstimateMisses analyses a sample of a reference iteration space and achieves close to real
cache miss ratio in practical cases efficiently. We have done extensive experiments over a
range of programs. Our experimental results show that our method, together with loop
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sinking, can be used to analyse 17% more loop nests in SPEC{p95, Perfect Suite, Livermore
kernels, Linpack and Lapack than previously [11, 24].

While this work represents an important step towards a mechanical analysis of complex
program constructs, there are several important constructs that are still non-analysable,
including (a) imperfect loop nests with several loops at the same level, (b) data-dependent
conditionals, and (c) subroutine calls. We are presently working on developing an analytical
method that aims at analysing these complex language constructs. We intend to investigate
benefits and limitations of this challenging but important research direction.
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