
CVSSearch: Searching through Source Code using CVS Comments

Annie Chen, Eric Chou, Joshua Wong, Andrew Y. Yao, Qing Zhang, Shao Zhang, Amir Michail
School of Computer Science and Engineering

University of New South Wales
�anniec,tzuchunc,joshuaw,andrewy,qzha132,shaoz,amichail�@cse.unsw.edu.au

Abstract

CVSSearch is a tool that searches for fragments of
source code by using CVS comments. CVS is a ver-
sion control system that is widely used in the open
source community [4]. Our search tool takes advan-
tage of the fact that a CVS comment typically de-
scribes the lines of code involved in the commit and
this description will typically hold for many future
versions. In other words, CVSSearch allows one to
better search the most recent version of the code by
looking at previous versions to better understand the
current version.

1 Introduction

Search tools for source code are important in soft-
ware maintenance activities [9]. However, if the code
is poorly commented, then using a standard search
tool, such as grep [6], is problematic. For example, it
may be obvious from using the application that it has
cut and paste functionality, though it may not be at all
obvious how to use grep to find lines that implement
this functionality. Since we can no longer depend
on matching words in comments, we must use the
search tool to match the code itself — which is dif-
ficult if we have never seen the code before. Indeed,
within the context of component retrieval, Maarek et
al. write:

An examination of numerous samples of
code allowed us to reach the conclusion

that some useful information can be ex-
tracted from programs written in a high-
level language using good programming
style, whereas little conceptual informa-
tion can be found in typical real-world
code chosen at random. Unfortunately,
even when dealing with well-written code,
there is a very low probability that the
programming styles of the various pieces
of code will be consistent. Even a sin-
gle programmer may use totally different
identifiers for expressing the same concept
from one day to another� � � Another lim-
itation comes from the fact that there are
many more possibilities for identifiers than
for natural-language words, since they do
not follow any morphological or syntactic
rules. [7, p. 801–802]

Maarek et al. conclude: “In other words, when
there is no way to guarantee good, let alone consis-
tent and compatible, programming styles, extracting
attributes from raw code does not give significant
results. Therefore we prefer concentrating on the
other possible source of information; i.e., the natural-
language documentation either inserted into the code
— the comments — or associated with the code, e.g.,
manual pages [7, p. 802].”

If the code is well commented, one might expect
standard search tools to work well. After all, com-
ments are intended to not only state the purpose of
the various pieces of code, but also to explain how

1



that code works. In other words, they provide infor-
mation at various levels of abstraction. Returning to
our example, one would expect that doing a grep on
“cut�paste” would match these words in comments
and thus return those sections of code responsible for
implementing cut and paste functionality.

However, naively searching through comments is
problematic for various reasons. As Maarek et al.
note, relating comments to the portion of code they
concern is a very difficult task in free-style code.
They write:

Indeed, in free-style programming, pro-
grammers can insert comments wherever
and in any format and any length they
wish. Although comments usually de-
scribe the containing routine or the one just
below, in general it is impossible to auto-
matically determine what part of the code
is covered. [7, p. 802]

Because of this problem, Maarek et al. resort to
using external documents associated with code —
specifically, manual pages — to construct profiles
for reusable components. Their work assumes that
it is easy to determine which component a manual
page refers to — as is the case with Unix-like man-
ual pages for example.

Antoniol et al. [1, 2] address cases where this as-
sumption does not hold: namely, it may not be easy
to know which code an external document refers to.
Consequently, they have built a system that recov-
ers code to documentation links in object-oriented
systems. Indeed, they note: “traceability links be-
tween the requirement specification document and
the code are a key to locate the areas of code that
contribute to implementing specific user functional-
ity [1, p. 137].”

In this paper, we present a general purpose search
tool, CVSSearch, that also leverages natural lan-
guage documentation — namely, CVS comments.
As far as we know, this is the only tool of its kind.

CVS is an open source version control system that
is widely used in the open source community [4]. In-

deed, almost any large open source project makes
use of CVS, particularly if multiple developers are
involved.

CVS comments provide a particularly good source
of documentation. While open source code may not
always be well-commented, large open source ap-
plications almost always have very good CVS com-
ments, particularly when many developers are in-
volved. Indeed, for many open source applications,
the CVS comments are the only source of documen-
tation.

Our CVS-based search tool takes advantage of the
fact that: (1) a CVS comment typically describes the
lines of code involved in the commit; and (2) that
this description will typically hold for many future
versions. In other words, CVSSearch allows one to
better search the most recent version of the code by
looking at previous versions to better understand the
current version.

Elaborating on point (1), observe that each com-
ment in a CVS commit not only describes the change
made but also indirectly describes the purpose of the
lines of code involved in that change (e.g., ”added
footnote feature” indirectly reveals that the lines in-
volved in the commit have something to do with foot-
notes).

With respect to point (2), we note that the purpose
of lines usually does not change often — even if the
contents of the lines do. For example, mouse han-
dling code will remain just that in many future ver-
sions even if some details change throughout the evo-
lution of an application.

Our approach solves several of the problems dis-
cussed with finding useful functional information for
code:

� by searching through natural language instead
of (possibly uncommented) code, we avoid the
problems of trying to extract useful functional
information from free-form code with ad hoc
naming conventions; and

� by using CVS comments, we automatically

2



have a very precise mapping of the commit
comment and the lines of code that it refers to.

Yet, CVS comments have additional benefits. A
line of code may be involved in multiple commits,
in which case, it would have several commit com-
ments associated with it. In such a case, we can view
each commit comment as providing yet another sum-
mary/aspect of that line. Consequently, it is possi-
ble to address the vocabulary mismatch problem — a
query word will match a line if at least one developer
thought of using that word to describe the changes
made that involved that line. In contrast, a comment
in the code provides just one summary of the code it
describes — so there is less opportunity to match the
query word.

We have observed that developers are more likely
to write CVS comments than actual code comments.
We believe this to be the result of two factors. First,
open source developers often use CVS comments as
an opportunity to describe their changes to other de-
velopers so that everyone is made aware of progress
and development directions. Second, CVS com-
ments need not be of as high quality as code com-
ments since few people will see them, so open source
developers are more likely to write them quickly
without worrying too much about whether they are
of sufficient quality to avoid embarrassment.

Finally, CVS comments capture information that
is typically not found in code comments. For exam-
ple, if one fixes a bug, one does not typically write a
code comment saying that a bug has been fixed. Yet,
CVS comments typically do contain such informa-
tion. So, one can use a search tool based on CVS
comments to search for code that is bug-prone, as
those lines would have been involved in many com-
mits with a “bug fixed” commit comment say. Per-
haps more interestingly, CVS comments provide mo-
tivation and history for why that code is the way it
is. While such information may not necessarily help
users find code fragments, it will help them under-
stand the code that they do find using CVSSearch.

The remainder of the paper is organized as fol-
lows. Section 2 explains how we associate CVS
comments with lines in the most recent version of
the code. Section 3 describes our tool, CVSSearch,
which we have used on real-life KDE applications
of significant size. Section 4 discusses related work.
Section 5 summarizes the paper, concluding with fu-
ture work.

2 Technique

To search for lines of code by their CVS comments,
we produce a mapping between the comments and
the lines of code to which they refer. Here we are
only interested in the lines of code found in the
newest version of each file. Unlike the cvs anno-
tate command, which shows only the last revision
of modification for each line, we record all revisions
of modification for each line. For example, if line 3
in the newest version of the file first appears in re-
vision 1.2, and is subsequently changed in revisions
1.4 and 1.5, then we need to associate line 3 with the
comments of revision 1.2, 1.4 and 1.5.

CVS

The following CVS commands and their outputs are
used to produce the required mapping.

� the cvs log command displays log informa-
tion for files:

RCS file: /repository/file.h,v
Working file: file.h
head: 1.5
...
description:
----------------------------
revision 1.5
date: ...
cvs comment ...
----------------------------
revision 1.4
date: ...
more cvs comment ...
----------------------------

3



...

� the cvs diff command shows the differ-
ences between files in the working directory and
the source repository, or between two revisions
in the source repository:

...
RCS file: /repository/file.h,v
...
9c9,10
< old line
---
> new line
> another new line

2.1 Algorithm

The mapping is obtained in two steps. For
each input file, we first obtain a mapping be-
tween the CVS comments and the corresponding
revision by parsing the cvs log output to get
����������� 	�� 	�

�����. We then examine the
changes between all consecutive pairs of revisions
by parsing the cvs diff command; this tells us
the relevant lines that are added, changed or deleted
from one revision to the other.

We use the diff output for two purposes: to asso-
ciate comments with lines and to follow the move-
ment of these lines from early versions to the newest
version. This is necessary because line numbers
change as a result of code insertions/deletions.

The mapping algorithm may start from the earli-
est revision and go forward, or start from the latest
revision and go backward. Currently we are only
interested in the main branch of the CVS reposi-
tory. In this paper, we will demonstrate the “back-
wards” algorithm, which avoids unnecessary profil-
ing of deleted lines, empty lines, removed files etc.

We shall step through this algorithm with a simple
example file, bob, which has three revision, v1.3,
v1.2, and v1.1. The content of bob looks like this:

Line / Revision 1.3 1.2 1.1

1 a a a
2 b b b
3 c c -
4 + d -
5 + d
6 d

1. cvs log -b bob shows the file has revi-
sions 1.1, 1.2, and 1.3 with their corresponding
comments: ����������� 	�� 	�

�����.

2. compare all consecutive pairs of revisions using
the cvs diff1 command, ie. 1.3 and 1.2 as
well as 1.2 and 1.1.
cvs diff produces three types of output: ad-
dition, change or deletion. e.g suppose cvs
diff -r1.2 -r1.3 bob produced the fol-
lowing result:
...
3a4,5
...
then line 4 to 5 is added in revision 1.3, so
they should be mapped to revision 1.3 (and
be associated with that revision’s comment).
However, as explained earlier, line numbers
can change across revisions because of inser-
tions and deletions, so we need to track the
movement of each line. That is, we work out
which line in the latest version corresponds to
which line in each revision, so the mapping is
��	�� 
���� 
����� 
�����.

3. combine the results from 2 and 3 to get
��
����� 
���� 	�� 	�

����� for file bob.

Step 2 - Backward Mapping algorithm

We traverse every version of a given file backwards
(i.e. from most recent to least recent) and keep track
of lines across versions by maintaining an array that

1We will be using a variation of diff to produce a more accu-
rate mapping, as will be described in the end of section 3.

4



has an element for each line in the version currently
being examined. Each element is either a positive in-
teger representing the corresponding line in the latest
version, or -1 if the line no longer exists.

Initialization of the mapping array

Since we are going from the latest version, the initial
mapping array is initialized as its own index. So for
our example, the array is initialized as below:

0
1
2
3
4
5

a
b
c
+
+
d

v1.3
content mapping

Marking of unwanted lines, e.g. empty lines, can
also be done in the initialization step by setting the
value of the relevant elements to -1.

Addition of lines

Using cvs diff as described before, we find that
between v1.3 and v1.2 two lines have been added af-
ter line 3, so we know that from lines 1 to 3 the map-
ping will be the same as v1.3, but after line 3 we need
to skip two lines.

0
1
2
3
4
5

a
b
c
+
+
d

v1.3
content mapping

0

2
5

1
a
b
c
d

v1.2
content mapping

Deletion of lines

From v1.2 to v1.1 two lines have been deleted. We
map lines before line 3 to the same index as usual,
and we then mark two indices after line 3 to -1. Later
when we are storing comments, -1 tells us that this
line has been deleted in newer versions, hence we do
not need to store comments for this line.

0

2
5

1
a
b
c
d

v1.2
content mapping

0
1
2
-1
-1
5

a
b
c
-
-
d

v1.1
content mapping

Changed lines

When a line changes, the mapping of this line re-
mains unaffected; this is where multiple comments
across different revisions are accumulated. For ex-
ample, a section of code is inserted in v1.2 for creat-
ing menu bar. Later in v1.4, the same block of code
is modified to fix a display bug, hence that block of
code should have both “menu bar” and “display bug”
associated with it. However, a problem occurs when
changes span multiple lines. For example:

Line Older Version Newer Version

1 a a
2 b b
3 cat added a line
4 d sleepy cat
5 added a line
6 d

Using cvs diff would give us:

3c3,5
< cat
---
> added a line
> sleepy cat

5



> added a line

This only shows that line 3 in the older version is
changed to lines 3-5 in the newer version, but we
can see from the file that “cat” should be matched to
“sleepy cats”, so more ideally, the output should tell
us that one line got added after 2, line 3 got changed,
and one line got added after 3, i.e.

2a3
> added a line
3c4
< cat
---
> sleepy cat
3a5
> added a line

We solved this problem by adapting a modified ver-
sion of diff, which applies our own string alignment
algorithm (see Appendix) to changed blocks of code
to achieve a more accurate mapping.

2.2 Database Storage and Querying

We have chosen the MG (Managing Gigabytes) [11]
system for our database because it provides fast text
retrieval on large text based database. It also provides
stemming and ranking for query results using cosine
similarity [11, p. 185].

For each line of a file we store into MG its as-
sociated CVS comments. When given query words,
MG returns all lines whose CVS comments contain
at least one of those words. Moreover, the results are
ranked so that lines returned first tend to contain the
most query words — and with multiple occurrences
of them. In fact, MG returns a score along with each
line match to indicate the quality of the match with
respect to the query.

When user queries the database, we combine the
results given by MG with matches from applying
grep on the source code. For example, if the user
searches for the words “cut paste”, then we also per-
form a grep query “cut�paste” to look for lines of

code that contain one of those words. We have found
that such grep matches tend to complement CVS
comment matches: one looks at code while the other
looks at what people say about that code.

Our tool actually returns a ranked list of files first,
where the score of a file is computed as

�
���

�����

������ ,
where the summation is over all lines that matched
the query from that file and where �� indicates the
score of line �. (The score for a grep match is
half the maximum score returned by MG for that
file.) This formula rewards those files that tend to
have many matches close together where the matches
themselves have high scores. A user can then click
on a file to see the matched lines, which are color
coded to indicate the strength of each match.

3 The Tool

We have built a web-based demonstration tool,
CVSSearch, that allows users to search through 30
KDE projects.2 Users can enter keywords to search
for and select a project to search in. Ranked results
are then displayed, showing the number of lines with
CVS comment matches and the number of lines with
grep matches for each file. (See Figure 1, (a) where
the user has searched for “password” in the kmail ap-
plication.)

A user can then click on a file to examine its
line matches. (See Figure 1, (b) where the user has
clicked on the first file in (a).) Matches are shown
on the left with a tag to display the type of match,
i.e. CVS, grep or both. Moreover the matched lines
are highlighted according to how strong the match
is. Darker highlight denotes stronger matches and
weaker highlight denotes weaker matches. (Observe
that many of the CVS matches are relevant to the
“password” query although that word doesn’t appear
in those lines.)

On the right, the tool shows the source code for
that file. A user can click on any of the matched lines

2KDE is a powerful Open Source graphical desktop environ-
ment for Unix workstations. See http://www.kde.org.

6



(a)

(b)

Figure 1: CVSSearch Screenshots.

7



on the left to bring the source code on the right to
that particular line so the user can examine that line
in its context. The tool also displays the associated
CVS comments for the selected line in the bottom
frame, so user can see why that line was matched. (In
Figure 1, (b), the user has clicked on line 318, a CVS
match, with the associated CVS comment shown in
the bottom frame.)

We conclude this section with some statistics for
five KDE applications analyzed by our tool. (See
Figure 2.) For each application, we show its size in
terms of lines of code, the average number of revi-
sions per file, the time it took to analyze the applica-
tion and build the CVS comment database, the size of
that database, and the average number of CVS com-
ments associated with each line in the most recent
version. Observe that we have tried CVSSearch on
real-life applications of significant size and signifi-
cant evolutionary history.

4 Related Work

There is a myriad of search tools for code, some of
which search through code directly [3, 6, 9] and oth-
ers that search the natural-language documentation
(such as comments or manual pages) associated with
the code [5, 7].

In the first category, we find lexical tools such
as grep [6]. Such tools are based on regular ex-
pressions, and while simple to use, have problems
searching for certain constructs. For example, grep
is not designed to search for patterns spanning mul-
tiple lines. Moreover, regular expressions are quite
limited. For example, it is not possible to search for
two statements at the same level of nesting. Conse-
quently, search tools have been developed that parse
the source code [3, 9] to alleviate such problems.

As discussed in Section 1, tools of this type,
whether lexical or syntactic, are quite difficult to use
if the user is not familiar with the code at all. This
is particularly an issue when the code is poorly com-
mented since the query words would no longer likely

match words in the natural-language code comments.
In the second category, we find tools that are based

on natural-language documentation associated with
the code [5, 7]. It is worthwhile noting that such tools
are designed for retrieval of reusable components
whereas CVSSearch is a general purpose search tool.
Moreover, as far as we know, CVSSearch is the only
search tool based on CVS comments — which not
only have the advantages discussed in Section 1 —
but are often the only source of documentation in
open source projects.

5 Conclusions and Future Work

In this paper, we have introduced a method for find-
ing fragments of source code by using CVS com-
ments. Our approach takes advantage of the fact that
a CVS comment describes the lines of code involved
in the commit and this description will typically hold
for many future versions.

We have presented an algorithm for associating
CVS comments with lines in the most recent ver-
sion of the code. Moreover, we described our tool,
CVSSearch, that is based on this algorithm and
which we have used on real-life KDE applications
of significant size. Initial reaction from KDE devel-
opers has been positive. We shall conduct a rigorous
evaluation of utility in future work.

We also plan to provide a program understand-
ing feature that allows users to select arbitrary lines
in the code (which need not appear in a contiguous
block) and CVSSearch will provide an explanation
of what those lines do collectively. This can be done
by looking at the CVS comments associated with
each of the selected lines and combining them in
some interesting way. For example, we could elim-
inate duplicates and rank the comments in order of
their prevalence in the profiles of the selected lines.
In this way, the comments shown first are likely to
apply to many of the lines selected by their user —
and are thus likely to indicate a common role played
by those lines.

8



KDE Lines of Average # DB Build DB Space Average #
Application Code Rev./File (min.) (KB) Comments/Line

konqueror 24,253 38.3 23 2,911 1.5
korganizer 43,188 10.8 9 5,028 1.2
kmail 40,325 32.9 24 3,672 1.4
knode 33,721 14.7 8 2,237 1.3
kword 48,883 22.5 47 4,475 1.6

Figure 2: CVSSearch statistics for KDE applications. (Timing was done on a 700Mhz Pentium III with 256
MB.)

Our ultimate goal is to provide a search engine
based on CVSSearch to the open source commu-
nity whose database encompasses a large number of
open source projects. Not only should one be able
to search individual projects but also all of them at
once. Such a feature can be useful in learning to use a
software library. For example, one may be interested
in knowing how people do double buffering using the
KDE core libraries. Of course, we could also mine
the results of the search to look for patterns, much
as is done in the CodeWeb tool [8]. For example,
we could find patterns in the way people do double
buffering using the KDE core libraries.

References

[1] G. Antoniol, G. Canfora, and A. De Lucia. Re-
covering code to documentation links in OO
systems. In Proceedings of the Working Confer-
ence on Reverse Engineering, pages 136–144,
1999.

[2] G. Antonol, G. Canfora, G. Casazza, and
De Lucia. Information retrieval models for re-
covering traceability links between code and
documentation. In Procedings of the Inter-
national Conference on Software Maintenance,
pages 40–49, 2000.

[3] P. Devanbu. GENOA — a customizable, lan-
guage and front-end independent source code
analyzer generator. In Proceedings of the 14th

International Conference on Software Engi-
neering, pages 307–317, 1992.

[4] K. F. Fogel. Open Source Development with
CVS. Coriolis Inc., 2000.

[5] M. R. Girardi and B. Ibrahim. Using English
to retrieve sofware. The Journal of System and
Software, 30(3):249–270, 1995.

[6] B. W. Kernighan and R. Pike. The Unix Pro-
gramming Environment. Prentice Hall, 1984.

[7] Y. S. Maarek, D. M. Berry, and G. E.
Kaiser. An information retrieval approach for
automatically constructing software libraries.
IEEE Transactions on Software Engineering,
17(8):800–813, 1991.

[8] A. Michail. Data mining library reuse patterns
using generalized association rules. In Pro-
ceedings of the 22nd International Conference
on Software Engineering, 2000.

[9] S. Paul and A. Prakash. A framework for
source code search using program patterns.
IEEE Transactions on Software Engineering,
20(6):463–475, 1994.

[10] M. S. Waterman. Introduction to Com-
putational Biology: Maps, Sequences, and
Genomes. CRC Press, 1995.

[11] I. H. Witten, A. Moffat, and T. C. Bell. Manag-
ing Gigabytes. Morgan Kaufmann, 1999.

9



Appendix: Alignment Algorithm

String Alignment

In this section, we use ��� to denote the length of a
string �, and we use ���� to denote the �th charac-
ter of �, where the first character is denoted by ��
(rather than ��).

If � and � are strings, then an alignment � maps
� and � into strings �� and � �, possibly containing
insertion of “spaces”, such that ���� � �� �� and the
removal of these spaces from �� and � � leaves � and
� , respectively. (These “spaces” are denoted by ‘-
’; they must be distinct from any characters in the
strings.) For example, given two strings acbcdb and
cadbd, one possible alignment of these two strings is:

a c - - b c d b
- c a d b - d -

To determine the quality of an alignment, we use
a scoring function. For example, if an exact match
between two characters scores +2 and every mis-
match scores -1, then the alignment above has score
�� ���� � �� ��	� � 	.

If � and � are each a single character or space,
then ���� �� denotes the score of aligning � and
�. The value of an alignment � of � and � is
��

��� ���
����� � ������ where 
 � ���� � �� ��. An op-

timal alignment of � and � is one that has the maxi-
mum possible value for these two strings.

One can use a simple dynamic programming al-
gorithm to compute the optimal alignment of two
strings � and � in time 
���� � �� �� and space also

���� � �� �� [10].

Source Code Alignment

To identify lines in one version of a file that are
“similar” to lines in a previous version of that file,
we compute an alignment of the two versions of the
file. We then identify lines one version that should
be mapped with lines in the previous version. The
mapping is one-to-one in the sense that a line in one
version is mapped to at most one line in the other
version and vice versa.

The alignment of the two files is done using string
alignment at two levels. At one level, we consider
strings �� and ��, where �� is the sequence of lines
in file version �. (That is, each “character” in �� ac-
tually corresponds to the line in file version �.) The
scoring function �������� ������ is equal to the value
of the optimal alignment of lines ����� and �����.
This latter alignment of two lines, consisting of se-
quences of characters, is done using a scoring func-
tion that rewards character matches with +2 and mis-
matches with -1.

GNU Diff

The GNU diff command can also be used to perform
alignments of two versions of a file, though it does
not look at how similar lines are across two files.
Rather, it simply checks whether two lines are the
same or not (modulo changes in whitespace if the -
b flag is used). However, our alignment algorithm
actually performs another lower level alignment to
determine the similarity of lines.

The GNU diff command is faster than our algo-
rithm, and so we use it to come up with a initial
alignment of the two file versions. However, when-
ever the GNU diff command reports that a contigu-
ous block of lines in one version corresponds to an-
other contiguous block of lines in another version
(e.g, ��� �� 	 ����) — which does not tell us precisely
which lines in one block correspond to which lines in
the other block — we use our alignment algorithm on
the two blocks to determine this information.

10


