A Component Architecture for
System Extensibility

Antony Edwards and Gernot Heiser

UNSW CS&E Technical Report TR-0103
March 2001

disy@cse.unsw.edu.au
http://www.cse.unsw.edu.au/~disy/ | [= ||

Operating Systems and Distributed Systems Group {}
School of Computer Science and Engineering =S

The University of New South Wales

UNSW Sydney 2052, Australia

Abstract

Component-based programming has shown itself to be a natural way of constructing extensible soft-
ware. Well-defined interfaces, encapsulation, late binding and polymorphism promote extensibility, yet
despite this synergy, components have not been widely employed at the systems level. This is primarily
due to the failure of existing component technologies to provide the protection and performance required
of systems software. This thesis presents the design, implementation and performance of a component
model for system extensions that allow users to to create and customise system services.

Effective access control is a crucial feature of any system. In an extensible system, however, where
potentially any user can create and modify system services, access control is even more critical. Despite
the increasing importance of access control due to extensibility and increased connectivity, the protection
mechanisms provided by existing component systems remain primitive and ad hoc. This thesis presents
the design, implementation and performance of a complete access control model for extensible systems.

Contents

1 Introduction
1.1 Motivation e e
1.2 OVEIVIEW . . . o o e e e

2 Background

2.1 Mungi . . .o e e e
2.1.1 A Single Address Space
2.1.2 Protection in a SASOS L
2.1.3 The Mungi Philosophy
2.1.4 Mungi Overview
2.1.5 Protection Domain Extension o o

2.2 Component Software Lo
2.2.1 Motivation
2.2.2 What Are Components? e e e e
2.2.3 Component Concepts v v vt i e e e e e
2.24 Components # Object-Oriented Programming
2.2.5 Existing Component Architectures
2.2.6 Relation of Existing Work to this Thesis

3 Extensibility

3.1 OVerview . . .o e e e e

3.2 Software Technology Requirements

3.3 Security and Protection Requirements oo

3.4 System Requirementso e e

3.5 Comparison of Extensible System o o

I A Component Model for System Extensibility

4 Component System Design

4.1 OVErview . . . oo e e e e
4.2 System Model e
4.2.1 Conceptual Model o
4.2.2 System Structureo e
4.3 The Component Model e
4.3.1 Interfaces
4.3.2 Encapsulation. e
4.3.3 Polymorphism
4.3.4 Code Reuse: From Inheritance to Composition
4.3.5 Customisation L
4.3.6 Events e e
4.3.7 Component Lifecycle oo
4.3.8 Dynamic Type Discovery o

iii

LW = =

© © © 1~ ot ot

iv

CONTENTS

4.4
4.5

4.6

Component System Implementation
5.1 Overview
System Model Implementation
Component-Classes
Component, Structure

5.2
5.3

5.4

3.5

5.6

5.7

6.1
6.2
6.3
6.4

5.4.1

5.4.2

5.4.3 Client Example

Component Model Implementation

5.5.1

5.5.2

5.5.3 Polymorphism

5.5.4 Component Code Reuse

5.5.5 Customisation

5.5.6 Dynamic Type Discovery

5.5.7 Persistence and Naming

5.5.8 Static Interfaces

5.5.9 Version Support

5.6.1

5.6.2

5.6.3 ci_get_opt and ci_set_opt

Component Locator

5.7.1

5.7.2 cl_get_component_class

5.7.3

5.7.4 cl_get_opt and cl_set_opt
Component System Performance

Overview

Environment

6.5

4.3.9

Exceptions

4.3.10 Static Interfaces

Interface Definition Language
Component Invoker and Component Adaptor
Type Declarations
4.5.2 Component Invoker Interface

4.5.3 Component Adaptor Interface
Component, Locator
Type Declarations
4.6.2 Component Locator Interface

451

4.6.1

5.3.1
5.3.2

5.3.3 Component Stub Code
Interface Objects
Interface Object Structure
Interface Object Implementation

Component Invoker and Component Adaptor
cirequest L.
cireset L.

Mungi Micro-benchmarks
MCS Micro-benchmarks

Component Invoker and Component Locator
6.4.2 Component Creation
6.4.3 Method Invocation
CORBA Comparison Project Micro-benchmarks
Measurement Verification
6.5.2 Dispatcher Performance

Performance

6.4.1

6.5.1

6.5.3

Class Interface

Interfaces
Encapsulation.

cl_get_entry_pt and cl_set_entry_pt

clreset

CONTENTS v
6.5.4 Multi-Threading 104

6.5.5 Scalability 104

6.6 Micro-benchmark Comparisons 104
6.7 Macro-benchmarks 106
6.7.1 O01 . . . e 106

6.7.2 An Extensible File System oo 108

6.8 Conclusion L 109

II Access Control 111
7 Access Control in Component Systems 113
71 OVerview oo e e e e 113
7.2 Access Control Theory o e 114
7.2.1 Glossary oo 114

7.2.2 Access Control Matrix L 114

7.2.3 Role-based Access Control L 115

7.2.4 Domain and Type Enforcement o000 115

7.2.5 Context Sensitivity L 116

7.2.6 Mandatory and Discretionary Access Control 116

7.3 Access Control Mechanism o 117
7.3.1 Mandatory Access Control 117

7.3.2 Discretionary Access Control L 122

7.3.3 Combined 122

7.4 Examples L e e 122
7.4.1 Denning’s Lattice L 123

7.4.2 Chinese Wall 124

7.4.3 Contalnment L e 125

7.5 A Formal Model e 128
7.5.1 Terminology e 128

7.5.2 Access Modes 129

7.5.3 Discretionary Access Control oL L 129

7.5.4 Mandatory Access Control 130

7.5.5 Combined L 131

8 Access Control Implementation 133
8.1 Overview e e e e e 133
8.2 Policy Objects e e e e 134
8.2.1 Policy Object Interface 134

8.2.2 Multiple Validations 136

8.2.3 Registration L L 137

8.2.4 Asynchronous Validation L 138

8.3 Kernel Mechanics e 143
8.3.1 Domain Assignment 143

8.3.2 Type Assignment 144

8.3.3 Object Accesses 145

8.3.4 Invoke Operation e 146

8.4 Concluding Remarks Lo 148

9 Access Control Performance 149
9.1 OVerview e e e e e 149
9.2 Micro-benchmarkso 149
9.3 Macro-benchmarks 150
9.4 Conclusion L 152

vi CONTENTS

IIT Conclusion 153
10 Conclusion 155
IV Appendicies 157
A Example Policy Objects 159
A.1 Standard Definitions L. 159
A2 Denning’s Lattice e 160
A2.1 Header. e 160

A.22 Implementationo 160

A.3 Chinese Wall 161
A3.1 Header. o 161

A.3.2 Implementation 161

A4 Bell LaPadula e 163
A4.1 Header. e e 163

A42 Implementationo 163

List of Figures

2.1
2.2
2.3
24
2.5
2.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Mungi Protection Domains L Lo 6
Mungi Access Validation 8
PDX Protection Domains oL L e 9
Late Binding e 13
CORBA Architecture 14
COM Communications e 15
Component Creation L 24
Method Invocation oL 25
System Structureo 26
Component Invoker / Component Adaptor 27
Example Component Specification L oL oo 29
Class Interface IDL 29
Component-Class Structure e e e 30
Interface Objects and Late Binding L ool 31
Implementation Inheritance L 33
Control Flow of Reuse vs. Customisation 34
Reuse By Composition L 35
Component Aggregation e 35
Transitive Aggregation L 36
C++ Customisation Example oL 37
Interface Delegation 38
Incoming vs Outgoing Interfaces 39
Events Using Sink Components 40
Component Invoker / Component Adaptor, 43
System Structureo 52
CICAP Structure e 53
CStarfleetGalaxyClass.idl oo 54
CStarfleetGalaxyClass.h o . 54
CStarfleetGalaxyClasscis.h o 55
CStarfleetGalaxyClass_€S.C o v v i v e e e 56
CStarfleetGalaxyClass_ci.c e 57
Class Interface IDL 0 . 0 o0 58
MCS Component-Instance Header Format 59
CONS Modifier Example 59
Instance Header Structure oL e 60
Constructor L 61
DSTR Modifier Example o 62
Destructor L e e 62
Create_Cicap o e 63
Parameter Buffer Format L 64
Direct Parameter Transfer 65

vii

viii

LIST OF FIGURES

5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
3.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3
8.4
8.5

Buffered Parameter Transfer. L o 65
Direct Return Transfer L 67
Buffered Return Transfer 67
CICAP Access Control o o e 68
Interface Object Structure L 69
IWeaponSystems_io.h oL o 70
Creation Constructor 72
CICAP Constructor 73
Interface Method Stub o 75
Client Example o . 76
Polymorphism Using Interface Objects 78
Aggregation Protocol 79
AGG Modifier Example 80
Interface Method Stub With Aggregation 81
Aggregation vs Delegation 82
registeriinner_component L oLl 84
Delegation Protocol 85
Delegatable Component Stub 86
Interface Method Stub With Delegation 87
Aggregation / Delegation Cycle 88
Type Information Format L 89
Flag Field Format e 90
STATIC Modifier Example 90
Version IDL Example 91
Clrequest e e 92
clget_entry pt 94
clset_entry_pto 94
cl.get_component.class L 95
clreset L e e 96
CALL Results - 10000 calls o o0 102
IDL.ENCAP Results - Tcall o 103
THROUGH.IN Basic Data Types - 1call 103
THROUGH.IN Arrays- Lcallo o e 104
PROXY Results 105
Micro-benchmark Comparison L 105
Normalised Micro-benchmark Comparison 106
Creating a RAM Disk on Linux 108
Portion of an Access Control Matrix 114
DTE Access Matrix 118
Invoke Operation Domain Switch L 118
DTE Access Matrix 119
Domain and Type Labels 123
Chinese Wall Policy e 124
Containment 126
Domain and Type Labels 126
Containment Domains L e 127
LegalDomains Argument / Result Formats 135
LegalTypes Argument / Result Formats 136
ValidateAccess Argument / Result Formats 137
DomainStack Argument / Result Formats 137

Multiple Validations Entry Point oL oo 138

LIST OF FIGURES ix

8.6
8.7
8.8
8.9
8.10

Policy Object Registration o e 139
Invoking a Policy Object Function 140
Mungi System Call Loop e 141
Policy Object Result Handler 142

Invoke Validation e e e e e e e 147

LIST OF FIGURES

Chapter 1

Introduction

The recent trend towards dynamically extensible systems holds the promise of more powerful

and flexible systems.
R. Grimm and B. Bershad, 1997 [GB97b)]

1.1 Motivation

Extensibility is revolutionising system construction. Traditional monolithic operating systems have
evolved in an ad hoc manner, making them large, complex, unreliable and slow. Extensible operat-
ing systems replace this chaos with a model for controlled evolution, resulting in smaller, faster, and
more reliable systems.

Extensible operating systems allow units of code (extensions) to be dynamically added to the base system.
These extensions can add new services to the system, and modify the behaviour of existing services.
Extensibility provides three principle benefits.

e An extensible operating system kernel does not need to provide all the traditional system services,
e.g. a file system, allowing it to be small, fast, robust and flexible.

e New system services and features can be easily added to a running system, allowing it to meet new
requirements and take advantage of new methods and technologies. Traditionally, operating system
developments have taken years to deploy in commercial systems; extensibility promises to reduce
this latency dramatically.

e Application developers best know how to optimise and structure their applications. Extensible
systems allow applications to customise system services to improve performance, correctness and
simplicity [PB96]. For example, a real-time multimedia application could customise a general pur-
pose network protocol, and a database server could customise the disk cache replacement algorithm.

Current work into extensible operating systems has focussed on two approaches [OSD94].

e Allowing user-developed modules to be dynamically added to the kernel. These modules export an
interface that can be called by users. Such systems rely on ‘safe’ languages (e.g. Modula 3 [Nel91]),
compile-time analysis and dynamic reference checks for safety. Prominent examples include SPIN
[BSP195] and VINO [SESS96].

2 CHAPTER 1. INTRODUCTION

e Providing a trusted path [US 86,LSM™95] mechanism, such as a protected procedure call [DVH66] or
IPC. Extensions execute as user tasks, using the standard system protection mechanisms for safety.
Clients invoke extensions via the trusted path. For example, Amoeba [MT86] used a client/server
extension model with an IPC based trusted path.

An extensibility mechanism requires flexibility, safety and performance. It is now widely accepted that
flexibility and safety can be provided in user space, therefore, kernel-module based systems are motivated
solely by performance [BSPT95]. Performance oriented research into p-kernel construction, however,
has resulted in trusted path mechanisms with overheads of 100-200 cycles [LEST97, GSBT99]. Given
the disappointing performance of kernel-modules [BSPT95, SESS96], such systems are obsolete. Kernel-
module based systems also require programmers to use a specific ‘safe’ language, and rely on a complex
compiler for protection [Che94], resulting in a large trusted computing base (TCB).

Trusted path based extensibility mechanisms are more suitable for the current generation of u-kernel based
operating systems. These systems provide flexibility, safety and performance at user level, however, as yet
there has been limited investigation into the development of an eztension model using these mechanisms.
Such a model is essential for the interoperability of extensions. Without such interoperability, these
systems simply translate the chaos of traditional systems to user level.

Component-based programming systems have shown themselves to be a natural way of constructing ex-
tensible software. Well-defined interfaces, encapsulation, polymorphism and late-binding, all encourage
extensibility, yet despite this synergy, components have not been widely employed at the systems level.
This is primarily due to the failure of existing component technologies to provide the protection and
performance required of systems software. This thesis presents the design, implementation and perfor-
mance of a component model for system extensions that allow users to to create, compose, customise,
and extend system services.

Security protects a system from inappropriate use, with what constitutes ‘inappropriate’ being defined
by a security policy [AGS83]. At the core of any security policy are restrictions on who can access what
in what way [GBI7b]. The specification and enforcement of such restrictions is called access control, and
is essential for systems to be able to enforce effective security. Access control is becoming increasingly
vital due to three key factors.

e Increased connectivity, driven by the popularity of the Internet, means that there is no such thing
as a single user system.

e Increased data sharing, driven by the wide-spread integration of computer systems into core buisness
processes, is creating a need for more sophisticated protection.

e Software is becoming more fine-grained, i.e. composed of a number of modules each performing a
particular task. Modules come from a variety of sources and may not be entirely trusted, therefore,
each should execute with least privilege.

Effective access control is therefore a crucial feature of any system. In an extensible system, however,
where potentially any user can create and modify system services, access control is even more critical.
Despite the increasing importance of access control due to extensibility and increased connectivity, the
protection mechanisms provided by existing component systems remain primitive and ad hoc. This thesis
presents the design, implementation and performance of a complete access control model for extensible
systems.

1.2. OVERVIEW 3

1.2 Overview

Chapter 2 contains background material for this thesis. It describes the Mungi operating system and
component-based programming. Background material relating to access control is presented as it becomes
relevant in Chapter 7.

Chapter 3 presents the requirements of an extensibility model and an extensible operating system, pro-
viding a clear evaluation criteria for the model presented in Chapter 4.

Chapters 4, 5 and 6 respectively describe the design, implementation and performance of a component
model for system extensibility.

Chapters 7, 8 and 9 respectively describe the design, implementation and performance of an access control
model for extensible operating systems.

Finally, Chapter 10 contains some concluding remarks.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Mungi

Mungi is a research operating system being developed at the University of New South Wales by the
Distributed Systems (DiSy) group. This section provides an introduction to the Mungi philosophy,
abstractions and implementation. A more detailed description of Mungi can be found in [HEVT98], and
the full Mungi paper trail can be accessed at:

http://www.cse.unsw.edu.au/"disy

A large proportion of the material presented in this section has been adapted from previously published
Mungi descriptions [Voc98, Lau00, HEV+98 HLR98, HVGR99].

2.1.1 A Single Address Space

Mungi is a single-address-space operating system (SASOS), i.e. all processes on all computing nodes in
the system execute within the same virtual address space. That address-space contains all data, transient
as well as persistent. Within this single-level store data are identified through their 64-bit addresses.

A SASOS provides a number of advantages over the traditional per-process address-space model. These
advantages were recognised and realised by systems such as IBM System/38 [HSH81] and Monads [RAS85].
Most importantly [Fab74,Sol96, WMR*95]:

e Data sharing is made easier. The traditional, multiple address-space, model relies on the fact
that one process cannot address data that is in another address-space, for protection. Sharing
information between separate address-spaces requires the explicit intervention of the kernel and
some other subsystem (usually the file system or IPC). In contrast, a single-address-space system
gives all processes the ability to address all data in the system. This uniformity of naming, and
lack of explicit kernel involvement in communications, makes a SASOS an ideal environment for
sharing information between processes.

e Trivial process migration. In a distributed single-address-space system, process migration can be as
simple as moving a thread control block from one node to another. As the process starts execution
on the new node its working set is automatically faulted over to the new machine.

6 CHAPTER 2. BACKGROUND

e No reliance on message passing. As the global address space is the natural conduit for the transfer
of information, there is no need to introduce a separate IPC abstraction.

e Lower context switch overhead. As a result of the fact that all physical to virtual translations
are the same for all processes, there is no need to flush caches and translation information when
switching processes. A context switch in a single address-space only needs to change the active
protection information.

Original single address-space systems used custom hardware to create a sufficiently large address space
(32-bits is inadequate). Since then however, ‘off the shelf’ processors with a 64-bit address space have
appeared, e.g. the DEC Alpha [Dig92] and MIPS R4000 [KH92], allowing single address-space systems
to run on standard hardware. It is also interesting to note that the recently released IA-64 [IA600],
Intel’s 64-bit processor architecture, contains protection keys to separate virtual address translation and
memory protection. Such hardware is the foundation for an efficient SASOS implementation.

2.1.2 Protection in a SASOS

While a SASOS makes sharing data easy, this must not be at the expense of protection. Traditional
operating system protection is based on isolating each process in a private address-space, and only
allowing address-space boundaries to be crossed via the operating system. Access to all objects external
to a process’s address-space is therefore under the full control of the system. As there are no address-space
boundaries in a SASOS, traditional protection methods cannot be employed.

As far as protection is concerned, the concept of an address-space is replaced by a protection domain,
which is the set of objects a process is allowed to access. As in every virtual memory system, a process
can only access areas of virtual memory for which a mapping to physical memory has been established,
and every attempt to access unmapped memory will result in a page fault. When the system handles that
fault, it can verify whether the process has permission to access the memory region, i.e. whether it is part
of the process’s protection domain. If it is not, the system will generate a protection fault. In essence,
protection in a SASOS is provided by controlling what is accessible, rather than what is addressable.

Protection domains are defined as a set of capabilities, which confer to a holder the right to perform
specific operations on a given object. Mungi capabilities are described below.

Protection Domains

Yirtual Memory

Figure 2.1: Mungi Protection Domains

2.1. MUNGI 7

2.1.3 The Mungi Philosophy

A number of goals that guided the design of Mungi, originally presented in [Voc98], are reproduced below:

Simplicity: Mungi should present a ‘pure’ single address-space. It is the premise that a huge, flat,
address-space abstraction is sufficient to implement all the needed services, without introducing
other name spaces. As a result, traditional kernel services, such as I/O and interprocess commu-
nication (IPC), are accomplished through the single, shared, address-space. The kernel, and all
kernel data structures, are also part of this address space.

Usability: Mungi presents a simple, intuitive, interface to users, based on the single address-space
paradigm.

Flexibility: Mungi should provide a simple set of basic abstractions, which can be used to build more
complex abstractions. By keeping mechanism and policy separate, Mungi provides services that
applications can use to implement policy.

Protection: Protection has to be simple, intuitive, robust and reliable. Consequently, protection must
be designed into Mungi at the lowest level.

Performance: Performance is the overriding factor in almost any software. Simple and intuitive ab-
stractions are irrelevant if their execution cost is prohibitive.

No reliance on custom hardware: Mungi has to run on standard 64-bit hardware. History has shown
that OS projects involving new hardware have difficulty gaining acceptance, e.g. Intel 432 [Org93]
and Monads [RAS85]. Furthermore, ‘off the shelf’ hardware is less expensive and usually more
reliable than custom hardware.

2.1.4 Mungi Overview

In addition to the single address-space discussed above, Mungi provides abstractions for threads, objects,
capabilities, exceptions and protection domains. A bank account abstraction is also provided, which is
used to impose limitations on resource usage.

Threads: are the execution abstraction in Mungi. A thread is a lightweight instruction stream, associ-
ated with exactly one, volatile, protection domain.

Mungi Objects and Capabilities. Virtual memory is allocated in contiguous, page-aligned segments
called objects, which are also the unit of protection. A process is granted certain rights to all or
none of an object.

Access is controlled via password capabilities [APW86]; when an object is created, the system
returns a capability to the user which contains the object’s base address and a password. Such
a capability grants full (read, write, execute and destroy) rights to the object and is called an
owner capability. A process holding an owner capability can register less powerful capabilities for
an object.

Mungi capabilities can be freely stored or passed around without system intervention. They are
protected from forgery by their password, which is registered in a global, distributed, data structure
called the object table (OT). When validating a capability the system compares the capability’s
password with the list of valid passwords stored in the OT, and grants access if the requested
operation is compatible with the access mode stored with the password in the OT. Validations in
Mungi are cached for performance. The validation process is shown in Figure 2.2.

8 CHAPTER 2. BACKGROUND

1. Pagefault at address

Thread
2. Lookup address in OT

4, Map according to the and get descriptor
mode, and cache
Cap validation. V‘E

Cap Object Base

Cap Object Limit

Cap | Mode

Cap | Mode

Protection I

Domain Object
Table

3. Search for matching cap

Figure 2.2: Mungi Access Validation

Exceptions: Exceptions are generated as a result of a program fault (e.g. division by zero or a protection
fault). An exception handler can be registered to handle such an event. If an exception occurs for
which a handler has been registered, that handler is called as an un-programmed function call of
the thread which caused the exception. In particular, the exception handler executes within the
faulting thread’s protection domain, using the faulting thread’s stack. If an exception occurs that
is not associated with a particular thread, the system selects any thread within the faulting APD
to handle the exception.

Protection Domains: define the objects that a thread may legally access. A protection domain is a
set of pointers to capability lists (C-lists). Contrary to classical capability systems, these C-lists are
not system objects, they are standard objects maintained by appropriate users. Multiple threads
may execute within a single protection domain.

Bank Accounts: An object, once created, persists until explicitly destroyed, and may outlive its creator.
To reduce a proliferation of garbage objects, a kill list is maintained for each task, containing all
objects created by that task. When a task finishes, all the objects in the associated kill list are
destroyed. An object may be removed from the kill list using an explicit system call.

While the kill list helps to reduce the amount of garbage objects in the system, this is not sufficient
to prevent all secondary storage eventually filling up with unused objects. Automatic garbage
collection does not provide a solution [HLR98]. As in a traditional file system, persistent objects
are normally entered into a directory, which associates human-readable names with 64-bit object
addresses. As long as the directory continues to contain a reference to an object, it cannot be
automatically removed as garbage. The system must rely on users to manage their storage.

To assist users in managing their storage, a scheme derived from the rent model used in Monash
University’s Password Capability System [APW86] and the bank accounts used in Amoeba [MT86],
is used. Whenever an object is created, a bank account must be supplied, and the bank account
reference is recorded in the object’s OT entry. A rent collector periodically charges the account for
the disk storage used by the objects. A paymaster periodically deposits funds into each account.
An empty or overdrawn account cannot be used to create new objects, forcing the user to clean up.

2.2. COMPONENT SOFTWARE 9

An account statement is issued by the rent collector, to show users where their money goes.

Users may also create additional bank accounts. These accounts are funded by another bank account
the user owns, rather than the paymaster. For example, a user may specify that a created bank
account receives twenty percent of the funds deposited into their main account. By using different
accounts for different groups of objects, users can exercise more precise control over their resource
usage.

2.1.5 Protection Domain Extension

Extensibility is supported by a protected procedure call mechanism [DVHG66] called Protection Domain
Extension [VERH96]. PDX allows a thread’s protection domain to be extended, in a controlled manner,
for the duration of a procedure call. A Mungi object containing code can register a set of valid entry
points into the object. Along with the entry points, a set of capabilities which will be added to the
caller’s domain for the duration of the call is specified. A thread holding a PDX capability to an entry
point may invoke it via the system call:

int PdxCall(void *entry_pt, cap_t param, cap_t *ret, void *pd);

This invokes the method at entry_pt in a protection domain that is the union of the passed protection
domain pd, and the C-list registered with the entry point. Figure 2.3 shows how the (shaded) active
protection domain changes for the duration of a PdxCall().

. . . . PD Passed to Protection Domain
Client Protection Protection Domain PdxCall() For PDX Call

Domain of PDX Object

‘ @ —
‘

Figure 2.3: PDX Protection Domains

PDX domains are cached, by Mungi, so that a thread wishing to execute in a domain can do so quickly.
Caching protection domains has similar performance benefits to those reported for LRPC [BALLS9).

2.2 Component Software

Object-oriented computing has failed, but component software ... is succeeding. Here’s why.
Jon Udell, 1994 [Ude94]

2.2.1 Motivation

Components are a software engineering device motivated by the deficiencies of existing software construc-
tion techniques:

10 CHAPTER 2. BACKGROUND

e Modern software is large, complex, and monolithic. It is excessively time-consuming and expensive
to develop, maintain, and extend.

e Most software is bloated, containing every possible feature. Generally, people use less than 10% of
an application’s features [OHE96], so that the rest simply add complexity and overhead.

e Integration of applications is difficult. As new technologies are often required to communicate with
existing software, this is a major concern of many organisations.

e Distributed software requires a unit of distribution.

These problems are not new. Increasing software size and complexity was identified over thirty years ago
as the fundamental obstacle to quality software engineering, i.e. the ’software crisis’. An abstract solution
to all these problems has also been known for thirty years - modularity. Modular software encourages
reuse, customisation, scalability and maintainability. Modules are the software analogue of the integrated
circuits (ICs) used in the digital electronics industry. Object-oriented programming claimed to provide
these software ICs, however, it has failed to deliver. Software constructed using object technologies
are still usually monolithic, and their parts are no more reusable than traditional procedural libraries.
Object-orientation has failed to provide effective modules because:

e Object definitions are purely technical. Given the flexibility of software construction, a model for
object use is required.

e Software modules are the units of abstraction, analysis, development, extension and maintenance.
Objects are too fine-grained to assume these roles [Sut97].

e Object-oriented language designers lost focus. Rather than directly addressing the original issues,
most efforts focussed on second level problems. In particular, a large number of projects focusing
on inheritance semantics failed to relate their efforts back to basic goals such as module reuse and
software extension.

Object-orientation was the first major attempt to provide effective software modules, and in this role it
did not fail. It was unreasonable to expect that the first attempt would provide a complete solution.
An indication of the success of object-orientation in this role is that many of its concepts have been
incorporated into the next generation of software modules, i.e. components.

2.2.2 What Are Components?

So what are components? Learning from the mistakes of object-orientation, components are defined con-
ceptually rather than technically. The focus is on the role of components within the software construction
process.

e Jed Harris, ex-President of Component Integration (CI) Labs [OHE96].

A component is a piece of software small enough to create and maintain, big enough to
deploy and support, and with standard interfaces for interoperability.

e A 1994 Meta Group white paper [Szy97].

Software components are defined as prefabricated, pretested, self-contained, reusable soft-
ware modules - bundles of data and procedures - that perform specific functions.

e Clemens Szyperski in Component Software: Beyond OO Programming [Szy97].

2.2. COMPONENT SOFTWARE 11

A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies. A software component can be deployed independently and
is subject to composition by third parties.

Modularity is the fundamental concept in each definition. Components are software units that can be
independently developed and then composed into larger services and applications. That component
technologies have developed from this abstract definition to a technical definition, is a key feature of their
success.

This thesis aims to develop a technical definition of a component that satisfies these abstract definitions.
Chapter 4 presents this definition.

2.2.3 Component Concepts

This section briefly introduces the technical concepts commonly associated with software components. A
detailed investigation of these concepts to produce a complete technical definition of a component is the
subject of Chapter 4.

Instances

It is critical to distinguish between a component-class and a component-instance. A component-class
is the definition of a component, which may include interface definitions, code, global data, resource
capabilities, etc. A component-instance is an instantiation of the component-class, and is associated
with some per-instance state data. The operations of a component-class use and modify this state data,
which therefore determines the context in which operations execute. Operations are always invoked on
component-instances.

This situation is analogous to object-oriented programming. A class provides the definition of the inter-
face, an implementation of the operations and defines the per-instance data. Clients create instances of
the class, i.e. objects, which contain a particular set of values for the per-instance data.

Interfaces

Interfaces are the glue that connect clients to component-instances. An interface is a description of a set
of operations that a client may invoke on an instance of a particular component-class. Descriptions may
include information such as the number and type of arguments, the return type, pre and post-conditions
for state data, the maximum CPU time the operation may consume, or just about any other factor.

An interface, and its semantic description, contain all the information a client requires to use a component-
class. Therefore, a client is not concerned with how a component-class implements an interface, enabling
easy composition.

Encapsulation

Encapsulation hides the internal operation of a module from clients. This involves making the state
data inaccessible, data encapsulation, and forcing clients to operate on instances via the defined inter-
face, control encapsulation. Encapsulation is required for the effective separation of specification and
implementation.

12 CHAPTER 2. BACKGROUND

Subtyping

A type is a set of values which an instance of that type may take on. For example, an instance of the
short type in C may take on the values {-32768...32767}. A type 17 is a subtype of type Ty, if T}
is a superset of T5. For example, a long in C may take on the value {-2147483648...2147483647},
therefore long is a subtype of short.

Crucially, a subtype is substitutable for its supertypes.

An object-oriented type, e.g. a class, defines a set of operation that may be performed on an instance,
and the per-instance state data. A class C} is substitutable for Cs if it exports all the operations, and
contains all the public data members, of C}.

Object-oriented languages (e.g. C++, Java, Oberon [Obe94], Smalltalk [GR83], Eiffel [Mey90]) almost
always form subtypes using interface inheritance, i.e. a type T; declares itself as a subtype of an already
existing type T5. 17 automatically ‘inherits’ all of T5’s operations and public data members. Although
in most object-oriented languages the subtype also inherits the implementation of the operations, this is
a separate issue, with a separate goal and is therefore discussed separately.

Implementation Inheritance

Implementation inheritance involves a type acquiring an implementation of certain operations it exports
from another type. Implementation inheritance is best explained using an example, which is presented
below in C++.

class base {

public:
base() ;
“base();
some_method () ;
};
class derived : public base {
public:
derived();
“derived();

some_other_method() ;

};

As C++ combines subtyping and implementation inheritance, both feature in this example. Class
derived is specified as a subtype of base, so that it automatically exports the method some_method ().
Implementation inheritance means that derived also inherits the implementation of some_method () pro-
vided by base. Therefore, if a client invokes some_method () on an instance of type derived, the code
invoked is the implementation contained in base.

Implementation inheritance is the reuse model of almost all object-oriented languages.

Polymorphism

Polymorphism is the ability of a strongly typed client variable to refer to instances of different component-
classes. Traditional languages handle variants, e.g. a union, by explicit case analysis. If a new variant is

2.2. COMPONENT SOFTWARE 13

added, every case analysis must be upgraded, which is obviously not extensible or easily maintainable.

Polymorphism is closely related to the concept of substitutability described above. Therefore, object-
oriented languages use subtyping to provide polymorphism.

Consider a user-interface toolkit where each element, e.g. a button, text-box, label or list, is an instance
of a component-class corresponding to the element type. A container manages the elements of a form,
including the position and size of each one. Without polymorphism, redrawing a form would require
a different client variable type, and hence different code, to be used for positioning each element type.
Furthermore, new element types could not be used without modifying the container code. Polymorphism
therefore reduces the amount of code required, and encourages extensibility.

Events

A standard operation results in control being transferred from the client to the component implementa-
tion. Conversely, events are operations invoked by the component implementation, that transfer control
to the client. Events are also known as up-calls and callbacks.

Events allow components to push information to the client, rather than requiring clients to continually
poll for changes. This is especially useful for components that interact with asynchronous devices such
as humans, printers and disks.

Late Binding

A polymorphic client variable may, by definition, refer to instances of different component-classes. Late
binding allows the component-class referred to by such a variable to be determined at run-time. As
components and clients are decoupled, the component implementation is not included in the standard
linking process. Therefore, when the component-class is determined, it may need to be dynamically
located, linked and loaded.

Onerati
O peration . Implementations
Client

Polyrr;rphic
Variable

Figure 2.4: Late Binding

2.2.4 Components # Object-Oriented Programming

Most of the component, concepts introduced in the previous section are also present in object-oriented
languages. For this reason, people often equate components with object-orientation. Despite their simi-
larities however, they are different technologies, with different goals. Components are principally a con-
ceptual model for software design, while object-orientation is a programming paradigm. Understanding
this distinction is essential when evaluating a technical, rather than abstract, component model.

14 CHAPTER 2. BACKGROUND

2.2.5 Existing Component Architectures

This section briefly introduces the dominant players in the component industry. Specific details of their
standards are discussed in Chapter 4 as they become relevant.

CORBA

The Common Object Request Broker Architecture (CORBA) is a middleware standard developed by
the Object Management Group (OMG), a consortium with over 700 member companies. The notable
exception is Microsoft, which uses its own middleware architecture called the Component Object Model

(COM).

Client Object

RN

Stubs][ohiect
Stubs [] (Ad aptur

7

Figure 2.5: CORBA Architecture

An Object Request Broker (ORB) is the heart of CORBA. It allows clients to send requests to, and receive
responses from, objects. An ORB provides transparency to the client, who is unaware of where the object
is located, its implementation language, its operating system and all other environmental concerns. Ob-
jects export an interface defining the operations that clients may perform. CORBA interfaces are defined
using a declarative language called the Interface Definition Language (IDL). Clients can dynamically
discover objects, and invoke methods on their interface.

Although other mechanisms exist, clients generally invoke operations using clients stubs. CORBA stubs
are similar in concept to RPC stubs [BN84], in that they make a CORBA request appear as a standard
language method invocation to the client program. Internally, stubs invoke the ORB interface to initiate
a request and receive a reply. Object adaptors are responsible for activating object implementations, and
providing object-side ORB independence.

CORBA was originally released in 1991 as version 1.1. Its goal was to provide a standardised client/server
communications architecture, so that clients could easily use objects produced by different vendors. This
remained the focus of the widely adopted CORBA 2.0 standard, released in July 1995. Since then,
software construction models have progressed so that the strong client/server flavour of CORBA 2.0 no
longer satisfies the definition of a software component. OMG have responded to this with the development
of a new specification, CORBA Components [COR99¢], which creates a component environment above
the existing CORBA architecture. This specification also includes a component model, based on Sun’s
Enterprise Java Beans (EJB) [Jav97], which was unfortunately missing from the original standards.
CORBA Components has yet to be released as a standard.

2.2. COMPONENT SOFTWARE 15

COM

Microsoft are moving the entire Windows operating system into their component technology, called the
Component Object Model (COM) [COM95]. COM is a very different standard to CORBA. In particular,
it is a binary standard, that is (not surprisingly) unconcerned with issues of interoperability and platform
independence.

COM has an architecture that is similar to, though somewhat simpler than, CORBA. This simplicity
is due to COM only being required to support a single implementation in a known environment, while
CORBA is must allow many implementations in diverse environments.

Clients interact with instances via interfaces defined in Microsoft IDL (MIDL). When an instance is
created, the Service Control Manager (SCM) locates the implementation and activates it appropriately.
Clients can then invoke methods on the object without the direct intervention of COM. Objects can either
be in-process, out-of-process on the local machine, or out-of-process on a remote machine. If the object
is in-process, then clients directly invokes the object’s methods. Otherwise, the client invokes methods
on an in-process stub object that performs a remote procedure call (RPC) with a corresponding stub in

the object’s process.
O_
Object Local Server Process
In-Process
Server

L Local

LRPC ﬂ L Object
P — /
i Local ,/
C— Proxy Remote Server Process

O_

Client Process

Client

DCOM

S O
RPC » Remote
1 Proxy

Figure 2.6: COM Communications

2.2.6 Relation of Existing Work to this Thesis

CORBA and COM define how components are located and how requests are communicated. They are
designed to provide software interoperability. In contrast, this thesis is concerned with the component
model, i.e. what components are, how they behave, and how they are used to construct software. A
component model and a communication standard are complementary rather than competing, both are
required for a complete component solution.

It is my intention that the component model described in this thesis will use the CORBA Components
communications standard. Although this goal is not directly addressed due to time constraints, its future
realisation is facilitated by the use of CORBA standards where appropriate. In particular, interfaces are

16 CHAPTER 2. BACKGROUND

described using a subset of OMG’s IDL, and the OMG C-Language Mapping Specification [COR99a] has
been used. For clarity, these standards are described as they become relevant.

Chapter 3

Extensibility

Ezxtensibility must be designed into a system.
Clemens Szyperski, 1998 [Szy97]

3.1 Overview

This chapter presents the requirements of an extensible operating system. The requirements are separated
into three categories.

Software technology requirements specify the functionality that an extension model must provide.
These requirements apply to both system and application extensions.

Security requirements distinguish application and system extensibility [Che94]. If extensions are to
provide secure services, and become an integral part of the base system, the extensibility mechanism
must provide adequate security and protection.

System requirements specify the features that an extensible system must provide.

3.2 Software Technology Requirements
Software technology requirements describe what extensions must be able to do.

e Add services dynamically. This is the most basic requirement of extensible software. Once an ex-
tension is activated, other entities in the system should immediately be able to invoke the extension
code.

e Add services polymorphically. Polymorphism allows existing clients to use a new service without
modifying their code. Without polymorphism, clients and services are tightly coupled, almost to
the point of being fragments of the same application, e.g. an FTP server and an FTP client.

e Be late-binding. A client should be able to dynamically discover and use new services. In particular,
clients should not have to re-link to use a new service. With full late-binding, the extension code
to be invoked is determined dynamically using the service reference, linked and loaded.

17

18

CHAPTER 3. EXTENSIBILITY

Deploy updated versions. An extension may require modifications to remove bugs, improve perfor-
mance, improve flexibility, or take advantage of new technologies. Clients of the original extension
should automatically migrate to the new extension.

Impose as few restrictions on programmers as possible. Technologies that impose restrictions usually
fail the psychological acceptance test. Restrictions, by definition, also reduce the flexibility of the
mechanism, hence reducing its application domain.

Module extension. Extensions are not stand-alone servers that can be transparently replaced. New
extensions compose and customise existing extensions, building upon the supported functionality
to provide new services. A new extension should be able to reuse and extend existing extensions
[GB97a].

Perform fine-grained customisation. Customisation allows the addition of domain specific knowl-
edge to system services, improving performance, correctness and simplicity [GB97a]. The level
of improvement, depends on how specific the added knowledge is, which in turn depends on how
fine-grained customisation is. For example, per-client customisation allows greater specialisation of
a service than per-system customisation, resulting in greater benefits to applications.

Provide a semantic model, or standard, for extension construction. Without a semantic model,
clients must contain extension-specific knowledge, reducing the interoperability and reuse of exten-
sions.

Provide acceptable performance. No functionality can compensate for inadequate performance,
especially at the systems level where performance is paramount.

Transparent interposition. Extensions may be interposed, i.e. inserted between, two existing exten-
sions, or an extension and a client.

3.3 Security and Protection Requirements

System extensions must provide additional features related to protection.

e Execute in an amplified protection domain. This allows extensions to provide secure access to priv-

ileged resources. For effective security, the amplified protection domain should follow the principle
of least privilege.

e Store privileged data. Services must be able to store privileged data in persistent objects, i.e.

extensions cannot be memoryless [Lam73].

e Perform discretionary access control. A client must only be able to invoke methods they have access

to, on extensions they have access to.

3.4 System Requirements

An extensible operating system must provide the following features.

e An extensibility mechanism satisfying the above requirements.

e Mechanisms allowing authorized extensions to perform privileged system operations. If the system

does not allow extensions to exert significant control, the power of extensions is greatly diminished.

3.5. COMPARISON OF EXTENSIBLE SYSTEM 19

e [ffective access control. Extensible systems are inherently dynamic, and contain a (possibly) large
number of fine-grained extensions. The system must be able to maintain effective access control in
this environment.

e A minimal trusted computing base (TCB). Effective, reliable security requires a small, well struc-
tured, TCB [SST75].

3.5 Comparison of Extensible System

Table 3.1 compares a number of existing extensible systems in terms of the requirements presented above.
The goal of this section is to identify the specific features that distinguish extensible operating systems
from traditional operating systems. It does not aim to be a taxonomy of extensible systems, providing
only a brief description of the systems examined. Performance results were obtained from a variety of
published sources, using different hardware, and so should not be directly compared. Chapter 6 contains
a comparison of existing systems.

e Unix A traditional, Unix style, operating system serves as a baseline for comparison, and illustrates
what it is that extensible system do that traditional systems do not. Extensions in traditional
systems are applications. An RPC is considered the equivalent of a method invocation; performance
result taken from Chapter 6.

e L, [Lie96] is a second generation, IPC based, p-kernel, implementing a custodial access control
mechanism [Lie92]. L, is representative of a system providing a trusted path mechanism, but no
extension model. Performance values are from [LEST97], measured on a 100MHz MIPS R4600. A
method invocation is equivalent to two IPCs plus one hundred cycles of stub code [HLPT00].

e SPIN [BSP™95] supports extensibility by allowing modules to be dynamically added to the kernel.
Protection is based on the use of a type-safe language (Modula 3 [Nel91]), compile-time checks, and
dynamic reference resolution. Performance values are from [BSP*95], a cross-domain call on an

Alpha 133MHz AXP 3000/400.

e VINO [SESS96] also allows user modules, called grafts, to be added to the kernel. Protection
in VINO is based on software fault isolation [WLAG93], which involves compile-time checks of
static memory references and inserting instructions before dynamically constructed references. A
transaction system prevents resource hoarding. Performance values are from [SESS96]. As VINO
overhead is produced by the inserted code, there is no standard overhead, and so a single value
cannot be given.

20

CHAPTER 3. EXTENSIBILITY

v v 1V v
v v 1V v
Must use Modula-3
v v |V v
X M Vv
X M|V e
160 2.72 | 89 103 — 360
M |\M |y v
x|V | v
v v |1V UA
M Vv X UA
x|V |V v
X v |V UA
i i Compiler Compiler

M Though not naturally supported, this feature could be manually implemented.
U A This information is not available.
1 Depending on policy, servers and chiefs may be added to the TCB.

Table 3.1: Comparison of Existing Extensibility Mechanisms

Part 1

A Component Model for System
Extensibility

21

Chapter 4

Component System Design

An object [component] is an identifiable, encapsulated entity that provides one or more services
that can be requested by a client.
CORBA 2.0 Specification, 1999 [COR99¢]

4.1 Overview

This chapter presents the design of the Mungi Component System (MCS), a component-based program-
ming system suitable for the development of system extensions.

A component-based programming system is not a single entity; it comprises a number of cooperating
models and runtime elements. The purpose of this chapter is to describe in detail the models used, the
roles of the runtime elements, and their client interfaces. The elements described in this chapter (in this
order) are:

A System Model identifies the major elements of the system, the roles they play, and how they interact.
It introduces the environment in which components and clients exist. Section 4.2 describes the
system model.

A Component Model describes in detail what components are, how they behave, how they should be
used, and how they interact with one another as well as clients. Section 4.3 describes the component,
model.

An Interface Definition Language (IDL) is a specification language used to unambiguously describe
the external interface of components. MCS uses a subset of the Object Management Group’s (OMG)
CORBA IDL. Details, references and examples are given in Section 4.4.

A Runtime is required to provide certain functionality. Runtime elements are identified in the sys-
tem model (Section 4.2), and described in Sections 4.5 and 4.6. The MCS runtime is referred to
throughout the chapter as MCS-RT.

Whilst reading this chapter, it is helpful to bear in mind the fundamental services provided by a compo-
nent system:

e Component creation.

23

24 CHAPTER 4. COMPONENT SYSTEM DESIGN

e Method invocation.

The system model and component model define the semantics of these two operations, i.e. what they do.
MCS-RT is concerned with how they are done, and IDL specifies the syntax of the operations for each
component-class.

4.2 System Model

A system model identifies the major elements of the system, the roles they play, and how they interact.
It introduces the environment in which components and clients exist. This section describes the MCS
system model.

4.2.1 Conceptual Model

Figures 4.1 and 4.2 illustrate the conceptual models for component creation and method invocation. Be-
fore describing these two services however, it is essential to reinforce the distinction between a component-
class and a component-instance. An MCS component-class consists of the implementation code and the
protection domain in which the implementation code executes. A component-instance contains a particu-
lar set of values for the state data, and is also a unit of access control (see Chapter 7). A component-class
is analogous to a class in an object-oriented programming language, with a component-instance being
equivalent to an object.

Client

Component Impl.

constructor() New Component

Instance
1—_

ref = create_instance()

MCS-RT

Figure 4.1: Component Creation

In Figure 4.1, a client requests that a new component-instance, of a certain component-class, be cre-
ated. MCS locates the appropriate component implementation code, and invokes a constructor within
the component-class’s protection domain. A new instance is then created within the component-class’s
protection domain, and a reference to this instance is returned to the client. The client uses this refer-
ence for method invocations, to specify the state data to be used. A client cannot directly access the
component-instance as it is not within its protection domain.

In Figure 4.2, a client invokes a method using a reference to a valid component-instance. MCS determines
the component-class of the reference, locates the component implementation, and invokes the requested
method within the component-class’s protection domain. The method executes using the state data stored
in the specified component-instance. When the method completes, control is returned to the client.

Critical features of this model are:

4.2. SYSTEM MODEL 25

Client Component Impl.

some_method() @ @
— S N —

invoke_method(ref)

4 >
MCS-RT
N vy

Figure 4.2: Method Invocation

e Client code and the component implementation execute in different, though not necessarily disjoint,
protection domains. This allows components to provide secure access to privileged resources, by ex-
ecuting within an amplified protection domain. The component-class’s protection domain contains
the Mungi objects it needs to provide its service, the instances, and the client objects it is operating
on. By providing the minimum required objects, this system model supports the principles of least
privilege and mutual suspicion [CJ75].

e Component-instances do not exist in the client’s protection domain. This means that clients cannot
directly access instance state data, i.e. data is fully encapsulated. This encapsulation is ensured by
the operating system rather than a compiler, making it suitable for storing privileged system data
(e.g. a spooler file) [JLIOS].

e At the system interface level, component creation and method invocation are simply requests sent
from one protection domain to another. Therefore, both these services can be implemented at
user-level using a trusted path mechanism.

component implementations execute in a protection domain that is the union of a protection domain
defined for the component-class, and a protection domain passed by the client. The portion of the
protection domain defined for the component-class is referred to as the protection context, and is specified
along with the component-class interfaces.

4.2.2 System Structure

Figure 4.3 decomposes the conceptual model presented in the previous section. MCS-RT has been split
into three modules: the Component Locator (CL), the Component Invoker (CI) and the Component
Adaptor (CA). In addition, both the client and the component implementation have been separated into
two layers. The following sections describe each of these system elements.

Client

A client is any thread holding a reference to a component-instance, or requesting the creation of a new
instance. Component implementations may themselves act as clients to other component-classes.

26 CHAPTER 4. COMPONENT SYSTEM DESIGN

i Client [Component Impl.
L i j [

Interface Object [Component Stub
1 R -

[CL] [cl] Trusted Path Mechanism

Figure 4.3: System Structure

Component Implementation

A component implementation contains the code implementing a component’s interfaces. Interfaces were
introduced in Section 2.2.3, and are described for MCS in Section 4.3.1.

In the presence of events or upcalls (Section 2.2.3), the conceptual distinction between the component
implementation and the client is obscured. The key distinguishing feature is that the component imple-
mentation has access to the state data of the instance being operated on, whilst the client does not.

Interface Objects

Clients do not directly call the MCS-RT interface. Instead, an abstraction layer is placed between the
client and MCS-RT to provide:

e Transparency.

e Functionality.

On the client-side, this abstraction layer is called the interface object. An interface object is a repre-
sentation of an interface of a component-class, using the client programming language’s native object
construct, e.g a C++/Java class, or a C abstract data type (ADT). Each interface object contains a
reference for a component-instance. When a method is invoked on the interface object, it invokes the cor-
responding method on the component-instance. Components therefore appear to the client programmer
as standard, native, objects. Interface objects are analogous to RPC client stubs [BN84], which make
synchronous requests to remote servers appear to the client as normal procedure calls.

As MCS-RT only provides a standard interface to the underlying system’s trusted path mechanism,
interface objects also implement the semantics of the component model. A technical definition of the
component model is the subject of Section 4.3.

Component Stubs

Component stubs serve the same purpose as interface objects, on the component-side. Stubs invoke the
component implementation methods using native language conventions, so that the component can be
implemented in a natural style. Stubs also implement the component model semantics.

4.3. THE COMPONENT MODEL 27

Component Invoker and Component Adaptor

As its name suggests, the Component Invoker (CI) presents an interface that allows clients, or more likely
interface objects, to invoke entry points within the component implementation. This service comprises
two functions:

e Activating the component implementation.

e Transferring control, and limited request data, to the entry point.
Transferring the request to the component implementation is implemented using a, system provided,
trusted path mechanism. The Component Adaptor (CA) is the destination of all requests. Together,

the CI and the CA provide a standardised request mechanism, making component stubs and interface
objects platform independent.

. Component
Client Implementation
7 +
= CA

1
Protection Domain
Boundary

Figure 4.4: Component Invoker / Component Adaptor

Component Locator

Clients must provide the CI with the location of the component implementation, so that it can activate
and invoke the appropriate code. Clients retrieve this information using the Component Locator (CL).

4.3 The Component Model

A component model provides the technical description of components, i.e. how they behave, how they are
used, and how they interact with other elements. A component-based programming system’s effectiveness
is primarily determined by how well the technical definition correlates to the abstract definitions presented
in Section 2.2. This section presents the MCS component model, which is based on four fundamental
concepts:

Components = Interfaces + Encapsulation 4+ Polymorphism + Composition

28 CHAPTER 4. COMPONENT SYSTEM DESIGN

e Interfaces describe how clients interact with components. Although it may appear that interfaces
are essentially a syntactic concern, they raise a number of critical issues related to the construction
of components.

e Encapsulation enforces modularity.

e Polymorphism is an object-oriented software technology feature, that has been extremely effective
in the construction of extensible software.

e Composition describes how components are used to construct software. Code reuse, an original
motivation for components, is the primary concern of composition.

In addition to these, features such as events, exceptions and persistence, are also described. As stated
in Section 2.2, many of the features of component-oriented software are also present in object-oriented
programming languages. It is important that features of a component model are evaluated on whether
they achieve the goals of component-oriented software presented in Section 2.2, and not on how ‘object-
oriented’ they are.

4.3.1 Interfaces
Interface Characteristics

An interface is a description of a set of semantically related operations. MCS interface specifications
contain the name, arguments and return type of each operation. A number of semantic modifiers may
also be applied to constructs within a specification. These modifiers are described in the following chapter.
Specifications are expressed in a subset of OMG IDL described in Section 4.4. An example of a simple
interface specification is presented below, the OMG IDL syntax should be fairly intuitive.

interface IWeaponSystems {
int AcquireTarget(target_desc_t *spec);
target_desc_t FireAtTarget();
void FirePattern(pattern_desc_t p);
wstatus_t Status();

I

MCS interfaces are immutable. An interface provides a contract between clients and the component-
class, specifying what functionality is available, and how it may be accessed. Allowing interfaces to
change violates this contract, creating a number of problems, such as the syntactic fragile base class
problem [IBM94]. Although solutions to some of these problems have been developed, e.g. by the SOM
architecture [FCDR95], these are invariably complicated. Rather than allowing interfaces to change, MCS
component-classes may ezport (see below) multiple interfaces. Interfaces may be added to a component-
class, but never removed. This model provides all the flexibility of changeable interfaces, yet avoids all
the problems. Note that not only may a component-class export multiple interfaces, a single interface
may be exported by multiple component-classes.

MCS component-classes export one or more interfaces. Separating the methods of a component-class
into semantic groups has a number of benefits in relation to polymorphism, code reuse and versioning.
These benefits are described in their respective sections below. A component-class exports an interface by
providing implementation code for all the operations of the interface, and registering their entry points
with the Component Locator. An example component-class declaration is presented in Figure 4.5.

4.3. THE COMPONENT MODEL 29

component CStarfleetGalaxyClass {
provides IEngineeringConsole;
provides IEngines;
provides IHolodeck;
provides INavigation;
provides ISensors;
provides IStellarCartography;
provides IWeaponSystems;

Figure 4.5: Example Component Specification
exception MCSE_STE_INSFBUFFER { };

[static] interface IClassInterface {
cicap_t constructor();
void destructor(cicap_t ref);
cicap_t create_cicap(cicap_t owner, short interfaces, char slot);
void get_typeinfo(cap_t info, int size) throws(MCSE_STE_INSFBUFFER) ;

Figure 4.6: Class Interface IDL

Every component-class also implicitly exports the class interface. This static interface (see Section 4.3.10)
provides the methods required by the component model. Figure 4.6 contains the IDL specification of the
class interface.

Interfaces cannot be subtyped (Section 2.2.3), i.e. an interface cannot be derived from an existing ‘base’
interface, as is allowed in most object-oriented programming languages, e.g. Java or C++. The exclusion
of subtyping is discussed with polymorphism in Section 4.3.3.

Interfaces are often referred to as contracts. OMG IDL interface specifications contain only the signatures
of the operations. The notion of interfaces as contracts has been extended by a number of research projects
[HHG90, Hol92] to include safety conditions (i.e. invariants), progress conditions [CM98], performance
requirements and resource consumption limits. What should be included in a contract, how contracts
are specified, and how contracts are enforced, is a complex area of research and outside the scope of this
thesis.

An interface should contain a relatively small set of semantically related methods. In addition to this,
methods should have no dependence on the implementation of methods of other interfaces. Such depen-
dencies create numerous problems for component composition and code reuse. The importance of this is
discussed in Section 4.3.4.

Component Construction Model

A refinement occurs once it is accepted that something does not have to be only what it appears
to be.
Clemens Szyperski [Szy97]

Traditionally, an interface has defined the underlying module. In systems where modules may export
multiple interfaces, and a single interface may be exported by multiple modules, this is no longer true.
As a result, the relationship between interfaces and modules in such systems has become confused. This

30 CHAPTER 4. COMPONENT SYSTEM DESIGN

section presents a reference model for the construction of components that is assumed throughout this
chapter.

Essentially, interfaces provide a view of a component-class. Each component-class implements some core
functionality and data, that it allows access to via a language-level interface. Exported interfaces apply
some additional processing to this core-interface, to present the functionality and data in a certain format.
This model is best described by a diagram, as shown in Figure 4.7.

Exported Core
Interfaces Functionality

Language Interface

Figure 4.7: Component-Class Structure

Different views of a given component-class may exist for a variety of reasons. Views can provide func-
tionality and data in different formats, e.g. file data as a raw byte stream or a sequence of strongly typed
records, and they can provide different levels of access. Principally however, views present semantically
disjoint sets of operations, providing a foundation for polymorphism (Section 4.3.3).

A crucial feature of this model is that it contains a concrete notion-of-self, i.e. there is a central module
that defines the behaviour of the component-class. A clear notion-of-self is required if components are
to be used as atomic units of composition. As interfaces are added horizontally, this model also allows
interfaces to be added to a component-class without affecting existing interfaces, and hence existing
clients.

Interface Objects

Clients always interact with a component-instance via one of the interfaces exported by its component-
class. Interfaces are mapped into the client’s programming language using the native ‘object’ construct.
This abstraction, called an interface object, was introduced in the system model. As an example, the
C++ interface object for the IWeaponSystems interface presented above would be:

class IWeaponSystems {

public:
IWeaponSystems(cid_t cid);
IWeaponSystems(cicap_t ref);
int AcquireTarget(target_desc_t *spec);
target_desc_t FireAtTarget();
void FirePattern(pattern_desc_t p);
wstatus_t Status();

4.3. THE COMPONENT MODEL 31

Interface object constructors are described in detail in Chapter 5. Briefly, however, clients must either
provide the interface object with an existing component-reference, or the identifier of the component-class
of the new instance to be created by the interface object.

Each interface object contains a reference to a component-instance. When a method of the interface
object is called, the reference’s component-class is resolved, and the appropriate entry point in the
component implementation is invoked. Dynamically resolving the implementation to invoke using the
component-instance is called late-binding, and is an essential feature of component-oriented programming.
Late-binding, shown in Figure 4.8, is the key to polymorphism and versioning, which are discussed later
in this chapter.

wWhich arrow to follow is determined by the e.
component-class of the instance reference |, «
contained in the interface object. - - .
- g e.
-
-

Figure 4.8: Interface Objects and Late Binding

4.3.2 Encapsulation

Encapsulation (introduced in Section 2.2) comes in two flavours, data and control. Data encapsulation
ensures that only the component-class may access the context data of an instance. Control encapsulation
ensures that the only way a client can operate on an instance is via the registered entry points. Encap-
sulation guarantees the separation of specification and implementation created by interfaces, providing
three prime benefits:

e A component-class’s implementation, and context data format, may be changed without (syntacti-
cally) affecting clients.

e Component-instances may contain privileged data. As the component implementation may execute
within an amplified protection domain (Section 4.2) this is important. Without data encapsulation,
the component implementation cannot trust the security or integrity of the instance data.

e Invariants can be guaranteed. This requires both data encapsulation, and control encapsulation, so
that the control path cannot be interfered with.

As shown in the system model (Section 4.2), component-instances are accessible only from the component-
class’s protection domain, providing system enforced data encapsulation. Furthermore, the Component
Adaptor will only invoke entry points that have been registered with the Component Locator, providing
encapsulation of control. Consequently, MCS provides genuine encapsulation of both data and control.
Encapsulation is required if components are to provide secure services.

32 CHAPTER 4. COMPONENT SYSTEM DESIGN

Despite their claims, few existing component and object-oriented systems provide genuine encapsulation.
For example, C++ encapsulation can be violated by any programmer using pointer arithmetic and Java
encapsulation can be violated by hostile byte-code. COM does allow component-instances to be properly
encapsulated using a separate address-space, however, this results in a significant performance penalty
(see Chapter 6), so that most COM components are used in-process.

4.3.3 Polymorphism

Polymorphism is defined as the ability to assume multiple forms. In component software, this corresponds
to the ability of a strongly typed client variable to refer to instances of different component-classes.
Component-classes that may be referred to by the same client variable type are said to be substitutable
for one another. A component model must define how substitutability is determined.

Object-oriented languages usually use subtypes, formed by interface inheritance (see Section 2.2.3), to
determine substitutability. A subtype is substitutable for any of its supertypes. Despite its popularity,
determining substitutability in this fashion is rejected. Subtyping imposes a hierarchical relationship
between substitutable component-classes, which is too inflexible for component-oriented software. A
component-class must be able to adopt unrelated views, and behave polymorphically with respect to
these views.

MCS employs a polymorphic model that flows directly from the interface model described above. If two
component-classes export the same interface, then a client can operate on instances of either using the
same interface object. In the context of this interface, both component-classes appear the same to the
client, i.e. interface objects are inherently polymorphic. There is no well-known term for this approach
to polymorphism, which is referred to as interface polymorphism within this thesis. Polymorphism is
closely related to late-linking, and the ability of a single interface object type to operate on different
component-classes was alluded to in Figure 4.8.

Interface polymorphism provides the functionality traditionally implemented using subtype polymorphism.
Other polymorphic models, e.g. parametric polymorphism [RS97], are often used in conjunction with
subtype polymorphism to provide additional functionality. These models, however, have not shown
themselves to be beneficial at the component level. A detailed explanation of many polymorphic models
can be found in [AC96].

4.3.4 Code Reuse: From Inheritance to Composition

Code reuse is one of the prime motivations for component-oriented software. In fact, it was the observation
that object-orientation had failed to deliver the promised levels of code reuse and shorter development
times [Ude94], that led to the development of component-oriented software. Thus, how well a component
model supports reuse is of utmost importance. This section begins with a discussion of inheritance
(Section 2.2) as it is the reuse model of all current object-oriented programming languages.

Inheritance

Although object-oriented languages all support some form of inheritance, the exact model employed
differs. These differences occur because languages use inheritance to fulfill a variety of goals. To reason
clearly, these goals, and how inheritance achieves them, must be identified and separately addressed.
Three ‘cardinal facets’ of inheritance are identified in [Szy97], a fourth has been added by the author:

e Subclassing is the inheritance of code, often called implementation inheritance.

4.3. THE COMPONENT MODEL 33

e Subtyping was discussed in Section 4.3.3, and is known as interface inheritance.

e Substitutability was also discussed in Section 4.3.3. Most languages guarantee that subtypes are
substitutable for supertypes, although FEiffel is an exception.

e Customisation. Inheritance allows the implementation of a method of a base-class to be replaced,
e.g. virtual inheritance in C++. Such a mechanism is intended to allow a base-class to be to be
customised or specialised.

Implementation Inheritance vs Customisation

Discussions of inheritance rarely distinguish between implementation inheritance and customisation. As
these two facets serve entirely different purposes, this lack of distinction results in misleading observations
and conclusions. This section clearly describes the semantics of each, and the purpose they serve.

Implementation inheritance allows a new component-class to reuse a method implementation from an
existing component-class. Customisation allows a component-instance to replace the implementation of a
method in another component-instance. The latter involves the modification, not reuse, of existing code.
An example is the most effective way to clarify these ideas.

Figure 4.9 shows two component-classes. base provides two methods, A and B, while derived provides
three methods, A, B and C. derived inherits its implementation of A from base, but implements B itself.

A is inherited

Figure 4.9: Implementation Inheritance

Figure 4.10(A) shows the flow of control when a client invokes A on an instance of derived. As the
method implementation is inherited, control is passed to the component-class that actually implements
the method, i.e. base. Obviously, this is code reuse; derived has reused base’s implementation of A.
Now assume that derived has customised base’s implementation of B. Figure 4.10(B) shows the flow of
control when a client invokes B on an instance of base. When shown this way, it becomes obvious that
customisation is not code reuse. Implementation inheritance and customisation are, in fact, orthogonal.
For example, a class may override a method of an existing class, with an implementation it inherited
from another existing class.

Implementation Inheritance

With the removal of customisation, implementation inheritance semantics becomes very simple, effectively
equivalent to a cut-and-paste of code. Despite this simplicity, implementation inheritance still presents
a number of problems:

e Inheritance is static. Component software is inherently dynamic, and instances of the same component-
class are used in a variety of roles. This means that a component-class must be able to reuse different
implementations depending on its context and state.

34 CHAPTER 4. COMPONENT SYSTEM DESIGN

Derived Base Derived Base
Client A
Client———»| B
—P|A
B [4+—
-------- o
.‘_ ________
- ---- 4 - - - -1
Code Reuse Customisation

(A) B)

Figure 4.10: Control Flow of Reuse vs. Customisation

e Like interface inheritance, implementation inheritance imposes a hierarchical relationship. Such a
relationship is inappropriate for component-based software, reducing its flexibility. A component-
class should be able to reuse implementations from a variety of sources, specifying which implemen-
tations are provided by which sources. This style of reuse is known as mizins [BC90].

e Most importantly, it is unnecessary. Components are by definition reusable software modules. In-
troducing a new reuse model simply because a component-class is being used by another component-
class, rather than a client, is nonsensical.

Related to the third point above, is the concept of a specialisation interface [KL92], i.e. the interface
between a base-class and a sub-class. For example, in C++ the specialisation interface is the union of
protected and public members, while the client interface is simply the public members. The existance
of a specialisation interface that is different from the client interface implies that a sub-class is required
to have greater knowledge of a base-class than a client. Code reuse is encouraged by minimizing the
knowledge required for reuse, a specialisation interface clearly violates this rule.

Composition and Aggregation

Code reuse in MCS is based on composition, also referred to as forwarding and containment. Under
composition, components reuse code exactly the same way clients do, by creating an instance and in-
voking methods on its interfaces. Composition relies on the natural reusability of the component model,
eliminating the specialisation interface. As a component-class may use context and state data to decide
which other component-class to call, composition is inherently dynamic. Furthermore, composition does
not impose any structural constraints on the developer.

Figure 4.11 shows a component-class, Extended, reusing another component-class Base. Clients invoke
methods on instances of Extended, via the A, X and Y interfaces. The implementations of these method
in the Extended component-class, invoke methods on the A and B interfaces of the Base component-class,
hence reusing its code. Although this model is far simpler than implementation inheritance, i.e. no new
concepts are introduced at all, it is code reuse, which was the original goal. Three distinct styles of code
reuse can be identified in Figure 4.11.

e Traditional, library-style, reuse of the B interface. Any of the implementations in the Extended
component-class can make use of the functionality already provided by the B interface. This is a

4.3. THE COMPONENT MODEL 35

Extended Base

Figure 4.11: Reuse By Composition

natural form of reuse, employed by procedural languages.

e Extension of the A interface. Extended can add extra functionality to the implementation of A
provided by Base. This is achieved by each method of the A interface in Extended calling the
corresponding method in base, but performing additional processing before the call, after the call,
or both.

e Directly exporting the functionality of the Base component-class. A common scenario is that
the Extended component-class exports some functionality of the Base component-class without
modification. This is a special case of the previous item, notable because it is common and can be
optimised.

Aggregation is an optimisation of the case that a component-class C'g,: directly exports the functional-
ity of another component-class Cpgse. Applying composition directly, a method that is unchanged by
Cpqt must still be relayed by Cgyt to Cpgse. This incurs the overhead of an extra, and unnecessary,
method invocation. Aggregation allows interfaces of a component-class to be directly exported by another
component-class. When a client invokes a method of an aggregated interface of C'g,¢, the request is sent
directly to C'gese with an appropriate instance. Figure 4.12 illustrates the aggregation concept.

Aggregated Interface @] o - -
@

Extended Base

Figure 4.12: Component Aggregation

Aggregation must be transparent to both clients and components. The most important implication of
this is that aggregation must be transitive, i.e. a component-class must be able to aggregate an interface
from a component-class which itself aggregates the interface. Furthermore, this should not result in any
additional overhead. Transitive aggregation is shown in Figure 4.13.

Composition and aggregation both operate at interface granularity. Section 4.3.1 stated that An interface
should contain a relatively small number of semantically related operations’. Component-classes should
therefore be able to independently reuse any interface of another component-class, without creating

36 CHAPTER 4. COMPONENT SYSTEM DESIGN

Figure 4.13: Transitive Aggregation

semantic problems. A more precise discussion of the semantic issues related to interfaces is contained in
Section 4.3.5 below.

4.3.5 Customisation

Customisation allows a component-instance to replace the implementation of a method in another
component-instance. It is the component analogue of virtual inheritance. Figure 4.10 illustrated the
semantics of customisation.

Object-oriented programming languages primarily use customisation for polymorphism. Languages typ-
ically implement polymorphism using subtypes formed by interface inheritance. A given object of type
T4 may be used (substituted) whenever the expected type T is a supertype of T4. When it is substi-
tuted, the object is cast to the expected type (Tr). This means that when a method is called, it is the
implementation defined by Tg and not T4 that is invoked. Customisation overcomes this problem by
allowing T’y to replace the implementation of the method in T, when T is being used as a base-class
for Ty. Other instances of T retain the original implementation. Therefore, when an object of type T4
is cast to type T’g, which is whenever it is being used polymorphically, the correct implementation is still
invoked.

Customisation is therefore used in object-oriented languages to work-around the deficiencies of their
polymorphism model, in particular, the lack of separation between type and implementation inheritance.
As MCS clearly separates polymorphism and code reuse, this problem does not occur. A component-
class can export any interface, and provide a custom implementation of its methods. When a method
is invoked on an interface object, the component-class of the contained reference is determined and the
appropriate implementation invoked.

Although the traditional motivation for customisation is already satisfied by the polymorphism model,
component-oriented software creates new motivations for customisation. Most of these motivations come
from the desire to be extensible. For example, in a component-based file system, a user may wish to
extend the directory component-instances they own to implement a customised file cache. Also, a system
administrator may extend a printer component-instance to handle an error in the driver or implement
fair scheduling. Allowing such modifications is a core feature of extensible systems that can improve
the performance, correctness and simplicity of applications [GB97a]. Customisation is concerned with
individual instances not component-classes.

Semantic Issues of Customisation

Customisation creates a number of semantic difficulties that must be understood and addressed by the
component model. This section describes the nature of these difficulties. As an introduction, consider

4.3. THE COMPONENT MODEL 37

class base {

private:
int flag;

public:
void some_method()
{

// some code
flag = value;
// some more code

}
void some_other_method()
{
// some code
some_method () ;
// some more code
}
};
class derived {
public:
void some_method(int param)
{
// code
}
};

Figure 4.14: C++ Customisation Example

the C++ code fragment in Figure 4.14.

In this example, a class derived customises the method some_method () from class base. If a client in-
vokes some_other_method () on an instance of class derived, the implementation in base will be invoked.
This is implementation inheritance. When some_other_method () calls some_method () on itself, the im-
plementation in derived will be invoked. This is customisation. Problems occur if some_other_method ()
depends on some_method () setting the flag state variable, which the overriding method does not (and
in this example cannot) do.

Customisation causes problems when methods of a class invoke other methods on themselves, e.g. as
some_other_method () does. When an object calls a method on itself, it is called self-recursion. Except
in trivial cases, self-recursion almost always creates semantic dependencies between the implementations
of methods within a class. Problems could be avoided by including a complete semantic description of
each method in the interface specification, so that an overriding implementation would know exactly what
it was required to do. Unfortunately, due to the infinite number of ways semantic dependencies can be
introduced, the creation of such descriptions is, at present, impractical. Currently, a developer wishing
to override a method in a base-class must manually inspect the source of the the existing implementation
and the implementation of any other methods in the base-class that call the method. This is a tedious,
time-consuming, and error-prone task at best. When the base-class is embedded in a class hierarchy in
which customisation is being heavily used, finding all dependencies becomes impossible.

As subtle, undefined, semantic dependencies are an intrinsic feature of programming, simple customisation
appears unachievable. Encapsulation has traditionally been used to overcome such problems, and it is
here the problem lies. Customisation violates encapsulation. Figure 4.14 clearly shows encapsulation of
control being violated, i.e. class derived modifies the control flow of an existing method. Others have
made the observation that ”inheritance breaks encapsulation” [Sny86], however, it is customisation and

38 CHAPTER 4. COMPONENT SYSTEM DESIGN

not inheritance per se, that violates encapsulation.

Customisation ! Encapsulation

A clarifying example of this statement is provided by the semantic fragile base class problem (semantic
FBC), which is concerned with how a base-class implementation can be updated without breaking sub-
classes. Issues associated with re-compilation and entry-point location are part of the syntactic FBC.
When a base-class implementation is modified, semantic relations between its methods are created and
destroyed. To avoid problems, overriding methods in sub-classes must also be updated to include the
new semantics. Therefore, modifying the implementation of a base-class results in all classes down the
hierarchy having to be modified. Clearly, encapsulation is not respected.

Interface Delegation

Encapsulation is violated because customisation is performed on syntactic, rather than semantic, entities.
An approach to customisation, based on this observation, was proposed by Lamping [Lam93]. In this
scheme, each method in an interface specification must declare what other methods it has a dependency
on, i.e. other methods within the class it calls. Using these annotations, a dependency graph is constructed
at compile time, and methods are collected into groups. Customisation is performed on groups rather
than individual methods, hence avoiding any semantic dependencies. A similar approach is taken by
MCS, however, interfaces are used as the semantic entities, rather than groups.

Customisation in MCS is based on interface delegation, shown in Figure 4.15. A component-class declares
certain interfaces as delegatable, which can then be overridden at runtime by another component-instance
(Cp). Responsibility for handling methods invocations is therefore delegated to C'p. If a client invokes a
method on a delegated interface, the call is redirected to the delegating component-instance Cp.

Override
Interface B

Interface B

Delegated

(A) (B)

Figure 4.15: Interface Delegation

Section 4.3.1 described interfaces as ‘a set of semantically related operations’. As a component-instance
must override an entire interface, encapsulation is maintained, avoiding the semantic problems described
above.

4.3. THE COMPONENT MODEL 39

4.3.6 Events

Component interfaces have so far been called by clients, transferring control to the component imple-
mentation. Such interfaces are incoming interfaces. Conversely, the methods of outgoing interfaces are
called by the component implementation, and transfer control to the client. The methods of outgoing
interfaces are called events, and are implemented by an event sink. Figure 4.16 illustrates the concept. A
component exports both an incoming I and an outgoing E interface. Arrows show the direction of control
flow, originating from the invoker and pointing towards the implementer.

o

Client Component

Figure 4.16: Incoming vs Outgoing Interfaces

Events are typically used to send status information to a client, avoiding the need for clients to poll
components. This is especially useful when components are being used to interact with asynchronous
devices such as humans, printers and disks.

MCS employs a publish and subscribe event model. Component-classes publish outgoing interfaces in
their IDL specification, as shown in the following example:

component CStarfleetGalaxyClass {
provides IEngineeringConsole;
provides IEngines;
provides IHolodeck;
provides INavigation;
provides ISensors;
provides IStellarCartography;
provides IWeaponSystems;

publishes IHail;

Clients subscribe for events by calling an event registration method on the component-instance of interest.
A reference to an event sink must be passed to the registration method. An event sink can be an instance
of any component-class that implements as an incoming interface, the outgoing interface of interest.
Figure 4.17 clarifies the model.

When a component-instance raises an event, it invokes the appropriate method on the incoming interface
of every registered event sink. Each registration method has a corresponding unregister method that
allows clients to remove an event sink.

4.3.7 Component Lifecycle

Component-instances are explicitly created, and may be explicitly destroyed, by clients. As a single
component-instance may be used by a number of non-cooperating users, however, it is not always obvious

40 CHAPTER 4. COMPONENT SYSTEM DESIGN

1. Client calls a registration method on a component incoming interface,

/' -\‘ and passes a reference to an Event Sink component that exports an
interface E known to the component.

Client App.

Event Sink Component

2. Component raises an event by invoking
an E interface method using the passed
component reference.

Figure 4.17: Events Using Sink Components

when an instance should be destroyed, and who should destroy it. Object-oriented languages solve this
problem by automatically destroying objects when there are no clients holding a reference to the object.
This is not suitable for MCS. Component-instances do not exist in the client programmer’s model, only
interface objects do, and so instances never go out of scope. Furthermore, references to component-
instances may be freely distributed without system or library intervention, therefore automatic reference
counts cannot be maintained.

As MCS components are persistent, garbage collection is performed in a fashion similar to that of files
in traditional operating systems, i.e. explicit reference counting. Clients must explicitly register, and
revoke, their interest in a component-instance. When all clients have revoked their interest, the instance
is destroyed.

Methods for incrementing and decrementing an instance’s reference count are not defined by the MCS
component model. This service can be built on top of the underlying component model, as is done in
CORBA using the Life Cycle Service [COR9T].

4.3.8 Dynamic Type Discovery

Clients generally know statically which interface they should use to communicate with a passed component-
reference. For example, a client will always use the (e.g.) IByteStream interface when it expects the
passed reference to be a generic data file. If the component-class does not export the interface, then an
exception will be thrown (Section 4.3.9).

There are situations, however, in which a client uses different interfaces depending on the component-
class. For example, if an existing interface (Ip) becomes inadequate, a new version of the interface (In)
with additional methods may be developed. Clients may prefer to use Iy to take advantage of the new
functionality, however, to be backwardly compatibly they should also accept Ip. When a client is passed
a reference, it must know which interface object to use. It could first try Iy, and then I if an exception
is thrown, however, a cleaner solution is to provide clients with access to a component’s type information.
Publishing type information at runtime is called reification.

Every MCS component provides type information via an entry point of the class interface (Section 4.3.1).
This type information includes the component-class identifier and the identifier of every interface ex-
ported. A set of flags convey additional information about each exported interfaces, such as whether the
interface is aggregated, delegatable, outgoing, and if it is actually delegated for this instance. The syntax
of this entry point, and the format of the data returned, is described in the following chapter.

4.3. THE COMPONENT MODEL 41

Dynamic type discovery also allows a client to quickly determine whether a component-class exports a
specific set of interfaces (known as a category). Both CORBA and COM publish type information at
runtime, CORBA uses the interface repository, while COM uses the IProvideClassInfo2 interface which
each component must implement.

4.3.9 Exceptions

Runtime errors can be raised by MCS-RT, component stubs, and interface objects. For example, MCS-RT
will return an error if the client does not hold a PDX capability to the invoked entry point, component
stubs will return an error if the passed reference is invalid, and an interface object will return an error
if it does not contain a component-reference. A mechanism is required to report these errors, known as
exceptions, so that they can be distinguished from successful return values. In MCS, the CI (Section 4.5)
returns an indication of whether an exception has occurred. Interface objects check this indication, and
convert, exceptions into the native language format. As MCS uses OMG IDL, component implementations
are also allowed to explicitly raise exceptions. These exceptions must be declared in a component’s IDL
specification. MCS exceptions can therefore be divided into three categories:

System exceptions are thrown by the MCS-RT. For example, protection faults, or any unhandled
operating system exception encountered while executing the method.

Stub exceptions are returned by the component stub. Stub exceptions are often handled by the inter-
face object, e.g. when the called interface is aggregated, however, other stub exceptions, e.g. invalid
reference, are returned to the client. Stub exceptions and system exceptions do not have to be
declared in the component’s IDL.

User exceptions are thrown explicitly by the component implementation code. How exceptions are
passed from the component implementation to the component stub, depends on the language map-
ping. Each method lists all exceptions it may throw in its IDL specification. If an undeclared
exception is thrown, the component stub converts it into an ‘unknown user exception’ stub excep-
tion.

Stub and user exceptions may return exception data to the client. Section 4.5 describes how exceptions
are raised and passed to an interface object, while Section 5.4.2 describes how interface objects pass
exceptions to clients.

4.3.10 Static Interfaces

Method invocations execute within a (data) context defined by the component-instance on which the
method is invoked. Contexts are completely disjoint. These are the standard object-oriented method
semantics. Occasionally, however, it is convenient for certain methods to always execute in a single,
global, context. These methods are called static methods. In MCS, static methods are grouped into static
interfaces.

As they only ever execute in a single context, static methods do not require a reference for method
invocation. Therefore, static methods are procedural rather than object-oriented.

Static interfaces are motivated by the desire to used component-based programming features, e.g. poly-
morphism and late-binding, in a procedural model. They are useful in an object-oriented model for
allowing configuration and management of the component-class as a whole. For example, constructors
are effectively static methods.

42 CHAPTER 4. COMPONENT SYSTEM DESIGN

4.4 Interface Definition Language

An interface definition language (IDL) is used to specify interfaces and component-classes. This specifi-
cation serves two purposes:

e It provides an unambiguous, implementation language independent, specification of a component-
class, allowing clients and components to be developed in isolation.
e As the specification is unambiguous, it can be used to automatically generate the code for interface

objects and component stubs.

MCS uses a subset of the OMG CORBA 2.3.1 IDL [COR99c| and the extensions specified in the March
1999 CORBA Components submission [COR99e]. As the CORBA Components submission is still volatile,
it is possible that examples in this thesis may become invalid.

Elements of the CORBA 2.3.1 IDL not supported are:

o Valuetypes.

e Subtyping of interfaces.
Elements of the CORBA Components IDL which are supported:

e Grammar rules 2 — 24 (incl.) from pages 5-35 and 5-36 of [COR99e]. These rules pertain to the
declaration of component-classes, and the interfaces they export.

4.5 Component Invoker and Component Adaptor

Section 4.2.2 introduced the Component Invoker (CI) and the Component Adaptor (CA) as a standardised
request mechanism interface, comprising two functions:

e Activating the component implementation.

e Transferring control, and limited request data, to the entry point.
Figure 4.4, reproduced below as Figure 4.18, shows the position of the CI and CA within the system

model. This section describes the client interface to the CI, and the interface between the component
stubs and the CA, using C syntax.

4.5.1 Type Declarations

This section describes the additional types introduced by the CI interface.

A res_desc_t structure is returned by each method invocation request to the CI. The datal and data0
fields either contain the method’s return value, or exception data, depending on the value of type. The
type field value has the following meanings:

4.5. COMPONENT INVOKER AND COMPONENT ADAPTOR 43

. Component
Client Implementation
7 +
= CA

1
Protection Domain
Boundary

Figure 4.18: Component Invoker / Component Adaptor

typedef struct {
unsigned long datal;
unsigned data0 : 62;
unsigned type : 2;
} res_desc_t;

0 Successful method invocation; datal and dataO contain the method’s return value.

1 User exception thrown; the upper 16-bits of datal contains an exception identifier (EID),
with the remaining bits, and data0, containing the exception structure defined in the IDL.
This imposes a 110-bit limit on the size of exception structures.

2 Stub exception thrown; datal and data0O are as for user exceptions.

3 System exception thrown; datal and dataO are as for user exceptions.

4.5.2 Component Invoker Interface

ci_request

int ci_request(entry_pt_t ept, cap_t param, res_desc_t *ret, void *pd);

44 CHAPTER 4. COMPONENT SYSTEM DESIGN

Parameters:

ept [in] A reference for the entry point to invoke, normally retrieved
using the Component Locator.

param [in] A parameter passed by-value to the component stub.

ret [out] A pointer to a buffer that contains the return value of the
component stub on return. The format of this descriptor was
described in Section 4.5.1 above.

pd [in] A protection domain (PD) object that is merged with the

protection context of the component-class for the duration of
the method. Two special values, described below, may be
passed instead of an actual PD object.

These values, defined in mcs_ci.h, may be passed instead of an actual PD object:

PD_EMPTY None of the client’s protection domain is added to the pro-
tection context.

PD_MERGE All of the client’s protection domain is added to the pro-
tection context.

Description:

This function invokes an entry point, ept, in the component implementation with the parameter param.
The entry point executes in a protection domain that is the union of the protection context and pd. On
return, ret contains a valid result descriptor.

A client, or more likely an interface object, uses this function to invoke entry points in the component
implementation. The entry point is passed

Return Value:
On success the function returns zero. On failure one of the following error values (defined in mcs_ci.h)
is returned:

MCSE_EXCEPTION An exception has been thrown, details in ret.
MCSE_FAIL Unspecified error.
ci_reset

int ci_reset();

Description:
A client uses this function to re-initialise the Component Invoker. What re-initialisation involves depends
on the implementation.

Return Value:
On success the function returns zero, otherwise it returns MCSE_FATIL.

4.5. COMPONENT INVOKER AND COMPONENT ADAPTOR 45

ci_get_opt and ci_set_opt

int ci_get_opt(int option_id, void *optval, int *optlen);
int ci_set_opt(int option_id, void *optval, int optlen);

Parameters:
option_id [in] Identifies the option being manipulated.
optval [in]/[out] Points to a buffer for the option value. For set, this is an
[in] parameter containing the new option value. For get, it is
an [out] parameter containing the existing option value when
the function returns successfully.
optlen [in]/[inout] The size, in bytes, of the value. For set, this is an [in] param-
eter containing the size of the passed optval buffer. For get,
this is an [inout] parameter, initially containing the size (in
bytes) of the passed optval buffer, and containing the size
(in bytes) of the value stored in optval when the function
returns successfully.
Description:

get_ci_opt and set_ci_opt manipulate the options associated with the Component Invoker. Options
may effect the behaviour of all instances of the CI running in the system, or only of the instance called.

Currently no CI options defined.

Return Value:
On success the function returns zero and the result parameters are set appropriately. On failure one of
the following error values is returned:

MCSE_SMALL_BUFFER The supplied buffer is too small for the value (ci_get_opt
only).

MCSE_FAIL Unspecified error.

MCSE_.UNKNOWN_OPT The CI does not recognise the option_id.

4.5.3 Component Adaptor Interface

When a method is invoked using ci_request, the appropriate component implementation is loaded and
a request sent to the CA via the trusted path. An instance of the CA executes in the protection domain
of every active component implementation. It is the responsibility of the CA to invoke the entry point
identified with the passed parameter. When the entry point returns, the CA sends the return value back
to the CI via the trusted path. Therefore, the only interface syntax that needs to be defined is that of
the invoked entry points. Each MCS entry point must have the type:

typedef res_desc_t (ca_stub_tx)(capt_t param);

46 CHAPTER 4. COMPONENT SYSTEM DESIGN

4.6 Component Locator

An interface object must pass an entry point reference to ci_request. This information is retrieved
using the Component Locator (CL).

4.6.1 Type Declarations

This section describes the additional types introduced by the CL interface.

typedef unsigned long cid_t;
typedef unsigned long iid_t;
typedef unsigned short mid_t;

4.6.2 Component Locator Interface
cl_get_entry_pt

int cl_get_entry_pt(cid_t cid, iid_t iid, mid_t mid, entry_pt_t *epr);

Parameters:
cid [in] Component-class identifier.
iid [in] Interface identifier.
mid [in] Method identifier.
epr [out] A pointer to a buffer in which the entry point reference will
be returned on success.
Description:

cl_get_entry_pt() returns the entry point reference for a method. Methods are uniquely identified by
their (cid,iid,mid) tuple. An interface object statically knows the IID and MID of each of its methods,
and given a component-reference it can obtain cid using the cl_get_component_class() function de-
scribed below. The definition of entry_pt_t depends on the MCS-RT implementation, and is located in
mcs_cl.h.

Return Value:
On success the return value is zero and the structure pointed to by epr contains the method’s entry point
reference. On failure the return value is non-zero and contains one of the following error codes:

4.6. COMPONENT LOCATOR 47

MCSE_ARG_INVALID epr is NULL.

MCSE_FAIL Unspecified error.

MCSE_IID_NOT_EXPT Component-class CID does not export interface IID.
MCSE_MID_NOT_EXPT Interface IID does not contain the method MID.
MCSE_PROT_FAIL The client does not have permission to access the location

information for this component-class (if it exists).

cl_set_entry_pt

int cl_set_entry_pt(cid_t cid, iid_t iid, mid_t mid, entry_pt_t epr);

Parameters:
cid [in] Component-class identifier.
iid [in] Interface identifier.
mid [in] Method identifier.
epr [in] New entry point reference.
Description:

Sets the registered entry point for a method. Future calls to cl_get_entry_pt() using the same
(cid,iid,mid) tuple will return epr.

Return Value:
On success the return value is zero. On failure the return value is non-zero and contains one of the
following error codes:

MCSE_ARG_INVALID epr is invalid.
MCSE_FAIL Unspecified error.
MCSE_PROT _FAIL The client does not have permission to set the location in-

formation for this component-class.

cl_get_component_class

cid_t cl_get_component_class(cicap_t ref);

Parameters:

ref [in] A reference for a component-instance.

Description:
cl_get_component_class () returns the identifier of the reference’s component-class. The cicap_t type

48 CHAPTER 4. COMPONENT SYSTEM DESIGN

is described in the following chapter.

Return Value:

If the return value is non-zero, the reference is for a valid component-instance and the return value is the
identifier of the instance’s component-class. If the return value is zero then the reference is not to a valid
component-instance.

cl_reset

int cl_reset();

Description:
A client uses this function to re-initialise the Component Locator. What re-initialisation involves depends
on the implementation.

Return Value:
On success the function returns zero, otherwise it returns MCSE_FATIL.

cl_get_opt and cl_set_opt

int cl_get_opt(int option_id, void *optval, int *optlen);
int cl_set_opt(int option_id, void *optval, int optlen);

Parameters:
option_id [in] Identifies the option being manipulated.
optval [in]/[out] Points to a buffer for the option value. For set, this is an
[in] parameter containing the new option value. For get, it is
an [out] parameter containing the existing option value when
the function returns successfully.
optlen [in]/[inout] The size, in bytes, of the value. For set, this is an [in] param-
eter containing the size of the passed optval buffer. For get,
this is an [inout] parameter, initially containing the size (in
bytes) of the passed optval buffer, and containing the size
(in bytes) of the value stored in optval when the function
returns successfully.
Description:

cl_get_opt and cl_set_opt manipulate the options associated with the Component Locator. Options
may specify the behaviour of all instances of the CL running in the system, or only of the instance called.

Currently no CL options defined.
Return Value:

On success the function returns zero and the result parameters are set appropriately. On failure one of
the following error values is returned:

4.6. COMPONENT LOCATOR

49

MCSE_SMALL_BUFFER The supplied buffer is too small for the value (cl_get_opt
only).
MCSE_FAIL Unspecified error.

MCSE_.UNKNOWN_OPT The CL does not recognise the option_id.

50

CHAPTER 4. COMPONENT SYSTEM DESIGN

Chapter 5

Component System Implementation

Amdahl’s Law: Make the common fast.

5.1 Overview

Chapter 4 presented a conceptual design of MCS and justified the choices made. This chapter describes
an efficient implementation of the component architecture on Mungi.

System Model Implementation describes how the component environment is implemented using the
Mungi abstractions presented in Section 2.1.

Component-Classes describes a skeleton component structure, an implementation of the class inter-
face, and standard component stubs.

Interface Objects describes the implementation of C-language interface objects. Although the syntax
is different for each client language, the semantics are the same.

Component Model Implementation describes how the features of the component model presented
in Section 4.3 are implemented.

Component Invoker, Component Adaptor and Component Locator describe an implementation
of the MCS-RT interfaces.

5.2 System Model Implementation

A system model identifies the major elements of the system, the roles they play, and how they interact.
Section 4.2 introduced the MCS system model, and identified its critical features. Figure 5.1 reproduces
the basic system architecture.

A component implementation, and its corresponding component stubs, are placed in a Mungi PDX object.
As described in Section 2.1, clients can only invoke the code in a PDX object using the PdxCall () system
call.

int PdxCall(void *entry_pt, cap_t param, cap_t *ret, void *pd);

51

52 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

i Client [Component Impl.
L i j [

Interface Object [Component Stub
1 R -

[CL] [cl] Trusted Path Mechanism

Figure 5.1: System Structure

Legal entry points into a PDX object are registered by the object’s owner using the 0bjCrePdx () system
call. Mungi stores these entry points in the Object Table (OT), and generates an associated PDX
capability. A client may only invoke an entry point using PdxCall() if the entry point is present in
the OT, and they possess the corresponding PDX capability. When an owner of a PDX object registers
entry points using ObjCrePdx (), it also specifies a protection domain called the protection context. A
PdxCall () executes in a protection domain that is the union of the protection context, and a protection
domain specified by the client in the pd parameter.

Component stubs are registered as the entry points into a component’s PDX object, with a protec-
tion context containing the component’s resources. Therefore, the trusted path mechanism provided by
PdxCall () forces clients to use a component’s defined interface, and allows its methods to execute in an
amplified protection domain.

Component-instances require a location to store their data. As all data in Mungi is stored in Mungi
objects, when a new instance is constructed, it is placed in a Mungi object within the protection context.
A constructor then returns the virtual address of the instance data to the client, which is a unique identifier
in a SASOS. As component-implementations never distribute capabilities to their instance data, instances
are data encapsulated.

So far, to invoke a method, a client requires a PDX capability to the method’s component stub, a reference
to the instance, but no capability to the instance. Therefore, there is no protection against a client with
access to a component stub, invoking operations on arbitrary references in the hope of revealing some
private data, or performing a privileged action. The problem is that the system capabilities are providing
protection at component-class granularity, whereas protection is required at instance granularity.

As Mungi is a capability system, the natural solution is to create a capability that confers upon the
holder the right to invoke methods on a particular instance. Unfortunately, this solution is inadequate.
Mungi capabilities derive their protection from the memory management unit (MMU), which deals with
memory at page granularity, and therefore, provides protection at page granularity. To protect instances
with Mungi capabilities, each component-instance would have to be placed on its own page. As the
majority of components are quite small, this leads to extremely inefficient use of memory and dismal
translation lookaside buffer (TLB) performance.

A reference to the component-instance is explicitly presented to a component stub on every method
invocation, i.e. component stubs have complete mediation [SS75]. Therefore, this implementation uses
component stubs to perform discretionary access control. Constructors create a random 64-bit password
that is returned to the client along with the reference, as well as being stored in the component-instance
itself. This (ref, password) tuple is called a component-instance capability (CICAP), and must be

5.3. COMPONENT-CLASSES 53

presented by the client on each method invocation. A passed CICAP’s password is validated by a simple
integer comparison with the password stored in the component-instance. As CICAPs provide protection
at instance granularity, component-instances for different clients may be safely stored in the same Mungi
object. Figure 5.2 shows the structure of a CICAP.

typedef struct {
unsigned long password;
void *ref;

} cicap_t;

Password 4 Instance Address gy

Figure 5.2: CICAP Structure

CICAPs allow discretionary (see Section 7.2.6) access control at component-instance granularity. They
do not address the wider problem of access control in extensible systems, which is the focus of Chapters 7,
8 and 9.

5.3 Component-Classes

This section describes a standard component-class implementation, including the structure, class inter-
face, and component stubs. Although the details depend on the language and the component-class, the
concepts remain the same.

5.3.1 Component Structure

This section presents a skeleton component implementation that provides a foundation for the rest of this
chapter. As all interfaces have similar structure and component stubs, only code for the IWeaponSystems
interface is presented. Figure 5.3 contains an IDL specification for the CStarfleetGalaxyClass component-
class, and Figures 5.4, 5.5, 5.6 and 5.7 present header and implementation files corresponding to this
specification.

e CStarfleetGalaxyClass.h, shown in Figure 5.4, contains type definitions and constants from
specification. This file is used by both component implementations and interface objects related to
the specification.

e CStarfleetGalaxyClass_cis.h, shown in Figure 5.5, is the header file for the component imple-
mentation. It contains a location for the developer to define the component-core module (csgc_t
and functions), as well as prototypes for the interface functions and their associated component
stubs.

e CStarfleetGalaxyClass_cs.c, shown in Figure 5.6, implements the class interface and component
stubs for the CStarfleetGalaxyClass component-class. As the class interface and component stubs
are described in the following sections, their implementations have been left deliberately blank.

e CStarfleetGalaxyClass_cis.c, shown in Figure 5.7, contains a skeleton for the implementation
of the component-core and interface modules.

This implementation structure is designed to reflect the component-class construction model illustrated
in Figure 4.7. A ‘component-core’ module is defined by the developer. This module presents a language

54 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

FAFFEEIAAFFEEIAFFFIAAFFEIAAFFIAFFEIAFFEAAFFFAAFFIAAF A A A AFFIAFFFFAFF AN K
* CStarfleetGalazyClass.idl

*

* Specification for the CStarfleetGalazyClass component.
**/

#include "other_interfaces.idl"
typedef enum{ WS_OFFLINE, WS_STANDBY, WS_READY } wstatus_t;

interface IWeaponSystems {
int AcquireTarget(target_desc_t *spec);
target_desc_t FireAtTarget();
void FirePattern(long power, char class, int n_rounds, pattern_t p);
wstatus_t Status();
void InitialiseWeapon();
void RetireWeapon();

+

component CStarfleetGalaxyClass {
provides IEngineeringConsole;
provides [Engines;
provides IHolodeck;
provides [Navigation;
provides ISensors;
provides [StellarCartography;
provides [WeaponSystems;

Figure 5.3: CStarfleet GalaxyClass.idl

EXEXEEE SRR EEEEEEE SR EEEEE SRR SRS EE RS EEEEE SRS SRR L LS

* CStarfleetGalazyClass.h
*

* Common client and component implementation definitions from CStarfleet GalazyClass.idl.
FHRAAF KRR HAAFHAAF KIS AR KA IHAAF KIS AR AAIHAAFKAIFAAISAIHAAKKIIAAAAAIHAAAAIHAAK]

#ifndef __CSTARFLEETGALAXYCLASS_H__
#define __CSTARFLEETGALAXYCLASS_H__

/* component-class identifier */
#define CID_CSTARFLEETGALAXYCLASS 264

/* type definitions */
typedef enum{ WS_OFFLINE, WS_STANDBY, WS_READY } wstatus_t;

tendif /* __CSTARFLEETGALAXYCLASS_H__ */

Figure 5.4: CStarfleetGalaxyClass.h

10

15

20

25

10

15

5.3. COMPONENT-CLASSES 55
/**
* CStarfleetGalazyClass_cis.h
¥
* Component implementation side interface and component definitions
* from CStarfleetGalazyClass.idl.
**/
tifndef __CSTARFLEETGALAXYCLASS_CIS_H__
#define _._CSTARFLEETGALAXYCLASS_CIS_H__
#include "other_interfaces_cis.h"
#include "CStarfleetGalaxyClass.h"
/* component data */
typedef struct {
/* FILL-IN: Component developer defines the data members */
} csge_t;
/* component methods */
/* FILL-IN: Component developer defines the component-core operations */
/* IWeaponSystems interface methods */
int csge_iws_AcquireTarget(csge_t *cthis, target_desc_t *spec);
target_desc_t csgc_iws_FireAtTarget(csge-t *cthis);
void csgc_iws_FirePattern(csgc_t *cthis, long power, char class, int n_rounds, pattern_t p);
wstatus_t csgc_iws_Status(csge-t *cthis);
void InitialiseWeapon(csgc_t *cthis);
void RetireWeapon(csgc_t *cthis);
/* Interface methods for all other exported interfaces (not incl. class-interface) would follow */
/* IWeaponSystems component stubs */
res_desc_t csgc_iws_stub_AcquireTarget(cap_t param);
res_desc_t csgc_iws_stub_FireAtTarget(cap_t param);
res_desc_t csgc_iws_stub_FirePattern(cap_t param);
res_desc_t csgc_iws_stub_Status(cap-_t param);
res_desc_t csgc_iws_stub_InitialiseWeapon(cap_t param);
res_desc_t csgc_iws_stub_RetireWeapon(cap_t param);
/* Component stubs for other interfaces (incl. the class-interface) would follow */

tendif /* __CSTARFLEETGALAXYCLASS_CIS_H__ */

Figure 5.5: CStarfleetGalaxyClass_cis.h

10

15

20

25

30

35

40

56 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

/**
* CStarfleetGalazyClass_cs.c
*

* Component stubs for CStarfleetGalazyClass
***f/

#include "CStarfleetGalaxyClass_cis.h"

/* IWeaponSystems component stubs */
res_desc_t csgc_iws_stub_AcquireTarget(cap_t param)

{
}

res_desc_t csgc_iws_stub_FireAtTarget(cap_t param)

{
}

res_desc_t csgc_iws_stub_FirePattern(cap_t param)

{
}

res_desc_t csgc_iws_stub_Status(cap-t param)

{
}

res_desc_t csgc_iws_stub_InitialiseWeapon(cap_t param)

{
}

res_desc_t csgc_iws_stub_RetireWeapon(cap_t param)

{
}

/* Component stubs for other interfaces would follow */

/* Implementation of the class-interface would follow */

Figure 5.6: CStarfleetGalaxyClass_cs.c

10

15

20

25

30

35

5.3. COMPONENT-CLASSES

57

KK o oK K K KK K K KK K KK K K K K K K K K K R K K K K K K K K K K K K K K K KK K K oK K K K K oK K K K K ok oK K K K Kk oK R K K K K R K K K KR K Kk K

* CStarfleetGalazyClass_ci.c

*

* Component Implementation for CStarfleetGalazyClass
FHRAAKKAAA KA I HAA KA RS AAIHAA SIS EAA SRS FAA SIS RIS RIS IS AAFEAAFAAFAAAHAA]

#include "CStarfleetGalaxyClass_cis.h"

/**
*

* Component Implementation
*

**/

/* FILL-IN: Component developer defines and implements component operations */

/**
*

* Interface Implementations
*

***f/

/* IWeaponSystems Implementation */
/* FILL-IN: Component developer must implement interface methods */
int csge_iws_AcquireTarget(csge_t *cthis, target_desc_t *spec)

{

int retval,
return retval;

}

target_desc_t csgc_iws_FireAtTarget(csge_t *cthis)

target_desc_t retval;
return retval;

}

void csgc_iws_FirePattern(csgc_t *cthis, long power, char class, int n_rounds, pattern_t p)

{
}

wstatus_t csgc_iws_Status(csge-t *cthis)

{

wstatus_t retval;
return retval;

}

void csgc_iws_InitialiseWeapon(csgc-t *cthis)

{
}

void csgc_iws_RetireWeapon(csgc_t *cthis)

{

/* Implementations of other interfaces (not incl. class interface) would follow */

Figure 5.7: CStarfleetGalaxyClass_ci.c

10

15

20

25

30

35

40

45

50

58 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

[static] interface IClassInterface {
cicap_t constructor();
void destructor(cicap_t ref);
cicap_t create_cicap(cicap_t owner, short interfaces, char slot);
void get_typeinfo(cap_t info, int size) throws(MCSE_STE_INSFBUFFER) ;

Figure 5.8: Class Interface IDL

interface that is called by the interface modules, that are invoked by the component stubs. Interface
methods are passed a reference to a data structure (csgc_t), defined by the component developer, that
contains the instance data.

5.3.2 Class Interface

Every component-class must export and implement the class interface, which contains methods required
for the correct operation of the component model. Figure 5.8 shows class interface’s IDL specification.
This section describes a standard implementation of the first three methods, with get_typeinfo() de-
scribed in Section 5.5.6. The class interface is assigned interface identifier (IID) zero, and its methods
assigned method identifiers (MIDs) in top-down order from zero, e.g. destructor() is identified by
(CID,0,1).

Constructor

Clients invoke constructor() to create a new instance of a component-class. Essentially, this involves
creating a new language object to represent the instance, and returning a reference to this object to the
client. Two additional operations are also performed:

e Every component-instance is associated with some metadata, that is stored in a header above the
language object, and initialised by the constructor. The header format, and a description of its
fields, its presented in Figure 5.9.

e Component implementations may wish to be notified when a new instance is created. A component
developer can specify a method to be invoked upon construction, by prefixing the CONS modifier
to its IDL specification, as shown in Figure 5.10. CONS methods, which must have no parameters,
are called by the constructor.

As described in Section 5.2, component-instances are stored in Mungi objects. Constructors, therefore,
require a method of locating a Mungi object, and an address within the object, where the instance can
be stored. Locating the Mungi object involves a protocol between the constructor, and the creator of
the PDX object. Every protection context (Section 5.2) must provide a capability to a Mungi object
in which component-instances can be stored as its first element. A protection context is implemented
as a capability-list (c-list) in the active protection domain (APD) of the component-class. As there is
no guarantee regarding the order of c-lists within the APD, protection contexts must have the format
field in their c-list header set to CL_PROTCTX by the creator. Therefore, using ApdGet (), and inspecting
the header of each c-list in their APD, a constructor can locate the Mungi object in which component-
instances can be stored. Constructors store the address of this object in a static variable to amortize the
lookup cost.

As component-instances are of fixed size, locating an address within the object at which a new instance
can be stored is simple. Starting at the second word, the object is divided into blocks capable of holding

5.3. COMPONENT-CLASSES 59

HV13 | Domain Labelg; HV2; | Type Labelg;

Owner CICAPg,4 E1-CICAPg,

E2-CICAPg, E3-CICAPg,

VO32 VL3 EF146 EF2:6 | EF3:5 | Flagsis
Di-CICAPq5 . . .

e HV1 & HV2 concatenated, form the Header Format Version (6 bits) which identifies the layout
of the following header. The above layout if format version one.

e Domain Label is used for mandatory access control, described in Chapter 8.
e Type Label is also used for mandatory access control.

e Owner CICAP, generated by the constructor, is used to validate passed CICAPs. An owner
CICAP allows access to all interfaces of the instance.

e Ei-CICAP are the extended CICAPs, created using the create_cicap() method.
e VO is the minor version number of the component-class that created the instance.

e VL identifies the format of the instance data. Minor versions may change the data format of a
component-class, therefore, this field is required to allow an implementation to identify, and handle,
instances created by a different minor versions.

e EFi is a flag field associated with Ei-CICAP, described later in this section.

e Flags provides status information about the instance. Currently only the LSB is defined, indicating
that an instance is valid when set,.

e Di-CICAP are the delegation CICAPs, described in Section 5.5.5. A Di-CICAP field exists for
each interface marked as delegatable in the IDL specification.

Figure 5.9: MCS Component-Instance Header Format

interface IWeaponSystems {
int AcquireTarget(target_desc_t *spec);
target_desc_t FireAtTarget();
void FirePattern(pattern_desc_t p);
wstatus_t Status();
[CONS] void InitialiseWeapon();
void RetireWeapon();

Figure 5.10: CONS Modifier Example

60 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

typedef struct {

unsigned hvil : 35
unsigned domain : 61;
unsigned hv2 : 35
unsigned type : 61;

unsigned long ocicap, ecicapl[3];
unsigned int vo, vl;
unsigned short ef[3], flags;
unsigned long dcicap[1];

} inst_hdr_t;

Figure 5.11: Instance Header Structure

a header and an instance. Free blocks are chained, with the first word of a free block containing the
address of the first word of the next free block. A pointer to the first free block is contained in the first
word of the object.

Figure 5.12 contains the implementation of constructor () for the example component-class (CStarfleetGalaxyClass),
with InitialiseWeapon() marked CONS, and one delegatable interface (which one is irrelevant to the

constructor). Constructors for different component-classes differ in the size of the instance data, the

number of Di-CICAP slots initialised, the CONS methods called, and the version number stored in the

header. Constructors are invoked directly by ci_request (), and so have the MCS required signature.

Although CICAPs are defined as 128 bits, instances are word-aligned making the lower two bits of the

address redundant. This means that CICAPs only carry 126 bits of information, and so do not require

a parameter buffer.

Destructor

Clients invoke destructor () to destroy an instance, which frees the memory associated with the instance
and invalidates further accesses. Like the constructor, component implementations may wish to be notified
when an instance is about to be destroyed, so that resources can be released. A component developer can
specify a method to be invoked upon destruction, by prefixing DSTR to its IDL specification, as shown
in Figure 5.13. Figure 5.14 contains the destructor for the CStarfleetGalaxyClass component-class.

Create_Cicap

A constructor returns an owner CICAP, which allows access to all interfaces of the component-instance.
Often, however, clients need to provide other clients with access to only a subset of the interfaces of an in-
stance. For example, in a component-based file system, users should be able to access the IReadDirectory
interface of the /home directory, but not its IModifyDirectory interface. Partial access is also essential
for secure aggregation and delegation, as will be discussed in Sections 5.5.4 and 5.5.5 respectively.

create_cicap() allows a client holding the owner CICAP to create extra CICAPs (E-CICAPs) with ac-
cess to a subset of the exported interfaces. A 16-bit bit-field passed to the method specifies the interfaces
the new CICAP will have access to. Each bit represents an interface ‘provided’ by the component-
class (the class interface is not represented). The least-significant-bit (LSB) represents the first ‘pro-
vided’ interface, the second-LSB represents the second interface, etc. For example, referring to Fig-
ure 5.3, a bit-field corresponding to the integer value 0x05 would create a new CICAP with access to
the IEngineeringConsole and IHolodeck interfaces. As there is a limit of three E-CICAPs for each
component-instance, and no delete_cicap() method, clients must also specify which ecicap field should
be used to store the E-CICAP.

5.3. COMPONENT-CLASSES

61

static void *instobj;

res_desc_t csgc_ci_stub_constructor(cap_t param)

{

apddesc_t apd;
clist_t *clist;
inst_hdr_t *hdr;
int i;
res_desc_t res;
csge_t *ref;

/* Find an address to store the new insta
if (instobj == 0) {
/* find the instance object */
ApdGet(&apd);
for(i =0; i < apd.n_apd; i++) {
clist = (clist_t*)apd.clist[i].address;

nce */

if(clist != 0 && clist—>format == CL_PROTCTX) {
instobj = clist—>caps[0].address;

break;

}

}
/* check that the object has been found */

if (instobj == 0) {

res.type = MCS_STUB_EXCEPTION;
res.datal = MCS_STE_NO_INSTOBJ;

return res;

}

hdr = *((inst_hdr_t**)instobj);
*((inst_hdr_t**)instobj) = *((inst_hdr_t**

)hdr);

/* Initialise the static header and the d1-cicap */

memset(hdr, 0, sizeof(inst_hdr_t));
hdr—>opasswd = generate_password();
hdr—>hv2 = 1;

hdr—>vo = hdr—>vl = CSGC_MINOR_V
hdr—>flags = MCS_IF_VALID;

/* Create a new language instance */
ref = (csge-t*)&(hdr—>di[1]);
memset(ref, 0, sizeof(csgc_t));

/* Invoke the CONS methods */
csge_iws_InitialiseWeapon(ref);

/* Return */

res.type = 0;

res.datal = hdr—>ocicap;

res.data0 = ((unsigned long)ref)>>2;
return res;

ERSION;

Figure 5.12: Constructor

10

15

20

25

30

35

40

45

50

62

CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

interface IWeaponSystems {

int AcquireTarget(target_desc_t *spec);

target_desc_t FireAtTarget();

void FirePattern(pattern_desc_t p);

wstatus_t Status();
[CONS] void InitialiseWeapon();
[DSTR] void RetireWeapon();

Figure 5.13

static void *instobj;

res_desc_t csgc_ci_stub_destructor(cap_t param)

{

apddesc_t apd;
cicap_t _cicap;
inst_hdr_t *hdr;
res_desc_t res;

/* Validate the passed CICAP */

_cicap = *((cicap_t*)¶m);

hdr = (inst_hdr_t*)_cicap.ref;

if(((hdr—>flags & 0x1) == 0) || hdr—>ocicap
res.type = MCS_STUB_EXCEPTION;
res.datal = MCS_STE_PROT;
return res;

}
/* Call the DSTR methods */

: DSTR Modifier Example

I= _cicap.password) {

csge_iws_InitialiseWeapon((csgc-t*)&hdr—>dcicap[1]);

/* Get the address of the instance object */
if (instobj == 0) {
ApdGet(&apd);
for(i =0; i < apd.n_apd; i++) {
clist = (clist_t*)apd.clist[i].address;

if (clist I= 0 && clist—>format == CL_PROTCTX) {

instobj = clist—>caps[0].address;
break;

}

if(instobj == 0) {
res.type = MCS_STUB_EXCEPTION;
res.datal = MCS_STE_NO_INSTOB/J;
return res;

}
}

/* Free the block */

hdr—>flags = 0;

*((inst_hdr_t**)hdr) = *((inst_hdr_t**)instobj);
*((inst-hdr_t**)instobj) = hdr;

/* Return */
res.type = 0;
return res;

Figure 5.14: Destructor

10

15

20

25

30

35

40

45

5.3. COMPONENT-CLASSES 63

res_desc_t csgc_ci_create_cicap(cap_t param)
e .

cicap-t cicap;

char slot;

unsigned short ef;

inst_hdr_t *hdr;

res_desc_t res;

void **pb;

/* Unpack parameters */
pb = (void**)param.address;
cicap = *((cicap_t*)pb);

pb += 2;
slot = *((char*)pb);
pb += 1,

ef = *((unsigned short*)pb);

/* Validate the passed CICAP */

hdr = (inst_hdr_t*)cicap.ref;

if(((hdr—>flags & 0x1) == 0) || hdr—>ocicap != cicap.password) {
res.type = MCS_STUB_EXCEPTION;

res.datal = MCS_STE_PROT;

return res;

}

/* Create new E-CICAP */
hdr—>ecicap[slot%3] = generate_password();
hdr—>ef[slot%3] = ef;

/* Return */

res.type = 0;

res.datal = hdr—>ecicap[slot%3];
return res;

Figure 5.15: Create_Cicap

When a component stub is invoked, it checks to see whether the passed CICAP matches the owner CICAP,
or any of the E-CICAPs with access to the interface. Figure 5.15 contains the create_cicap() imple-
mentation for any component-class. As the arguments of this method are more than 128-bits, a parameter
buffer must be used. Argument, and return value, passing protocols are described in Section 5.3.3, and
can be ignored here.

5.3.3 Component Stub Code

Every interface method exported by a component-class registers an entry point with the Component
Locator. Interface objects invoke methods by retrieving this entry point, and passing it to the Component
Invoker, which performs a PdxCall(). Rather than being the address of the actual interface method, the
registered entry point is the address of a short component stub procedure, that calls the interface method,
as well as performing some additional operations. There are five reasons why a stub procedure is used.

e As described in Section 4.5.3, MCS entry points must have the signature:
res_desc_t stub_name(cap_t param);

For transparency, component stubs remove this restriction.

e MCS-RT provides a procedural request mechanism, whereas the desired semantics are to invoke a

10

15

20

25

30

35

64 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

void FirePattern(long power, char class, int n_rounds, pattern_t pattern);

CICAP 25

poOwerga

classg padsy

n_roundsss padss

patternsgs

Figure 5.16: Parameter Buffer Format

method on a component. Component stubs retrieve the instance from the parameter list and invoke
the corresponding method on the instance.

e As described in Section 5.2, component stubs perform instance access control.

e Some component model features, such as delegation, require additional code. Component stubs
provide a convenient location for this code, clearly separating the component model code from the
component implementation code. This separation makes the component mechanics as transparent
as possible, and is essential if the component model code is to be generated by an IDL compiler.

e In a heterogenous system component stubs may need to convert the binary format of data into
a common ‘on-the-wire’ data representation. Examples include the eXternal Data Representation
(XDR) used by Sun RPC [Sun85], and the Common Data Representation (CDR) used by CORBA
[COR99c].

This section describes component stubs for basic methods, and therefore only addresses the first three
points. Component model features are described in Section 5.5, while heterogeneity issues, of both
language and architecture, are beyond the scope of this thesis.

Removing Parameter Limitations

MCS defines the parameter of an entry point as two words (128 bits). As component methods may have
an arbitrary number of parameters, a protocol is required between component stubs and interface objects
to remove this limitation.

If a non-static method has no arguments the component stub parameter contains the CICAP. Otherwise,
the parameter is a capability for a parameter buffer (PB) containing the method’s arguments. As compo-
nent stubs are individually developed, or generated, from an IDL specification, they statically know the
method’s signature, and therefore whether to expect a parameter buffer. If a parameter buffer is used,
the first two words contain the CICAP, followed by the arguments in left-to-right order. Arguments are
all stored at word aligned addresses. Figure 5.16 shows the layout of a parameter buffer passed to the
FirePattern() method of the IWeaponSystems (Figure 5.3). Figures 5.17 and 5.18 demonstrate direct
and buffered parameter transfer respectively.

Figure 5.18 shows that to retrieve parameters from a PB, the component stub simply obtains the address
of the buffer and starts unpacking. If the buffer is not in the component-class’s protection domain,

5.3. COMPONENT-CLASSES

65

res_desc_t csgc_iws_stub_Status(cap_t param)

{

}

cicap_t _cicap;

/* unpack parameters

_cicap = *((cicap_t*)¶m);

/* other stub code . ..

Y/

Y/

Figure 5.1

7: Direct Parameter Transfer

res_desc_t csgc_iws_stub_FirePattern(cap-t param);

{

cicap-t _cicap;
void **_pb;

long power;

char class;

int n_rounds;
pattern_t pattern;

/* unpack parameters */

_pb = (void**)param.address;
_cicap = *((cicap_t*)_pb);

-pb +=2;

power = *((long*)_pb);

-pb +=1;
class = *((char*)_pb);
-pb +=1;

n_rounds = *((int*)_pb);

-pb +=1;

pattern = *((pattern_t*)_pb);

/* other stub code ...

Y/

Figure 5.18

: Buffered Parameter Transfer

10

15

20

66 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

a protection fault will occur. Component stubs could avoid this protection fault by performing an
ApdLookup () system call [HVGR99], which searches the current protection domain for a given capability,
on every method invocation, and adding the passed capability to the protection domain if it is not found.
A protection fault will still occur if the passed capability is invalid, however, this results in a system
exception being returned by ci_request() to the interface object, whose responsibility it is to pass a
valid capability. Obviously, performing a system call that scans (possibly) the entire protection domain
on every method invocation creates significant overhead. Instead, when a PDX protection domain is
initialised, it registers an exception handler for protection faults (ST_PROT exceptions) using Mungi’s
ExcptReg() system call. As described in Section 2.1, handlers execute in the faulting thread’s protection
domain, and with the faulting thread’s stack. The ST_PROT exception handler locates the capability on
its stack, and searches the protection domain using ApdLookup (). If the capability is not found, then it
is added to the protection domain, and the component stub is restarted. If the capability is found, then
the interface object has passed an invalid capability, and the method invocation is aborted, resulting in
a system exception being returned by ci_request().

Clients reuse parameter buffers across calls, amortizing the cost of handling the exception.

Removing Return Value Limitations

A similar situation exists for the return value. MCS entry points must have a return value type of
res_desc_t, shown below. This is a 128 bit structure, with two bits used to indicate the exception status
of the method invocation, leaving 126 bits for data.

typedef struct {
unsigned long datal;
unsigned datal : 62;
unsigned type : 2;
} res_desc_t;

If the return value is < 64 bits, then it is placed in datal. If the return value is greater than 64 bits,
but less than 126 bits, its upper 64 bits are placed in datal, and its lower bits are placed in the most
significant bits of data0. Otherwise, the interface object must use a parameter buffer when calling the
component stub, and the return value is copied into the start of this buffer. Therefore, parameter buffers
are used if either the arguments are greater than 128 bits, or the return value is greater than 126 bits.
Figures 5.19 and 5.20 demonstrate direct and buffered return transfer respectively.

Procedural to Component-Oriented

MCS-RT provides a procedural request mechanism, whereas the desired semantics are to invoke a method
on a component. All (non-static) methods pass a CICAP as the first parameter, which contains a pointer
to the location of a native language ‘object’ on which the method should be invoked. A component stub
simply casts the reference and invokes the method. For example, in C++ [ES90], the FireAtTarget ()
method is invoked by:

_res = _ref->FireAtTarget();

As C does not have an object construct, ‘invoking a method’ means passing the pointer to the interface
function, e.g.:

_res = csgc_iws_FireAtTarget(_ref);

5.3. COMPONENT-CLASSES

67

res_desc_t csgc_iws_stub_Status(cap_t param)

{

cicap_t _cicap;
wstatus_t _result;
res_desc_t _retval;

/* unpack parameters */
_cicap = *((cicap_t*)¶m);

/* other stub code ... */

/* set result descriptor */
_retval.type = 0;
_retval.datal = _result;
return _retval;

Figure 5.19: Direct Return Transfer

res_desc_t csgc_iws_stub_FireAtTarget(cap_t param)

{

cicap_t _cicap;

void **_pb;
target_desc_t _result;
res_desc_t _retval;

/* unpack parameters */
_pb = (void**)param.address;
cicap = *((cicap_t*)_pb);

/* other stub code ... */

/* set result descriptor */
((target_desc_t)_pb) = _result;
_retval.type = 0;

return _retval;

Figure 5.20

: Buffered Return Transfer

10

15

10

15

68 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

extern __inline__ validate_cicap(inst_hdr_t *hdr, cicap_t ucicap)

return ((hdr—>flag & MCS_IF_VALID) != 0)
&& (hdr—>ocicap != _cicap.password
|| (hdr—>ecicap[0] != _cicap.password && (hdr—>ef[0] & CSGC_EF_IWS))
|| (hdr—>ecicap[l] != _cicap.password && (hdr—>ef[1l] & CSGC_EF_IWS))
|| (hdr—>ecicap[2] != _cicap.password && (hdr—>ef[2] & CSGC_EF_IWS)));

}

res_desc_t csgc_iws_stub_Status(cap_t param)

{
cicap-t _cicap;
res_desc_t _retval;
inst_hdr_t *hdr;

/* unpack parameters */
_cicap = *((cicap_t*)¶m);

/* validate access */

hdr = (inst_hdr_t*)_cicap.ref;

if (validate_cicap(hdr, _cicap) == 0) {
_retval.type = MCS_STUB_EXCEPTION;
_retval.datal = MCS_STE_PROT;
return _retval;

}

/* invoke method */
_retval.datal = (unsigned)csgc_iws_Status((csgc-t*)&(hdr—>dcicap[1]));

/* set result descriptor */
_retval.type = 0;
return _retval;

Figure 5.21: CICAP Access Control

Access Control

Section 5.2 introduced the concept of a CICAP, and Section 5.3.2 showed how additional CICAPs can
be created by the owner. A client may only invoke a method on an interface if it possesses the owner
CICAP, or an E-CICAP with access to the interface. This validation is performed by the complete
Status () component stub shown in Figure 5.21.

5.4 Interface Objects

Interface objects were introduced in Sections 4.2.2 and 4.3.1 as an abstraction mapping components into
the client’s programming language, using the native ‘object’ construct. Clients always interact with a
component-instance via an interface object. As their name suggests, an interface object represents an in-
terface rather than a particular component-class. This is consistent with construction model presented in
Figure 4.7, and essential for the implementation of features such as polymorphism. This section describes
the implementation of an interface object for the IWeaponSystems interface presented in Figure 5.3.
Although details depend on the language, the concepts remain the same.

10

15

20

25

30

5.4.

INTERFACE OBJECTS 69

typedef struct {

cicap_t acicap;

cicap_t ecicap;

cid_t cid;

cap_t pb;

entry_pt_t epts[MAX_EPTS];
} interface_object_t;

Figure 5.22: Interface Object Structure

5.4.1 Interface Object Structure

An interface object is an object in the traditional sense, i.e. a per-instance data block with an associated
set of operations. All interface objects contain the same data members.

An actual CICAP, assigned when the interface object is constructed, which does not change for the
life of the interface object.

An effective CICAP, which determines the component-class to be invoked, and is the CICAP that
is passed on a method invocation. Why an effective CICAP is required, rather than just the actual
CICAP, is related to the aggregation and delegation protocols described in Sections 5.5.4 and 5.5.5.

A capability for a parameter buffer. As described above, this buffer is used for passing arguments
and return values too large for the standard MCS signature.

A cached component-class identifier (CID) for the effective CICAP, passed to the Component Lo-
cator (CL) when retrieving entry points. This is initially obtained from either the client or the
cl_get_component_class() method.

A list of entry points. Entry points are resolved lazily using the CL, and placed into this list.
Obviously, the list must be flushed when the effective CICAP changes.

Figure 5.22 presents the C structure for the data of an interface object. An interface object has a method
corresponding to each method of the interface’s IDL specification. In addition to these, every interface
object also provides two constructors, a component destructor, and a method to retrieve the actual
CICAP. A standard implementation of these methods is presented in Section 5.4.2.

Figure 5.23 presents a header file for the IWeaponSystems interface. Translating IDL defined methods into
a client implementation language, is done according to a language mapping specification. MCS follows
existing CORBA standards where possible, therefore, this example uses OMG’s C-Language Mapping
Specification [COR99a], with two deviations. Firstly, the ‘CORBA_’ namespace has been omitted, e.g.:

CORBA_long — long

Secondly, namespace prefixes are initialised, and made lower case, e.g.:

IWeaponSystems_Status — iws_Status

70 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

/***

* [WeaponSystems_io.h
*

* Interface object definition for the IWeaponSystems interface.

***f/

#ifndef __IWEAPONSYSTEMS_H__
#define __IWEAPONSYSTEMS_H__

#include "mcs_std_io.h"
#include "other_types_cis.h"

/* Interface constants */
#define IID_.IWEAPONSYSTEMS 2475

#define MID_START 101
#define MID_ACQUIRETARGET 101
#define MID_FIREATTARGET 102
#define MID_FIREPATTERN 103
#define MID_STATUS 104

#define MID_INITIALISEWEAPON 105
#define MID_RETIREWEAPON 106

/* Alias the interface object */
#define IWeaponSystems_t interface_object_t

/* Standard methods */

IWeaponSystems_t *iws_create_constructor(cid_t cid, environment_t *ev);
IWeaponSystems_t *iws_cicap_constructor(cicap_t cicap, environment_t *ev);
IWeaponSystems_t *iws_clone_constructor(IWeaponSystems_t *io, environment_t *ev);
void iws_destructor(IWeaponSystems_t *cthis, environment_t *ev);

#define iws_get_cicap(cthis) (cthis—>acicap)

/* IDL defined methods */

int iws_AcquireTarget([WeaponSystems_t *cthis, target_desc_t *spec, environment_t *ev);

target_desc_t iws_FireAtTarget([WeaponSystems_t *cthis, environment_t *ev);

void iws_FirePattern(IWeaponSystems_t *cthis, long power, char class, int n_rounds,
pattern_t p, environment_t *ev);

wstatus_t iws_Status(IWeaponSystems_t *cthis, environment_t *ev);

void iws_InitialiseWeapon(IWeaponSystems_t *cthis, environment_t *ev);

void iws_RetireWeapon(IWeaponSystems_t *cthis, environment_t *ev);

#endif /* _IWEAPONSYSTEMS_H__ */

Figure 5.23: IWeaponSystems_io.h

10

15

20

25

30

35

40

5.4. INTERFACE OBJECTS 71

5.4.2 Interface Object Implementation

This section describes an implementation of the IWeaponSystems interface object. Constructors and
destructors of different interface objects differ only in the constants passed to the Component Locator,
and the type of the pointer returned. Methods corresponding to those defined in IDL obviously differ
according to their arguments and return value, however, as for component stubs, the process is identical.

Exceptions

Exceptions signal that an unexpected error has occurred during a method invocation, without interfering
with the return value of a successful invocation. As described in Section 4.5.1, they are passed from the
component stub to the interface object in the res_desc_t structure. Interface objects must either handle
the exception, or pass it to the client using the standard language mechanism. Since the C language does
not provide native exception handling support, clients receive exceptions via a parameter passed to each
interface object method. This parameter has type environment_t.

typedef struct {
char _major;
unsigned short _minor;
char data[MAX_DATA];

} environment_t;

When an interface object method returns, _major indicates whether an exception has occurred, contain-
ing one of the values MCS_NO_EXCEPTION, MCS_USER_EXCEPTION, MCS_STUB_EXCEPTION or
MCS_SYSTEM_EXCEPTION. _minor contains the specific exception identifier, and data contains any
exception data.

Creation Constructor

IWeaponSystems_t *iws_create_constructor(cid_t cid, environment_t *ev);

Creation constructors create a new component-instance. As there is a many-to-many relationship between
interfaces and component-classes, clients must specify the component-class of the instance they wish to
create. As shown in Figure 5.4, the component-class identifier is located in the ‘common’ header file.
Constructors are reasonably straight-forward, and therefore, are explained by way of an example presented
in Figure 5.24.

CICAP Constructor

IWeaponSystems_t *iws_cicap_constructor(cicap_t cicap, environment_t *ev);

CICAP constructors are used to create new interface objects that are connected to an existing component-
instance. Clients use this constructor when they wish to invoke methods on multiple interfaces of an
instance, or when a CICAP is received from an external source, such as another client or a persistent
store. As a CICAP is supplied by the client, the constructor does not need to invoke the component-
class constructor, otherwise it performs the same operations as the creation constructor, as shown in
Figure 5.25.

CICAP constructors do not check that the passed cicap is valid, or that the component-class of the
CICAP exports this interface. Such errors will result in a stub exception being returned to the client on
the first method invocation.

72

CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

#include "IWeaponSystems_io.h"
#include "mcs_cl.h"
#include "mcs_ci.h"

IWeaponSystems_t *IWS_create_constructor(cid_t cid, environment_t *ev)

{
IWeaponSystems_t *new_io;
entry_pt_t ept;
int r;
res_desc_t res;
cap_t param = {0,0};
/* clear the exception parameter */
ev—>_major = MCS_NO_EXCEPTION;
/* allocate memory for the new interface object - legal error so no exception */
new_io = malloc(sizeof(IWeaponSystems_t));
if(new_io == NULL)
return NULL;
/* get the entry point for the constructor */
r = cl_get_entry_pt(cid, IID_.CLASS_INTERFACE, MID_CONSTRUCTOR, &ept);
if(r!=0){
ev—>_major = MCS_STUB_EXCEPTION;
ev—>_minor = r;
goto error;
}
/* invoke the constructor */
r = ci_request(ept, param, &res, PD_EMPTY);
if(r!1=0) {
ev—>_major = res.type;
ev—>_minor = res.datal >> 48;
goto error;
}
/* fill in the interface object data */
new_io—>acicap.ref = (res.data0<<2);
new_io—>acicap.password = res.datal;
new_io—>ecicap = new_io—>acicap;
new_io—>cid = cid;
memset(new_io—>epts, 0, sizeof(entry_pt_t)*MAX_EPTS);
new_io—>pb = create_parameter_buffer();
/* done */
return new_io;
error:

free(new_io);
return NULL;

Figure 5.24: Creation Constructor

10

15

20

25

30

35

40

45

50

5.4. INTERFACE OBJECTS 73

#include "IWeaponSystems_io.h"
#include "mcs_cl.h"
#include "mcs_ci.h"

IWeaponSystems_t *IWS_cicap-_constructor(cicap-t cicap, environment_t *ev)

IWeaponSystems_t *new_io;
int r;

/* clear the exception parameter */
ev—>_major = MCS_NO_EXCEPTION;

/* allocate memory for the new interface object */
new_io = malloc(sizeof(IWeaponSystems_t));
if(new_io == NULL)

return NULL;

/* fill in interface object */

new_io—>acicap = new_io—>ecicap = cicap;

new_io—>cid = cl_get_component_class(cicap);

memset(new_io—>epts, 0, sizeof(entry_pt_t)*MAX_EPTS);
new_io—>pb = create_parameter_buffer();

/* done */
return new_io;
}
Figure 5.25: CICAP Constructor
Destructor

void iws_destructor(IWeaponSystems_t *cthis, environment_t *ev);

Destructors destroy both the component-instance and the interface object. Destructors are always invoked
on the component-class of the actual CICAP, rather than the effective CICAP, as this is the component-
class that constructed the instance. A destructor is essentially just a method invocation to the component-
class destructor. As method invocation has not yet been described an example destructor is not presented.

Interface Method Stubs

An interface method stub is generated for each method defined in the interface’s IDL specification,
providing clients with a native language interface. These stubs are the client-side equivalent of component
stubs, and serve a largely similar purpose.

e Implement the parameter passing protocol described in Section 5.3.3, and include the CICAP as
the first parameter to any non-static method invocation.

e Locate the component stub entry point of the appropriate method.

e Implement component model features, such as delegation.

e Convert data into a standard binary format in heterogenous systems.

Section 5.5 describes the implementation of the component model, and heterogeneity is beyond the scope
of this thesis. Therefore, only the first two features are addressed here.

74 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

Interface methods stubs locate the appropriate entry point using the Component Locator. Each entry
point is uniquely identified by its (CID,IID,MID) tuple, which is easily obtained by the stubs. The CID
is stored in the interface object by the constructor, and the last two elements are statically known. If
the component-class does not export the interface, the Component Locator will return an error, and the
interface object will return this error to the client as a stub exception. Parameter passing was described
in detail in Section 5.3.3, and so will not be repeated here. Figure 5.26 shows the complete interface
method stub for the FirePattern() method of the IWeaponSystems interface.

5.4.3 Client Example

Interface objects are an abstraction designed to allow clients to program naturally with components.
Figure 5.27 presents an example of a client creating a new component-instance, invoking some methods
on this instance, creating a new interface object for the same component-instance, and invoking some
methods on the new interface.

5.4. INTERFACE OBJECTS

75

#include "IWeaponSystems_io.h"
#include "mcs_cl.h"
#include "mcs_ci.h"

void iws_FirePattern(IWeaponSystems_t *cthis, long power,
pattern_t p, environment_t *ev)
{

void **_pb;
entry_pt_t _ept;
int _r;
res_desc_t _res;

/* pack parameters */

_pb = (void**)cthis—>pb.address;
((cicap-t)_pb) = cthis—>ecicap;
_pb +=2;

((long)_pb) = strength;

_pb +=1;

((char)_pb) = class;

-pb +=1;

((int)_pb) = n_rounds;

-pb +=1;

((pattern_t)_pb) = p;

/* get the entry point */
_ept = cthis—>epts[MID_FIREPATTERN—MID_START];
if(_ept == NULL) {

_r = cl_get_entry_pt(cthis—>cid, IID_.IWEAPONSYSTEMS, MID_FIREPATTERN, &_ept);

if(_r!'=0) {
ev—>_major = MCS_STUB_EXCEPTION;
ev—>_minor = _r;
return;

char class, int n_rounds,

cthis—>epts[MID_FIREPATTERN—MID_START] = _ept;

}

/* invoke the entry point */
_r = ci_request(_ept, cthis—>pb, &_res, PD_EMPTY);
ev—>_major = res.type;

/* check exceptions */
if(_r!=0) {
ev—>_minor = (res.datal >> 48);

memcpy(ev—>_data, &(((char*)&(res.datal))[2]), 13);

return;

}

/* done */
return;

Figure 5.26: Interface Method Stub

10

15

20

25

30

35

40

45

50

76 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

#include <stdio.h>

#include <assert.h>

#include "INavigation_io.h"
#include "IWeaponSystems_io.h"
#include "CStarfleetGalaxyClass.h"

int main(void)

{
IWeaponSystems_t *iws;
INavigation_t *in;
target_desc_t *target, result;
nav_desc_t nav;
environment_t ev;
wstatus_t status = WS_STANDBY;
int r = —1;

/* create o new component, and return the weapon systems interface */
iws = iws_create_constructor(CID_.CSTARFLEETGALAXYCLASS, &ev);
assert(iws != NULL && ev—>_major == MCS_NO_EXCEPTION);

/* wait for weapons to come online */
while(status == WS_STANDBY) {
status = iws_Status(iws, &ev);

assert(ev—>_major == MCS_NO_EXCEPTION);

assert(status != WS_OFFLINE);

/* acquire target and fire */
target = get_target_spec();
while(r 1= 0)

r = iws_AcquireTarget(target, &ev);

result = iws_FireAtTarget();

/* create a new interface object, connected to the same instance */
in = in_cicap_constructor(iws_get_cicap(iws), &ev);
assert(in != NULL && ev—>_major == MCS_NO_EXCEPTION);

/* invoke methods on the new interface */

nav = get_navigation_course();
in_engage_engines(in, nav, &ev);

/* done */

return 0;

Figure 5.27: Client Example

10

15

20

25

30

35

40

5.5. COMPONENT MODEL IMPLEMENTATION 77

5.5 Component Model Implementation

This section describes the implementation of the component model presented in Section 4.3. Many
features of this component model are a natural result of the interface model implemented in the previous
sections, and therefore, only require a description of how component-classes and interface objects should
be used. Other features, such as delegation, require code to be added to the component stubs and
interface methods stubs.

5.5.1 Interfaces

Sections 5.3 and 5.4 described in detail the implementation of IDL interfaces, the class interface, the
component construction model, component stubs and interface objects.

5.5.2 Encapsulation

Constructors create a new instance of the component inside a Mungi object that exists only within the
component’s protection domain. It then passes the address of the instance, which uniquely identifies an
object in a SASOS, to the client, but does not return a (Mungi) capability. The component implementa-
tion is therefore the only domain holding a capability to the new instance, and as such is the only domain
that can directly access the instance data. Instances are therefore data encapsulated.

Encapsulation of control ensures that clients can only operate on an instance via the defined entry points,
and that they cannot modify the control flow of these entry points, e.g. they cannot force a method to
abort prematurely. Combined, data and control encapsulation allow state invariants to be guaranteed.
Component implementations are contained in Mungi PDX objects, with PdxCall() providing the trusted
path mechanism. PdxCall() will only invoke operations that are registered in the Mungi Object Table
(OT), and so by only registering the component stubs, control is encapsulated.

Delegation allows an interface of a component-instance (C) to be overridden by another component-
instance (C2) at runtime. Methods invoked on this interface of C; will be redirected to Cy. Cs, however,
does not have access to the instance data stored in C, therefore, delegation allows clients to change
which data operation is invoked, rather than allowing clients to modify the control flow of a particular
data operation.

5.5.3 Polymorphism

Polymorphism relates to the ability of a strongly typed client variable to refer to instances of different
component-classes, and therefore, have different implementations for different instances. Component-
classes that can be referenced by the same client type are substitutable for one another. As the same
client code can be used to manage instances of different component-classes, polymorphism can reduce the
size of applications. Also, a new component-class that is substitutable for an existing component-class,
can be added without modifying the client code, therefore, polymorphism encourages extensibility.

Interfaces objects are inherently polymorphic. A client can interact with two component-classes exporting
the same interface using the same interface object type. When a method of an interface object is
called, the interface method stub uses the component class identifier (CID) of the contained CICAP to
determine the component implementation to invoke. If the component-class of the CICAPs contained
in two interface objects of the same type are different, then a different (CID,IID,MID) tuple will be
passed to the Component Locator. In general, this means that a different entry point reference will be

78 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

returned, and so a different component implementation will be invoked. Therefore, two component-classes
may appear (syntactically) as the same to a client, i.e. interface objects are polymorphic. Figure 5.28
illustrates how interface objects provide polymorphism.

io.cid = 246

Figure 5.28: Polymorphism Using Interface Objects

As interface method stubs determine the CID, and the corresponding entry point, dynamically using the
Component Locator, and PdxCall() dynamically loads and links the component implementation, inter-
face objects are late binding. Late binding and polymorphism allow applications to use new component-
classes without recompiling.

5.5.4 Component Code Reuse

Code reuse in MCS is based on composition and aggregation.

Composition

Under composition, a component-class (Cyyter) reuses the implementation of interfaces in another component-
class (Cinner) by creating an instance of Cipper and invoking methods on its interfaces. Composition,
therefore, relies upon the natural reusability of components. Usually, each instance of Cyyte,r uses a dif-
ferent instance of Cjper, created by its constructor, or more precisely, by a CONS method. Instances of
Couter never distribute the CICAP to their instance of Cjpner, SO that the inner-component is effectively
contained within the outer-component. Composition does not require any implementation.

Aggregation

Aggregation is used when a component-class (Cyuter) Wishes to export an interface implementation pro-
vided by another component-class (Cinner) unchanged. Using composition, a method that is unchanged
by Couter must still be relayed by Coyier t0 Cinner, resulting in additional overhead. Aggregation al-
lows clients to, transparently, invoke methods directly on Cjpper- Figure 4.12 illustrates the aggregation
concept.

As a given interface may be aggregated by some component-classes, but not by others, a protocol is
required that allows an interface object to identify aggregated interfaces and obtain a CICAP for the

5.5. COMPONENT MODEL IMPLEMENTATION 79

appropriate instance of Ciyuner-. This section describes this protocol and its implementation. Four re-
quirements are identified for the protocol.

e Cinner must not be required to take part in the protocol, as this would violate encapsulation. A
component-class’s behaviour should not depend on the caller.

e Different instances of C,y e must be able to aggregate a given interface from different component-
classes, i.e. one instance of C\y e may aggregate an interface from Cj,1, while another instance of
Couter may aggregate the same interface from Cj,,o.

e Aggregation must be transitive, i.e. Cyyrer should be able to aggregate an interface from Clqps,
which itself aggregates the interface from Cj,per- A limitation should not be placed on the length

of this aggregation chain.

e Aggregation must not violate containment. Therefore, clients should only be able to invoke methods
on the interfaces of the inner instance that have been aggregated.

Figure 5.29 summarises the aggregation protocol, described in detail below.

6. The method invocation is restarted using
the CID of the new effective CIZAP,

Inner
Component

3. Enfry point {cid,iid, 1) is invaked,
5. The CICAP is returned and
O Ute r becomes the effective CICaP, CI |e nt
Component

o

p J p J

4. get_agg_cicap(executes, and returns a 1. & new interface object is created.
CICAP 10 the inner-companent-instance.

2. A method is invoked. The CL returns MULL so that the
interface method stub's exception handler is invaked.

Figure 5.29: Aggregation Protocol

1. A client creates an interface object using any constructor. Components cannot aggregate the class
interface or any interface containing a CONS method, therefore, construction is not affected by
aggregation.

2. A method is invoked on the interface object. The initial parts of the interface method stub are
the same as presented in Section 5.4.2. It packs the parameters, retrieves the entry point from the
Component Locator and calls ci_request (). Methods of aggregated interfaces, however, are not
registered for the outer-component-class, and so the returned entry point will always be NULL.

80

CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

component CStarfleetGalaxyClass {
provides IEngineeringConsole;
provides IEngines;
provides IHolodeck;
provides INavigation;
provides ISensors;
provides IStellarCartography;
[AGG] provides IWeaponSystems;

Figure 5.30: AGG Modifier Example

. As there is no Mungi object at NULL, ci_request() will return a protection fault as a system

exception. This invokes the interface method stub’s exceptions handler (shown in Figure 5.31),
which checks whether the entry point was NULL. If so, it retrieves the entry point for (cid,iid, 1),
which must be registered by all aggregated interfaces for the outer-component-class. This entry
point, whose signature is shown below, calls a developer implemented method that returns a CICAP
for this interface’s inner-component-instance.

cicap_t get_agg_cicap()

. get_agg_cicap() has a standard component stub that invokes a method implemented by the

component developer. This method has no arguments, and returns the CICAP for the inner-
component-instance to the interface object.

. This CICAP becomes the effective reference of the interface object, and is stored in its ecicap data

member. cl_get_component_class() is then used to determine the CICAP’s component-class
identifier, which is stored in the cid member.

. The interface object restarts the original method invocation using the new CID and CICAP returned

by the outer-component. If the inner-component also aggregates this interface, then the protocol
returns to Step 2.

A component-class specifies that an interface is aggregated by prefixing the AGG modifier to its ‘provides’
declaration, as shown in Figure 5.30. Aggregated interfaces create only one method, get_agg_cicap(),
in the outer-component-class. An interface method stub implementing the aggregation protocol is shown
in Figure 5.31. As the code for packing the arguments into a parameter buffer and retrieving the entry
point is unchanged from Figure 5.26, it has been omitted due to space constraints. Some important
features of the protocol are discussed below.

No code is added to the critical path in the interface method stub. This is why the check for a NULL
entry point is delayed until the exception handler.

acicap in the interface object always contains the original CICAP. This is essential as the client
requires the original CICAP to access other interfaces.

As the protocol updates the effective reference, it is only executed on the first call to an aggregated
interface, amortizing its cost.

Using create_cicap(), an outer-component can create a CICAP for the inner-component, with ac-
cess to only the aggregated interfaces. If only this CICAP is given to clients, via the get _agg_cicap()
method, then containment is maintained.

5.5. COMPONENT MODEL IMPLEMENTATION 81
#include "IWeaponSystems_io.h"
#include "mcs_cl.h"
#include "mcs_ci.h"
/* interface method stub for the get_agg_cicap() method */
cicap_t iws_get_agg_cicap(IWeaponSystems_t *cthis, environment_t *ev);
void iws_FirePattern(IWeaponSystems_t *cthis, long power, char class, int n_rounds,
pattern_t p, environment_t *ev)
{
void **_pb;
entry_pt_t _ept;
int _r;
res_desc_t _res;
cicap-t _adcicap;
AD_RESTART:
/* pack parameters ... */
/* get the entry point ... */
/* invoke the entry point */
_r = ci_request(_ept, cthis—>pb, &_res, PD_LEMPTY);
ev—>_major = res.type;
/* check exceptions */
if(_r'=0){
/* check if the interface is aggregated */
if(_ept == NULL) {
_adcicap = iws_get_agg_cicap(cthis, ev);
if(ev—>_major '= MCS_NO_EXCEPTION)
return;
cthis—>ecicap = _adcicap;
cthis—>cid = cl_get_component_class(_adcicap);
goto AD_RESTART;
}
/* other exceptions are just returned to the client */
ev—>_minor = (res.datal >> 48);
memcpy(ev—>_data, &(((char*)&(res.datal))[2]), 13);
return;
}
/* done */
return;

Figure 5.31: Interface Method Stub With Aggregation

10

15

20

25

30

35

40

45

82 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

5.5.5 Customisation

Customisation in MCS is based on interface delegation. Delegation allows a component-instance (Clg) to
override an interface of another component-instance (CIg) at runtime. Client invocations to this interface
of Clp are redirected (or delegated) to CIg. Delegation allows new components to be transparently
added to the system, and also allows behaviour to be modified at instance, rather than class, granularity.
Without delegation, all clients must explicitly migrate to the new component-instance.

Delegation and aggregation are similar mechanisms. Both allow an interface of a component-class to be-
come an alias for the corresponding interface of another component-class. There are, however, two crucial
differences between delegation and aggregation, described below. Figure 5.32 illustrates the similarities
and differences between delegation and aggregation.

e Delegation occurs at instance, rather than class, granularity, i.e. an interface may be delegated
by one instance of a component-class, but not by another. As delegation is used to implement
customisation, this is essential. Conversely, a given interface is either aggregated for all instances
of the component-class, or for none, although instances may aggregate from different component-
classes. This means that an interface cannot statically know if it is delegated.

e Delegation is requested by the inner component, whereas aggregation is requested by the outer
component. As method requests are initially sent to the outer component, it must be aware that
delegation has occurred. Therefore, a mechanism is required to inform the outer component that
an interface has been delegated, and to whom.

That redirection is required is statically
known by the interface,

Aggregation

Redirection may or rmay not be required.
A runtime check is required.

Delegation rust be requested by
the inner-companent-instance.

Delegation

Figure 5.32: Aggregation vs Delegation

5.5. COMPONENT MODEL IMPLEMENTATION 83

Declaring a Delegatable Interface

Interfaces are declared as delegatable by prefixing the DLG modifier to its 'provides’ declaration in the
component-class specification, as shown below.

component CStarfleetGalaxyClass {
provides IEngineeringConsole;
provides IEngines;
provides IHolodeck;
provides INavigation;
provides ISensors;
provides IStellarCartography;
[DLG] provides IWeaponSystems;

Registering the Overriding Instance

For every delegatable interface exported by a component-class, a corresponding registration interface is
exported, and a Di-CICAP field created in the instance header (Section 5.9). Registration interfaces have
the (implicit) IDL specification shown below.

interface IDelegationRegistration {
void register_inner_component(cicap_t cicap);

};

A component-instance overrides a delegatable interface by passing its CICAP to the register_inner_component ()
method of the corresponding registration interface. This method, whose implementation is shown in Fig-

ure 5.33, stores the passed CICAP in the Di-CICAP field for this interface. Delegation can be reset by

passing a CICAP with a NULL reference. register_inner_component () is placed in a separate interface,

as interfaces are the unit of access control, and the capability to override an interface is obviously a more
privileged operation than invoking methods of the interface. In general, the creator of a component-
instance should not distribute CICAPs with access to registration interfaces.

Delegation Protocol

Delegation is implemented using a protocol similar to the aggregation protocol. Due to the differences
identified in Figure 5.32, however, two modifications are required.

e As an interface may not be delegated, the outer-component-class must provide an implementation
of the interface. Therefore, unlike aggregation, these methods will have valid entry points registered
with the Component Locator, and hence the initial method invocation will succeed. Component
stubs of delegatable interfaces must raise an MCS_STE_DELEGATED exception if the interface is actu-
ally delegated.

e As CICAPs are too large to fit in the exception data area, interface objects must still invoke an
entry point to obtain the CICAP for the inner-component-instance. This entry point is registered
with the key (cid,iid,2). As the CICAP to be retrieved is stored in a known field within the
instance header, this component stub doesn’t need to call the component implementation like
agg_get_cicap().

84

CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

res_desc_t csgc_idr_iws_stub_reg_inner_component(cap_t

{

cicap_t _cicap, _r_cicap;
void **_pb;

res_desc_t _res;
inst_hdr_t *hdr;

/* unpack parameters */

_pb = (void**)param.address;
_cicap = *((cicap_t*)_pb);
_pb +=2;

_r_cicap = *((cicap_t*)_pb);

/* validate access */

hdr = (inst_-hdr_t*)_cicap.ref;

if (validate_cicap(hdr,_cicap) == 0) {
_res.type = MCS_STUB_EXCEPTION;
_res.datal = MCS_STE_PROT;
return _res;

}

/* store the passed cicap in the instance header */
hdr—>dcicap[IWS_DCICAP_FIELD] = _r_cicap;

/* done */
_res.type = 0;
return _res;

Figure 5.33: register_inner_component

param)

10

15

20

25

30

5.5. COMPONENT MODEL IMPLEMENTATION 85

Figure 5.34 summarises the delegation protocol, with a detailed description of the steps given below.
Figure 5.35 presents an example component stub for a delegatable interface, and Figure 5.36 presents an
interface method stub implementing the delegation protocol.

8. The method invocation is restarted using
. the CID of the new effective CICAP,
Overriding

Component

3. The companent stub is invoked. i i

&, Enfry point (cid, iid, 2 is invoked,

@Ryl

A 5. An MCS_STE_DELEGATED stub
DEIEQatIng B e:ceptio_n is raised,) C"ent
Com pone nt 7. The DCICAP for this interface

© iz returned and becormes the
effective CICAP.

N J N J

4. The component stub finds a nan-zero CICAP in the 1. A new intarface obiect is created.
DCICAP header field for this interface.

2. & method is invoked on a delegated interface,
The CL returns the enfry point for the companent
stub in the outer-component,

Figure 5.34: Delegation Protocol

1. A client creates an interface object using any constructor. Components cannot delegate the class
interface or any interface containing a CONS method, therefore, construction is not affected by
delegation.

2. A method is invoked on the interface object by a client.

3. As delegated interfaces are implemented by the outer-component, a valid entry point is retrieved
from the CL, and the corresponding component stub invoked.

4. Component stubs for delegatable interfaces check the corresponding D-CICAP field in the instance
header. If this field contains a CICAP with a non-zero ref, an MCS_STE_DELEGATED stub exception
is raised.

5. This exception is returned to the interface object, invoking its exception handler. This checks
whether the exception was MCS_STE_DELEGATED, and if so, retrieves the entry point for (cid,iid,2),
whose signature is given below.

cicap_t get_del_cicap()

6. get_del_cicap() is invoked.

7. get_del_cicap() returns the CICAP in the corresponding D-CICAP field. This CICAP be-
comes the effective reference of the interface object, and is stored in its ecicap data member.
cl_get_component_class() is then used to determine the CICAP’s component-class identifier,
which is stored in the cid member.

8. The interface object restarts the original method invocation using the new CID and CICAP returned
by the outer-component.

86

CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

res_desc_t csgc_iws_stub_Status(cap-t param)

{

cicap_t _cicap;
res_desc_t _retval;
inst_hdr_t *hdr;

/* unpack parameters */
_cicap = *((cicap_t*)¶m);

/* validate access */

hdr = (inst_-hdr_t*)_cicap.ref;

if (validate_cicap(hdr,_cicap) == 0) {
_retval.type = MCS_STUB_EXCEPTION;
_retval.datal = MCS_STE_PROT;
return _retval;

}

/* check if this interface is delegated */

if(hdr—>dcicap[CSGC_IWS_DCICAP_FIELD].ref != NULL) {
_retval.type = MCS_STUB_EXCEPTION;
_retval.datal = MCS_STE_DELEGATION << 48;
return _retval;

}

/* invoke method */
_retval.datal = (unsigned)csgc_iws_Status((csgc-t*)&(hdr—>dcicap[1]));

/* set result descriptor */

_retval.type = 0;
return _retval;

Figure 5.35: Delegatable Component Stub

10

15

20

25

30

5.5. COMPONENT MODEL IMPLEMENTATION 87
/* interface method stub for the get_agg_cicap() and get_del_cicap() methods */
cicap_t iws_get_agg_cicap(IWeaponSystems_t *cthis, environment_t *ev);
cicap_t iws_get_del_cicap([WeaponSystems_t *cthis, environment_t *ev);
#define IS_.DELEGATED(x) (-res.type == MCS_STUB_EXCEPTION \
&& ((-res.datal >> 48) == MCS_STE_DELEGATION))
wstatus_t iws_Status([WeaponSystems_t *cthis, environment_t *ev)
{
void **_pb;
entry_pt_t _ept;
int _r;
res_desc_t _res;
cicap_t _adcicap;
AD_RESTART:
/* pack parameters ... */
/* get the entry point ... */
/* invoke the entry point */
_r = ci_request(_ept, cthis—>pb, &_res, PD_LEMPTY);
ev—>_major = res.type;
/* check exceptions */
if(_r'=0){
/* check if the interface is aggregated or delegated */
if(_ept == NULL)
_adcicap = iws_get_agg_cicap(cthis, ev);
else if([S_DELEGATED(_res))
_adcicap = iws_get_del_cicap(cthis, ev);
/* if the interface is aggregated or delegated, reissue the call */
if(ev—>_major == MCS_NO_EXCEPTION) {
cthis—>ecicap = _adcicap;
cthis—>cid = cl_get_component_class(_adcicap);
goto AD_RESTART;
}
/* other exceptions are just returned to the client */
ev—>_minor = (res.datal >> 48);
memcpy(ev—>_data, &(((char*)&(res.datal))[2]), 13);
return;
}
/* done */

}

return (wstatus_t)res.datal;

Figure 5.36: Interface Method Stub With Delegation

10

15

20

25

30

35

40

45

88 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

Combined, aggregation and delegation create the possibility of cycles within the interface implementation
chain. For example, in Figure 5.37, a component-instance C'I, aggregates an interface from CI;, which in-
turn has delegated the interface to C'I;. In this situation, the interface object will loop forever. Currently,
it is the developer’s responsibility to ensure that such cycles do not form. Interface objects can avoid
endless looping by placing a limit on the maximum number of iterations of the protocol.

Delegated

Figure 5.37: Aggregation / Delegation Cycle

Although this section has highlighted the similarities of delegation and aggregation, it is important to
remember that they serve very different purposes. Aggregation allows a component-class to reuse an
implementation of an interface provided by another component-class. Delegation allows a component-
instance to be customised at runtime.

5.5.6 Dynamic Type Discovery

Every MCS component-class provides type information via the get_typeinfo () method of the class in-
terface. This method copies the component-class’s type information into a client supplied buffer according
to the format shown in Figure 5.38. If the buffer passed is too small to hold all the type information,
as much information as possible is copied into the buffer and an MCSE_STE_INSFBUFFER exception is
returned. All type information is statically known to the component-class.

5.5.7 Persistence and Naming

Mungi objects are persistent, and remain at a fixed address within the single-address-space. As component-
instances are contained within Mungi objects, they are automatically persistent, and their virtual ad-
dresses provide globally unique names. By providing these services, Mungi demonstrates its suitability
as a component platform.

5.5.8 Static Interfaces

A component-class can either provide an interface as static or non-static. Interfaces are provided as non-
static unless prefixed with the STATIC modifier as shown in Figure 5.40. Methods of static interfaces
always execute in a single, global, context. As they are not associated with an instance, static methods
require component stubs and interface objects to be modified. These modifications are listed in the
following sections.

5.5. COMPONENT MODEL IMPLEMENTATION 89

CIDg4

Versionss Interface Countso

IID-164

IID-ig4

IID-ng4

Flg Flg an

CID: the component-class identifier.

Version: the minor version number.

Interface Count: the number of incoming and outgoing interfaces.
IID-i: the interface identifier of the ith interface.

Fi: a set of flags describing the ith interface, shown in Figure 5.39 (MSB at left).

Figure 5.38: Type Information Format

Component Stubs

e No CICAP is passed to a static method. This means that static methods may have up to two words
of arguments before a parameter buffer needs to be used, and the first argument is stored at the
start of the buffer.

e Asthere is no CICAP, component stubs perform no access validation. Static methods are sufficiently
protected by Mungi PDX capabilities.

e Component implementation signatures do not expect a reference to be passed.

Non-Static wstatus_t csgc_iws_Status(csgc_t *cthis);

Static wstatus_t csgc_iws_Status();

Interface Objects

e Interface objects for static interfaces do not contain the CICAP data members.

e As interface objects for static interfaces have no CICAP, they also have no CICAP constructor.
Clone constructors are the same for static interfaces.

e As no instance needs to be created, creation constructors do not invoke the component imple-
mentation. The creation constructor for a static interface is the non-static creation constructor,
Figure 5.24, with lines 18-32 (inclusive) removed.

90 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

AGG DLG ouT REG Undefined

AGG: Aggregated.
DLG: Delegatable.
OUT: Outgoing, i.e. this is an event interface.

REG: A registration interface for a delegatable interface. This interface always immediately follows the
corresponding delegatable interface.

Figure 5.39: Flag Field Format

component CStarfleetGalaxyClass f{
provides IEngineeringConsole;
provides IEngines;
provides IHolodeck;
provides INavigation;
provides ISensors;
[STATIC] provides IStellarCartography;
provides IWeaponSystems;

Figure 5.40: STATIC Modifier Example

5.5.9 Version Support

Component-classes are modified for a variety of reasons in a variety of ways. For example, bugs fixes,
improving performance, improving structure, adding interfaces to provide extended functionality, and
modifying an interface to change the functionality of a component-class. Version support in MCS has
two goals.

e If a new version of a component-class is backwardly compatible, then existing clients should auto-
matically use the new implementation and protection context. The change-over must take place
without requiring all clients to be halted. Backwardly compatible changes to a component-class are
called minor version changes.

e If a new version of a component-class is not backwardly compatible, the new version should be able
to coexist with existing versions. Clients should transparently use the appropriate component-class.
Modifications to a component-class that are not backwardly compatible are called major version
changes.

Support for multiple versions of a component-class is primarily a concern of the Component Locator.
An interface object must be able to determine the appropriate entry points for a given component-class
identifier. When a component implementation registers its entry points with the Component Locator, it
specifies a component-class identifier (CID). In effect, the component implementation is registering itself
as the handler for component-instances with this CID.

A new minor version of a component-class retains the same CID as the previous version, and registers
itself as the handler for instances of this CID. When an interface object next requests an entry point for
this CID, it will receive the new entry point, and so automatically use the new version. Provided that the
previous minor version remains on the system for a short period after the new version has been installed,
so any in-progress methods can complete, clients do not have to be halted. The VO field in the instance

5.5. COMPONENT MODEL IMPLEMENTATION 91

[VER(VID_DISY,2,4)] component CStarfleetGalaxyClass {
provides IEngineeringConsole;
provides IEngines;
provides IHolodeck;
provides INavigation;
provides ISensors;
provides IStellarCartography;
provides IWeaponSystems;

Figure 5.41: Version IDL Example

header allows a minor version to distinguish between instances created by different versions. The VL
field allows a minor version to indicate that it has already seen this component-instance, and performed
any updates required, e.g. to its data format.

Major version changes are considered to be different component-classes by MCS, therefore, they are regis-

tered using a new CID. Major versions are related only by their human-readable name, e.g. CStarfleetGalaxyClass.
As the methods of a new major version are registered with a new CID, existing component-instances con-

tinue to use the same component implementation, i.e. major versions of the same component-class can

coexist.

Version numbers are included in a component-class’s IDL specification, as shown in Figure 5.41. Major
version numbers are separated into two parts, a 16 bit vendor ID and a 16 bit local major version. This
allows disjoint development of a component-class, without conflicts arising if multiple versions appear on
the same system.

When a new version of a component-class is developed, the developer must determine whether this is a
major or minor update. Table 5.1 lists some common ways a component-class is modified, and whether
they are major or minor updates.

Implementation bug fix. Minor
Implementation enhancement. Minor
Implementation change effecting method semantics. Major

Addition or Removal of a constant, type or exception definition from | Minor
the component-class specification (this cannot effect an interface).

Addition of an interface to the component-class. Minor

Removal of an interface from the component-class. Major

Table 5.1: Major vs Minor Version Updates

Interfaces can be added to a component-class because, as described with the component construction
model in Section 4.3.1, interfaces do not define a component, they only provide a wiew of the core
component functionality. Aslong as the semantics of the core remain the same, interfaces are independent,
therefore, new interfaces can be added.

92 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

extern __inline__ int ci_request(entry_pt_t ept, cap_t param, res_desc_t *ret, void *pd)

{
int r;
r = PdxCall(ept, param, (cap_t*)ret, pd);
if(r!=0)
ret.type = MCS_SYSTEM_EXCEPTION;
ret.datal = r << 48;
}
return r;
}

Figure 5.42: ci_request
5.6 Component Invoker and Component Adaptor

Together, the Component Invoker (CI) and the Component Adaptor (CA) provide a standard request
mechanism interface, comprising two services:

e Activating the component implementation.

e Transferring control, and limited request data, to the entry point.

The CI is implemented as a library.

5.6.1 ci_request

int ci_request(entry_pt_t ept, cap_t param, res_desc_t *ret, void *pd);
An MCS request has almost identical semantics to a Mungi PdxCall(), making the implementation of
ci_request () trivial, and avoiding the need for a Component Adaptor entirely. Figure 5.42 presents the

complete implementation of ci_request (), which consists of a PdxCall() followed by a check to see if
a system exception should be raised.

5.6.2 ci_reset

int ci_reset();

As the Component Invoker has no state, this function just returns zero.

5.6.3 ci_get_opt and ci_set_opt

int ci_get_opt(int option_id, void *optval, int *optlen);
int ci_set_opt(int option_id, void *optval, int optlen);

As there are currently no options defined, both functions return MCSE_UNKNOWN_OPT.

10

5.7. COMPONENT LOCATOR 93

5.7 Component Locator

Interface objects use the Component Locator to retrieve the entry point for a method. The Component
Locator is implemented as library.

5.7.1 cl get_entry_pt and cl_set_entry_pt

int cl_get_entry_pt(cid_t cid, iid_t iid, mid_t mid, entry_pt_t *epr);
int cl_set_entry_pt(cid_t cid, iid_t iid, mid_t mid, entry_pt_t epr);

These functions provide a lookup service that maps a key (cid,iid,mid) to a 64 bit value, i.e. the entry
point address. Rather than directly providing this service itself, the Component Locator uses a nameserver
component to actually store the entries. This component must statically export the ICLNameServer
interface.

interface ICLNameServer {
entry_pt_t getname(cid_t cid, iid_t iid, mid_t mid);
int setname(cid_t cid, iid_t iid, mid_t mid, entry_pt_t data);

};

As the nameserver component cannot be used to lookup its own entry points, these values are stored in the
environment variables MCS_NS_EPT_GETNAME and MCS_NS_EPT_SETNAME. ci_reset (), which creates the
nameserver interface object used by the CL, enters these entry points into the epts member of the interface
object. Figures 5.43 and 5.44 present implementations of c1_get_entry_pt() and cl_set_entry_pt()
respectively.

5.7.2 cl_get_component_class

cid_t cl_get_component_class(cicap_t ref);

cl_get_component_class() provides a mapping from a CICAP to its component-class identifier (CID),
which must be passed to cl_get_entry_pt(). This function is only required if the interface object is
created using the CICAP constructor, as otherwise the CID is provided by the client. Figure 5.25 shows
the CICAP constructor.

This, CICAP — CID, mapping is implemented using the Mungi Object Table (OT), in cooperation with
the component-class. When a Mungi object is created, a corresponding object descriptor is added to the
OT. This descriptor contains object metadata, including a userinfo field that is set by the owner, and
can be accessed using the 0bjInfo() system call. As described in Section 5.3.2, the Mungi object in
which instances of a component-class are to be stored is the first capability in the protection context.
Therefore, this object is created by the client registering the component-class. When creating this object,
the owner must set the userinfo field in its descriptor to the CID. As a CICAP contains an address within
this object, the Component Locator can retrieve the appropriate object descriptor using 0bjInfo (), and
access its public information, including the CID. This imposes the restriction that all instances stored
within a single Mungi object must be instances of the same component-class, however, in practice this is
not a problem.

Figure 5.45 presents the implementation of c1_get_component_class().

94

CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

#include <stdlib.h>
#include "mcs_cl.h"
#include "mcs_ci.h"
#include "ins_io.h"

/* interface object for the nameserver component - created by cl_reset() */
INameServer *ins;

int cl_get_entry_pt(cid_t cid, iid_t iid, mid_t mid, entry_pt_t *epr)

{

environment_t ev;

/* lookup the entry point */

*epr = ins_getname(cid, iid, mid, &ev);

if (ev.type !'= MCS_NO_EXCEPTION)
return MCSE_FAIL;

/* if the call succeeded, by the entry wasn’t found, determine whether the class,

* interface or method doesn’t exist */
if(¥*epr == NULL) {

/* lookup the constructor, which must exist for every legal class */

*epr = ins_getname(cid, IID_.CLASS_INTERFACE, MID_CONSTRUCTOR, &ept);

if(ev.type = MCS_NO_EXCEPTION)
return MCSE_FAIL;

if(*epr == NULL)
return MCSE_CID_NOT_EXIST;

/* lookup MID_START, which corresponds to some method for every non-empty interface */

*epr = ins_getname(cid, iid, MID_START, &ept);
if(ev.type |= MCS_NO_EXCEPTION)

return MCSE_FAIL;
if(*epr == NULL)

return MCSE_IID_NOT_EXPT;

/* otherwise it must be the method */
return MCSE_MID_NOT_EXPT;

}
/* done */

return 0;

Figure 5.43: cl_get_entry_pt

int cl_set_entry_pt(cid-t cid, iid_t iid, mid_t mid, entry_pt_t epr)

{

environment_t ev;

/* set the entry point */

*epr = ins_setname(cid, iid, mid, epr, &ev);

if (ev.type !'= MCS_NO_EXCEPTION)
return MCSE_FAIL;

return 0;

Figure 5.44:

cl_set_entry_pt

10

15

20

25

30

35

40

10

5.7. COMPONENT LOCATOR 95

cid_t cl_get_component_class(cicap_t cicap)

objinfo_t obj;
int r;
/* get the object descriptor */
r = ObjInfo(cicap.address, 0, &obj);
if(r!=0)
return 0;
return obj.userinfo;

Figure 5.45: cl_get_component_class

5.7.3 cl_reset

int cl_reset();

cl_reset () must create the interface object for the nameserver component, and initialise its entry points.
The component identifier for the nameserver is stored in an environment variable MCS_NAMESERVER_CID.
Figure 5.46 presents the implementation of c1_reset ().

5.7.4 cl get_opt and cl_set_opt

int cl_get_opt(int option_id, void *optval, int *optlen);
int cl_set_opt(int option_id, void *optval, int optlen);

As there are currently no options defined, both functions return MCSE_UNKNOWN_OPT.

96 CHAPTER 5. COMPONENT SYSTEM IMPLEMENTATION

#include <stdlib.h>
#include "mcs_cl.h"
#include "mcs_ci.h"
#include "ins_io.h"

/* interface object for the nameserver component - created by cl_reset() */
INameServer *ins;

int cl_reset()

environment_t ev;

char *strenv;

cid_t cid;

entry_pt_t getname, setname;

/* retrieve the CID for the nameserver */
strenv = getenv(MCS_NAMESERVER_CID);
if (strenv == NULL)

return MCSE_FAIL;
atob((unsigned long*)&cid, strenv, 10);

/* lookup the entry points */
strenv = getenv(MCS_EPT_GETNAME);
if(strenv == NULL)
return MCSE_FAIL;
atob((unsigned long*)&getname, strenv, 16);
strenv = getenv(MCS_EPT_GETNAME);
if(strenv == NULL)
return MCSE_FAIL;
atob((unsigned long*)&setname, strenv, 16);

/* create an interface object, and manually set the entry points. This is a static
* interface, therefore, the constructor will not try and invoke the component */
if(ins == NULL) {
ins = create_constructor(MCS_NAMESERVER_CID, &ev);
if(ins == NULL)
return MCSE_FAIL;

ins—>epts[0] = getname;
ins—>epts[1] = setname;

/* done */

return 0;

Figure 5.46: cl_reset

10

15

20

25

30

35

40

Chapter 6

Component System Performance

Performance is the master.
Jochen Liedtke [Lie93]

6.1 Overview

MCS provides a component model that can be used to create, compose, customise, and extend system
services. This chapter demonstrates that such flexibility need not sacrifice performance, by presenting
micro and macro-benchmark results. A brief outline of this chapter is given below.

e Mungi Micro-benchmarks presents the cost of Mungi system calls used by MCS.

e MICS Micro-benchmarks presents the performance of MCS-RT, component-instance creation
and method invocation. Costs associated with component stubs, interface objects, aggregation,
and delegation are isolated.

e ‘CORBA Comparison Project’ Micro-benchmarks evaluates MCS using a published suite of
micro-benchmarks developed for CORBA implementations.

e Micro-benchmark Comparison uses the results from the previous section to compare MCS to
some existing component technologies.

e Macro-benchmarks demonstrate that micro-benchmark performance improvements result in end-
to-end performance benefits.

6.2 Environment

All Mungi/MCS results were obtained on a hardware platform developed at UNSW, featuring a 100MHz
MIPS R4600 processor and 64MB of RAM on a 50MHz memory bus, which is rated at approximately
1.9 SPECint-95".

LJeroen Vochteloo [Voc98] reports that this platform exhibits performance that is roughly equivalent to a 100MHz MIPS
R4600-based SGI Indy workstation rated at 1.9 SPECint-95.

97

98 CHAPTER 6. COMPONENT SYSTEM PERFORMANCE

6.3 Mungi Micro-benchmarks

This section presents the cost of Mungi system calls, allowing a precise analysis of the results presented
in the following sections. Results are the average of a large number of iterations, and therefore, represent
ideal cache conditions. As there is a significant difference between the performance of the first PdxCall ()
to a protection domain, and subsequent calls, results are shown for both cases. An analysis of the
performance of Mungi system calls is presented in [Voc98].

Null system call 6
ObjCreate() 30
ObjDelete() 44
ObjInfo() 14
ApdGet() 13
PdxCall() - first call 887
PdxCall() - repeated call | 29

Table 6.1: Mungi System Call Costs (us)

6.4 MCS Micro-benchmarks

As described in Section 4.1, all component architectures provide two fundamental services: component
creations and method invocation. This section presents the performance of these two services, as well as
that of MCS-RT.

6.4.1 Component Invoker and Component Locator

Table 6.2 presents the performance of the Component Invoker and the Component Locator. Again, all
results are the average of a large number of iterations.

Referring back to the implementations presented in Sections 5.6 and 5.7, these results are all as ex-
pected. As ci_request() and cl_get_entry_point() are respectively on the critical paths of method
invocation and component creation, it is essential that they perform well. Comparing their costs to that
of a PdxCall(), i.e. the dominant operation of both functions, it can be seen that MCS imposes little
additional overhead.

6.4.2 Component Creation

A new component-instance is created using the creation constructor (Figure 5.24) of an interface object.
Table 6.3 presents the performance of a creation constructor, and identifies its major costs.

An initial result of 100us represented unacceptable overhead. Therefore, two optimisations were conceived
and implemented.

6.4. MCS MICRO-BENCHMARKS 99

cirequest() 29
cireset() 0
ci_get_opt() 0
ci_set_opt() 0
cl_get_entry_point() 34
cl_set_entry_point() 34
cl_get_component_class() | 15
clreset() 40
cl_get_opt() 0
cl_set_opt() 0

Table 6.2: MCS-RT Performance (us)

Retrieve the constructor entry point (cid,0,0) | 34 / 2
Invoke the constructor 32
Create a parameter buffer 30/0
Other 4

Total 110 / 38

Table 6.3: Profile of the Creation Constructor (us)

e A per-process entry point cache was implemented in cl_get_entry_pt(). Repeated construc-
tions, therefore, do not invoke the name-service component, avoiding the overhead of an additional
ci_request (). Cache entries must be timed-out, so that a process does not have to restart to use
a new minor version. As shown in Table 6.3, this optimisation reduces the cost of a (repeated)
component creation by 32us.

e Originally, each interface object created its own Mungi object to use as a parameter buffer, to
protect itself from other (buggy) code. Unfortunately, as this protection incurs a 30us penalty, it
must be reconsidered. Therefore, the creation constructor is modified to accept a parameter buffer
from the client.

I0_t *io_create_constructor(cid_t cid, cap_t *pb, int size, env_t *ev);

Clients may pass a parameter buffer to the interface object via the pb argument. The constructor
validates that the size of this buffer is sufficient, and if so, uses it as its parameter buffer. If size
is zero, then the constructor creates a new Mungi object to use as a parameter buffer. Essentially,
responsibility for protecting parameter buffers is passed to the client, reducing the cost of creation
by 30us.

These two optimisation reduce the fast-case component construction cost to 38us, which represents an
acceptable overhead. This cost is dominated by the ci_request () to the component-class constructor.

100 CHAPTER 6. COMPONENT SYSTEM PERFORMANCE

The remaining time is consumed initialising the instance header, creating an owner CICAP, and initialising
the interface object.

Interface objects provide an additional constructor, the CICAP constructor, which creates a new interface
object that is connected to an existing component-instance. As the CICAP constructor also created a
new Mungi object to use as a parameter buffer, it is modified in a similar way to the creation constructor.

I0_t *io_cicap_constructor(cicap_t cicap, cap_t *pb, int size, env_t *ev);

A CICAP constructor incurs a cost of 3us, representing the time taken to create and initialising a new
interface object.

6.4.3 Method Invocation

This section evaluates the performance of method invocation using four methods. These four methods,
shown in interface IBenchMethodInvocation below, represent the four permutations of direct vs. buffered
parameter transfer, and direct vs. buffered return value transfer. Section 6.5 provides a more rigorous
investigation of the effects of different method signatures.

typedef struct {
long a, b, c, d;
} big_return_t;

interface IBenchMethodInvocation {
void dd();
big_return_t d1();
void 1d(long a, long b, long c, long d);
big_return_t 11(long a, long b, long c, long d);

dd() 32
di() 32
1d() 33
11() 33

Aggregated dd() (repeated call) | 32
Delegated dd() (repeated call) 32
Delegatable dd() (repeated call) | 32

Table 6.4: Method Invocation Performance (Repeated Calls) (us)

That d1() exhibits the same performance as dd (), indicates that there is no inherent penalty associated
with using a parameter buffer. 1d() and 11() incur an additional 1us penalty since they must explicilty
copy the arguments into the parameter buffer. The different performance of d1() and 1d() indicate that
it is the extra instructions, rather than the memory operations, that create the overhead. This suggests
that if a large number of parameters are to be passed, a structure should be used. Table 6.4 also confirms
that there is no overhead associated with repeated calls to aggregated and delegated interfaces, and that

6.5. CORBA COMPARISON PROJECT MICRO-BENCHMARKS 101

Creation constructor | dd() 32
Creation constructor | dl() 32
Creation constructor | Aggregated dd() 62
Creation constructor | Delegated dd() 92
CICAP constructor | dd() 32
CICAP constructor | dl() 33
CICAP constructor | Aggregated dd() 62
CICAP constructor | Delegated dd() 92

Table 6.5: Method Invocation Performance (First Call) (us)

the extra code required in the component stubs of delegatable interfaces does not create a significant
overhead.

Table 6.5 presents the performance of the first method call on a new interface object.

Interface objects for aggregated interfaces must call the outer-component-instance to retrieve a CICAP for
the inner-component-instance, therefore, two ci_request () operations are required, essentially doubling
their cost. As described in Section 5.5.5, delegated interfaces require three ci_request () operations for
the first call. Table 6.5 also shows that performance is independent of the constructor used to create the
interface object.

6.5 CORBA Comparison Project Micro-benchmarks

The CORBA Comparison Project [Bub99] is an attempt to provide a suite of simple micro-benchmarks
to evaluate the performance of a CORBA implementation. Although MCS is not an ORB, it does provide
the same basic functionality, which can be evaluated using these benchmarks. There are three motivations
for applying these benchmarks.

e Standard, published, benchmarks provide more credible results.
e Standard benchmarks provide results that can be compared to other systems.

e These benchmarks evaluate features not evaluated above, e.g. scalability.

Each benchmark is described as it is performed below. These descriptions have been adapted from
[Bub99].

6.5.1 Measurement Verification

A benchmark, CALL, is used to verify that there is no significant relation between the method invocation
pattern and the method invocation performance. Such a relation would invalidate the results of other
benchmarks in the suite which have oversimplified invocation patterns. CALL employs five invocation
strategies.

e As Thru, Rev Thru - a single component-instance is called 10 times, repeated for 1000 instances in
their creation order and reverse creation order.

102 CHAPTER 6. COMPONENT SYSTEM PERFORMANCE

e As Prozxy, Rev Proxy - 1000 component-instances are called once in their creation order and reverse
creation order. This is repeated 10 times.

e Random - 10000 calls are made to 1000, randomly selected, component-instances.

a0

300 +— —

230 +— —

200 — —

150 — —

100 — —

50— —

1}

Az Thru Rew Thru Az Proxy Revw Proxy Random
O Time [m=] 327 328 327 329 33

Figure 6.1: CALL Results - 10000 calls

Results from the CALL benchmark, shown in Figure 6.1, indicate that there is no significant relation
between method invocation pattern and invocation times. Therefore, the results of the benchmarks in
this suite are valid for different invocation patterns.

6.5.2 Dispatcher Performance

CORBA implementations involve a dispatcher, which is used to locate the appropriate object imple-
mentation and entry point for a method invocation. Three benchmarks, IDL.NAMES, IDL.LONG, and
IDL.DEEP, are used to discover relationships between the structural complexity of an interface and invo-
cation performance. As MCS directly invokes specific component stubs, rather than requiring a message
loop, and caches entry points in interface objects, these benchmarks do not apply.

6.5.3 Performance

IDL.ENCAP compares the times needed to pass data individually, in an array, and in a structure. A
single component-instance is created, and each of the methods of the IEncap interface invoked 1000 times.
Figure 6.2 shows the average time per invocation.

typedef long arr_t [100];
typedef struct {

long x0, x1, ..., x99;
} str_t;

interface IEncap {
void no_encap(long x0, long x1, ..., long x99);
void arr_encap(arr_t a);
void str_encap(str_t a);

};

IDL.ENCAP shows that MCS passes arrays much faster than structures or individual parameters. This
is because MCS makes use of the single-address-space, and passes arrays as pointers. Therefore, only one
word needs to be passed in the parameter buffer.

6.5. CORBA COMPARISON PROJECT MICRO-BENCHMARKS 103

al

40

30

20

10

i

Mot Encap Array Structure

O Time [us] 42 32 43

Figure 6.2: IDL.ENCAP Results - 1 call

THROUGH.IN determines how fast an ORB transfers data. Each basic data type is sent individually,
and in a 1kB array. For example, for the short basic type, the following three methods are called.

typedef short short_sarr_t [1024/sizeof (short)];
typedef short short_larr_t [4096/sizeof (short)];

interface IThrough {
long in_short(short a);
long ar_short(short_sarr_y a);
long ar_short(short_larr_y a);

Each method is invoked 1000 times on 5 objects. The average performance of each operation is shown in
Figures 6.3 and 6.4.

32

30 +— -

25 +— -

20 +— —

Flost Droukle Long Ulong Shott UShort Char
O Time [uz] 32 33 32 33 32 33 32

Figure 6.3: THROUGH.IN Basic Data Types - 1 call

THROUGH.IN shows that there is no relation between the size of the array being passed and the method
invocation time. This is because, as stated above, arrays in MCS are passed as pointers. THROUGH.IN
also shows that there is no relation between data type and invocation time; the maximum deviation is
3%, most likely due to cache effects.

104 CHAPTER 6. COMPONENT SYSTEM PERFORMANCE

Time [us]
o

Flost [256/1024] | Double[128512] | Long2564024] | Short[S122048] | Cher[1024/4098]
o small array 1 2 3 2 2
|mLarge aray Y Y Er 2 e

Figure 6.4: THROUGH.IN Arrays - 1 call

6.5.4 Multi-Threading

MT.CLIENT tests the multi-threading capabilities of clients. A client creates five threads, each of
which creates an instance of a different component-class, and invokes a method that takes 10 seconds to
complete. A multithreaded client architecture will take 50 seconds to complete the benchmark, while a
serialised client architecture will require 250 seconds.

MCS completes in 50 seconds.

MT.CONN tests the multi-threading capabilities of clients when accessing the same component-class.
This benchmark is similar to MT.CLIENT, however, all client threads create an instance of the same
component-class and invokes the method five times. An architecture that allows the requests to be
handled in parallel will take 50 seconds to complete, a serialised architecture will take 250 seconds.

Again, MCS completes in 50 seconds.

6.5.5 Scalability

Scalability is measured using the PROXY benchmark. PROXY measures the time taken to create a new
component-instance and invoke two methods on it. This is measured for 1000, 2000 and 3000 instances
already existing in the component-class. Figure 6.5 shows the results for the PROXY benchmark. These
results show that there is no relation between performance and the number of existing instances. They
also confirm the result from Section 6.4.3, that there is no difference between the time taken by the first
and subsequent invocations for standard methods.

6.6 Micro-benchmark Comparisons

This section uses the results from the previous section to compare MCS to some existing component
technologies. Where available, three results have been presented for each system: the time to create a
new instance/object, to invoke a method with no arguments, and to invoke a method passing an array
of 256 longs. Unfortunately, due to time and availability constraints, the results presented are from
a variety of platforms. Therefore, Figure 6.6 presents the raw result, and Figure 6.7 normalises the
results according to the platform’s SPECint-95 rating. Whilst this is by no means a precision result,
the performance differences involved are far greater than the error. SPEC-95 ratings were obtained from
http://www.specbench.org/osg/cpud5/results/cpud5.html.

6.6. MICRO-BENCHMARK COMPARISONS

105

Time [us]

40

30

20 4

1000

2000

3000

||:| Creste

36

3T

it}

|mFirst vk,

32

a2

32

33

32

|oRepested Inw)

Figure 6.5: PROXY Results

e Mungi’s platform was described in Section 6.2, its SPEC-95 rating is 1.9.

e COM [COMY95] results were obtained on a PentiumlII 400MHz PC with 128MB of RAM, running
Windows NT Workstation 4.0 SP3. Its SPEC-95 rating is 8.56. COM results are for out-of-process
COM classes, i.e. equivalent to an MCS component.

e SPIN results are from [BSP*95], measured on an Alpha 133MHz AXP 3000/400. its SPEC-95
rating is 2.1.

e VINO results are from [SESS96], measured on a 120MHz PentiumI with 32MB of 60ns EDO DRAM.
Its SPEC-95 rating is 3.6.

e All ORBs were evaluated by [COR99d] on a 200MHz PentiumlI with 64MB of RAM, running
Windows NT Workstation 4.0. Its SPEC-95 rating is 6.7.

1000
900]
]
oo =
0 GO0 -
g a00 H
= 400 L
300 — H
200 — H
He— = I :
[A s . |
MCS COmM SPIN WINO omniORE | ORBacus | VisiBroker
O Create 34 212 385
O lrmwake 32 142 g9 160 459 345 E72
Olrwoke Array 32 560 931 732

Figure 6.6: Micro-benchmark Comparison

Figure 6.7 shows that MCS clearly outperforms the other component architectures, especially in bulk
data sharing. The micro-benchmarks presented indicate three reasons for these performance advantages.

e Mungi provides superior performance to the other platforms used, especially in the critical area of
cross-domain call overhead.

e MCS does not impose a significant overhead.

106 CHAPTER 6. COMPONENT SYSTEM PERFORMANCE

12000
10000 1
8000
B000
4000
2000
D l _ m
MCS SOk SPIM WM omniORE CRBacus | WisiBroker
O Create 18 b 4240
= lnvoke 100 1993 307 885 768 9319 7403
Olnvoke Array 100 5167 10255 B0E3

Figure 6.7: Normalised Micro-benchmark Comparison

e A SASOS allows data to be passed by reference, avoiding marshalling costs.

6.7 Macro-benchmarks

Macro-benchmarks demonstrate that micro-benchmark performance improvements result in end-to-end
performance benefits. This section presents two macro-benchmarks, the OO1 benchmark [CS92] that
simulates a ‘typical’ operations on an object-oriented database, and the Andrew Benchmark [HKM™88]
that emulates a software development workload on a file system.

6.7.1 0OO1

The OO1 benchmark [CS92] is designed to simulate typical operations on an object-oriented database.
The data stored in the database should be accessible to the user only via the defined interface functions,
and so is a natural situation for components. A database component is constructed with appropriate
access methods, and an instance is created to hold the database information. The database used consisted
of 20,000 parts. Four operations are performed, lookup, forward traversal, reverse traversal and insert.

Table 6.6 shows the results from the OO1 benchmark running on Irix, Linux and Mungi. Irix and Linux
use an RPC trusted path, with a client/server software construction model. Irix and Linux results were
obtained by [Voc98] on a 100MHz R4600-based SGI Indy workstation with 64MB of RAM. All times are
in milliseconds. L. is lookup, F.T. is forward traversal, R.T. is reverse traversal and I. is insert.

Irix 949 1,409 1,411 203 | 3,972

Linux 344 467 461 842 | 2,114
Mungi 88.8 27.1 33.0 38.9 | 187.8

Table 6.6: OO1 benchmark results (in ms)

6.7. MACRO-BENCHMARKS

107

Mungi components outperform Linux by a factor of eleven and Irix by a factor of twenty-one. Total

execution time for OO1 can be separated in three categories.

e Executing application code, which includes the client logic and the database operations. As
application code is the same for all three systems, and contains no system calls, this cost should
be constant across systems. By placing the database in the same protection domain as the client,
and re-executing the benchmark, it was confirmed that the cost was constant, at 28us. As this
is over three orders of magnitude less than the total execution time, application code overhead is

irrelevant.

e Cross-domain call overhead. Each operation results in (at least one) cross-domain call. Table 6.7

compares the cost of a cross-domain call on each system.

Mungi PdxCall | 30
Linux RPC 160
Irix RPC 450

Table 6.7: Cross-domain call performance

As 5869 operations are performed by the benchmark, the total cross-domain call overhead (X-Dom)

can be calculated. These values are presented in Table 6.8.

Irix 2641 1331 3972
Linux 939 1175 2114
Mungi 176 11.8 187.8

Table 6.8: Division of overhead

e Model overhead is the remaining difference between the three systems. Irix and Linux both
use a client/server model in a multiple-address-space environment, while Mungi uses a component
model in a single-address-space environment. Model overhead is primarily parameter marshalling
and message dispatch, e.g. a message loop. As Irix and Linux use the same software construction
model, which does not involve system intervention, it is expected that both should incur a similar

model overhead.

Section 6.4 shows that, for Mungi, the model overhead is 6.7% (=) of the cross-domain cost. For

30

the 176ms cross-domain cost reported in Table 6.8, this corresponds to 11.8ms, which is exactly
the value in the Other column. This confirms that cross-domain call latency and model overhead
are indeed the differentiating factors for the OO1 benchmark. Therefore, the Other column of
Table 6.8 can justifiably be used as reporting the model overhead. Irix and Linux have a similar
model overhead, though the 11.7% (33.=175) difference is greater than expected.

1331

001 demonstrates that the excellent micro-benchmark performance of MCS results in concrete, end-to-
end, performance gains. It also confirms the conclusion of the previous section, that these performance
gains are due to superior system performance (i.e. PdxCall()) combined with a lightweight component
model. Figure 6.8 shows that both provide significant performance benefits.

108 CHAPTER 6. COMPONENT SYSTEM PERFORMANCE

6.7.2 An Extensible File System

Although MCS clearly performs well compared to existing component, and RPC-based, architectures,
system services are predominantly implemented in a monolithic fashion. Therefore, to show that MCS
can be employed at the systems level, an MCS based system service must demonstrate performance com-
parable to an equivalent monolithic service. Given comparable performance, MCS is clearly a preferable
software technology.

This section compares the performance of a component-based file system, in which files and directories are
implemented as MCS components, and the Linux ext?2 file system. The systems are compared using the
Andrew Benchmark [HKM™88], which emulate a ‘typical’ software development workload, by performing
operations in five phases.

Creates 20 subdirectories recursively.
e Copies a source tree containing 70 files into the created tree.
e Examines the status of every file in the tree.

e Examines every byte of data in all files.

Compiles and links the program.

As make has not yet been ported to Mungi, the fifth phase has been omitted. Furthermore, this section
is interested in comparing the software overhead, rather than the I/O performance, of the two systems.
Therefore, the benchmark is performed entirely in memory. On Mungi, this is achieved by executing
the benchmark in a non-persistent region of the single-address-space, while on Linux it is achieved by
executing the benchmark on a RAM disk, created using the commands shown in Figure 6.8.

[ant@parrot /] mke2fs -v -m 0 /dev/ram0 4096
mke2fs 1.10, 24-Apr-97 for EXT2 FS 0.5b, 95/08/09
Linux ext2 filesystem format

Filesystem label=

1024 inodes, 4096 blocks

0 blocks (0.00%) reserved for the super user
First data block=1

Block size=1024 (log=0)

Fragment size=1024 (log=0)

1 block group

8192 blocks per group, 8192 fragments per group
1024 inodes per group

Writing inode tables: done
Writing superblocks and fullsystem accounting information: done
[ant@parrot /] mount -t ext2 /dev/ram0 /mnt/ram

Figure 6.8: Creating a RAM Disk on Linux

Table 6.9 shows the results from ten executions of the benchmark. Linux results were obtained on a
Pentium 200MHz PC with 32MB of RAM, running Linux kernel 2.0.34. Rather than merely showing
comparable results, MCS performs a factor of six faster than Linux. This performance is due to two key
factors.

e As the component-based file system is implemented as a stand-alone service, rather than in a large
monolithic operating system, its design and implementation is much simpler.

6.8. CONCLUSION

109

e MCS provides component-based simplicity without imposing a significant overhead.

e A Mungi file system can use the single-address-space to reduce the number of cross-domain calls

required.

Create 97 260
Copy 223 730
Status 45 1470
Read 307 1510
Total 672 3970

Table 6.9: Andrew Benchmark, Mungi vs Linux (ms)

6.8 Conclusion

The Andrew benchmark demonstrates that MCS can provide performance comparable to that of existing,
monolithic, system services. Micro-benchmarks showed that, for repeated calls, delegation does not
impose any additional overhead. Combined, these results indicate the validity of the claim that ‘MCS
provides a component model that can be used to create, compose, customise, and extend system services.’

Micro-benchmark results from Sections 6.3, 6.4 and 6.5, indicate that MCS performance is derived from
three key factors: the superior performance exhibited by Mungi, a lightweight component-model, and
use of the single-address-space to allow bulk data sharing. OO1 confirmed the importance of both the
excellent cross-domain performance of Mungi, and the lightweight component model provided by MCS

for end-to-end performance gains.

110 CHAPTER 6. COMPONENT SYSTEM PERFORMANCE

Part 11

Access Control

111

Chapter 7

Access Control in Component
Systems

Current security efforts suffer from the flawed assumption that adequate security can be pro-
vided in applications with the existing security mechanisms of mainstream operating systems.
In reality, the need for secure operating systems is growing due to substantial increases in
connectivity and data sharing.

P. Loscocco et. al., 1995 [LSM195]

7.1 Overview

Security protects a system from inappropriate use, with what constitutes ‘inappropriate’ being defined
by a security policy [AGS83]. At the core of any security policy are restrictions on who can access what
in what way [GBI7b]. The specification and enforcement of such restrictions is called access control and
is the subject of this chapter.

Access control is required for systems to be able to enforce effective security policies; it is becoming
increasingly vital due to three key factors.

e Increased connectivity, driven by the popularity of the Internet, means that there is no such thing
as a single user system.

e Increased data sharing, driven by the wide-spread integration of computer systems into core buisness
processes, is creating a need for more sophisticated protection.

e Software is becoming more fine-grained, i.e. composed of a number of modules each performing
a particular task. Modules come from a variety of sources (this is especially true of extensible
software) and may not be entirely trusted.

Despite the increasing importance of access control, the mechanisms of existing component systems
remain primitive as Java continues to demonstrate [Lad97, MF97].

This chapter introduces a new access control mechanism based on a modified version of Domain and
Type Enforcement(DTE) [BK85], combined with capability based protection. This mechanism can be
used to implement a wide variety of security policies at various administrative levels. Section 7.2 presents

113

114 CHAPTER 7. ACCESS CONTROL IN COMPONENT SYSTEMS

the relevant theory, Section 7.3 describes the mechanism, Section 7.4 contains examples of implementing
security policies, and Section 7.5 presents a formal access control model.

7.2 Access Control Theory

This section presents the theory required for an appreciation of the access control mechanism presented,
as well as a feel for the current state of play.

7.2.1 Glossary

While the gratuitous use of jargon serves only to obfuscate, clarity requires the use of well defined terms.
The following terms are used throughout this chapter and the next.

e Object A passive entity that is operated upon, i.e. it is the target of an operation. O denotes the
set of all objects in a system.

e Operation An action performed on a passive entity by an active entity. M denotes the set of all
operations in a system.

e Subject An active entity, e.g. a thread, which performs operations on objects. S denotes the set
of all subjects in a system.

e User Any user who interacts directly with a computer system and thus has threads of control
executing some code on their behalf. U denotes the set of all users.

7.2.2 Access Control Matrix

Access control matricies were introduced in Lampson’s seminal paper Protection [Lam71]. An access
control matrix lists all the subjects in a system along the vertical axis, all the objects in the system along
the horizontal axis, and its cells contain the access rights of subjects to objects. Denoting the access
control matrix A, A;; lists the operations that S; may perform on O;. As most systems allow threads
to perform operations on other threads, e.g. signals, subjects often appear along both axis. Figure 7.1
shows an example access control matrix for a Unix style environment.

read terminate wait, signal, send

read, write, execute | wait, signal, terminate

wait, signal, receive

execute write control

Figure 7.1: Portion of an Access Control Matrix

Access control matricies express access control as a function: S x O — P(M). All existing access control
policies can be expressed using this function, and so almost all commercial operating systems provide a
matrix-based protection mechanism, usually access control lists (ACLs). For practical reasons, ACLs are
normally implemented using two functions: S — U, and U x O — P(M) [TOP99].

7.2. ACCESS CONTROL THEORY 115

Due to the immense number of subjects and objects that exist in most systems, the complete matrix is
too large to store explicitly. Fortunately, it is very sparse and can therefore be substantially compressed
by removing empty entries. Compression down columns produces access control lists (ACLs), which
define the subjects that may access a given object. Every object is associated with exactly one ACL.
Compression across rows produces capability lists, which define the objects that a subject may access.
Every subject is associated with exactly one capability list, often called a protection domain.

7.2.3 Role-based Access Control

Role-based access control (RBAC) [San95] is an extension of standard matrix-based protection. RBAC is
based on the observation that security policies are usually not concerned with users per se, but rather their
role in an organisation. For example, in a hospital, the security policy permits nurses in the cardiology
ward access to certain files; it is not concerned with the identity of the nurse. RBAC introduces a new
set, ROLES, and is based on three functions. A boolean set is also defined.

ROLES; the set of all roles in the system.
B = { Trus, FALSE}

User: S - U
LecacRores: U — P(ROLES)
VarmareAccess: ROLES x O — P(M)

These three mappings are maintained by a security administrator. When subject s’ performs operation
m' on object o', the system validates the access as follows:

VavrwareAccsss : S X M x O — B
u' = USER(SI)
T'S’ = LEGALROLES(U’)

Allowed = 3r € rs' o m' € VarwareAccess(r',0')

Note that the ‘@’ symbol reads as ‘such that’.

7.2.4 Domain and Type Enforcement

Domain and type enforcement (DTE) [eBSST95,BSST95, BK85], was introduced as a more flexible alter-
native to military style, lattice-based [Den76], protection, for supporting system wide security policies.
DTE associates each subject with a label called a domain, and each object with a label called a type. Do-
mains and types are abstract labels that do not necessarily relate to system constructs such as protection
domains or object classes. DTE introduces two new sets, D and T', and is based on three functions:

D; the set of all domains.
T'; the set of all types.

Domvamn: S = D
Tyee: O =5 T
VarmareAccess: D x T — P(M)

These three mappings are maintained by a security administrator, i.e. system users cannot alter the types
of the objects they own. When subject s’ performs operation m' on object o', the system validates the
access as follows:

116 CHAPTER 7. ACCESS CONTROL IN COMPONENT SYSTEMS

SysVavmwarsAccrss : S X M x O - B
d' = Doman(s')

t" = Tven(0')

Allowed = m' € VarwarsAccess(d',t')

7.2.5 Context Sensitivity

Context-sensitive mechanisms [Jae99] allow permissions to be specified relative to a context, i.e. the
environment in which a module is executing. As modules are used in a variety of contexts, least privilege
requires that permissions are context sensitive.

Access control mechanisms flexible enough to support context sensitive permission assignment are not
used in practice. Existing approaches assign permissions based solely on the module identity and its
author. Mechanisms for enforcement of limited rights for modules has been investigated in language-
specific systems [GMPS97,0LW98], however, the effectiveness of these mechanisms is limited because they
depend on a large trusted computing base (TCB), are language-specific, depend on unproven language
separation features and do not control resource utilisation [Jae99].

Context-sensitive access control has received an increasing amount of attention recently, especially in
role-based access control (RBAC) models [GI97,LS97]. These models parameterise modules, so their
permissions can be derived from the runtime context.

7.2.6 Mandatory and Discretionary Access Control

Apart from on a small number of research systems, most notably SPIN [GB97a], that provide mecha-
nisms for access control at various administrative levels, security policies are enforced using one of two
techniques.

e Mandatory access control (MAC) mechanisms are those where the assignment of security attributes
is controlled by a central authority, e.g. a security administrator. The “Orange Book” [US 86]
provides the original definition of MAC, which is tightly bound to the U.S. Department of Defense’s
multi-level security policy. The definition used here is a generalisation that has become popular in
the access control literature [SCCI7].

e Discretionary access control (DAC), on the other hand, allows users to define security attributes.
All mainstream operating systems, e.g. Unix [LMKQ89] and Windows NT [Cus93], use discretionary
access control. In these systems, the owner of a resource is responsible for the access control list
(ACL) of that resource.

How a security policy should be enforced depends on who defines the policy. System-wide policies, such
as Denning’s Lattice [Den76] and Chinese Wall [San93], are defined by the organisation, and only the
security administrators are trusted to maintain it. Therefore, system policies require mandatory access
control. User policies, such as who can access the files in your home directory, are defined independently
by each user, who should not trust others to maintain their policy. Therefore, user policies require
discretionary access control. Essentially, for effective security, only those who define a policy should be
responsible for maintaining it, i.e. apply the principle of least privilege.

It was previously stated that all existing access control policies can be expressed using the access matrix
function: S x O — P(M). This has led many operating system developers to claim that their system
provides support for arbitrary security policies, because they implement a matrix-based protection, i.e.

7.3. ACCESS CONTROL MECHANISM 117

full ACLs or capabilities. Invariably however, such systems only provide discretionary access control
mechanisms. This means they cannot enforce system-wide security policies, because such mechanisms
cannot defend against careless or malicious users. These systems can achieve any legal state of a given
policy, however they cannot prevent the system from entering an illegal state.

Although the above discussion focussed on system and user policies, in general, security policies can exist
at any level. For a component environment, three essential levels are identified, system policies, software
policies and user policies. Software policies refer to the context-sensitive policies applied to fine-grained
modules, which are especially important in extensible systems. A general-purpose operating system must
at least provide support for policies at these levels, and allow such policies to coexist. Therefore, they
require mechanisms for enforcing both mandatory and discretionary access control.

7.3 Access Control Mechanism

This section describes the access control model. The mechanisms for mandatory and discretionary access
control are discussed separately, and combined in Section 7.3.3.

7.3.1 Mandatory Access Control

This section presents a new mandatory access control model based on domain and type enforcement
(DTE). It focuses on two new features, introduced below, providing support for extensible environments.
These represent the principle contribution of this chapter.

e Adding a ‘component’ entity, and its associated operations, to the protection model.

e Allowing subjects to assign security attributes, i.e. domains and types, in a system controlled
manner. This allows the specification of context sensitive software policies, which is essential for
maintaining least privilege in extensible software.

Entities, Operations and Validations

In the original DTE model, which forms a subset of the model described here, subjects perform operations
on objects. Subjects are threads of control, and are associated with a domain (hereafter referred to as
an m-domain for clarity). Objects are memory segments, and are associated with a type (m-type). Four
operations, read, write, execute, and destroy, are defined. No ‘create’ operation is defined, as non-existent
objects do not have security attributes. An access in DTE is validated by obtaining the m-domain of the
subject, the m-type of the object, and verifying that the operation is allowed. For any given m-domain
and m-type, the operations allowed are given by the function:

VavwareAccess: D x T — P(M)

It is helpful to visualise this function in matrix form, with the m-domains listed along the vertical axis,
the m-types listed long the horizontal axis, and the cells containing the operations allowed. Figure 7.2
presents an example DTE access matrix.

118 CHAPTER 7. ACCESS CONTROL IN COMPONENT SYSTEMS

read,write, execute read, execute read

read,write, execute read, write

read,write, execute

read, destroy read,write, execute

Figure 7.2: DTE Access Matrix

Components introduce a new operation, called invoke. From an access control perspective, this operation
takes the form:

InvoxkeMernon(instance, method)

An invoke operation, if validated successfully, allows the m-domain associated with a subject to be
changed for the duration of a method call. Invoke can therefore be viewed as the mandatory analogue of
a protected procedure call [DVH66]. The m-domain in which the method is executed is defined by the
component-instance used. Therefore, a component-instance is associated with both an m-domain and
an m-type. The m-domain specifies the permissions with which its methods execute, and the m-type
specifies which m-domains may invoke methods on the instance. An example situation is presented in
Figure 7.3. Here, subjects in m-domain X may invoke methods on the component-instance, as its m-type
is available to the m-domain. When a method is invoked, the calling subject is transported to m-domain
Y for the duration of the method call.

Domain Transport

8] Subjects

O s
0<b:)]ects - o Component 88
0o O Invoke Instance

Method Code

Domain X DomainyY

Figure 7.3: Invoke Operation Domain Switch

Component-instances need to be characterised to determine how they should be modeled in the system.
Tables 7.1 and 7.2 respectively show the access control properties associated with component-instances,
and how they participate in access operations.

Entity ‘ Domain ‘ Type
Subject Vv X
Object X N4
Component-Instance | +/ Vv

Table 7.1: Entity Properties

7.3. ACCESS CONTROL MECHANISM 119

Active Entity ‘ Operation ‘ Passive Entity
Subjects read, write, execute, destroy | Objects
Subjects invoke Component-Instances

Table 7.2: Access Operations

Table 7.1 shows that component-instances cannot be classified as either subjects or objects. This is not
too surprising, as a feature of component, and object-oriented, programming is the vanishing distinction
between code and data. Rather than modify one of the existing constructs, a new entity class is created:

I; the set of all component-instances in a system.

From a mandatory access control perspective, a component-instance is simply a unique identifier, associ-
ated with an m-domain and an m-type, that allows the m-domain of a subject to be temporarily changed.
In particular, mandatory access control does not contain knowledge of, or influence, the component model.

Table 7.2 shows that component-instances always behave as passive entities, i.e. they are always the
target of an operation. Furthermore, it also shows that the operation can be used to determine whether
the passive entity is an object or a component-instance.

Again, it is helpful to visualise the situation in matrix form. As instances are passive entities, they are
listed on the horizontal axis with objects. The cells of instance columns contain two items of information,
the operations allowed (invoke or nothing) and the m-domain in which the instance’s methods execute.
Figure 7.4 contains an example matrix.

rwx- | ---- r-X- ---- | ---1i, D3 ---- ----
---- |TWX-| ---- | Tw--|---1, D3 ---- ----
---- ---- |rTWX-| ---- | ---1i, D3 ---- ----
r--- ---- ----|rwx-|---i,D3 | ---1i,Dy | ---1, D3

Figure 7.4: DTE Access Matrix

The access control model now contains two passive entity types, objects and component-instances. To
assist the expression of the model formally, a new set representing all passive entities in the system is
created.

® = O U I; the set of all passive entities in the system.

An access now consists of a subject s’, an operation m' and a passive entity ¢'. To obtain the type
of the passive entity, the system has to be able to determine whether it is an object or a component-
instance. Table 7.2 showed that this could be determined from the operation. Therefore, the standard
DTE functions must be modified to use the new set ® and to make the operation available to the
Tvee function.

120 CHAPTER 7. ACCESS CONTROL IN COMPONENT SYSTEMS

Function Standard DTE ‘ Component DTE
Domam S—D S—D
Tvyee 0O—-T OxM—->T
VarmareAccess DxT— P(M) DxT— P(M)

When subject s’ performs operation m’ on passive entity ¢', it is validated by the process:

| DuxVavwars : (S,M,®) > B
d =Dowan(s)
t =Tvws(¢',m’)
Return = m' €VarmwareAccess(d, t)

Managing Domains and Types

This section describes how subjects and component-instances are associated with m-domains, and how
objects and component-instances are associated with m-types. Subjects are created in two ways, by a
thread create system call, and by a method invocation on a component-instance. These two cases are
discussed separately below.

e Non-component subjects have their m-domain set by their parent as an argument to the thread
create system call. A system function:

LecarDomaxs : D — P(D)

defines the m-domains a subject in a given m-domain can legally assign.

When a subject, s, attempts to create another subject, s., in m-domain d., the system validates
the argument as follows:

dp - DOMAIN(SP)
Allowed = d, € LEGALDOMAINS(dp)

The first subject of a user session cannot obtain its m-domain this way. It is assumed that the
m-domain of this subject will be obtained from a user profile following a successful authentication,
and set by a login manager.

e Objects have their m-type set by their creator as an argument to the object create system call. A
system function:

LecarTvypes : D — P(T)

defines the m-types a subject in a given m-domain can legally assign.

When a subject, s', attempts to create an object, o', with type ¢’, the system validates the argument
as follows:

d’ :DOMAIN(SI)
Allowed = t' ELEGALTYPES(d’)

e Component-instances are not created by a system call, they are created by a constructor which
returns a unique name for the instance to the client. As this occurs without system intervention,
the m-domain and m-type of the instance cannot be validated on creation, and hence must be
validated on-demand. To perform this lazy validation, the kernel must implement two functions.

7.3. ACCESS CONTROL MECHANISM 121

InstanceCrearor : I — D
supplies the m-domain of the subject who created an instance, and:
InstanceDomamx 0 [— Dy;

supplies the m-domain associated with an instance. This is the m-domain in which methods invoked
on the component-instance execute, and is defined by the creator of the component-instance. When
a subject, s', invokes a method on an instance, ¢', the system validates the access as follows:

d. = InsranceCrearor(@')

t; = TYPE(d)’, invoke)

Allowed, = t; € LEGALTYPES(dC)
Alloweds = DreVarwars(s', invoke, ¢')

d; = INSTANCEDOMAIN(d)')
Alloweds = d; € LEGALDOMAINS(dc)

Allowed = Allowed; A Alloweds A Alloweds

The above validation comprises three sub-validations, all of which must succeed. The first vali-
dation, Allowed;, ensures that the instance’s m-type is legal, i.e. the creator of the instance has
permission to specify the given m-type. The second validation, Alloweds, is the standard DTE
validation from the previous section. This validates that the subject may invoke methods on the
component-instance. The third validation, Alloweds, ensures that the instance’s m-domain is legal,
i.e. the creator of the instance has permission to specify the given m-domain.

If a method invocation is validated successfully, the method executes in the m-domain d;, i.e. the
m-domain of the component-instance.

Discussion

The access control model described is DTE with two extensions, a ‘component’ entity and an associated
invoke operation, and the ability for users to assign m-domains and m-types in a system controlled way.

The invoke operation allows the m-domain associated with a subject to be changed for the duration
of a method call, and the component-instance entity is the means of controlling this change. These
features allow extensibility to be expressed in the system-wide policy, and are thus essential for system
extensibility.

Component-instances provide the context data for the component implementation, i.e. they represent
the context the module is being used in. By using component-instances as units of access control, this
model is inherently context sensitive. Allowing the creator to specify the m-domain and m-type of the
instance, within constraints, adds further context sensitivity since the creator can use state information
when determining these values.

User specification of m-domains and m-types allows services to impose additional restrictions, and thereby
implement their policies. Although users set security attributes, the values are controlled by a system-
wide mapping, and so the model is still a form of mandatory access control. Section 7.4 demonstrates how
some traditional, ‘pure’, mandatory policies can be implemented using the access control model described
in this section.

Static methods were neglected in the above discussion. As static methods have no instance, they cannot
provide an m-type for validation, or an m-domain for the method to execute in. Therefore, static methods
are not considered invoke operations, and execute in the same m-domain as the client. Although they
execute in the same m-domain, static methods may, and do in MCS, execute in a different discretionary
protection domain.

122 CHAPTER 7. ACCESS CONTROL IN COMPONENT SYSTEMS

Enforcing service-level policies using a system defined mapping, i.e. VauwarsAccess, that is (potentially)
different on every system, creates the problem that a service does not know how to express its abstract
policy in terms of this system defined function. For example, a service cannot statically know what m-
domain label to assign to a component-instance is wishes to confine. A simple solution to this problem is
for the system to provide a dynamic library which supplies sufficient information for a service to determine
appropriate labels.

7.3.2 Discretionary Access Control

On a general-purpose, multi-user, operating system, user policies are equally as important as system
and service policies. Whilst the system-wide policy may allow users to share the files they create with
all other users, in general, users will want to restrict this access. If users cannot enforce such policies,
then the system becomes far less general-purpose. As stated above, user policies are ad hoc (e.g. try to
specify a policy for access to the files in your home directory) and should be under the control of the user
themselves, i.e. they should be enforced by a discretionary access control mechanism.

Discretionary access control is provided by password capabilities [APW86]. Mungi allows the discre-
tionary protection domain of a subject to be extended for the duration of a procedure call, using a
mechanism called protection domain extension (PDX) [VERH96]. A description of PDX was presented
in Chapter 2.1, and will not be repeated here.

Password capabilities, unlike segregated capabilities [Tan92], can be freely distributed without system
intervention. A result of this is that once a user passes out a capability to another user, they cannot
control further distribution of the capability. Mandatory access control mechanism described above,
however, permits the creator of an object to specify its m-type and hence restrict its accessibility. This

allows the owner of an object to retain some control over access to an object after the capability has been
shared.

7.3.3 Combined

Together, the mandatory and discretionary mechanisms described above support the specification and en-
forcement of system, software and user security policies. Importantly, it allows these policies, particularly
system and software, to coexist. An access is allowed iff it is allowed by all three policies.

7.4 Examples

This section illustrates how some well-known security policies can be realised using the model described
above. There are four steps to implementing a security policy using the above access control mechanism:

1. Define the structure of the m-domain and m-type labels.
2. Define the VavLwareAccess function.
3. Define the LecarDomains function.

4. Define the LecarTvyres function.

7.4. EXAMPLES 123

7.4.1 Denning’s Lattice

Denning’s Lattice [Den76] models military classification systems. It is a purely mandatory access control
scheme, and does not involve discretionary security. This section assumes that all subjects possess full
access capabilities to all objects in the system. Different access modes are also not considered.

Every object, o, has a classification, C(0), denoting a security level, e.g. unclassified, confidential, secret
or top secret. Every subject, s, has clearance, C(s), to access certain security levels. Every subject
and object is also affiliated with a compartment, K, denoting the role of that entity, e.g. engineering,
personnel, medical or command.

An access is validated iff:

C(s)
K(s)

C(o) sufficient clearance, and

2
C K (o) need to know

Domains and Types

COMPARTMENT CLEARANCE

Figure 7.5: Domain and Type Labels
Compartment is a bit field, with each bit representing a particular compartment. If the bit is one, then

the m-domain or m-type belongs to that compartment. Clearance is an integer, with a higher value
indicating a more privileged clearance.

Validate Access

VavmareAccess : D x T — B
An access is validated by extracting the compartment and clearance values from the labels and comparing
them. Iff the clearance value of the m-domain is greater than, or equal to, the clearance value of the

m-type, and the m-domain belongs to at least every group the m-type belongs to, the validation is
successful.

Legal Domains

LecarDomains : D — P(D)

A subject may only create other subjects in an equal or less privileged m-domain, i.e. with an equal or
lower clearance level, and in a subset of the compartments it belongs to. Since m-types and m-domains
have the same structure, this function is exactly the same as the VavrmareAccess function.

Legal Types

LecarTypes : D — P(T)

124 CHAPTER 7. ACCESS CONTROL IN COMPONENT SYSTEMS

A subject may only create an object with an m-type that it may access. Therefore, this function is also
exactly the same as the VaumareAccess function.

7.4.2 Chinese Wall

Preventing conflicts of interest is important in a corporate environment, and is the motivation behind
the Chinese Wall policy [San93], based on the concept of conflict classes. Two objects are placed in the
same conflict class if it is deemed that knowledge of both would create a conflict of interest. A subject
may initially access any object, however, once an object is accessed, all other objects in this conflict class
become unavailable.

Consider the object partitioning shown in Figure 7.6. If a subject accesses object A.2, it may no longer
access objects A.1 or A.3, though all objects in conflict classes B and C are still available. If this subject
then accesses B.1, object B.2 will also become unavailable.

A

Conflict Classes

Figure 7.6: Chinese Wall Policy

Chinese Wall differs from other security policies, in that the validity of an access if based on the access
history of the subject, i.e. it is a state-based policy.

Domains and Types

M-domain and m-type labels are simply unique identifiers with no particular structure. M-domains
identify the user on whose behalf the subject is executing, and m-types identify the conflict class of the
object.

7.4. EXAMPLES 125

Validate Access

VavwareAccsss : D x T — B

As stated above, Chinese Wall is a stated-based policy. Therefore, the VarmareAccrss function must
maintain state. Here, the state information is obtained using the function:

AccessepTvypes 1 D — P(T)

The returned set contains all types which have been recently accessed. Using this function, the Chinese
Wall validation can be implemented as:

‘ VarwareAccess : D X T — B
Allowed =t ¢ AccrssepTvers(d)
ACCESSEDTYPES’(d) = ACCESSEDTYPES(d) Ut

The second line in the implementation specifies that following validation, the m-type is added to the
accessed m-types list for the m-domain.

Legal Domains

LecarDomains : D — P(D)

M-Domains indicate the user on whose behalf the subject is executing. Therefore, users may only create
subjects with the same m-domain.

Legal Types

LecarTypes : D — P(T)

Objects in a system using the Chinese Wall policy are created and classified by specially privileged users,
who may assign any m-type. Normal users may not create new objects.

7.4.3 Containment

Denning’s Lattice and the Chinese Wall policy are information flow models, i.e. they restrict the flow of
information out of the system. Containment is a relationship that enforces layering of components. It
can be used to ensure encapsulation, and hence integrity, of data structures spanning several objects and
component-instances.

Consider the situation shown in Figure 7.7. In this example, an instance of the binary_tree component-
class constructs a binary tree using instances of the bt _node component-class. Clients perform operations
on the tree by calling methods of the binary_tree component. If a client is allowed to directly access
one of the node components, data can be modified in an uncontrolled manner, and so data integrity is
lost. Containment prevents clients from accessing contained component-instances.

126 CHAPTER 7. ACCESS CONTROL IN COMPONENT SYSTEMS

Correct Tree Operation Correct Tree Operation

. i
— Binary Tree Component
Integrity Violation Integrity Violation
Blocked
—— Node Components
Not Contained Contained

Figure 7.7: Containment

Domains and Types

A set of objects and components that must be kept consistent form a group known as a constrained data
item (CDI) [CW8T7]. The upper bits of m-domain and m-type labels identify the CDI, while the lower
bits indicate a containment level within the CDI. An object can only be accessed by a subject in the
same CDI with an equal or higher containment level. An object with an m-type label equal to zero can
be accessed by all subjects.

CDI Identifier C. Level

Figure 7.8: Domain and Type Labels

Figure 7.9 shows the m-domain, m-type, relation. Objects are shown as circles, subjects are shown as
squares and component-instances are shown as a connected circle (indicating its m-type) and square
(indicating its m-domain). CDIs are shown as shaded regions. Subjects may only access objects, or
invoke methods on instances, whose m-type is in an ancestor node of the subject. Component-instances
with their m-type in the root m-domain, and their m-domain in a CDI, are the top level (client) interfaces
to the CDIs. A subject can only access data in a CDI via one of these client interfaces. As component-
instances only allow clients to execute specific methods, data integrity can be assured. For example, in
Figure 7.9, standard clients can only access the data in CDI-A via the component-instance marked A.1.
This protection is guaranteed even if a client colludes with a trusted agent to obtain a capability to the
data.

Validate Access

VarwareAccess : D X T — B

As stated above, an access is validated successfully if the CDI of the m-type is the same as the CDI of
the m-domain, and, the containment level of the m-type is less than, or equal to, the containment level
of the m-domain. All m-domains may access objects with a zero m-type.

7.4. EXAMPLES 127

7

T

CDI-A CDI-B

Figure 7.9: Containment Domains

Legal Domains

LecarDomaixs : D — P(D)

M-Domains are allowed to create subjects anywhere in the same CDI. Recall that this policy is to ensure
data integrity between CDIs, not to restrict information flow.

Subjects in the zero m-domain may create subjects with CDI identifiers that are not in use, creating new
data structures. This requires that the policy keep a list of free CDIs.

Legal Types

LecarTypes : D — P(T)

To maintain correct layering, subjects may only assign m-types with the same CDI and with an equal,
or lower, containment level. Any subject may assign the zero m-type.

Other Security Policies

A number of additional security policies can be expressed using the containment model with slight
modifications. For example, if user sessions are started inside a non-root node, and subjects are not
allowed to assign the zero m-type, confinement [Lam73] can be enforced. Providing system defined
components for controlled access between confinement m-domains, results in a model similar to the MIT
model [ML97].

128 CHAPTER 7. ACCESS CONTROL IN COMPONENT SYSTEMS

7.5 A Formal Model

A faulty access control mechanism is catastrophic, therefore, implementations of access control mecha-
nisms must be verified. Furthermore, it should be possible to formally reason about security. Both of
these require a formal model of the access control mechanism. This section presents such a model, in a
style similar to that presented by Robert Grimm and Brian Bershad in [GB97a].

7.5.1 Terminology

e Capability A token which conveys to the holder the discretionary right to perform certain opera-
tions on a particular object. C'is the set of all capabilities.

e Component-Instance A unique name associated with an m-domain and an m-type. I denotes
the set of all instances in a system.

e M-Domain A label associated with a subject or a component-instance, that determines the per-
missions of an executing thread. D is the set of all m-domains.

e Object A memory segment associated with an m-type. O denotes the set of all objects in a system.

e Operation An action performed on a passive entity by an active entity. M denotes the set of all
operations in a system.

e Passive Entity An object or a component-instance.

e Protection Domain A set of capabilities. Each thread is associated with exactly one protection
domain for discretionary access control.

e Subject An active entity, i.e. a thread, associated with an m-domain. S denotes the set of all
subjects in a system.

e Thread A single, sequential flow of control. Equivalent to a subject from an access control per-
spective. Associated with a m-domain for mandatory access control, and a protection domain for
discretionary access control.

e M-Type A label associated with an object or component-instance, that determines who may access
the entity. 7" is the set of all m-types.

e User Any user who interacts directly with a computer system and thus has threads of control
executing some code on their behalf, unit of accountability in a system.

This list was adapted from the security glossary published in [GB97a], which in turn cites [CSI] as a
source of definitions.

7.5. A FORMAL MODEL 129

7.5.2 Access Modes

An access mode am defines the set of legal operations a subject can perform on an object or component-
instance. Six operations are defined.

am C M

read Execute load instructions on a memory segment.

write Execute store instructions on a memory segment.
execute Jump, or branch, to an address in a memory segment.
destroy Invalidate a memory segment.

pdx_execute Jump, or branch, to a specified address in a memory segment, and modify the discretionary
protection domain.

invoke Modify the m-domain associated with a subject for the duration of a method call.
An owner access mode consists of read, write, execute and destroy permissions.

Rule 1 A subject can only perform operations on an object or component-instance that are
described by the corresponding access mode.

7.5.3 Discretionary Access Control

Discretionary access control is performed using password capabilities [APW86]. Each subject is as-
sociated with exactly one protection domain pd, which comprises a set of capabilities. A function
ProrrcrionDomain returns the protection domain of a subject. A protection domain can be modified.

pd C C
PROTECTIONDOMAIN . S — P(C)

A capability is associated with exactly one object, and conveys an access mode to the holder. A capability
whose access mode includes pdx_execute is also associated with a protection domain, and a set of valid
entry points. The rules below formalise discretionary access control.

E; The set of function entry points.

AccessMobe : C'— P(M); access mode of a capability.

CarasiirySer : O — P(C); set of capabilities associated with an object.
EntryPomrs : C — P(E); valid pdx_execute entry points.

PoxDomams : C'— P(C); protection domain associated with a PDX capability.
ProrOssecr : P(C') — O; the object in which a protection domain is stored.

Rule 2 Fach subject is associated with exactly one protection domain, and each object is as-
sociated with a set of capabilities.

130 CHAPTER 7. ACCESS CONTROL IN COMPONENT SYSTEMS

Rule 3 A capability is associated with exactly one object.

Rule 4 A subject s can at most perform the operations m on an object o for which they
possess an appropriate capability, i.e.

dc € PROTECTIONDOMAIN(S) e CC CAPABILITYSET(O) Am EACCESSMODE(C)

Rule 5 A subject s, in protection domain pd,, can create a subject s. in a protection domain
pd. iff it holds a capability to the object in which pd. is stored, i.e.

Je e pdp ecc CAPABILITYSET(PROTOBJECT(pdC))

A subject can create another subject in its own protection domain without any validation.

Rule 6 A subject may add a capability to an object for which it possesses a capability with
owner access mode.

Rule 7 A subject s, may invoke the entry point address e in a protection domain pdamy if (0
is the segment in which e resides):

dc € PROTECTIONDOMAIN(SC).
¢ € CaraswirySer(0) A pdx_execute €AccrssMobe(c)
Ne € ENTRYPOINTS(C) /\pdamp - PROTECTIONDOMAIN(SC)U PDXDOMAIN(C)

At most in rule four is due to the fact that access operations must be successfully validated by both
discretionary and mandatory access control to be allowed.

7.5.4 Mandatory Access Control

A modified version of DTE, described in Section 7.3, is used for mandatory access control. DTE uses do-
mains and types to restrict accesses. As mandatory access control mechanism has already been described
in detail, these rules are presented without annotation.

Rule 8 FEach subject is associated with exactly one m-domain, each object is associated with
exactly one m-type and each component-instance is associated with exactly one m-domain and
one m-type.

Rule 9 An object may not be the passive entity of a invoke operation, and a component
instance can be the passive entity only of invoke operations.

Three functions, defined by a system administrator, control the legal accesses in a system. Their semantics
are discussed below.

VarmareAccess : D x T — P(M)
LecarDomamns : D — P(D)
LecarTypes : D — P(T)

Rule 10 A subject in m-domain d, may at most perform an operation m on a passive en-
tity with m-type t if:

7.5. A FORMAL MODEL 131

m € VarwareAccess(d, t)
Rule 11 A subject in m-domain d, may create a subject in m-domain d. iff:
d. € LecarDomams(dp)
Rule 12 A subject in m-domain d, may create an object with m-type t iff:
t € LecacTyees(dp)

Rule 13 A subject in m-domain d, may create a component-instance ¢ with m-type t; and
m-domain d; iff:

d; € LEGALDOMAINS(dp) Nt; € LEGALTYPES(dp)

Rule 14 A walidated invoke operation results in the domain associated with the subject to be
changed to the domain associated with the component-instance on which the operation was
performed.

At most in rule ten is again due to the fact that access operations must be successfully validated by both
discretionary and mandatory access control to be allowed.

7.5.5 Combined

Rule 15 A subject, s, can perform an operation, m, on an object, o, iff Rule 4 and Rule 10
are both satisfied, i.e.

(30 S PROTECTIONDOMAIN(S) eCC CAPABILITYSET(O) Am EACCESSMODE(C)) A
(m € VauwarsAccsss(Domain(s), Tyer(0)))

132 CHAPTER 7. ACCESS CONTROL IN COMPONENT SYSTEMS

Chapter 8

Access Control Implementation

Security is of paramount importance in any system, but even more so in an extensible system
where any user can add to the overall functionality.
Tim Wilkinson and Kevin Murray, 1994 [WM95]

8.1 Overview

This chapter presents an implementation of the access control model, described in Chapter 7, on the Mungi
operating system. For complete mediation, the following five operations must always be validated.

A subject performing a read, write, execute or destroy operation on an object.

A subject performing an invoke operation on a component-instance.
e Assigning a domain label to a subject on creation.

e Assigning a type label to an object on creation.

Assigning domain and type labels to component-instance on use.

Security requirements differ from site to site. An implementation of an access control model should
therefore allow policies to be easily changed by an authorised administrator. This requires the separation
of mechanism and policy, which, fortunately, Chapter 7 has already done. Seven functions were required
to describe the validations; each can be clearly classified as providing either mechanism or policy.

Mechanism Policy

DOMAIN LEGALDOMAINS
TYPE LEGALTYPES
INSTANCECREATOR VALIDATEACCESS
INSTANCEDOMAIN

133

134 CHAPTER 8. ACCESS CONTROL IMPLEMENTATION

For flexibility, the policy functions are implemented in user-space PDX objects called security policy
objects, or just policy objects when the context is clear. When one of the policy functions is required, Mungi
locates the policy object and performs a PdxCall() for the appropriate function. Despite the excellent
performance of PdxCall() compared to other systems’ cross-domain calls, performing a PdxCall() on
every validation would introduce a significant overhead. Therefore, a mandatory validation cache is
implemented.

As Mungi already implements discretionary access control using password capabilities [HEVT98], this
chapter is only concerned with mandatory access control. Section 8.2 describes how policy objects are
constructed and how Mungi locates and invokes a policy object, Section 8.3 describes the in-kernel
implementation of the mechanism functions, and Section 8.4 contains some concluding remarks.

8.2 Policy Objects

Policy objects allow system-wide security policies to be implemented outside the kernel. Policy objects
are implemented as standard PDX objects rather than components, as the latter would make MCS
part of the trusted computing base (TCB). This section describes how policy objects are constructed,
and how Mungi locates and invokes policy functions. Appendix A contains three sample policy object
implementations.

8.2.1 Policy Object Interface

A policy object must implement four functions, corresponding to the three policy functions introduced
in Chapter 7, plus a new function, DomamxSrack, required by the implementation.

LecarDomaixs : D — P(D)
LecacTvypes : D — P(T)
VavmareAccess : D X T — P(M)
DomaxStack : D — T

DomamSrack is required because a thread’s stack object is created by Mungi. Mungi contains no knowl-
edge of the security policy, therefore, it doesn’t know what type label it should assign to the stack object.
As this is a matter of policy it is added to the policy object. When a new thread is created, its domain
label, provided by the policy aware client, is passed to the policy object which returns the type label for
the thread’s stack.

When the policy object is registered as a PDX object using 0bjCrePdx (), the functions must appear
in this order. This allows the kernel to easily obtain the entry point corresponding to a policy function
once the object descriptor has been retrieved. How the kernel locates the appropriate object descriptor
is described in Section 8.2.3.

Interface functions are called using PdxCall (), whose signature:

int PdxCall(pdx_t proc, cap_t param, cap_t *ret, void *pd);

8.2. POLICY OBJECTS 135

allows a 128 bit argument and result. As up to two labels may be passed to a policy object function, and
additional bits are required for other arguments, domain and type labels are defined as 60 bit values. A
field, Ext, in the standard argument structure, indicates that additional information immediately follows
the standard argument on the stack. This facility can be used to increase the size of labels if 60 bits proves
insufficient. The structure of labels is specified by the security policy. The following sections describe
the argument and return value formats for each function. All result descriptors contain the arguments
passed to the function, an indication of whether the validation was successful, and a field identifying the
function invoked.

Legal Domains

Conceptually, LecatDomarns is passed a domain label and returns the set of domain labels that subjects
executing in the parameter domain may assign. As this set may contain up to 2°! elements, it is im-
practical to implement the function this way. Instead, the policy object expects two domain labels to
be passed, and returns whether a subject in the first domain may legally assign the second. As well
as being implementable, this function results in simpler kernel code. Stated formally, the policy object
implements the function (note that B is the boolean set defined in Section 7.3):

‘ LecarDovaws’ : D x D' — B
‘ LecarDomams’ = d' € LEGALDOMAINS(d)

Figure 8.1 shows the argument (upper) and result (lower) formats, with the most significant bit on the
left. Result fields is explained in Section 8.2.4.

‘ Active Domain g ‘ Pad 4 ‘ New Domain g, ‘ Pad,) ‘ Ext (s ‘

‘ Active Domaing) ‘ Pad 4 ‘ New Domain g ‘ Pad,) ‘ R ‘ Fn(y) ‘

Active Domain is the domain label of the subject performing the operation.
New Domain is the domain label that the subject is attempting to assign.

Pad bits must all be set (only for this function).

R is set iff the validation was successful.

Fn identifies the interface function returning this result. For LeearDowmamvsfn is 0.

Ext indicates the format of additional information following the argument on the stack.

Figure 8.1: LegalDomains Argument / Result Formats

Legal Types

Conceptually, LecarTyees is passed a domain label and returns the set of types that subjects executing
in the parameter domain may assign. Again, practical concerns result in the policy object providing the
function:

136 CHAPTER 8. ACCESS CONTROL IMPLEMENTATION

‘ LecarTyees’ : DX T — B
‘ LecarTyrees’ =t € LEGALTYPES(d)

Figure 8.2 shows the argument and result formats for LecarTvees.

‘ Domain(ﬁo) ‘ Pad(4) ‘ Typ6(60) ‘ Pad(l) ‘ EXt(3) ‘

‘ Domain,g) ‘Padw)‘ Type(so) ‘Padu)‘ Ra) ‘Fn@)‘

Domain is the domain label of the subject performing the operation.

Type is the type label that the subject is attempting to assign.

R is set iff the validation was successful.

Fn identifies the interface function returning this result. For LrecarTveesfn is 1.

Ext indicates the format of additional information following the argument on the stack.

Figure 8.2: LegalTypes Argument / Result Formats

Validate Access

Conceptually, VarmareAccess is passed a domain label and a type label, and returns the set of legal
operations. Again, practical concerns result in the policy object providing the function:

‘ VavmareAccess' : DX T x M — B

‘ VarwareAccess’ = m € VavwareAccess(d, t)

Figure 8.3 shows the argument and result formats for VarmareAccsss.

DomainStack

DomamSrack is passed a domain label and returns the type label that Mungi should assign to the stack
object of a thread being created in this domain. Figure 8.4 shows the argument and result formats for

DOMAINSTACK.

8.2.2 Multiple Validations

A single Mungi operation often requires multiple validations. For example, an 0bjCreate() system call
must validate the client’s access to the passed objinfo structure, as well as validating the assigned type
label. Policy objects, therefore, provide a fifth entry point that accepts a list of validation requests,
reducing the number of invocations that such operations must perform. A validation request is simply
the argument to the appropriate policy function, as shown in the previous section, with the Fn field
set. This function, whose implementation is shown in Figure 8.5, passes each validation request to the
appropriate function, and replaces the validation request with the result descriptor.

8.2. POLICY OBJECTS 137

‘ Domain(60) ‘ AC(4) ‘ Type(so) ‘AC2(1)‘ EXt(g) ‘

‘ Domain,g) ‘ AC) ‘ Type(so) ‘AC%)‘ Ra) ‘Fn@)‘

Domain is the domain label of the subject performing the operation.
Type is the type label of the object the subject is attempting to access.

AC & AC2 is a bit-field indicating the access mode being requested. From the least-significant-bit,
read, write, execute, destroy and invoke.

R is set iff the validation was successful.
Fn identifies the interface function returning this result. For VarmarsAccrsstn is 2.

Ext indicates the format of additional information following the argument on the stack.

Figure 8.3: ValidateAccess Argument / Result Formats

‘ Domain(ﬁo) ‘ Pad(4) ‘ Pad(61) ‘ EXt(3) ‘

‘ Domain(eo) ‘ Pad(4) ‘ TyPE(GO) ‘ Pad(z) ‘ Fn(z) ‘

Domain the domain label being assigned to the new thread.
Type is the type Mungi should assign to the stack object.
Fn identifies the interface function returning this result. For DomamSrack fn is 3.

Ext indicates the format of additional information following the argument on the stack.

Figure 8.4: DomainStack Argument / Result Formats

8.2.3 Registration

This section describes how the kernel locates a policy object. Once the policy object is located, the kernel
can easily find the entry point corresponding to a particular policy function from its object descriptor,
stored in the Mungi object table.

At system configuration time, the address of an object, called a P-List, is registered with the system.
This value cannot be changed. The P-List is an array containing the address of each policy object in the
system, with a NULL address indicating the end of the list.

When the kernel needs to call a policy function, it reads the first address in the list and retrieves the
corresponding object descriptor. If this policy object successfully validates the operation, the kernel reads
the second address in the list and repeats the validation request. For a successful validation, each policy
object in the list must allow the access. For simplicity, the remainder of this chapter assumes a list with
a single entry.

138 CHAPTER 8. ACCESS CONTROL IMPLEMENTATION

/* Definitions provided by man_security.h */
typedef struct {

unsigned domain : 60;

unsigned access : 4;

unsigned dot : 60;

unsigned access2 : 1;

unsigned result : 1;

unsigned fn : 2;
} po_valdesc_t;

typedef struct {
int count;
po_valdesc_t vals[1];
} po_mvaldesc_t;

/* Implemented in policy object */
typedef po_valdesc_t (¥*po_func)(po_valdesc_t);

po_valdesc_t pofn[4] = { po_legaldomains, po_legaltypes, po_validateaccess, po_domainstack };
cap_t po_multival(po_mvaldesc_t *vals)

int i;

cap-t res;

i = vals—>count;
for(i = 0; i < count; i++)
(vals—>vals[i]) = pofn[(vals—>vals[i]).fn](vals—>vals[i]);
res.addr = vals;
res.passwd = 0x0;
return res;

Figure 8.5: Multiple Validations Entry Point

Any subject with write access to the P-List may dynamically add or remove policy objects.

This scheme can be extended by allowing entries in the P-List to contain addresses of further P-Lists.
As each P-List would have its own permissions, various administrative structures could be supported.
An investigation of security administration structures is beyond the scope of this thesis. Administrative-
RBAC 97 [SBC'97] contains an interesting discussion of administration structures in the context of
role-based access control.

8.2.4 Asynchronous Validation

A policy function is invoked via a PdxCall() from the kernel. Unlike a client, it is not practical for the
kernel to block while the PdxCall () is in progress. This section describes how the kernel performs this
asynchronous invocation.

An asynchronous procedure call has two parts, issuing the request, and handling reply. These two parts

are described separately, below. Between the execution of these two parts Mungi must continue to handle
incoming system calls.

Issuing a Validation Request
All validation requests to policy objects are issued using a single function.

int aval_issue(char fn, long d, long dot, char m, void *cdata,

10

15

20

25

30

8.2. POLICY OBJECTS 139

Kernel User
/—b- PO-1
 PO-2
| >
P-List ptr 0 PO -3

Figure 8.6: Policy Object Registration

mthread_t *cthread, syscall_t *lsysmsg,
mthread_t #**lthread);

e fn indicates the policy object function to be invoked.

e d is the first parameter to the policy object function; always a domain.
e dot is the second parameter; can be a domain, a type, or empty.

e m is the access mode being requested; only used by VavrmareAccsss.

e cdata contains the data that must be stored for the caller to be restarted when the validation
returns. If the call is issued from a system call handler, this points to the syscall global variable,
which contains all the system call parameters. If the call is issued from the page fault handler, this
is the fault address.

e cthread points to the descriptor of the client thread being served.
e lsysmsg is an out parameter used to issue the PdxCall(), described below.

e lthread is an out parameter used to issue the PdxCall (), described below.

An implementation of this routine is shown in Figure 8.7 and described in detail below. List numbers for
the description correspond to numbers in the comments in Figure 8.7.

1. As a validation is the conjunction of the policy object results, and one, if there are no policy objects
defined then the validation succeeds.

2. A cache of recent validations is maintained by the kernel. Before issuing a call, the function checks
whether a matching validation can be found. Both successful and unsuccessful validations are stored
in the cache, so the function has to check the R bit in the result. If a matching validation s found,
then the function returns control to the caller who may continue synchronously. To prevent denial-
of-service attacks, the cache limits the number of unsuccessful validations stored. The current
implementation sets this limit to one entry.

3. If the validation is not in the cache, a request must be issued to the policy object. To allow the
kernel to match validation replies to client threads, and continue the requested operation, an entry
is added to the pending validation (PV) queue.

140

CHAPTER 8. ACCESS CONTROL IMPLEMENTATION

/* Definitions from man_security.h */

#define GET_FUNCTION_ID(x) (x&0x03)

typedef enum {MVAL_CACHE_HIT, MVAL_PROT, MVAL_PENDING} mval_status_t;
int mvcache_check(char fn, long d, long dot, char m, po_result_t *res);

extern void *plptr;

int aval_issue(char fn, long d, long dot, char m, void *cdata, mthread_t *cthread,
syscall_t *Isysmsg, mthread_t **Ithread)

{

object_t *obj;
char cache_hit;
po-_result_t res;

/* check the parameters are valid */
assert(GET_FUNCTION_ID(fn) >= 0 && GET_FUNCTION_ID(fn) <= 3);

assert((m & “0x65) == 0);

/* 1. if there are no policy objects specified then return OK */
if(plptr == NULL || *((void**)plptr) == NULL)
return MVAL_CACHE_HIT;

/* 2. check mandatory validation cache */
cache_hit = mvcache_check(fn, d, dot, m, &res);

if (cache_hit == 1) {
if(resr ==

return MVAL_CACHE_HIT;

return MVAL_PROT;

}

/* 8. add entry to the pending validation queue */

pv_add(fn, d, dot, m, cdata,

fn = fn & 0x3;

cthread);

/* 4. get the object descriptor for the policy object */
obj = object_find(*((void**)plptr));

if(obj == NULL)
return MVAL_PROT;

/* 5. issue the pdz call */

Isysmsg—>syscall.number = SYS_PDX_CALL;
Isysmsg—>syscall.data.pdx.call.proc = ((obj—>info).pdx.entry)[fn—1];
Isysmsg—>syscall.data.pdx.call.param = aval_construct_param(d, dot, m);
Isysmsg—>syscall.data.pdx.call.pd = PD_EMPTY;

lthread = (mthread_t)—1;

/* return pending status */
return MVAL_PENDING;

Figure 8.7: Invoking a Policy Object Function

10

15

20

25

30

35

40

45

8.2. POLICY OBJECTS 141

typedef struct {
/* info required to match up to returning calls */

char f£fn;
long d;
long dot;
char m;

/* info required to resume the original call */
mthread_t *cthread;
union {
syscall_t sysmsg;
long fault_addr;
} cdata;
} pv_entry_t;

The MSB of fn indicates whether the cdata is for a page fault or a system call handler. This bit
must be set appropriately in the fn argument by the caller. Once the entry has been constructed,
the bit is cleared.

4. Using the P-List pointer, plptr, the address of the policy object is located, its descriptor retrieved,
and the appropriate entry point determined.

5. A PdxCall() is then issued. A brief description of the Mungi system call handler is required to
understand this code. System calls are invoked by a client sending an IPC to the Mungi kernel.
This IPC contains a syscall_t structure that contains a system call identifier and the system call
arguments. A thread in Mungi, shown in Figure 8.8, waits for and dispatches each system call to
an appropriate handler.

/* system call jump table */
static void (*(msys_call[SYSCALLS_MAX]))(void);

static syscall_t sysmsg;
static mthread_t *thread;

void syscall_loop(void)

for(;;) {
msys_call[sysmsg.syscall.number & (SYSCALLS_MAX-1)];

Figure 8.8: Mungi System Call Loop

Every system call handler must wait for the next system call before returning, and fill in the sysmsg
and thread parameters. Two functions are supplied for this.

syscall_wait();
syscall_return();

syscall_wait () simply waits for the next system call, sets thread to the sender of the IPC, and
sysmsg to the contents of the IPC. syscall_return() sends an IPC containing sysmsg (which the
handler will have modified) to thread, before waiting for the next system call.

aval_issue(), therefore, can simulate a SYS_PDX_CALL system call by filling in the sysmsg and
thread variables appropriately. When it returns MVAL_PENDING to a handler, the handler should re-
turn immediately, without waiting for a system call. Control will then return to the syscall_loop()

142 CHAPTER 8. ACCESS CONTROL IMPLEMENTATION

/* Definitions from man_security.h */

#define GET_IS_.PAGEFAULT(x) (x&0x0080)

pv_entry_t pv_find_and_remove(po_result_t result);

int mvcache_check(char fn, long d, long dot, char m, po_result_t *res);
void aval_complete_pagefault(pv_entry_t user, po_result_t res);

/* Implemented in man_security.c */
void aval_return(cap_t result)

{
pv_entry_t pve;
po_mvaldesc_t *pmv = result.addr;
po_result_t *pres = (po_result_t*)&result;

/* 1. find and remove the matching entry from the queue */
pve = pv_find_and_remove(*pres);

/* 2. add the returned entry to the cache */
if(IS_.MULTICALL(pmv) != 0) {
for(i = 0; i < pmv—>count; i++)
mvcache_add(pmv—>vals[i]);
} else {
mvcache_add(*pres);
}

/* 8. continue the system call */
if(GET_IS_.PAGEFAULT(pve.fn) == 0) {
sysmsg = pve.cdata.sysmsg;
thread = pve.cthread;
caller = pve.cthread —>14id;
return;

}

/* 4. otherwise, complete the page fault */
aval_complete_pagefault(pve, *pres);
syscall_wait();

Figure 8.9: Policy Object Result Handler

function. As aval_issue() has setup the sysmsg and thread variables, the PDX system call han-
dler will be invoked. On completion, this handler will wait for the next system call.

When aval_issue() returns MVAL_PENDING to the page fault handler, it must explicitly call the
PDX system call handler, with an indication telling it not to wait for the next system call.

Handling Replies

A PDX system call, as issued by aval_issue(), results in a new thread being created. The descriptor
of this thread contains the thread variable, which identifies the client waiting for the result, and a flag
indicating that it is a PDX thread. Threads terminate by sending an IPC to Mungi, containing the
SYS_THREAD_RETURN system call identifier, and a 128 bit result argument.

This invokes the sys_thread_return() system call handler, which is primarily responsible for cleaning
up thread resources. Before cleaning up, however, the handler checks if the terminating thread is a PDX
thread. If so, it sends an IPC containing the result to the client thread, whose identity is stored in the
PDX thread’s thread descriptor. A client identity of -1 indicates that this is a policy function invocation
performed by the kernel, and an IPC should not be sent. Instead, a handler function is called, with the
validation result passed as an argument. The implementation of this handler is shown in Figure 8.9, and
is described in detail below.

10

15

20

25

30

35

8.3. KERNEL MECHANICS 143

1. Using fn and the returned arguments, a matching entry for the validation is located in the PV
queue. This entry is removed from the queue and returned.

2. Regardless of whether the validation was successful, the result is added to the validation cache. If
the reply is for a multiple validation, all results are cached.

3. If the original caller was a system call handler, then the system call must be restarted. As system
calls perform all validations before modifying any state, they can simply be re-dispatched. The
sysmsg and thread values are set up using the values stored in the PV entry, and aval_return()
returns. sys_thread_return() cleans up the PDX thread, and returns to the dispatcher without
waiting for the next system call. Therefore, the halted system call is immediately restarted. When
the handler re-executes aval_issue(), it will find the validation in the mandatory cache, and so
can continue synchronously.

4. As the Mungi version on which the prototype was implemented does not swap virtual memory to
disk, the page fault handler is extremely simple. It consists of a validation, followed by a mapping.
Therefore, aval_return() completes the page fault handling itself, and then waits for the next
system call.

A Mungi version with a more complex page fault handler would require an IPC, containing the
matching PV entry, to be sent from the system call thread to the page fault handler. Using the
data in the PV entry, the page fault handler can continue processing the fault. Since page fault
handlers that swap virtual memory to disk must be able to handle asynchronous behaviour anyway,
asynchronous validations should not require any structural modifications.

8.3 Kernel Mechanics

Complete mediation requires a validation to be performed whenever a subject performs an operation on
an object. In Mungi, subjects operate on objects either directly, i.e. by accessing a memory location,
or via the system call interface. A validation must also be performed whenever security attributes, i.e.
domain and type labels, are assigned. This section describes the code added to the Mungi kernel to
perform these validations.

8.3.1 Domain Assignment

Domain labels are assigned whenever a new subject is created. Mungi must validate such assignments
using the LecarDomains policy function. Subjects are created by the ThreadCreate () system call, and
by a method invocation. This section describes the code added to ThreadCreate(); method invocation
is described in Section 8.3.4.

A domain label is added to the threadinfo_t structure, which is part of the thread descriptor. This
structure is passed as an argument to the ThreadCreate() system call, and can also be read using
ThreadInfo(). The added member defined as:

unsigned long domain;

Given this domain member, the implementation of Domamn : S — D, is trivial. S is implemented as
mthread_t*, and the Domaix function as:

DOMAIN(s) ((s->info) .domain)

144 CHAPTER 8. ACCESS CONTROL IMPLEMENTATION

Mungi validates the assigned domain by adding the following code to the ThreadInfo() system call
handler after the validation of the threadinfo parameter.

/* Defined in man_security.h */
#define aval_issue_legal_domains(d,dot,cdata,cthread) \
aval_issue(1,d,dot,0,cdata,cthread,&sysmsg,&thread)

/* Implemented in sys_thread_create */
if(info !|= NULL && info—>domain != DOMAIN(thread)) {
r = aval_issue_legal_domains(DOMAIN(thread), info—>thread, &sysmsg, thread);
if(r !'= MVAL_CACHE_HIT) {
if(r == MVAL_PENDING)
return;
else
goto error;

As it cannot violate access control (though resource utilisation is another question) a thread may create
threads in its own domain without requiring a validation.

8.3.2 Type Assignment

Type assignments must be validated using the LecarTvees function whenever a new object is created.
Objects are created using the ObjCreate() system call. Although threads can operate on other threads
using system calls such as ThreadDelete(), these system calls all have static access control policies,
based on a thread hierarchy, defined in the Mungi API [HVGR99]. Therefore, threads are not objects in
the access control sense.

Validation of type assignments is almost identical to validation of domain assignments. A type member
is added to the objinfo_t structure, which is part of the object descriptor. This structure is passed as
an argument to the ObjCreate () system call, and can also be read using 0bjInfo(). The added member
defined as :

unsigned long type;

As the operation involved is known statically, the Tver function is split in two, as shown below. OssrcrTver is
described in this section, InstanceTver in Section 8.3.4.

OssectTyre : O = T
InstanceTyee : [— T

O is implemented as object_t*, and OsizcrTyre : O — T, as:
OBJECT_TYPE(o) ((o->info).type)

Validation of type assignment is implemented by adding the following code to the ObjCreate() system
call handler after the validation of the objinfo argument.

#define aval_issue_legal_types(d,dot,cdata,cthd) aval_issue(2,d,dot,0,cdata,cthd,&sysmsg,&thread)

r = aval_issue_legal_types(DOMAIN(thread), type, &sysmsg, thread);

8.3. KERNEL MECHANICS 145

if(r '= MVAL_CACHE_HIT) {
if(r == MVAL_PENDING)
return;
} else {
addr = NULL;
goto error;

{

}
}

8.3.3 Object Accesses

Object accesses require both discretionary and mandatory access control restrictions to be enforced.
Mungi already implements capability based discretionary access control using the validate_obj () func-
tion. Therefore, to add mandatory access control, a call to DreVarware must be added wherever
validate_obj () is called. This includes the page fault handler, and any system call handler that is
passed a pointer. A standard discretionary validation is shown below.

obj = validate_obj(address, APD(thread), access, NULL);
if (obj == NULL) {

ret = ST_PROT;

goto out;

}

validate_obj returns a pointer to the object descriptor on success, or NULL on failure. Mandatory
access control is implemented by adding the following after every discretionary validation in a system
call handler (not the page fault handler).

#define aval_issue_validate_sc(d,dot,m,cdata,cthd) aval_issue(3,d,dot,m,cdata,cthd,&sysmsg,&thread)

r = aval_issue_validate_sc(DOMAIN(thread), type, access, &sysmsg, thread);
if(r !'= MVAL_CACHE_HIT) {
if(r == MVAL_PENDING)
return;
else
goto error;

The following validation code is added to the page fault handler.

#define aval_issue_validate_pf(d,dot,m,cdata,cthd,s,t) aval_issue(0x83,d,dot,m,cdata,cthd,s,t)

r = aval_issue_validate_pf(DOMAIN(thread), type, access, fault_addr, faulter_id, &lsm, <hrd);
if(r = MVAL_CACHE_HIT) {
if(r == MVAL_PENDING) {
_sys_pdx_call(Ism, Ithrd);
continue;
} else {
obj = NULL;
}

}

As the page fault handler does not return to the system call dispatcher, it must explicitly invoke the
PdxCall() system call handler. This function, however, retrieves the system call parameters from
the sysmsg and thread global variables, which the pager cannot interfere with. Therefore, the origi-
nal PdxCall() system call handler is modified to use local versions of sysmsg and thread, passed to

146 CHAPTER 8. ACCESS CONTROL IMPLEMENTATION

the handler as arguments. The handler is renamed _sys_pdx_call(). A two line function that calls
_sys_pdx_call() with the global sysmsg and thread, and then waits for the next system call, is in-
stalled as the new PdxCall() system call handler. Since _sys_pdx_call() is now thread-safe, and does
not wait for the next IPC, it can be called directly by the page fault handler.

8.3.4 Invoke Operation

An invoke operation requires three validations, the domain of the instance must be validated, the type of
the instance must be validated and the invoking thread must be validated as having invoke permissions
on the instance.

Section 7.3.1 introduced two mappings required for validating the instance properties, and the separation
of Tvee in Section 8.3.2 created a third.

InstanceCrearor @ I — D;
InstanceDomam 1 [— D;
InstanceTyee 1 I — T

Component-instances have type void*, and point to the corresponding component-instance header (de-
fined in Section 5.3.2). Unlike threads and objects, creation of a new component-instance does not require
kernel intervention, therefore, it cannot be used to store their properties. A component-instance’s domain
and type are therefore stored as the first two words of the component-instance header. This memory can
be modified by the component implementation, therefore, these values must be validated before each use.
InstanceDomam and InstanceTvyee are implemented as macros.

INSTANCE_DOMAIN (i) ((unsigned long*)i) [0])
INSTANCE_TYPE(1i) ((unsigned long*)i) [1])

Validation of a component-instance’s domain and type labels requires the domain of the subject that
created the component-instance. As it is used to validate access, it must be stored in a location that
the kernel knows cannot be accessed by others, i.e. it must be stored by the kernel. Rather than store
the creator of each component-instance, Mungi records the domain in which each object was created. A
component-instance’s creator is assumed to be the creator of the object in which the instance’s data is
located. By defining LecarDomains carefully, it can be guaranteed that this approximation never violates
security. The implementation of InsranceCrraror is shown below.

int instance_creator(void *instance, long *domain)

{

object_t *obj;

/* get the descriptor for the containing object */
obj = object_find(instance);
if(obj == NULL)

return —1;

/* return its domain */
*domain = (obj—>info).domain;
return 0;

invoke is implemented using Mungi’s PdxCall () system call. PdxCall() is also used for other operations,
such as static method calls, and so a method of signaling an invoke operation to the kernel is required.

8.3. KERNEL MECHANICS 147

Furthermore, the kernel must be able to retrieve the instance. Although the kernel knows that the
instance is always the first word of an invocation, it does not know whether this is contained in the actual
param argument, or in a parameter buffer (see Section 5.3.3).

A subject passes this information to the kernel using the least significant two bits of the proc parameter
(the first parameter to PdxCall()). This parameter is the address of the method to invoke, therefore, it
must be word aligned making the lower two bits redundant. A set LSB indicates an invoke operation,
and a set second-LSB indicates that the param argument is a pointer to a parameter buffer.

As it requires three validations, the invoke operation uses the po_multival() entry point. aval_issue_multival()
is similar to aval_issue (), however, it accepts a variable number of validation descriptors as arguments.

A MVAL_CACHE_HIT is returned only if every validation request is found in the cache. Validations that

are not found in the cache are added to a list stored in a Mungi object, and a capability to this object

is added to the policy object’s protection domain. Figure 8.10 shows the validation code for an invoke
operation. aval_construct_param() is used to format the validation requests.

/* get the flags */

is_invoke = (unsigned long)proc & 0x01;
is_indirect = (unsigned long)proc & 0x02;
proc = (unsigned long)proc & “(0x3);

/* wvalidate an invocation */
if (is_invoke =0) {

/* get the instance */
if (is_indirect)

instance = *((void**)param.address);
else

instance = (void*)param.address;

/* get the info about the instance */
r = instance_creator(instance, &creator);
if(r1=0)

return ST_INV_INSTANCE;
idomain = INSTANCE_DOMAIN(instance);
itype = INSTANCE_TYPE(instance);

/* now do all three validations */
domain_validation = aval_construct_param(creator, idomain, 0);
domain_validation.fn = MVAL_LEGAL_DOMAINS;
type_validation = aval_construct_param(creator, itype, 0);
type_validation.fn = MVAL_LEGAL_TYPES;
access_validation = aval_construct_param(idomain, itype, MVAL_AC_INVOKE);
access_validation.fn = MVAL_VALIDATE_ACCESS;
r = aval_issue_multival(3, domain_validation, type_validation, access_validation);
if(r 'I= MVAL_CACHE_HIT) {
if(r == MVAL_PENDING)
return —1;
else
return ST_PROT;
}
target_domain = idomain;
} else {
target_domain = DOMAIN(thread);
}

Figure 8.10: Invoke Validation

To allow the domain member of the threadinfo structure in the descriptor of the PDX thread to be
set correctly, the signature of thread_pdx_create() is modified to accept the target_domain. The
thread_pdx_create() sets the domain of the thread immediately after allocating a descriptor.

148 CHAPTER 8. ACCESS CONTROL IMPLEMENTATION

8.4 Concluding Remarks

The implementation of the access control mechanism is extremely simple. This flows from two key features
of the Mungi design.

e A ‘pure’ single-address-space leads to a single object type, and hence a single validation rou-
tine. This contrasts to traditional systems which have many kinds of objects, e.g. files, processes,
semaphores, memory, etc.

e Building protection in at the base of the operating system.

Together, these two features mean that Mungi’s protection mechanisms are small and well structured, a
critical characteristic of effective security [SS75].

Currently, domain and type labels are static properties. Since the invoke operation requires that each
object descriptor store the domain of its creator, and thread descriptors contain a reference to their
parent’s descriptor (and hence domain), all label assignments could be validated on-demand. This would
allow domain and type labels to be modified using ThreadInfo() and ObjInfo(). The benefits and
subtleties associated with dynamic labels is a topic for future research.

Chapter 9

Access Control Performance

Protection is not tolerated if the costs are prohibitive.
Jeroen Vochteloo, 1998 [Voc98]

9.1 Overview

This chapter evaluates the performance overhead introduced by the mandatory access control (MAC)
implementation described in Chapter 8. Section 9.2 shows its effect on micro-benchmark results, and
Section 9.3 shows its effect on end-to-end performance. All results were obtained on a hardware platform
developed at UNSW, featuring a 100MHz MIPS R4600 processor and 64MB of RAM, rated at 1.9
SPECint-95.

9.2 Micro-benchmarks

Table 9.1 shows the performance of all Mungi operations that are affected by the mandatory access
control implementation. For each operation, it shows the number of validations requested, and the
operation’s performance without MAC, with MAC but no registered policy objects, with MAC and a
policy object but no in-kernel validation cache, and with the complete implementation. A policy object
implementing Denning’s Lattice (shown in Appendix A) is used for the latter two results. As policy
decisions for Denning’s Lattice can be evaluated by a simple integer comparison, they impose a negligible
policy overhead, allowing the overhead of the mechanism to be clearly observed.

System call results are the average of a large number of iterations, therefore, they represent performance
under favourable cache conditions. Page fault overhead was measured by executing a benchmark that
caused a defined number of page faults. The presented results represent the total performance, less the
performance of the benchmark without MAC, divided by the number of page faults. All results are shown
in ps. A number of observations regarding the results of Table 9.1 follow.

e There is no relationship between the number of validations requested, and the mechanism overhead.
Obviously, if the policy overhead was comparable to the mechanism overhead, validations would
exhibit such a relationship.

e Mandatory access control does not impose any overhead if it is not used.

149

150 CHAPTER 9. ACCESS CONTROL PERFORMANCE

PdxCall 3 29 30 68 30
ObjCreate 2 30 29 68 31
ObjCrePdx 2 46 46 81 48
ObjDelete 1 44 44 87 44
Objlnfo 1 14 13 50 14
ObjPasswd 1 43 44 79 44
ObjResize 1 27 27 63 28
ApdInsert 1 13 13 47 14
ApdGet 1 14 13 51 14
ThreadCreate | 2 92 89 126 91
ThreadInfo 1 17 17 52 16
SemCreate 1 48 46 87 48
SemDelete 1 28 28 63 30
SemSignal 1 24 25 59 24
Sem Wait 1 24 25 60 26
Page Fault 1 N/A 0 41 0.6

Table 9.1: Micro-benchmark Access Control Overhead (us)

e An uncached validation request imposes an overhead of approximately 38us. This cost is dominated
by the required PdxCall(), however, an additional 10us overhead is being added by the kernel
processing. Although time constraints prevent a more detailed analysis here, it is believed that
this cost can be reduced by optimising the validation cache, the pending validation queue, and the
system call dispatcher. Currently, an uncached validation results in an overhead between 42 and
300%.

e A validation cache reduces this overhead to around 1us for repeated calls.

9.3 Macro-benchmarks

This section presents results from three macro-benchmarks: the OO1 and Andrew benchmarks introduced
in Chapter 6, and a simplified version of the Jigsaw benchmark [FKJ90].

001 is modified to assign a domain, D¢, to the client thread, a domain, Dp¢c, and type, Tpc, to the
database component-instance, and a type, Tpp, to the actual database data. Do may access Tpc but
not I'pp. Dpc may access Tpp.

Jigsaw is a memory-intensive benchmark. An n x n grid of 1kB ‘tiles’ is generated, and all four edges of
each tile are assigned an identifier. Identifiers of adjacent edges are the same; border edges wrap around.
The grid is then randomly scrambled and placed in a linked list. The benchmark then takes the first
tile and performs a linear search for the tiles matching each edge. As each edge is found, the match is
recorded in both tiles. When all four edges are matched, the next tile is taken. This continues until all

9.3. MACRO-BENCHMARKS 151

edges of all tiles have been matched. The implementation stores 128 tiles in a single Mungi object, with
a randomly assigned type label. The client has read permission to all types.

For the Andrew benchmark, each component-instance is assigned a different type label, and all files
within a single directory are assigned the same domain label. Mungi objects containing the actual file
data are assigned a ‘public’ type, available to any domain. To investigate the relative performance of
memory-intensive and invoke intensive programs, the Andrew benchmark is executed three times: with
all validations, with PdxCall() validations disabled, and with page fault validations disabled (PdxCall()
enabled).

Table 9.2 shows the performance of each benchmark without mandatory access control (MAC) imple-
mented, with MAC implemented without a validation cache, and with the complete MAC implementation.
Results are the average of 10 executions, and are shown in milli-seconds. Values in brackets show the
access control overhead as a percentage of the performance without access control. Despite its random
nature, results for the Jigsaw benchmark exhibited a standard deviation of only 3.8, or 1.3%.

001 187.8 411 (218%) 187.8 (0%)
Jigsawss s 374 489 (30%) 375 (0.3%)
Andrew 672 923 (37%) 674 (0.3%)
Andrew (no invoke vals.) | 672 720 (7.2%) 674 (0.3%)
Andrew (no PF vals.) 672 879 (31%) 673 (0.2%)

Table 9.2: Macro-benchmark Access Control Overhead (ms)

Table 9.2 shows that end-to-end performance depends on the behaviour of the validation cache. With
a validation cache, mandatory access control imposes an overhead of less than 0.3%, while without a
validation cache, all benchmarks show an unacceptable overhead.

The results also show that memory-intensive programs, e.g. the Jigsaw benchmark and Andrew bench-
mark without PdxCall() validations, are less dependent on cache performance than invoke-intensive
programs, e.g. the OO1 benchmark and Andrew benchmark without page fault validations. This is be-
cause page mappings, and hence their validations, are cached by the memory-management unit (MMU).
Jigsaw performs worse than the Andrew benchmark (30% vs. 7.2%) because it traverses a randomly
arranged linked list, therefore, it exhibits less spatial locality leading to more page faults.

Therefore, to determine the average end-to-end overhead imposed by mandatory access control, a ‘typ-
ical’ cache hit rate, especially for invoke operations, must be determined. Unfortunately, there are no
results regarding protection cache hit rates publicly available, and time constraints prevent a complete
investigation here. Instead, a brief discussion of the issues involved is presented below.

Performance of mandatory access control depends principally on the validation cache hit-rate. In general,
there are three causes of cache misses.

e Capacity cache misses occur when the cache becomes full and entries must be discarded; a capacity
miss occurs when a discarded entry is requested.

e Cold cache misses occur when an entry that has never been in the cache is requested.

e Conflict cache misses occur when two entries correspond to the same cache location. Even though
the cache is not full, an entry must be discarded. A conflict occurs when the discarded entry is

152 CHAPTER 9. ACCESS CONTROL PERFORMANCE

requested.

As the mandatory validation cache is implemented in software, a highly associative cache can be used so
that conflict misses should not be an issue. Therefore, the cache performance depends on the number of
component-instances with different type labels invoked (capacity misses), and how often these component-
instances are changing (cold misses).

Existing component-based software, e.g. Apache, Netscape and Visual Basic, typically contain a set
of core-components, and a set of independent extensible modules. Assuming that all core-components
execute in the same protection domain, and each extensible module executes in its own protection domain,
these programs would involve at most ten domains. Furthermore, while extensible software is inherently
dynamic, component changes occur at a much lower rate than the average time between invoke operations.

9.4 Conclusion

Benchmarks show that the overhead of mandatory access control depends primarily on the validation
cache hit rate, especially for invoke-intensive software. Existing software, including the evaluated bench-
marks, demonstrate a cache hit rate approaching 100%, resulting in an end-to-end performance overhead
of less that 0.3%.

Although these results are encouraging, current extensible software has been developed on monolithic
operating system providing rudimentary protection mechanisms. How representative such software is of
extensible services developed from scratch on a secure, extensible, operating system, is unknown. There-
fore, a concrete evaluation requires workloads from a mature, truely extensible, multi-user, operating
system providing mandatory access control. Unfortunately, no such system exist, yet.

Part 111

Conclusion

153

Chapter 10

Conclusion

An extensible operating system need not be a compromise of performance, flexibility and safety.
Tim Wilkinson and Kevin Murray, 1994 [WM95]

Chapter 3 identified a set of requirements for extensible systems. This list describes how each of these
requirements is satisfied by the architecture presented in this thesis.

e Add services dynamically. Component-classes become available to clients, and other components,
the moment they are registered with the Component Locator.

e Add services polymorphically. MCS interfaces are inherently polymorphic, allowing clients to use
new component-classes without modifying their code.

e Be late-binding. Interface objects determine the component-class of a CICAP dynamically using
the Component Locator. Dynamic linking and loading are provided by PdxCall(), making MCS
truely late binding.

e Deploy updated versions. MCS provides support for major and minor version changes. Clients
transparently migrate to new minor versions, while multiple major versions can coexist. A field in
the instance header, VL, indicates the instance’s data format, so that new versions do not have to
maintain binary compatibility.

e Impose as few restrictions on programmers as possible. Components naturally support a modular
design. Apart from this, components do not impose any restrictions. In particular, components
can be written in any ‘unsafe’ language.

e Module extension. QObviously, a new component-instance may invoke methods on an existing
component-instance if it possesses its CICAP.

e Perform fine-grained customisation. Delegation allows component-instances to be customised at
interface granularity.

e Provide a semantic model, or standard, for extension construction. Chapter 4 provides a detailed
semantic model for component construction.

e Provide acceptable performance. Chapters 6 and 9 demonstrated that MCS provides the perfor-
mance required for the development of secure system services. Benchmark results show that MCS
performance is derived from three, equally important, factors: the excellent performance exhibited
by Mungi, a lightweight component-model, and use of the single-address-space to allow bulk data
sharing.

155

156 CHAPTER 10. CONCLUSION

e Transparent interposition. Transparent interpositioning is a specific form of delegation, in which
the overriding component-instance forwards requests to the component-instance being delegated,
after performing some additional processing.

e Execute in an amplified protection domain. Components execute in an amplified protection domain
that is the union of the protection context and a subset of the client’s protection domain. As
the protection context contains only those objects required for the service, and the client subset
contains only the objects being operated on, components satisfy the principle of least privilege.

e Store privileged data. Privileged data can be stored in the component-instances, which cannot be
directly accessed by clients.

e Perform discretionary access control. CICAPs provide discretionary access control for component-
instances. A client holding an owner CICAP may register additional CICAPs with access to a
subset of the component’s interfaces.

e Mechanisms allowing authorized extensions to perform privileged system operations. All resources
in Mungi are mapped into the single-address-space and can be addressed from every protection
domain. Therefore, almost any system operation can be performed by a sufficiently privileged
extension.

e Adequate access control. Chapter 7 presented a new access control model capable of providing
effective security in extensible systems.

e A minimal trusted computing base (TCB). By presenting a pure single-address-space, and controlling
access to this address space using password capabilities, Mungi provides uniform protection and a
minimal TCB.

Above all, this thesis aimed to bring a large number of existing ideas together to produce a cohesive
base for a safe, effective, and efficient extensible system. Where existing ideas proved inadequate new
solutions were engineered. Although the principle contribution of this thesis is the whole rather than its
parts, a few key points are stated below.

e Separating interfaces from component-classes results in a lightweight model.

e A component model must focus on the goals, rather than the traditional techniques, of component-
oriented development.

e A common motivation based on flexibility leads to a natural synergy between extensible systems
and single-address-space systems, that is demonstrated in Chapter 6.

e Software policies are required to enforce least privilege in extensible systems. Allowing services to
assign security attributes in a system controlled manner, allows the specification and enforcement
of such policies.

e As extensible systems represent an entirely new system model, new protection models that com-
plement extensibility are required.

MCS proves that a component model, implemented using a trusted path mechanism, can provide a safe,
effective and efficient architecture for system extensibility.

Part 1V

Appendicies

157

Appendix A

Example Policy Objects

This appendix provides some example policy object implementations.

A.1 Standard Definitions

/**

* std_policyobject.h
*

* Standard definitions for policy objects
**/
#ifndef __STD_POLICYOBJECT_H__
#define __STD_POLICYOBJECT_H__

/* Validation descriptor */
typedef struct {
unsigned long domain : 60;
unsigned long access : 4;
unsigned long dot : 60;
unsigned long access2 : 1;
unsigned long r : 1;
unsigned long fn : 2;
} po_valdesc_t;
#define GET_ACCESS_MODE(v) (v.access<<1 | v.access2)

/* Access modes */

#define MAN_AM_READ 1
#define MAN_AM_WRITE 2
#define MAN_AM_EXECUTE 4
#define MAN_AM_DESTROY 8
#define MAN_AM_INVOKE 16

/* Policy functions */

#define MAN_PF_LEGALDOMAINS 0
#define MAN_PF_LEGALTYPES 1
#define MAN_PF_VALIDATEACCESS 2
#define MAN_PF_DOMAINSTACK 3

#endif /* _STD_POLICYOBJECT_H__ */

159

10

15

20

25

30

160 APPENDIX A. EXAMPLE POLICY OBJECTS

A.2 Denning’s Lattice

A.2.1 Header

/***
*
*
*

spo_denning.h

* A policy object that implements the Denning’s Lattice information flow model 5
*

***/

#¥ifndef _.SPO_DENNING_H_
#define _SPO_DENNING_H_

10
#include "mungi/man_security.h"
#define GET_CLEARANCE(label) (label&0x0000000000FFFFFF)
#define GET_COMPARTMENT(label) (label&0x0FFFFFFFFF000000)
15
po_valdesc_t spo_dl_legal_domains(po_valdesc_t);
po_valdesc_t spo_dl_legal_types(po_valdesc_t);
po_valdesc_t spo_dl_validate_access(po_valdesc_t);
po_valdesc_t spo_dl_domain_stack(po_valdesc_t);
20
endif /* _SPO_DENNING_H_ */
A.2.2 Implementation
#¥include "spo_denning.h"
po_valdesc_t spo_dl_legal_domains(po_valdesc_t val)
if(GET_CLEARANCE(val.domain) >= GET_CLEARANCE(val.dot) && 5
I(("GET_COMPARTMENT(val.domain))&GET_COMPARTMENT(val.dot)))
valr = 1;
else
val.r = 0;
return val; 10
}
po-valdesc_t spo_dl_legal_types(po_valdesc_t val)
if(GET_CLEARANCE(val.domain) >= GET_CLEARANCE(val.dot) && 15
I(("GET_COMPARTMENT(val.domain))&GET_COMPARTMENT(val.dot)))
val.r = 1;
else
val.r = 0;
return val; 20
}
po-valdesc_t spo_dl_validate_access(po_valdesc_t val)
if(GET_CLEARANCE(val.domain) >= GET_CLEARANCE(val.dot) && 25
I(("GET_COMPARTMENT(val.domain))&GET_COMPARTMENT(val.dot)))
val.r = 1;
else
val.r = 0;
return val; 30
}
po-valdesc_t spo_dl_domain_stack(po_valdesc_t)
{
val.dot = val.domain; 35

return val;

A.3. CHINESE WALL

A.3 Chinese Wall

A.3.1 Header

/**

*
* spo_chinese_wall.h
*

* A policy object that implements the Chinese Wall model.
*

***/

#ifndef _.SPO_CHINESE_WALL_H_
#define _.SPO_CHINESE_WALL_H_

#include "mungi/std_policyobject.h"

#define DOM_SUPERUSER 0
#define TYP_PUBLIC 0

po_valdesc_t spo_cw_legal_domains(po_valdesc_t);
po-valdesc_t spo_cw_legal_types(po_valdesc_t);
po_valdesc_t spo_cw_validate_access(po_valdesc_t);

po_valdesc_t spo_cw_domain_stack(po_valdesc_t);

tendif /* _SPO_CHINESE_WALL_H_ */

A.3.2 Implementation

#include "spo_chinese_wall.h"
#include "avl.h"

po_valdesc_t spo_cw_legal_domains(po_valdesc_t val)

{

if (val.domain == val.dot)
valr = 1;

else
val.r = 0;

return val;

}

po_valdesc_t spo_cw_legal_types(po_valdesc_t val)

{

/* users can only create unclassed objects, superuser can create any */
if(val.domain == DOM_SUPERUSER || val.dot == TYP_PUBLIC)

val.r = 1;
else
val.r = 0;
return val;
}
po-valdesc_t spo_cw_validate_access(po-valdesc_t val)
{

int already_exists = 0;
/* entries are timed out of the avl tree */
if(val.dot !'= TYP_PUBLIC)

already_exists = avl_add(val.domain, val.dot);

if (already_exists == 0)

val.r = 1;
else
val.r = 0;

return val;

10

15

20

10

15

20

25

30

35

162 APPENDIX A. EXAMPLE POLICY OBJECTS

}

po-valdesc_t spo_cw_domain_stack(po_valdesc_t val)

/* entries are stored in the public area. Protected by discretionary AC only */
val.dot = 0;
return val;

40

A.4. BELL LAPADULA

163

A.4 Bell LaPadula

A.4.1 Header

JRRREEEAERRRIRRREEERRRIEEE R IIEEE IR EEAAEIERI IR REEEARE IR KEARA KRR EEARF KRR
*
* spo_bell_lapadula.h

*

* A policy object that implements the Bell LaPadula information flow model.
*

***/

#ifndef _.SPO_BELL_LAPADULA_H_
#define _SPO_BELL_LAPADULA_H_

#include "mungi/std_policyobject.h"

po_valdesc_t spo_bl_legal_domains(po_valdesc_t);
po-valdesc_t spo_bl_legal_types(po_valdesc_t);
po_valdesc_t spo_bl_validate_access(po-valdesc_t);
po_valdesc_t spo_bl_domain_stack(po_valdesc_t);

tendif /* _SPO_BELL_-LAPADULA_H_ */

A.4.2 Implementation

#include "spo_bell_lapadula.h"

po_valdesc_t spo_bl_legal_domains(po_valdesc_t val)
{
if (val.dot == val.domain)
valr = 1;
else
val.r = 0;
return val;

}

po_valdesc_t spo_bl_legal_types(po_valdesc_t val)
{
if(val.dot >= val.domain)
valr = 1;
else
val.r = 0;
return val;

}

po_valdesc_t spo_bl_validate_access(po-valdesc_t val)

{

char am;

ma = GET_ACCESS_MODE(val);

if(val.dot >= val.domain && ma == MAN_AM_WRITE)
valr = 1;

else if(val.dot <= val.domain && ma == MAN_AM_READ)
valr = 1;

else if(val.dot == val.domain)
val.r = 1;

else
val.r = 0;

return val;

}

po-valdesc_t spo_bl_domain_stack(po-_valdesc_t val)

10

15

10

15

20

25

30

35

164 APPENDIX A. EXAMPLE POLICY OBJECTS

/* as the client needs RW access, the stack must be at the same level */
val.dot = val.domain;
return val;

}

40

Bibliography

[ABLNS5]

[AC96]
[AGSS3]

[APWSG6]

[BALLS9)

[BCYO]

[BK85]

[BN&4]

[BSP*95]

[BSST95]

[Bub99]

[Che94]

[CI75]

[CLFL94]

G.T. Almes, A.P. Black, E.D. Lazowska, and J.D. Noe. The Eden system: a technical review.
IEEE Transactions on Software Engineering, SE-11(1):43-59, January 1985.

Martin Adabi and Luca Cardelli. A Theory of Objects. Springer Verlag, Berlin, 1996.

Stanley R. Ames, Morrie Gasser, and Roger R. Schell. Security kernel design and implemen-
tation: An introduction. IEEE Computer, 16(7):14-22, July 1983.

M. Anderson, Ronald Pose, and Chris S. Wallace. A password-capability system. The
Computer Journal, 29:1-8, 1986.

Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy.
Lightweight remote procedure call. In Proceedings of the 12th ACM Symposium on OS
Principles (SOSP), pages 102-113, December 1989.

Gilad Bracha and William Cook. Mixin-based inheritance. In OOPSLA90, ACM SIGPLAN
Notices, 25(10), pages 303—311, 1990.

W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity policies. In
Proceedings of the 8th National Computer Security Conference, pages 18-27. 1985.

Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2:39-59, 1984.

Brian N. Bershad, Stefan Savage, Przemystaw Pardyak, Emin Giin Sirer, Marc E. Fiuczynski,
David Becker, Craig Chambers, and Susan Eggers. Extensibility, safety and performance in
the SPIN operating system. In Proceedings of the 15th ACM Symposium on OS Principles
(SOSP), pages 267-284, Copper Mountain, CO, USA, December 1995.

Lee Badger, Daniel Sterne, David Sherman, Kenneth Walker, and Sheila Haghighat. Practical
domain and type enforcement for UNIX. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 66-77, May 1995.

Adam Buble. Comparing CORBA implementations. Master thesis, Faculty of Mathematics
and Physics, Charles University, Prague, 1999.

David Cheriton. Low and high risk operating system architectures. In Proceedings of the 1st
USENIX Symposium on Operating Systems Design and Implementation (OSDI), Monterey,
CA, USA, November 1994.

E. Cohen and D. Jefferson. Protection in the HYDRA operating system. In Proceedings of
the 5th ACM Symposium on OS Principles (SOSP), pages 141-59, 1975.

Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska. Sharing
and protection in a single-address-space operating system. ACM Transactions on Computer
Systems, 12:271-307, November 1994.

165

166 BIBLIOGRAPHY

[CM9g] K. Mani Chandy and Jayadev Misra. Parallel Program Design - A Foundation. Addison-
Wesley, Reading, MA, 1998.

[COM95] The component object model specification. xyz xyz, Microsoft Corporation and Digital
Equipment Corporation, xyz, xyz 1995. http://www.microsoft.com.

[COR97] CORBAservices: Common object services specification. TC Document orbos/97-02-04, Ob-
ject Management Group, December 1997.

[COR99a] C language mapping specification. Tc document, Object Management Group, June 1999.

[COR99b] Charles University response to the ORBOS benchmark RFI. TC Document document
bench/98-10-04, Object Management Group, October 1999.

[COR99c] The common object request broker, ver 2.3.1. Tc document, Object Management Group,
October 1999.

[COR99d] Corba comparison project: Project extension final report. Tc document, Object Management
Group, August 1999. http://nenya.ms.mff.cuni.cz.

[COR99¢] Corba components. TC Document orbos/99-02-05, Object Management Group, March 1999.
ftp://ftp.omg.org/pub/docs/orbos/99-02-05.pdf.

[CS92] R. G. G. Cattell and J. Skeen. Object operations benchmark. ACM Transactions on Database
Systems, 17:1-31, 1992.

[CST] Center for Secure Information Systems, George Mason University. Security Glossary.
http://www.isse.gmu.edu/~csis/glossary /merged glossary.html.

[Cus93] Helen Custer. Inside Windows NT. Microsoft Press, 1993.

[CW8T] David D. Clark and David R. Wilson. A comparison of commercial and military computer
security policies. In Proceedings of the Symposium on Security and Privacy, pages 184-194,
April 1987.

[Den76] Dorothy. E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19:236—242, 1976.

[Dig92] Digital Equipment Corp., Maynard, MA, USA. Alpha Architecture Handbook, 1992.

[DVH66] J.B. Dennis and E.C. Van Horn. Programming semantics for multiprogrammed computers.
Communications of the ACM, 9:143-55, 1966.

[eBSS195] ee Badger, Daniel Sterne, David Sherman, Kenneth Walker, and Sheila Haghighat. A domain
and type enforcement UNIX prototype. In usenizsec95, pages 127-140, June 1995.

[ES90] Margaret Ellis and Bjarn Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley Publishing Company, Reading, Massachusetts, 1990.

[Fab74] R.S. Fabry. Capability-based addressing. Communications of the ACM, 17:403-412, 1974.

[FCDRY5] Ira R. Forman, Michael H. Conner, Scott H. Danforth, and Larry K. Raper. Release-to-release
binary compatibility in SOM. In OOPSLA 95, pages 426-438. ACM, 1995.

[FKJ*90] David Finkel, Robert E. Kinicki, Aju John, Bradford Nichols, and Somesh Rao. Developing
benchmarks to measure the performance of the mach operating system. In Proc. of the
USENIX Mach Workshop, 1990.

[GB97a] Robert Grimm and Brian Bershad. Access control in extensible systems. Technical Report

UW-CSE-97-11-01, Dept of Computer Science & Engineering, University of Washington,
Seattle, WA, USA, 1997.

BIBLIOGRAPHY 167

[GB97b]

[GI97]

[GMPS97]

[GR83]

[GSB*99]

[HEV+98]

[HHGI0]

[HKM+88]

[HLP+00]

[HLR9S]

[Hoa74]
[Hol92]

[HSH81]

[HVGR99)

[IA600]

[IBMY4]

Robert Grimm and Brian Bershad. Security for extensible systems. In Proceedings of the
6th Workshop on Hot Topics in Operating Systems (HotOS), pages 62-66, Cape Cod, MA,
USA, May 1997.

Luigi Giuri and Pietro Iglio. Role templates for content-based access control. In Proceedings
of the Second ACM workshop on Role-based access control, 1997.

Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers. An overview of
the new security architecture in the Java Development Kit 1.2. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems, pages 103—112, December 1997.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

Eran Gabber, Christopher Small, John Bruno, José Brustoloni, and Avi Silberschatz. The
Pebble component-based operating system. In Proceedings of the 1999 USENIX Technical
Conference, pages 267-282, Monterey, CA, USA, June 1999.

Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and Jochen Liedtke.
The Mungi single-address-space operating system. Software: Practice and Experience,
28(9):901-928, July 1998.

Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: specifying behavioral
compositions in object-oriented systems. ACM SIGPLAN Notices, 25(10):169-180, 1990.

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems, 6:51-81, 1988.

Andreas Haeberlen, Jochen Liedtke, Yoonho Park, Lars Reuther, and Volkmar Uhlig. Stub-
code performance is becoming important. In 1st USENIX Workshop on Industrial Experi-
ences with Systems Software (WEISS), San Diego, CA, USA, October 2000.

Gernot Heiser, Fondy Lam, and Stephen Russell. Resource management in the Mungi single-
address-space operating system. In Proceedings of the 21st Australasian Computer Science
Conference (ACSC), pages 417-428, Perth, Australia, February 1998. Springer-Verlag. Also
available as UNSW-CSE-TR-9705 from http://www.cse.unsw.edu.au/school/research/
tr.html.

C.A.R. Hoare. Monitors: An operating system structuring concept. Communications of the
ACM, 17:549-57, 1974.

Tan M. Holland. Specifying reusable components using contracts. In Proceedings of the 6th
European Conference on Object Oriented Programming (ECOOP), 1992.

Merle E. Houdek, Frank G. Soltis, and Roy L. Hoffman. IBM System/38 support for
capability-based addressing. In Proceedings of the 8th Symposium on Computer Architec-
ture, pages 341-348. ACM/IEEE, May 1981.

Gernot Heiser, Jerry Vochteloo, Emmanuel Galanos, and Stephen Russell. The Mungi
kernel API, version 1.2. Technical Report UNSW-CSE-TR-DRAFT, University of
NSW, University of NSW, Sydney 2052, Australia, September 1999. Available from:
http://www.cse.unsw.edu.au/home/~disy.

Intel Corp. IA-64 Architecture Software Developer’s Manual Volume 2: IA-64 System Ar-
chitecture, January 2000. URL http://developer.intel.com/design/ia-64/index.htm,
order no 245318-001.

IBM. The System Object Model (SOM) and the Component Object Model (COM): A com-
parison of technologies from a developer’s perspective, 1994. White Paper.

168

BIBLIOGRAPHY

[Jae99]

[Javo7]
[JLIOS

[KH92]

[KL92]

[Lad97]

[Lam71]

[Lam?73]
[Lam93]

[Lau00]

[LES*97]

[LEGS99]

[Lic92]

[Lie93)]

[Lie96]

[LMKQ89]

[LS97]

[LSM+95]

Trent Jaeger. Access control in configurable systems. In J. Vitek and C. Jensen, editors,
Secure Internet Programming: Security Issues for Distributed and Mobile Objects. September
1999. Available from: http://www.research.ibm.com/sawmill/.

JavaBeans 1.0 Specification, July 1997. http://java.sun.com/beans.

Trent Jaeger, Jochen Liedtke, and Nayeem Islam. Operating system protection for fine-
grained programs. In Proceedings of the 7th USENIX Security Symposium, San Antonio, Tx,
USA, January 1998.

Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

G. Kiczales and J. Lamping. Issues in the design and specification of class libraries. In
Proceedings of the ACM Symposium on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 435-451, 1992.

Mark Ladue. When Java was one: Threats from hostile byte code. In Proceedings of the 20th
National Information Systems Security Conference, 1997.

Butler W. Lampson. Protection. In Proceedings of the 5th Princeton Symposium on Infor-
mation Sciences and Systems, pages 437-443, Princeton University, March 1971. Reprinted
in Operating Systems Review, 8(1), January 1974, pp 18-24.

Butler W. Lampson. A note on the confinement problem. Communications of the ACM,
16:613-615, 1973.

John Lamping. Typing the specialisation interface. In OOPSLA 93, pages 201-215, 1993.

William Lau. Distributed mungi. BE (Hons) thesis, School of Computer Science
and Engineering, University of NSW, Sydney 2052, Australia, 2000. Available at:
http://www.cse.unsw.edu.au/home/~disy.

Jochen Liedtke, Kevin Elphinstone, Sebastian Schonberg, Herrman Hértig, Gernot Heiser,
Nayeem Islam, and Trent Jaeger. Achieved IPC performance (still the foundation for exten-
sibility). In Proceedings of the 6th Workshop on Hot Topics in Operating Systems (HotOS),
pages 28-31, Cape Cod, MA, USA, May 1997.

David Levine, Sergio Flores-Gaitan, and Douglas Schmidt. An empirical evaluation of OS
support for real-time CORBA object request brokers. In Real-time Technology and Applica-
tions Symposium (RTAS), June 1999.

Jochen Liedtke. Clans & chiefs. In 12. GI/ITG-Fachtagung Architektur von Rechensystemen,
pages 294-305, Kiel, 1992. Springer Verlag.

Jochen Liedtke. Improving IPC by kernel design. In Proceedings of the 14th ACM Symposium
on OS Principles (SOSP), pages 175-88, Asheville, NC, USA, December 1993.

Jochen Liedtke. Towards real microkernels. Communications of the ACM, 39(9):70-77,
September 1996.

Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman.
The Design and Implementation of the 4.3BSD Uniz Operating System. Computer Science.
Addison Wesley, may 1989. ISBN 0-201-06196-1.

Emil C. Lupu and Morris Sloman. Reconciling role-based management and role-based access
control. In Proceedings of the Second ACM workshop on Role-based access control, 1997.

Peter Loscocco, Stephen Smalley, Patrick Muckelbauer, Ruth Taylor, Jeff Turner, and John
Farrell. The inevitability of failure: The flawed assumption of security in modern computing
environments. Technical report, United Stated National Security Agency (NSA), 1995.

BIBLIOGRAPHY 169

[Mey90]
[MF97]

[Min95]

[ML97]

[MTS6]

[Nel91]
[Obe94]
[OHE96]

[OLWO8]

[Org93]
[OSDY4]

[PBY6]

[RAS5]

[RS97]

[San93]
[San95)

[SBC97]

[SCCY7]

[SESS96]

[Sin97]

Bertrand Meyer. Fiffel - The Language. Prentice Hall, 1990.

Gary McGraw and Edward Felten. Java Security: Hostile Applets, Holes and Antidotes.
John Wiley & Sons Inc., New York, USA, 1997.

Spencer E. Minear. Providing policy control over object operations in a Mach-based system.
In Proceedings of the 5th USENIX UNIX Security Conference, 1995.

Andrew C. Myers and Barbara Liskov. A decentralised model for information flow control.
In Proceedings of the 16th ACM Symposium on OS Principles (SOSP), pages 129-142, St.
Malo, France, October 1997.

Sape J. Mullender and Andrew S. Tanenbaum. The design of a capability-based distributed
operating system. The Computer Journal, 29:289-299, 1986.

G. Nelson. Programming in Modula-3. Prentice Hall, 1991.
Oberon Microsystems. Oberon/F Users Guide, 1994. Available from: http://www.oberon.ch.

Robert Orfali, Dan Harkey, and Jeri Edwards. The Essential Client/Server Survival Guide.
John Wiley & Sons Inc., New York, 1996.

John K. Ousterhout, J. Y. Levy, and Brent B. Welch. The safe-TCL security model. In
Proceedings of the 23rd USENIX Annual Technical Conference, 1998.

Elliott I. Organick. A programmer’s view of the Intel /32 System. McGraw-Hill, 1993.

Radical operating system structures for extensibility: A panel session. In Proceedings of the
1st USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages
195-199, November 1994.

Przemyslaw Pardyak and Brian Bershad. Dynamic binding for an extensible system. In Pro-
ceedings of the 2nd USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Seattle, WA, October 1996. USENIX Assoc.

John Rosenberg and David Abramson. MONADS-PC—a capability-based workstation to
support software engineering. In Proceedings of the 18th Hawaii International Conference on
System Sciences (HICSS), volume 1, pages 222-31. IEEE, 1985.

Paul Roe and Clemens Szyperski. Lightweight parametric polymorphism. Lecture Notes in
Computer Science, No. 1204:pg. 140-154, 1997.

Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9-19, 1993.

Ravi Sandhu. Rationale for the RBAC96 family of access control models. In Proceedings of
the First ACM workshop on Role-based access control, 1995.

Ravi Sandhu, Venkata Bhamidipati, Edward Coyne, Srinivas Ganta, and Charles Youman.
The ARBAC97 model for role-based administration of roles: Preliminary description and
outline. In Proceedings of the Second ACM workshop on Role-based access control, 1997.

DTOS general system security and assurability assessment reports. Technical Report
MD A904-93-C-4209 CDRL AO011, Secure Computing Corporation, URL http://wuw.
securecomputing.com/randt/HTML/dtos.html, June 1997.

M.I. Seltzer, Y. Endo, C. Small, and K.A. Smith. Dealing with disaster: Surviving mis-
behaved kernel extensions. In Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 213-228, November 1996.

Pradeep K. Sinha. Distributed Operating Systems: Concepts and Design. IEEE Computer
Society Press, 1997.

170

BIBLIOGRAPHY

[Sny86]

[S0l96]
[SS75]

[Ste87]

[Sun85]

[Sut97]
[Szy97]

[Tan92]
[TOP99]

[Ude94]
[US 86]

[Val95]
[VERHO96]

[Voc9g]

[WLAG93]

[WMO95]

[WMR*95]

Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. In
OOPSLA ’86, pages 38-45. ACM, November 1986.

Frank G. Soltis. Inside the AS/400. Duke Press, Loveland, CO, USA, 1996.

Jerome H. Saltzer and Michael D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278-1308, September 1975.

Lynn A. Stein. Delegation is inheritance. In OOPSLA87, ACM SIGPLAN Notices, 22(12),
pages 138-146, October 1987.

Sun Microsystems, Mountain View, CA, USA. Remote Procedure Call Protocol Specification,
1985.

Jeff Sutherland. Why I love the OMG. Homepage_Journal, 1997.

Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley /ACM Press, Essex, England, 1997.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.

Jonathon Tidswell, Geoffrey Outhred, and John Potter. Dynamic rights: Safe extensible
access control. In Proceedings of the fourth ACM workshop on Role-based access control,
pages 113-120, October 1999.

Jon Udell. Componentware. BYTE Magazine, 19(5):46-56, May 1994.

US Department of Defence. Trusted Computer System FEwvaluation Criteria, 1986. DoD
5200.28-STD.

Ray Valdes. Interoperable objects. Dr. Dobb’s Journal, January 1995.

Jerry Vochteloo, Kevin Elphinstone, Stephen Russell, and Gernot Heiser. Protection domain
extensions in Mungi. In Proceedings of the 5th IEEE International Workshop on Object
Orientation in Operating Systems (IWOOOS), pages 161-165, Seattle, WA, USA, October
1996. IEEE.

Jerry Vochteloo. Design, Implementation and Performance of Protection in the Mungi Single-
Address-Space Operating System. Phd thesis, School of Computer Science and Engineering,
University of NSW, Sydney 2052, Australia, July 1998. Available from http://www.cse.
unsw.edu.au/~disy/papers/.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In Proceedings of the 14th ACM Symposium on OS Prin-
ciples (SOSP), pages 203—216, Asheville, NC, USA, December 1993.

Tim Wilkinson and Kevin Murray. Extensible, flexible and secure services in Angel, a single
address space operating system. In International Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP), pages 755—758, Brisbane, Australia, April 1995. IEEE.

Tim Wilkinson, Kevin Murray, Stephen Russell, Gernot Heiser, and Jochen Liedtke. Sin-
gle address space operating systems. Technical Report UNSW-CSE-TR-9504, University of
NSW, University of NSW, Sydney 2052, Australia, November 1995.

