
Code Search based on CVS Comments: A Preliminary Evaluation

Annie Chen, Yun Ki Lee, Andrew Y. Yao, Amir Michail
School of Computer Science and Engineering

University of New South Wales
�anniec,s2251001,andrewy,amichail�@cse.unsw.edu.au

Abstract

We have built a tool, CVSSearch [1], that searches
for fragments of source code by using CVS com-
ments. (CVS is a version control system that is
widely used in the open source community [3].) Our
search tool takes advantage of the fact that a CVS
comment typically describes the lines of code in-
volved in the commit and this description will typ-
ically hold for many future versions. This paper pro-
vides a preliminary evaluation of this technique by
74 students at the University of New South Wales.
Among our findings, CVS comments do provide a
valuable source of information for code search that
complements — but does not replace — tools that
simply search the source code itself (e.g., grep).

1 Introduction

Search tools for source code are important in soft-
ware maintenance activities [7]. However, if the code
is poorly commented, then using a standard search
tool, such as grep [5], is problematic. For example,
it may be obvious from using the application that it
has cut and paste functionality, though it may not be
at all obvious how to use grep to find lines that im-
plement this functionality. Since we can no longer
depend on matching words in comments, we must
use the search tool to match the code itself — which
is difficult if we have never seen the code before.

If the code is well commented, one might expect

standard search tools to work well. After all, com-
ments are intended to not only state the purpose of
the various pieces of code, but also to explain how
that code works. In other words, they provide infor-
mation at various levels of abstraction. Returning to
our example, one would expect that doing a grep on
“cut�paste” would match these words in comments
and thus return those sections of code responsible for
implementing cut and paste functionality.

However, naively searching through comments is
problematic for various reasons. As Maarek et al.
note, relating comments to the portion of code they
concern is a very difficult task: “Although comments
usually describe the containing routine or the one just
below, in general it is impossible to automatically de-
termine what part of the code is covered” [6, p. 802].

We have developed a general purpose search tool,
CVSSearch [1], that also leverages natural language
documentation — namely, CVS comments. CVS
is an open source version control system that is
widely used in the open source community [3]. In-
deed, almost any large open source project makes
use of CVS, particularly if multiple developers are
involved.

CVS comments provide a particularly good source
of documentation. While open source code may not
always be well-commented, large open source ap-
plications almost always have very good CVS com-
ments, particularly when many developers are in-
volved.

Our CVS-based search tool takes advantage of the
fact that: (1) a CVS comment typically describes the

1



lines of code involved in the commit; and (2) that
this description will typically hold for many future
versions. In other words, CVSSearch allows one to
better search the most recent version of the code by
looking at previous versions to better understand the
current version.

Our approach addresses several of the problems
discussed with finding useful functional information
for code: (1) by searching through natural language
instead of (possibly uncommented) code, we avoid
the problems of trying to extract useful functional
information from free-form code with ad hoc nam-
ing conventions; and (2) by using CVS comments,
we automatically have a very precise mapping of the
commit comment and the lines of code that it refers
to.

This paper provides a preliminary evaluation of
this technique by 74 students at the University of
New South Wales. As far as we know, our tool,
CVSSearch, is the only one of its kind. Conse-
quently, the survey in this paper is also the first
one to evaluate CVS-based search tools in relation
to conventional content-based ones such as grep.
The survey not only yields insights into how well
CVSSearch does in relation to grep, but also provides
some guidance for building better CVS-based search
tools in the future.

The remainder of the paper is organized as fol-
lows. Section 2 explains how we associate CVS
comments with lines in the most recent version of the
code. Section 3 describes our tool, CVSSearch. Sec-
tion 4 presents the survey, its results, and an analysis
thereof. Section 5 discusses related work. Section 6
summarizes the paper, concluding with future work.

2 Technique

To search for lines of code by their CVS comments,
we produce a mapping between the comments and
the lines of code to which they refer. Here we are
only interested in the lines of code found in the
newest version of each file. Observe that a line may

be involved in multiple commits in which case it
would have multiple CVS comments associated with
it.

2.1 Algorithm Overview1

Consider a file � at version � which is then modi-
fied and committed into the CVS repository yield-
ing version � � �. Moreover, suppose the user en-
tered a comment � which is associated with the triple
��� �� �� ��.

By performing a diff2 between versions � and ���

of � , we can determine lines that are modified or
inserted in version � � �; we associate comment �
with all such lines. (Figure 1 shows such a diff, visu-
ally, between two successive versions of a file where
� � ��; modified or inserted lines in version �� are
shaded.)

However, given we are interested in searching the
most recent version of each file, we need a propa-
gation phase during which the comments associated
with version � � � of � are “propagated” to the cor-
responding lines in the most recent version of � , say
� � � � �. This is done by performing diffs on suc-
cessive versions of � to track the movement of these
lines across versions (even in the presence of changes
to the lines themselves) until we reach version �.
(Figure 1 shows the final outcome of this propaga-
tion phase in the third file which has version � � ��.
Observe how the lines are matched up across ver-
sions 49 and 68 even though the line numbers have
changed due to deletions/additions of preceding lines
in the file over time.)

2.2 Database Storage and Querying

We have chosen the MG (Managing Gigabytes) [8]
system for our database because it provides fast text
retrieval on large text based database. For each line

1Details can be found in our previous paper [1].
2We actually use a somewhat more advanced version of GNU

diff that detects “similar” lines [1].

2



Figure 1: Three versions of kview view.cc are shown: (1) v. 48 before commit on left; (2) v. 49 after commit
in middle; and (3) v. 68 (most recent) on right.

of a file we store into MG its associated CVS com-
ments all merged together. When given query words,
MG returns all lines whose CVS comments contain
at least one of those words. Moreover, the results
are ranked, using cosine similarity [8, p. 185], so
that lines returned first tend to contain the most query
words — and with multiple occurrences of them.

3 The Tool

We have built a web-based demonstration tool,
CVSSearch, that combines matching based on CVS
comments with conventional content-based match-
ing using grep.3 Users can enter keywords to search
for and select an application to search in. When a
user queries the database, we combine the results
given by MG with matches returned by grep. For ex-
ample, if the user searches for the words “cut paste”,

3The demonstration tool is available at
http://www.cse.unsw.edu.au/˜amichail/cvssearch.

then we also perform a grep query “cut�paste” to look
for lines of code that contain one of those words.

Our tool actually returns a ranked list of files first,
where the score of a file is computed as

�
���

�����

������
,

with the summation over all lines that matched the
query from that file and where �� indicates the score
of line � — either given by MG for CVS-based
matches or equal to half the maximum score returned
by MG for grep matches. This formula rewards those
files that tend to have many matches close together
where the matches themselves have high scores ��.
A ranked list of files is then displayed, showing the
number of lines with CVS comment matches and the
number of lines with grep matches for each file.

A user can then click on a file to examine its line
matches. (See Figure 2 where the user has clicked on
a file returned by the query “password” in an email
client.) Matches are shown on the left with a tag to
display the type of match, i.e. CVS, grep or both.
Moreover the matched lines are highlighted accord-
ing to how strong the match is. Darker highlight

3



Figure 2: Search results for “password” query on an email client application.

denotes stronger matches and weaker highlight de-
notes weaker matches. (Observe that many of the
CVS matches are relevant to the “password” query
although that word doesn’t appear in those lines.)

On the right, the tool shows the source code for
that file. A user can click on any of the matched lines
on the left to bring the source code on the right to
that particular line so the user can examine that line
in its context. The tool also displays the associated
CVS comments for the selected line in the bottom
frame, so user can see why that line was matched.
(In Figure 2, the user has clicked on line 318, a CVS
match, with the associated CVS comment shown in
the bottom frame.)

4 Survey

In this section, we describe our CVSSearch survey
and analyze its results. The survey was advertised to
students taking computer science courses at the Uni-

versity of New South Wales. A small monetary in-
centive was used to encourage students to participate.
In total, 74 took part in the survey. Of the these par-
ticipants, 4% were from first year, 22% were from
second year, 49% were from third year, and 18%
were from fourth year, leaving about 8% whose year
was unknown or have graduated. Their majors in-
cluded: Computer Science (31%), Software Engi-
neering (30%), and Computer Engineering (23%).

4.1 Survey Part 1

The survey was given in two parts. The first part,
shown in Table 1, does not involve the CVSSearch
tool at all. Rather, it is an attempt to capture typical
search habits. Such information can help us under-
stand the mind set of developers as well as to guide
the design of search tools in general.

Question #1 asks whether they typically use reg-
ular expressions or exact matches when searching

4



Survey Part 1

1. I normally search through source code
(a) using regular expressions (e.g., “drag.*event”) 36 (49%)
(b) using exact matches (e.g., “drag and drop event”) 38 (51%)

2. When searching through code that I am familar with, I normally
(a) search for identifier names (e.g., classes/functions, etc.) 64 (86%)
(b) search for words in code comments 10 (14%)

3. When searching through code that I am not familiar with, I normally
(a) search for identifier names (e.g., classes/functions, etc.) 35 (48%)
(b) search for words in code comments 38 (52%)

4. When looking at code that I am not familiar with, I typically
(a) look at the code comments to try to understand the code 7 (9%)
(b) look at the code (and not the comments) itself to try to understand what it does 4 (5%)
(c) look at both the code and its comments to try to understand it 63 (85%)

5. I usually search through code
(a) that I am familiar with (e.g., have seen before, wrote, etc.) 56 (76%)
(b) that I am not faimilar with (e.g., have not seen before) 18 (24%)

6. How often do you need to search code that you are not familiar with?
(a) rarely 24 (32%)
(b) sometimes 31 (42%)
(c) frequently 19 (26%)

7. I normally
(a) have difficulty searching for items in code that I have seen before 7 (10%)
(b) have little difficulty searching for items in code that I have seen before 66 (90%)

8. I normally
(a) have difficulty searching for items in code that I have not seen before 65 (89%)
(b) have little difficulty searching for items in code that I have not seen before 8 (11%)

9. The items I search for tend to be
(a) physically close together 28 (38%)
(b) spread across several places 46 (62%)

10. When I am searching code I am familiar with, I can
(a) usually tell if my search yields lines that I wanted to find 66 (89%)
(b) have difficulty knowing if my search yields lines that I wanted to find 8 (11%)

11. When I am searching code that I am not familiar with, I can
(a) usually tell if my search yields lines that I wanted to find 14 (19%)
(b) have difficulty knowing if my search yields lines that I wanted to find 60 (81%)

12. If I had a tool that allowed me to more easily search code that I am not familiar with
(a) I would be more likely to use other people’s code 56 (76%)
(b) I would not be more likely to use other people’s code 18 (24%)

13. If I had a tool that allowed me to more easily search code that I am not familiar with,
(a) I would be more likely to understand other people’s code 57 (77%)
(b) I would not be more likely to understand other people’s code 17 (23%)

Table 1: Survey part 1.

5



through source code. Surprisingly, almost exactly
half use each type of search. We observe that reg-
ular expressions are usually used to match identi-
fiers in the code rather than words in the comment.
Thus, this result gives an indication that many devel-
opers search for identifiers directly rather than go-
ing through comments. Indeed, this is supported
by Question #2, where 86% of students say that
whenever they search through code they are famil-
iar with, they typically search for identifier names
(e.g., classes/functions) directly. However, this per-
centage goes down to 48% with unfamiliar code as
shown in Question #3; in this case, it appears that
developers search more for comments than they usu-
ally would in their own code. Indeed, Question #4
shows that 85% of developers typically look at both
the code and comments in unfamiliar code to try to
understand what it does. CVSSearch facilitates this
task since it returns code-based matches (using grep)
as well as CVS comment matches.

Nonetheless, question #5 shows that only 24% of
the students usually search unfamiliar code — where
we would expect CVSSearch to excel — which is not
surprising given that they are undergraduates. We
would expect this number to be higher in industry
and the open source community. Question #6 gives a
more precise breakdown: 32% rarely search through
unfamiliar code; 42% sometimes do such searches;
while 26% frequently search through foreign code.
This means that 68% of students would be interested
in a tool that facilities search in unfamiliar code.
Again, this number is probably higher in industry
and the open source community.

Questions #7 and #8 confirm some common sense
intuition: 90% of students have little difficulty
searching through familiar code while 89% have dif-
ficulty with unfamiliar code. Thus tool support to
facilitate this latter task is essential. Moreover, given
that developers would be unfamiliar with identifiers
in foreign code, it is important to enhance searching
for comment words as much as possible — as we do
with CVSSearch using CVS comments.

We also wanted to see whether developers typi-

cally search for code that is physically close together
or spread out across several places. Question #9
shows that 62% search for code that is spread out; de-
velopers are more interested in finding aspects than
they are in finding functions or classes. CVSSearch
searches on a line-by-line basis, so it can return as-
pects than span parts of various functions/classes.

The following questions are more subtle. They
concern the ability of developers to determine
whether the lines returned by a search tool really do
correspond to the code that they were after. From
Question #10, we see that 89% of students say that
it is easy to recognize relevant lines in familiar code.
However, this number goes down to 19% in unfa-
miliar code as shown in Question #11. CVSSearch
actually uses the CVS comments themselves to ex-
plain the lines matched by a search so users have a
better idea whether the matched lines are relevant or
not (and indeed, why they matched in the first place).

Questions #11 and #12 confirm some more com-
mon sense intuition: students believe that a tool that
allows them to better search unfamiliar code would
help them reuse (or salvage) existing code — with
76% saying so — as well as to understand it better —
with 77% saying so. Indeed, much research as been
done to facilitate software reuse by building compo-
nent retrieval systems based on natural language doc-
umentation. CVSSearch is a general search tool —
not restricted to component libraries — that uses the
natural language documentation in CVS comments.

4.2 Survey Part 2

After filling out part 1 of the survey, students were
then asked to complete part 2, which involves actu-
ally using the CVSSearch tool to perform queries.
The first question involved evaluating queries of their
choosing on certain applications. (See Table 2.)
Most other questions were multiple choice. (See
Table 3.) Students were also asked to list positive
and negative aspects of CVSSearch as well as make
recommendations for future improvement. Some of
their written comments will be interspersed with our

6



KDE Lines of Average # DB Build DB Space Average # CVS
Application Code Rev./File (min.) (KB) Comments/Line

konqueror 24,253 38.3 23 2,911 1.5
korganizer 43,188 10.8 9 5,028 1.2
kmail 40,325 32.9 24 3,672 1.4
knode 33,721 14.7 8 2,237 1.3
kword 48,883 22.5 47 4,475 1.6

Figure 3: CVSSearch statistics for KDE applications. (Timing was done on a 700 Mhz Pentium III with 256
MB.)

analysis of the query evaluations and multiple choice
questions below.

Evaluating Search Effectiveness Question #1 of
part 2 asked them to perform at least 2 queries for
each of the following KDE applications: konqueror
(a web browser), kmail (an email client), knode (a
newsreader), korganizer (a scheduling program), and
kword (a word processor). (See Figure 3 for appli-
cations statistics.) Moreover, they were instructed
to use reasonable queries given the application type.
For each query submitted, students were to indicate
whether CVSSearch alone or grep returned better re-
sults — or whether they were both about the same.
This should be clear since CVSSearch clearly in-
forms the user whether line matches were obtained
from CVS, grep, or both. (See Figure 2.)

The students were not familiar with the source
code of these KDE applications so our survey is test-
ing how well CVSSearch compares with grep on un-
familiar code. In future surveys, we shall consider
both familiar and unfamiliar code.

Table 2 shows the results of the query evaluations,
broken by application type, as well by total. Of the
703 queries submitted across all applications by stu-
dents, 40% were better handled through CVS com-
ments, 32% were better handled by grep, and 28%
were handled equally well by both approaches.

To see whether this result is statistically significant
in showing whether CVSSearch is the better tool, we
use the “sign test”. Specifically, consider the null hy-

pothesis �� that the probability of the CVSSearch
tool performing better on a query is equal to the
probability of grep being better — that is, 1/2 for
each. We consider the alternative hypothesis ��,
that the probability of CVSSearch being better is
greater than 1/2. Suppose that � out of 	 evalua-
tions show CVSSearch to be better, then the proba-
bility that �� is true given the observed data is equal

to
��

���

�
	
�

�
��
	��; this is the so-called p-value.

The lower this probability, the more likely that �� is
incorrect, thus allowing us to more confidently ac-
cept the alternative hypothesis ��. It is common
practice to look for p-values of 0.05 or less to indi-
cate strong rejection of ��. One final technical point
to mention is our handling of ties (i.e., “same” in Ta-
ble 2). Rather than simply omitting tied cases, we al-
locate half of the ties to one tool and half to the other
tool. Doing so yields more conservative p-values.

In Table 2 we show p-values for both “CVSSearch
being better” and “grep being better”. We see that
the results from the 703 evaluations indicate that
CVSSearch is actually more likely than grep to give
better answers overall, with a p-value of 0.0143.
This is strong indication that overall, CVSSearch
performs better searches than grep using CVS com-
ments alone (e.g., without looking at the code itself
using grep). Moreover, if we look at the breakdown
by application type, we see that there is strong in-
dication that CVSSearch outperforms grep for kmail
and kword with p-values of 0.0249 and 0.000497, re-

7



CVSSearch grep same Total CVSSearch better grep better
p-value p-value

konqueror 57 (40%) 41 (29%) 44 (31%) 142 (100%) 0.104 0.923
kmail 63 (46%) 38 (28%) 37 (27%) 138 (100%) 0.0249 0.984
knode 53 (38%) 48 (34%) 39 (28%) 140 (100%) 0.400 0.664
korganizer 41 (29%) 68 (48%) 32 (23%) 141 (100%) 0.991 0.0141
kword 70 (49%) 29 (20%) 43 (30%) 142 (100%) 0.000497 0.9997

Total 284 (40%) 224 (32%) 195 (28%) 703 (100%) 0.0143 0.988

Table 2: Survey part 2. Question #1.

Survey Part 2
2. Generally speaking, which tool results in more false positives?

(a) CVSSearch (without grep matches) 40 (55%)
(b) Grep Search 17 (23%)
(c) About the same 16 (22%)

3. Generally speaking, which tool results in more false negatives?
(a) CVSSearch (without grep matches) 25 (34%)
(b) Grep Search 17 (23%)
(c) About the same 32 (43%)

4. Generally speaking, do CVSSearch and Grep results complement each other?
(a) yes 56 (76%)
(b) no 18 (24%)

5. Generally speaking, did you find the CVS comments helpful in understanding code?
(a) yes 56 (76%)
(b) no 18 (24%)

6. Generally speaking, were you able to easily determine if grep matches were relevant?
(a) yes 50 (68%)
(b) no 24 (32%)

7. Generally speaking, where you able to easily determine if CVS matches were relevant?
(a) yes 6 (8%)
(b) no 9 (12%)
(c) yes but only after looking at the associated CVS comments 59 (80%)

8. Are you familiar with CVS?
(a) yes 19 (26%)
(b) no 55 (74%)

9. Do you feel understanding the purpose of CVS is necessary to use CVSSearch well?
(a) yes 51 (69%)
(b) no 23 (31%)

10. Do you have a general understanding of how CVSSearch works?
(a) yes 58 78%
(b) no 16 22%

11. Did you read the CVSSearch paper?
(a) yes 36 (49%)
(b) no 38 (51%)

Table 3: Survey part 2. Questions #2 – 11.

8



spectively. Moreover, there is some weaker evidence
that CVSSearch is also better with konqueror and kn-
ode, with p-values of 0.104 and 0.400, respectively.
However, CVSSearch clearly loses to grep on korga-
nizer, where grep has a p-value of 0.0141. So, while
all queries combined indicate that CVSSearch is bet-
ter than grep overall, the results are less clear for par-
ticular applications. We suspect that a combination
of factors lead to this variation: the quality of CVS
comments used, the quality of identifier names, as
well as the student’s familiarity with the application
type.

With respect to the advantages of searching CVS
comments, one person said “The CVS results do in-
crease the likelihood of finding a relevant result and
in some cases can return much better results (than
grep).” Another said “. . . when names used aren’t the
best or are abbreviated, then the user is dependent on
comments. For these cases CVS(Search) was better
than grep.”

Another person addresses related words: “It
searches a variety of related and relevant words, for
example, when ‘date’ is searched, results including
‘time’ are also returned.” This property follows natu-
rally from our approach since many lines with words
such as “time” also have associated CVS comments
with “date”. Another person writes “It (CVSSearch)
helps locate parts of the code better than grep, es-
pecially on conceptual ideas, where they (are) most
likely mentioned in the CVS comments.”

Another writes “CVS comments (are) often an im-
provement over much of the open source code com-
menting I’ve seen. . . allows for longitudinal (time
wise) searching, e.g., bug-fixes, recent areas of de-
velopment.” Other comments along this direction:
“good for getting a perspective on what works and
what’s under development, and locating these points
quickly” and “CVSSearch provides more comments
behind why the code was written”.

We now consider the remaining questions in part
2 of the survey, which are shown in Table 3. From
Question #2, we see that 55% of students believe
CVSSearch yields more false positives (e.g., matches

not relevant to the query) while only 23% say grep
yields more. False positives arise mainly from two
sources: (1) large commits where multiple changes
were performed so we do not have a precise mapping
of which part of CVS the comment refers to which
change in the code; and (2) inaccuracies in the way
we propagate lines from the past to the present code.
We discuss ways to alleviate these problems in Sec-
tion 6.

From Question #3, we see that 34% believe
CVSSearch has more false negative (e.g., matches
that should have been shown but were not) while
23% say grep has more false negatives. False neg-
atives arise mainly from two sources: (1) inadequate
CVS comments; and (2) inaccuracies in the way we
propagate lines from the past to the present code.
Again, we address these problems in Section 6.

Concerning false positive and false negatives, one
person said “Too many false positives, and also some
clear matches in the code are not returned.” Others
felt that stemming was partly at fault for false posi-
tives: “. . . searching in the CVS comments is a good
but stemming generalizes too much and we tend to
get a lot of unwanted results”.

Nonetheless, question #4 shows that 76% of stu-
dents say that CVSSearch and grep complement
each other. That is, one tool comes up with rel-
evant matches that the other has missed and vice
versa. The p-value for this statement is very small
at 
���� �
��, and so we can be confident of its va-
lidity. While the fact that CVSSearch and grep com-
plement each other shows that CVS comments are
a valuable source of information for search, it also
means that we should not only rely on them alone
but must include the code itself in the search. One
person writes “Keep the search engine along with the
grep feature. They help each other, I think. If CVS
fails, it really helps to have an alternative.” Another
said “Thorough, when used with grep at least.”

Using CVS Comments to Understand Code An-
other important result comes from Question #5: 76%

9



of students said that CVS comments are helpful in
understanding code. (Again with p-value 
��� �
�
��.) This observation has two implications: (1) the
CVS comments can themselves be used to explain
matches (as we do now using CVSSearch); and
(2) CVS comments can be used to explain code
whether or not a search was involved in retrieving
that code. Regarding the former point, one person
writes “CVS comments associated with the matched
files were very helpful in not only understanding and
determining relevance of code but also showing the
role of the code in the entire program.” Regarding
the latter point, one person writes “CVS comments
are extremely helpful in deciphering obscure bits of
code.”

Identifying Relevant Matches Questions #6 and
#7 explore the issues of whether matches returned
by CVSSearch and grep could easily be inspected
for relevance to the query, respectively. For grep,
68% of students said that determining relevance for
matches returned was easy. For CVSSearch, only 8%
said that determining relevance for matches returned
was easy but 80% said that it was so if they also
looked at the associated CVS comments for those
line matches. This supports our belief that showing
CVS comments for matched lines is critical in this
type of tool.

Leveraging CVS Knowledge Questions #8 – 11
explore whether understanding the way CVSSearch
works is important in using it effectively. Ques-
tion #8 asks whether they are familiar with CVS.
Only 26% said yes. (However, all participants were
given a short explanation of what CVS is used for
beforehand.) Question #9 asked them whether un-
derstanding the purpose of CVS is necessary to use
CVSSearch effectively — of which 69% said yes. In-
deed, one person wrote “. . . I feel that only people
familiar with CVS can use it properly.”

This result is somewhat surprising. When we
first built CVSSearch, we saw it as just another

search tool with a completely different implementa-
tion. Yet, students believe that understanding the im-
plementation is really important for effective usage
— since presumably the results of the search would
be more predictable. Consequently, we need to re-
examine our decision to “hide” CVS features (e.g.,
such as revision numbers, code branches, authors of
changes, commit dates, etc.) from our tool.

A deeper analysis of the data shows evidence that
people that are familiar with CVS tend to like grep
better, but the p-value is not that low at 0.255. In con-
trast, those people not familiar with CVS tend to like
CVSSearch better with a p-value of 0.00183. Again,
this result is somewhat surprising and perhaps shows
that CVS experts have certain preconceptions about
CVS comments that got in the way.

Question #10 shows that 78% of the students have
a general idea of how CVSSearch works while 49%
have read our previous CVSSearch paper [1]. So,
it appears they had some understanding of how the
search was done.

5 Related Work

There is a myriad of search tools for code, some of
which search through code directly [2, 5, 7] and oth-
ers that search the natural-language documentation
(such as comments or manual pages) associated with
the code [4, 6].

In the first category, we find lexical tools such
as grep [5]. Such tools are based on regular ex-
pressions, and while simple to use, have problems
searching for certain constructs. For example, grep is
not designed to search for patterns spanning multiple
lines or two statements at the same level of nesting.
Consequently, search tools have been developed that
parse the source code [2, 7] to alleviate such prob-
lems.

As discussed in Section 1, tools of this type,
whether lexical or syntactic, are quite difficult to use
if the user is not familiar with the code at all. This
is particularly an issue when the code is poorly com-

10



mented since the query words would no longer likely
match words in the natural-language code comments.

In the second category, we find tools that are based
on natural-language documentation associated with
the code [4, 6]. It is worthwhile noting that such tools
are designed for retrieval of reusable components
whereas CVSSearch is a general purpose search tool.
Moreover, as far as we know, CVSSearch is the only
search tool based on CVS comments —- and conse-
quently, our evaluation of this type of tool is also a
first.

6 Conclusions and Future Work

From our survey analysis in Section 4, we see that
CVS comments do provide a valuable source of in-
formation that complements — but does not replace
— content-based matching (e.g., using grep). More-
over, CVS comments are also good at explaining
the lines matched, and indeed, can be used as an
additional source of documentation for code irre-
spective of search. We were surprised that students
felt that knowledge of CVS was important in using
CVSSearch effectively. In retrospect, it is under-
standable that users would want to have some idea
how their search tools work.

It is clear that false positives are a problem with
our current approach. We plan to pursue both short
and long term strategies to reduce false positives. In
the short term, we plan to get the user more involved
in the search process so that false positives are easily
detected and ignored. For example, we will make the
mapping between CVS comments and matched lines
in a file more explicit, so the user can easily ignore
matches with irrelevant comments.

In the long term, we plan to improve the CVS-
based search itself to reduce false positives. We be-
lieve this can be done by either increasing the gran-
ularity of the matched items from lines to member
functions, increasing the granularity of the propaga-
tion phase from lines to member functions (which
have names so their movements are more easily

tracked across versions and files), or both.

References

[1] Annie Chen, Eric Chou, Joshua Wong, An-
drew Y. Yao, Qing Zhang, Shao Zhang,
and Amir Michail. CVSSearch: Searching
through source code using CVS comments.
Submitted for publication. Available from
http://www.cse.unsw.edu.au/˜amichail/cvssearch.

[2] P. Devanbu. GENOA — a customizable, lan-
guage and front-end independent source code
analyzer generator. In Proceedings of the 14th
International Conference on Software Engineer-
ing, pages 307–317, 1992.

[3] K. F. Fogel. Open Source Development with
CVS. Coriolis Inc., 2000.

[4] M. R. Girardi and B. Ibrahim. Using English
to retrieve sofware. The Journal of System and
Software, 30(3):249–270, 1995.

[5] B. W. Kernighan and R. Pike. The Unix Pro-
gramming Environment. Prentice Hall, 1984.

[6] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An
information retrieval approach for automatically
constructing software libraries. IEEE Transac-
tions on Software Engineering, 17(8):800–813,
1991.

[7] S. Paul and A. Prakash. A framework for
source code search using program patterns.
IEEE Transactions on Software Engineering,
20(6):463–475, 1994.

[8] I. H. Witten, A. Moffat, and T. C. Bell. Manag-
ing Gigabytes. Morgan Kaufmann, 1999.

11


