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Abstract

This paper is twofold. First, we presentes an extended system
EPDL of propositional dynamic logic by allowing a proposition as a
modality in order to represent and specify indirect effects of actions and
causal propagation. An axiomatic deductive system is given which is
sound and complete with respect to the corresponding semantics. The
resultant system provides a unified treatment of direct and indirect
effects of actions. Second, we reduce the EPDL into a mutlimodal logic
by deleting the component of action in order to obtain an axiomatized
logical system for causal propagation. A characterization theorem of
the logic is given. Properties of causal reasoning with the logic are
discussed.
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1 Introduction

Dynamic logic is one of the formalisms for specifying and reasoning about
action and change that has been proposed explicitly or implicitly by several
authors, such as [Harel 1979] [Rosenschein 1981] [Kautz 1982] [Giacomo and
Lenzerini 1995] [Prendinger and Schurz 1996] [Castilho et al 1999], in the last
twenty years. There are some features of dynamic logic which distinguish it
from the other formalisms of action.

First, dynamic logic was originally developed for modelling programs.
From the computer science perspective, any program can be viewed as an
action and any action can be implemented by program. Therefore dynamic
logic should be a natural formalism for reasoning about action. !

Second, dynamic logic can express and specify compound actions 2,
which are necessary to represent complex plans ([Rosenschein 1981] [Kautz
1982]), robot controllers ([Levesque et al. 1997]), automatic systems and
some special kinds of complex actions(c.f.Example 6). Dynamic logic ex-
presses such actions more naturally than other action formalisms (see [Levesque
et al. 1997]).

Third, dynamic logic is a logical system with sound and complete axiom-
atization and well-developed Kripke semantics. Both its proof and model
theory have reached a high degree of sophistication through the development
of theoretical computer science. Some features, such as decidability and the
finite model property of propositional dynamic logic (PDL), and techniques
such as bisimulation and filtration, are well understood.

However, this does not mean that the existing dynamic logic is adequate
for modeling action and change.

In dynamic logic, the causal relation between an action and its effects
is expressed by action or program modality. Let a be a action and A a
property. “a causes A to be true” can be expressed by the formula [«]A.
For instance, [Shoot|-alive means that the action Shoot causes a turkey
to be dead. In other words, —alive is the effect of action Shoot. In many
cases, effects of an action can be further propagated through causal relations
between affairs. For instance, if a turkey is shot down, its death will cause
the turkey to be unable to walk: —alive causes —walking. However, this
can not be formally expressed in traditional dynamic logic. Obviously it can
not simply wrotten as either —alive — —walking or [-alive]-walking. The

!See the preface of [Harel 1979].
2Compound actions are actions generated from primitive actions by the program con-
nectives ;,U, 7, *.
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first expression is unsuitable because it is equivalent to walking — alive but
“aalive causes —~walking” does not mean “walking causes alive”. The
second one is wrong because it is not allowed in the syntax of traditional
dynamic logic. One idea is why not just extend the traditional dynamic
logic in the way of allowing a proposition as a modality, say [¢] for proposi-
tion . Apparently, there are many similarities between causation triggered
by action and causation triggered by proposition. For instance, “switch_on
causes light” can be explained by both of the statements:

(1) Switching on the circuit causes the light to be on;

(2) The switch is on causes the light to be on.

In the first statement, switch_on is viewed as an action, so light is a
direct effect of the action. In the second one, it is treated as a proposition,
so light is an indirect effect of some action, say Toggle_switch, through
the causal propagation of the proposition switch_on. Therefore if we allow
a proposition as a modality?, we will have a way to unify the treatment
of the causation triggered by actions and by propositions, and likewise the
treatment of direct and indirect effects of actions.

In this paper, we first present an extended system EPDL of proposi-
tional dynamic logic by allowing a proposition as a modality to encompass
causation between propositions and indirect effects of actions. The exten-
sion is as conservative as possible to preserve desirable attributes of PDL,
in particular its inferential style, soundness and completeness of the axiom
system, decidability and the finite model property. The system enables a
unified treatment of direct and indirect effects of action. Secondly, but per-
haps more interestingly, we reduce the EP DL into a multiple modal logic by
deleting action component in order to obtain a logic for causal propagation®.
The resultant system has a ready axiomatic deductive system and semantics
of dynamic logic. We present a characterization theorem of this logic and
discuss its properties in causal reasoning.

2 Extended Propositional Dynamic Logic

In this section, we extend the PDL syntax by introducing proposition modal-
ities, axioms and intended semantics. The resulting logic is called EPDL.

3 A similar approach has been used by [Groeneveld 1995] to deal with changes in knowl-
edge. Besides the motivation, however, the semantics and deduction system are totally
different from ours.

“We can not do the same with PDL because otherwise the resultant system will collapse
to the classical propositional logic.
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2.1 Language of EPDL

The alphabet of the language Lrppr, of the extended propositional dynamic
logic consists of a set Flu of countable fluent symbols and a set Actp of
countable primitive action symbols.

Proposition (¢ € Pro), formula (A € Fma) and action (« € Act) are
defined by the following BNF rules:

pu=f|-p| e = @2
Ac=f|-A| A — Ay | [a]A | [p]A
az=ala;a|agUay | o | A?
where f € Flu and a € Actp.

The intended meaning for [a]A is “a (always) causes A if « is feasible”.
For example, [Turn_of f]-light says that “turning off the switch causes
the light to be off”. The dual operator (a)A, defined as usual, reads as
“ac is feasible and possibly (or may) cause(s) A to be true”. For instance,
(Spin)—loaded says that “spinning a gun may cause it to be unloaded”. Note
that (@) T means “« is feasible or executable”.

The definition of T (true), L(false), V, A, <> are as usual. A literal is
a fluent or its negation. The set of all the literals in Lgppr, is denoted by
Flu L-

The formula [¢]|A, called a propositional causation, represents the cause-
effect relationship between the proposition ¢ and the formula A, read as “p
causes A”. For example, [short-circuitldamaged says that “being short-
circuit causes the circuit to be damaged”.

Notice the difference between [p] and [p?]. 7 is an action, called a
test action, which can be compounded with other actions but ¢ can not be
compounded with actions.

We introduce the following two notations for the future use:

([a])A =gef (@) T A [a]A, meaning “or must cause A”;

<a>A=4y ()T = (a)A, meaning “if o is feasible, v may cause A”.

Note that these two modal operators are dual, i.e. < a > A = —([a])—A.

2.2 Semantics

The semantics of EPDL is the standard PDL semantics plus the interpreta-
tion of propositional causation.

As usual, a model for Lgppy is a structure M = (W, R,V), where
R ={Ry,:a € Act} U{R, : ¢ € Pro}. The components of W, {R, : o €
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Act} and V are as same as the ones of PDL model. For any propositional
formula ¢, R, is also a binary relation on W.

The satisfaction relation M |=5 A is defined as follows:

M =, fift feV(f), for any f € Flu;

M ):w A1 — A2 iff M |:w A1 implies M |:w A2

M =, []A iff for all w' € S, wRyw' implies M =,y A, where v €
Act UPro.

This means that the modalities of both action and proposition are normal
modal connectives. As in any modal logic, A € Fma is valid in M, written
as M = A, if M =, A for all w € W. “= A” means “A is valid in any
model”.

It is easy to see that if |=py denotes the satisfiablity relation of the
classical propositional logic, then for any ¢ € Fmap,

Epr ¢ if and only if = ¢.

The conditions for standard models of Lpppr consist of the ones for
program connectives:

Roip = Ro o Rg
Roup = Ry U Rg
Ry = R},

Rar ={(w,w) : M |=y A}
and the extra conditions for the propositional causation:

1. If M =y ¢, then (w,w) € R,.
2. If ): ©1 — P2, then R(,m C RLM.

The first condition for the propositional causation says that [¢] is a kind
of weakening of [¢?]. In fact, for any proposition ¢, we have = [p]A — [p?]A
because R,» C R,. The following example shows that they are different.

Example 1 Let £ be an language of EPDL in which Flu = {f1, fo} and
Actp = {}. Let M = (W,R,V) be a standard model of L, where W =
fw,a'}, Ry, = {(w,u), (@, w))}, V(f1) = {w'}, V(f2) = {w} and the
others could be anything consistent with the conditions of standard models
(see the following figure). Then we have M =y, [f17]f2, but M [y [f1]fo-
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Accessibility relation for [f17].  Accessibility relation for [fi].

From this example we can see that to verify M =, [¢?]A, we only need
to consider the truth-values of ¢ and A in the current world w whereas to
verify M =y, [¢]A, we not only need to check whether A follows ¢ if ¢ is true
in the world w but also have to consider the case when an action changes the
world to other relevant worlds. In other words, the test action only concerns
the current state of the system while a causal relation is sensitive to both the
history and the future evolution of the system because it is action-relevant.

2.3 Deductive system

The axiom system for EPDL consists of the following axiom schemes and
inference rules:
(1). Axiom schemes:
e all tautologies of propositional calculus.
e all axioms for compound programs:
Comp : [a; B]A > [a][B]A
Alt : [a U B]A + [a]A N [B]A
Test: [A?|B < (A — B)
Miz : [ax]A — AN [a][ax]A
Ind: [0*](A = [a]A) = (A — [a*]A)
e EK axiom: [y](A — B) — ([7]4 — [7]B)
o CW axiom: [p]A — [p?]A
(2). Inference rules:
e MP: From A and A — B, infer B.
e N: From A, infer [y]A.
e LC: From ¢ — (2, infer [p9]A — [¢1]A.
where ¢, 1,92 € Pro, A € Fma, o € Act and v € Pro U Act.

Provability in EPDL is denoted by I-. A formula A is called to be prov-
able from a set I' of formulas, denoted by I' F A, if there exists Ag, -+, A, €
I' such that - 4g — (- — (Ap—1 — A)---). T'is consistent in EPDL if
L/l
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Comparing with the axiomatic system of PDL, we find that the K axiom
and the inference rule necessitation N of PDL have been extended into new
forms FK and EN, respectively, so that they are not only applicable for
actions but also for proposition. The E K specifies propagation of causations
under logical implication. The inference rule EN says that tautologies can
be caused by anything.

The axiom CW and the inference rule LC' are new added specially for
propositional causation. The axiom C'W is corresponding to the semantic
condition 1 of propositional causation. It reflects the standard way to find
and judge a causal relation. Since it is equivalent to [p]A — (¢ — A),
CW also specifies the relationship between propositional causality and log-
ical implication®. Notice that this rule coincides with the conditional logic
axiom ¢ > 19 — (¢ — ) if we view the propositional causation [p]y) as a
conditional assertion (See [Nute 1984] [Gardenfors 1988]). Note that if we
add an extra axiom “[p?]A — [p]A” into the deductive system, EPDL will
collapse to PDL.

The inference rules LC' comes from the conditional logic (see [Gardenfors 1988]
p.149). Tt specifies the relationship between logical relevance and causal rel-
evance, which says that if y9 is a logical consequence of @1, then @9 causes
A must imply that ¢ causes A.°

We would like remark that our axiomatic system is by no means enough
for specifying the causality. We do not aim to proposal an ideal causal
theory to satisfy all purpose. In fact, we try to introduce as few axioms
as possible in order to make the resultant system simpler, less controversial
and meanwhile satisfy the requirement for dealing with the fundamental
problems in reasoning about action and change. It is greatly encouraged to
add new axioms or modify the extant axioms of EPDL in order to satisfy
some special requirement.

The following Lemmas can be derived straightforward from the deductive
system of EDPL.

Lemma 1

SCW also shows that the propositional causality we consider here is deterministic
because probabilistic causality does not implies material implication.

5This rule could be controversy because it face the same problem about “false an-
tecedent” as the material implication do. For instance, LC implies that F [p]yp — [L],
which says that if something causes v, then false can cause it as well. A remedy for this
problem is substituting LC by an axiom of conditional logic: [p]Y A =[p]-x = [¢ A x]¢
(see [Nute 1984]). But this will invoke much more complicated semantics.
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1. Fp]A = (p = A)
2. If = A<+ B, then F [p]A < [p]B

3. If - @1 > 2, then F [p1]A < [p2]A

Note that we have not the following tautologies:

E (1 = h2) = ([elYr = [pl2),

F (o1 = 2) = ([p2]Y = [01]9),

because the former implies that 11, 12 F [@]1)1 — [p]2, which says that
“if two things happened at the same time, they must be caused by the same
reason”. And the later implies that o1, w2 F [p2]tp — [¢1]¥, which says that
“if two things happened at the same time, they will cause same results”.

2.4 Soundness and completeness

The soundness of axioms and inference rules of EPDL is easy to check, so
we have

Theorem 1 (Soundness) If - A , then A is valid in all standard models of
LEPDL-

For the completeness of the deductive system for EPDL, we can follow
Fischer and Ladner’s proof for PDL step by step while adding the proof
for extended components. We will only present the part for the new intro-
duced components and omit all the other steps (refer to [Goldblatt 1987] for
details).

Let T' be a set of formulas. The Fisher-Ladner closure of I', denoted by
FL(T), is the smallest set A of formulas satisfying the following conditions:

' C A;

A is closed under subformulas;

[p]A € A implies p € A;

[a; B]A € A implies [a][]A € A;

[aUpB]A € A implies [@]A € A and []A € A;

[ax]A € A implies [o][ax]A € A;

[A7]B € A implies A € A.

It is easy to see that Fisher and Ladner’s Lemma remains true, that is,

I' is finite implies that F'L(I") is finite. We shall call I" to be F L-closed if I'
is finite and FL(T") =T
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A canonical model of Lgppr, based on the above deductive system is a
model M% = (59 {RY : @ € Act} U{R{ : ¢ € Fmap}, V%) where

e WY = {maximal consistent sets of formulas of Lrppr};

e RS = {(w,u) : V74 € w(A € ')},
where v € Fmap U Act;

e VO(f)={weWY: few}

It is not hard to prove that M¢ =, A iff A € w for any w € W¢. Now
for a given canonical model M and a FL-closed set I' of formulas, we can
define a I-filtration M" of MY in the usual way except for letting

Ry = {(lul,|v]) : 3 € [u] I € v] (u'Rgv’)}.

Following the same steps of the proof of Filtration Lemma in PDL (see
Filtration Lemma 10.8, page 115 in [Goldblatt 1987]), we can prove that
MU is a T-filtration of M©. Therefore, For any A € T,

MY |, Aiff MY |, A
Although M® may not be standard, MT is, that is
Lemma 2 M" is a standard model.

Theorem 2 (Completeness) If A is valid in all standard models of Lpppr,
then F A.

Similar to the PDL, we have the following decidability of EPDL.

Proposition 1 Validity in EPDL is decidable in deterministic exponential
time.

The following proposition is interesting because a primitive action sym-
bol could act as a free variable of action. However, we can not quantify over
action variables in dynamic logic. This might be the weakness of dynamic
logic comparing to situation calculus in expressing action effects.

Proposition 2 If A+ B(a) where a is a primitive action symbol in Lrppr,
occurring in B(a) but not occurring in A, then At B(«a) for any action « in
which there is no the occurrence of a, where B(«) is the result of substituting
« for all occurrences of a in B(a).
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3 Reasoning on Action Descriptions

One purpose of action logic is to provide a formal language to describe ef-
fects of actions. We can distinguish two kinds of such descriptions: one is
called action description which specifies the generic effects of actions and
causal relationships in a dynamic system; the other is query, which is used
for expressing a prediction of the effects of a certain action running under a
certain situation or an explanation of observed phenomena. This categoriza-
tion is similar to the one in action languages [Gelfond and Lifschitz 1998],
where action description languages are used to express action descriptions
and action query languages for describing queries. An important difference
with our approach is that we use the same language to describe both kinds
of information. Of cause, they have different inference mechanisms. In this
section, we shall develope some special inference mechanism for reasoning
about action effects by the extended dynamic logic.

3.1 Action description

An action description of a dynamic system is a set of formulas which specifies
effects of actions, causal relations, domain constraints and qualifications of
action execution.

Example 2 Consider the Yale Shooting Problem in [Hanks and McDer-
mott 1987]. Let Flu = {alive, loaded, walking} and Actp = {Load, Shoot,
Wait}. Then this problem can be described by the following action descrip-
tion:

—loaded — [Load]loaded

loaded — [Shoot]|-alive
Y =1 loaded — [Shoot]-loaded

[—alive]~walking

(Load)T, (Wait) T, (Shoot) T

The first three sentences describe the direct effects of action Load and
Shoot. The fourth one specifies the causal relation between alive and
working. The last three express the qualification of execution of three ac-
tions, meaning they are all executable in any case. Note that we have not
listed the unaffected information, or frame axioms, into the action descrip-
tion. In other words, this action description is not a complete specification
of the problem. A treatment of frame axioms was presented in a sequent

paper.
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Example 3 Consider the circuit of the following figure. Let % be the action
description of this circuit:

( )

—sw; — [Toggle;]sw;
sw; — [Toggle;]—sw;
[swi A swalight light
[—swy V aswg|-light
(Togglei) T

i=1,2 )

SW1 SW2

I
\ N

The first two expressions describe the direct effects of action Toggle;
and Toggles. The middle two expressions specify the causal relation among
the fluents in the circuit. “(T'oggle;) T” means the action Toggle; is always
executable.

3.2 Reasoning on Action Descriptions

We can easily see that a formula in an action description is different from an
ordinary formula. For instance, the sentence “loaded — [Shoot]|—alive” in
an action description means that whenever loaded is true, Shoot must cause
—alive. In situation calculus language, it can be expressed as Vs(loaded(s)
— —alive(do(Shoot, s))) (see [Reiter 1991]). A similar expression in dy-
namic logic by introducing a special action “any”, meaning “any action”,
is [any]|(loaded — [Shoot|-alive). With help of [any], a sentence in an ac-
tion description can be easily differentiated from an ordinary formula. In
[Goranko and Passy 1992], they showed that [any] is exactly an Ss-modality.
Therefore, if we want to introduce any formally as [Prendinger and Schurz
1996] and [Castilho et al 1999]7 did, we must extend our system further by
adding all the axioms of S5 to the modal operator any and an extra axiom
“lany]A — [a@]A”, to say that any is a universal action. Instead of doing
this, however, we prefer a simpler way to deal with action description by
treating it as extra axioms in reasoning with action, like the way in situation
calculus (action description as domain axioms, see [Reiter 1991]).

3.2.1 X-Provability

Let ¥ be an action description. A formula A is a ¥-theorem, written by > A,
if it belongs to the least set of formulas which contains all the theorems of
EPDL, all the elements of 3, and is closed under M P and EN.

"[Castilho et al 1999] treated [any] as Si-modality.
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As usual, for any I' C Fma, a sentence A is X-provable from I, written
by T' > A, if there exist A;,---, A, € I such that

F2 A o (- (A — A)--0).

Note that we do not require that X-provability is closed under LC. In
fact, it is provable in the following sense®:

If - 1 — 2, then F* [po] A — [p1]A.

See the following Lemma 3 [3].

Example 4 Let X be the action description in Example 2. We prove that
{=loaded} * [load; shoot]—alive.

Proof. Since loaded — [shoot|—alive € X, by (EN), [load](loaded —
[shoot]—alive) is a Y-theorem. Thus [load]loaded — [load][shoot]-alive
and then [load]loaded — [load; shoot]—alive are ¥-theorem. By —loaded —
[load]loaded € X, we have —loaded — [load]loaded is a -theorem. Thus
we obtain —loaded — [load; shoot]-alive is Y-theorem. So F* —loaded —
[load; shoot]—alive, i.e., —loaded -* [load; shoot]-alive, as desired. O

In order to make the prove clear, we write the above procedure of de-
duction in the following form:

—loaded

(1)* +* loaded — [Shoot]-alive (AD)

(2)* > [Load](loaded — [Shoot]-alive) (1 and EN)

(3)* * [Load|loaded — [Load)][Shoot]-alive (2 and EK)

(4)* > [Load|loaded — [Load; Shoot]-alive (3 and Comp)
(5)* F* —loaded — [Load)loaded (AD)
(6)* F* —loaded — [Load; Shoot]-alive (4 and 5)
(7). > [Load; Shoot]—alive (T and 6)

where AD indicates “Action Description in ¥7; Comp is an axiom of
PDL; EN and EK are the inference rules of EPDL; I' represent the promises.
“*” means the formula is a ¥ -theorem, so can use inference rules EN.

5
6
7

The reader is invited to verify the following inference relations (with
standard PDL program-like abbreviations):

8Note that the following inference is not true:

if ¥ 1 — @2, then FZ [p2] A — [p1]A.

As we mentionedd before, LC reflects the causal propogation through logical necessarity
(F ¢1 — p2) rather than accidental truth link.
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1. —loaded -* {[Load; Shoot])—alive

2. ¥ ([Load; W ait;if —loaded? do Load endif; Shoot]) —alive

We remark that we can neither prove nor refute ~loaded - ([Load;W ait;Shoot])—alive
now because it requires frame axioms. The frame problem will be dealt with
elsewhere.

Example 5 Consider the action description in Example 3. We can easily
prove the following inference relations:

1. F¥ (swy A swg) < light

2. swy F* [Togglei|-light

3. ¥ [~swq]-light

The first expression shows that the causal laws “[swy A swe|light” and
“[mswy V —swe]light” imply the domain constraint “(swy A swg) < light”.
So, for example, if we know switch 1 is closed but the light is off, we can infer
that switch 2 must be open, i.e. sw; A—light > —swy. The second inference
relation reflects the propagation of effects of action Toggle; through the
causal law [—sw; V —swg|-light. The third one is a derived causal law.
It comes from the causal law [—sw; V —swg|-light and the logical relation
F —swy; — (—swy V —sws) by applying LC rule.

Example 6 Consider an action description 3 as follows:
thirsty — (Drink_a_mouth ful_of water)—thirsty
thirsty — (Drink_a_-mouth ful_of water)thirsty
which says that drinking a mouthful of water may quench a thirst or not.
Then we can prove that
F* ([while thirsty do Drink_a_mouthful_of _water])—thirsty
which says that drinking enough water can certainly quench o thirst.

Y=

Similar examples can be also found in fuzzy logic, such as “bald head
paradox” (pulling out a hair does not cause bald) and “smoking paradox”
(smoking one cigarette can not cause lung cancer). Note that this kind of
aggregative effects of actions is not easily expressed in the other formalisms
of action.

The following lemma, will be useful in discussion the properties of propo-
sitional causation (see section 4).

Lemma 3
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~

. If- A, then > A.

2. If A€ X, then = [y]A.

3. If - @ — 4, then F= [h]A — [p]A.

4o I [yl A plA, then = [y]A.

5. If £1 F C for each C € ¥y, then F>2 A implies F>1 A.

where A € Fma, v € Fmap U Act and ¢, 9 € Fmap.

3.2.2 Semantics of Y-provability

A standard model M is called a ¥-model if M = B for any B € ¥. A is
Y-valid, written by > A, if it is valid in every ¥-model. The intended
semantics for X-provability is A is Y-provable if and only if A is valid in
every Y-model. The following lemmas sketch the proof of soundness and
completeness of Y-provability.

An action description 3 is called to be uniformly consistent if > 1. In
the other words, L could never be a X-theorem. A set I' C Fma is said to
be S-consistent if T/~ L. T'is mazimal ¥-consistent if

1. it is X-consistent,

2. X CT, and

3. for any A € Fma, either AeT"or A eT.

Lemma 4 T'I/* A iff T U{-A} is X-consistent.

Similar to the ordinary provability of EPD L, we can easily to prove that
Lemma 5 If ' is mazimal S-consistent, then T' F> A implies A € T';

A similar proof of Lindenbaum Lemma, can lead to the following lemma.

Lemma 6 Fvery X-consistent set can be extended to a mazimal X-consistent
set.

Then we have
Theorem 3 (soundness and completeness of 3-provability)

> A if and only if > A.
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Similar to the decidability of EPDL, we have
Corollary 1 X-provability is decidable.

Note that X-provability is not strong complete as usual. That is to say
that I' => A need not imply I' =* A. But it is true if [" is a finite set.

4 A Logic for Causal Propagation

The philosophical consideration of causality has been around at least since
the time of David Hume (1739). The recent investigations of causality with
logical approach started from Lewis (1973). AI researchers found it’s im-
portance from the early 80’s (c.f. [Shoham 1990][Sosa and Tooley 1993]).

[Lewis 1973] offered an account of causality based on his conditional
logic. Although his formalism captures some basic properties of causal rea-
soning, not all the rules for counterfactuals are suitable for causality. For
instance, the identity law: ¢ — ¢ is sound for counterfactuals, but not
sound for causality (see [Shoham 1990]).

An interesting observation is if we delete all the components of action
in EPDL, then it will degenerate into a mutimodal logic with proposi-
tions as modality, which is very similar to conditional logic ([Nute 1984]
[Friedman, et al 1996]). Precisely, we delete all the components about ac-
tion from the language, semantics and deductive system of EPDL. The
reminder system, denoted by EPDL™, will be a logic on causal relation
[p]e. This offers a logic for causal reasoning or more precisely for causal
propagation. Since causal reasoning has been ubiquitous in everyday life
and so confused with other kind of reasoning, it seems impossible to have
a causal theory which satisfies philosophers, physicists, mathematicians and
computer scientists. What we are wondering here is what is the characteris-
tics of EPDL~ and how much it satisfies our intuitive appeal about causal
reasoning?

4.1 Basic properties of causal propagation

One task of a causal theory is to provide an account of causal laws. A causal
law is a causal relation which truth does not depend on which action would
be taken. For instance, [-alive]~walking is generally viewed as a causal law
because its truth does not depend on any actions. We represent a causal



4 A LOGIC FOR CAUSAL PROPAGATION 16

law with the form [p]y in action description?. So any causal formula [¢]t)
in action description is a causal law.

Given an action description ¥, which could include some causal laws,
if F* [@]y, we call it derived causal law. The most important question
that arises in causal theory is what causal laws can be derived from other
causal laws. For instance, given causal laws “raining causes wet” and
“wet causes slippery ” in action description X, can we derive that “raining
causes slippery”, i.e.,F> [raining]slippery.

The following properties of causal reasoning in FPDL~ which follows
from Lemma 3 are intuitively desired:

1. If > [p]y and F 9 — x, then = [p]x (Right Weakening).
2. If F¥ [x]s» and F @ — ¥, then F* [p]y (Left Strengthening).

3. If F* [y and F* [¢]x, then F* [p]x (Transitivity).

The first two specify causal propagation through logical relevancy. The
third one reflects transitivity of causation.
Another property, which is not very intuitive but still reasonable, is:

4. If = [p]p and F* ¢ — 1, then F [@]sh. (Self Causation)

In words, if ¢ can be self-caused, then whenever v follows ¢, ¢ can
cause 7. This gives a sufficient condition to obtain a causal law. Generally,
it is very hard to conceive a self-caused proposition. However, if we are
restricted to explaining action effects by using only propositional causation
and domain constraint, one way to do it is viewing the direct effects of
actions as self-caused propositions (see [McCain and Turner 1997]).

4.2 Characteristic theorem of EPDL~

We have presented some basic properties of causal laws in our causal the-
ory. So if we have [raining|wet and [wet]|slippery in X, by transitivity we
have F* [raining|slippery, which is desired. However, do we also have
- [=slippery]-raining, which is not desired. This phenomenon is called
the direction of causation, the essential difference between causation and
implication. Precisely, -1) — —¢ always follows ¢ — 1), however, [—¢]—¢

“We do not consider conditional causal law: ¢ — [1)]x here.
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does not necessarily follow [¢]1) no matter that [p]iy is a causal law or ordi-
nary causal relation. One crucial criterion to the success of a causal logic is
whether it can represent the direction of causation while preserve the con-
trapostion of logical implication. To show our causal theory satisfies such
a criterion, we have to prove, for instance, that F> —slippery — —raining
is provable but F* [—slippery]-raining is not provable with causal laws
Y = {[raining]slippery} or ¥ = {[raining|wet, [wet]slippery}. This is gen-
erally requires to provide a full characterization of our framework for causal
reasoning.

To focus on this problem, consider action descriptions Y which consists
of only causal laws. We denote

D(X) ={p—= ¢ :[ply € I},

which includes all the domain constraints implied by the causal laws in 3.

Definition 1 Let X be a set of causal laws. X* is called to be the completion
of % if it can be generated by the following rules:

If [p]Yh € X, then [p]ip € X7

If % 4, then [p]h € T

If [y € Z7, then [x|(p — ) € X"

If [p] € F and = x — ¢, then [x].€ E*;

If [p] € * and &+ 1 — x, then [p]x € T*;

If [pl1, [plpe € X%, then [p](Y1 A1p2) € B*.

S G Lo~

The following lemma says that ¥* is a conservative extension of ¥ under
Y -provability.

Lemma 7 If [plY) € X%, then = [p]p.

The following technical lemma says that for propositional query, there
is no difference between causal laws and domain constraints.

Lemma 8 - ¢ if and only if D(X) F .

Lemma 9 [p|y € ¥* iff D(X) F 4 or there exists [x]\ € ¥ such that p - x
and D(EZ)U U {X:[x]x € 2} + 9.
phx

The following theorem characterizes causal propagation.
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Theorem 4 > [p]y if and only if ¢l € X*.
By combining Lemma 9 and Theorem 4, we have the following

Corollary 2 I/~ [y iff
1. D(X) 4 and ¢ I/ x for each [x]\ € X, or
2. D(X)U LH {A:[x]A € B} 9.
okx

For example, if ¥ = {[raining]wet, [wet]slippery}, then we have:

1. > [raining]slippery because [raininglwet € % and {wet, wet —
slippery} F slippery.

2. = =slippery — —raining because D(X) - —slippery — —raining.

3. #* [=slippery]-raining because there are no causal laws [x]A € B
such that —slippery F x.

Example 7 Consider the circuit in Example 3. The causal relation in this
circuit can be described by the following causal laws:

sl _ [swy A swo|light
| [nswy V —sws]-light

According to the corollary 2, it is much easy to know that |7‘El [light](swiA
swy) and 1> [swi A—light]—swy because there is no any causal law [x]\ € T
such that light = x or swy A —light - x.

To make the characterization theorem clearer, let’s consider another
corollary of Theorem 4.

Corollary 3 Let Y be a set of causal laws and D C Fmap. Then =Y [p]y
iff
1. D(X)UD 1 or
2. UM X el #pand D(E)UDU U {X:[x]A € 2} 9.
ekx ehx

Suppose that D is a set of domain constraints. D(X) are the domain
constraints implied by ¥. So the domain constraints in effect is D(X) U D.
The Corollary 3 says that ¢ causes 1 under ¥ if and only if ¢ is implies
either by domain constraints or by domain constraints plus effects of ¢
through propagation of causal laws.
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Note that Theorem 4 tells us what can be derived from a set of causal
laws and Corollary 2 shows us what can not be derived from it. Therefore
we have had a full characterization of causal reasoning in EPDL~. With
help of this result, we can offer a solution to the ramification problem based
on EPDL (see a sequent paper for details).

4.3 More properties of causal propagation

There have been many proposals in different formalisms for causal propaga-
tion ([Lin 1995] [McCain and Turner 1997] [Giunchiglia, et al 1997] [Thielscher 1997]
and etc.). Few of them are axiomatized. Among them, McCain and Turner’s
causal theory [McCain and Turner 1997] offered a modal expression of cau-
sation. In [Turner 1999], a causal law was written by the modal formula
“o — Cv”, where C is a Ss-modality. Besides S5 axioms, however, C also
relies on some fix-point condition which is not axiomatized. Another impor-
tant difference between our approach and the others is that we permit the
generation of new causal laws from a given set of causal laws whereas most
of other formalisms only consider causal propagation in semantic level. Nev-
ertheless, there are lots of properties are comparable among these systems.

[Schwind 1999] presented a comparative tableaux showing the properties
of causal propagation satisfied by the main formalisms of causal reasoning.
We are not going to advertise our system by showing which properties it
has had. Notwithstanding it seems a shortcut to differentiate our formalism
from the others by extending this tableaux with EPDL™.

The main properties which were considered in [Schwind 1999] include
Monotonicity, Transitivity, Contraposition, Conjunction, Reflezivity, Con-
junctive Antecedents, Disjunctive Antecedents, Right Weakening, Left Logi-
cal Equivalence.

Besides the properties we have shown in Section 4.1, the following two
are also easy to be verified:

5 If = 0]y A [p]x, then F* [@](v A x) (Conjunction)

6 If -* [p]y and F ¢ < x, then F* [x]ty (Left Logical Equivalence).

Therefore we know that Transitivity, Conjunction, Right Weakening and
Left Logical Equivalence are true in EPDL~. With Corollary 2, we can
easily falsify Contraposition and Reflexivity. Now we discuss the other rules.

e Monotonicity
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Our approach to causality is definitely monotonic in both of the following
senses:

a). If = []s, then F=Y2 [p]4.

b). If F* [¢], then F* [p A x]9.

We are keen on the monotonic approach not only because it is simple
but also it is essential to our methodology on reasoning about action and
causality. If rain A unberella does not cause wet, we think that rain is not
necessarily to cause wet. It is true that we can’t have a complete list of
the qualifications upon which rain causes wet, but this is another problem
which we call it the qualification problem of effect propagation.

e Conjunctive Antecedents

Conjunctive Antecedents means if p A1) causes y, then either ¢ causes
x or i causes . It is not necessarily true in EPDL~. For instance, we have
¥ [swy A sws)light but we have neither = [sw;]light nor = [swo]light.

e Disjunctive Antecedents

Disjunctive Antecedents means if ¢ causes x and 1) causes y, then p A1)
causes . It is also not necessarily true in EPDL™ because it independent
with the extant axioms of EPDL™. Disjunctive Antecedents is one of the
most controversial rules in conditional logic (See [Nute 1984]). Although in
causal logic it is not as bad as in conditional logic, it is a question that if
it is intuitive appeal. We did not consider it as an axiom, but it can be an
interesting topic for the future research.

According to Schwind’s tableaux, EPDL~ most closes to McCain and
Turner’s causal theory. The only difference is EPDL™ has not Disjunctive
Antecedents but their system has. In fact, EPDL™ is slightly weaker than
their’s. The following proposition show the relation between them.

Proposition 3 Let ¥ be a set of causal laws. Let X1 = {4 : T + ¢ for
[l € B}, where I is an interpretation of Flu. If I is a model of X!, then
I is a model of (¥*)!.

If we take McCain and Turner’s causal theory as the semantics of EPDL™,
this proposition shows that EPDL™ is sound with this semantics. However,
it is not complete with this semantics in the sense that if I is the unique
model of both 3 and (X U {[¢]})!, then [p]y € T*.
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We would like to see if McCain and Turner’s causal theory can be ax-
iomatized by extending FPDL™ axiomatic system.

We remark that not every property of EPDL™ is desired. As we foot-
noted before, the inference rule LC' has the same problem of material im-
plication, that is, false can cause anything. More precisely, if > [p]y, then
F* [L]sp. A variant of this example looks even worse: if F* [p]y, then
== [ A =1p]ep, which says, for instance, if we know raining causes wet, then
raining and dry still cause wet. Although we do not think this is a serious
problem to our approach, we would like to see any solution to this problem.

5 Conclusion and Discussion

We have presented an extended system EPDL of propositional dynamic
logic to represent and specify indirect effects of actions and propagation of
causality. The extended propositional dynamic logic provides a unified for-
malism for reasoning about (direct and indirect) effects of actions. The ex-
tension is so slight that only one axiom and one inference rule were added'?.
It has been shown that the resultant system captures most basic proper-
ties of causal reasoning. Such simplicity may reflect the essential similarity
between direct and indirect effects of actions.

As one of the formalisms for reasoning about action and causality, EPDL
is quite different from the other formalisms, such as the situation calculus
[Reiter 1991], the action language [Gelfond and Lifschitz 1998] [Giunchiglia, et al 1997]
and fluent calculus, as it does not have a built-in solution to the frame prob-
lem or the ramification problem. In fact, dynamic logic is a pure monotonic
logic which only offers built-in expression of compound actions and causal
relations. It can serve as a representational language and reasoning platform
for constructing a monotonic or nonmonotonic system to deal with various
problems in reasoning about actions (c.f. [Giacomo and Lenzerini 1995] and
[Prendinger and Schurz 1996]). We will present our solutions to these prob-
lem based on EPDL in the sequent papers.

We have presented a causal logic EP DL~ which is a reduction of EPDL
by deleting the component of action. It is an axiomatized logical system for
causal propagation. We presented a characterisation theorem of the system
and discussed its propertied in causal reasoning. Regarding to the similarity
between direct and indirect effects of actions, the semantic of dynamic logic
for causality seems intuitively appealing.

10More precisely, there are another axiom and inference rule of PDL were revised.
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EPDL™ can be viewed as a conditional logic. This means we can endow
a conditional logic the semantics of dynamic logic. It is interesting that
whether we can give EPDL™ a semantics of conditional logic.

We believe that dynamic logic as an axiomatic logical system of action
has a very promising future for applications in planning, cognitive robot and
intelligent agent. It is hoped to extend EPDL further with the approach in
[Peleg 1987] [Chen and Giacomo 1999] and etc. in order to express con-
current actions. However, a big challenge for reasoning about action with
dynamic logic is whether first-order dynamic logic can be also extended,
without lost of completeness of its deductive system and embedability of
first-order infinitary logic, to the case where primitive actions could be more
general than just deterministic valuations.

Appendix:

Proofs of Theorems

Theorem 1 (Soundness)If = A |, then A is valid in all standard models of
LeppL-

Proof.  We only need to verify the extra axioms and inference rules.

For (EK), suppose that M =, [¢](¥1 — ¥2) and M =, [p]¢1, so for
any w' with wRyw', M =y 1 — 2 and M =y 1. Thus M =, 1.
That means M =, [p]s.

For (CW), given any standard model M, suppose that M |=, [¢]A and
M =, ¢. According to the semantics, (w,w) € R,. Thus M |=,, A. That
means (CW) is true in M.

For the inference rule (EN), suppose that A is true in any world of an
standard model M. Then for any state w, if wR,w’ then M |=,, A. That
means M =, [¢]A.

For the inference rule (LC'), assume that ¢; — 9 is true in any standard
model M. By the semantics, R,, C R,,. Therefore M =, [¢2]A implies
M =y [pr]A. O

Lemma 2 M" is a standard model.
Proof.  We only consider the extended conditions for EPDL.

For the condition 1, suppose that MT Fw| ¢ for ¢ € T'. Then M€ =y, o,
or, p € w. If [p]A € w, then ¢ — A € w by the axiom (CW), hence A € w.
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That means {A : [p]A € w} C w. According to the construction of canonical
model, (w,w) € Rg. Therefore, (|w|,|w|) € Rg by the construction of I'-
filtration.

For the condition 2, suppose that = ¢; — 9. Since p; and @9 are
classical propositional formula, so according to the completeness of classical
propositional logic, ¢1 — @9 is a tautology, so it is a tautology of EPDL.
Let (|ul, [v]) € R, . Then there exist v’ € |u| and v" € |v] such that u' RS v'.
That is {A : [p1]A € '} C o'. Assume that [p9]A € '. For ' is closed
under the rule (LC), p1 — @9 € o' implies [p2]A — [p1]A € u'. Hence
[p1]A € v/, so A € v'. That means {A : [p2]A € u'} C V', or ’LL,RSZ’U,.

Therefore (|u|, |v]) € ng as desired. O

Theorem 2 (Completeness) If A is valid in all standard models of Lpppr,
then F A.

Proof.  Suppose that I/ A, then for any canonical model M€ of Lrppr,
there is a state w € W such that =A € W¢. Thus M =, -A.

Now let I' = FL({-A}) and M" be a P-filtration of M. Then M" =,
—A. This contradicts to the promise of the theorem. O

Proposition 2 If A+ B(a) where a is a primitive action symbol in Lrpppr,
occurring in B(a) but not occurring in A, then At B(«) for any action « in
which there is no the occurrence of a, where B(«) is the result of substituting
« for all occurrences of a in B(a).

Proof. It is sufficient to prove it in semantics according to the soundness
and completeness theorems of EPDL. Suppose M = (W, {Ry : « € Act}U
{R, : ¢ € Fmap}, V) is a standard model of Lgppr. Let M’ is the model
which is as same as M except that let R, = R,. It is easy to see that M’ is
a standard model of Lgppr, because a does not occur in a. For any w € W,
it M =, A, then M’ |=,, A for there is no any occurrence of ¢ in A. It
follows by A = B(a) that M' |, B(a). By Ry = Ry, we have M’ = B(«).
Since there is no any occurrence of a in B(«), we obtain M = B(«). O

Example 6 Prove that
> ([while thirsty do Drink_a_mouthful_of water])—thirsty

Proof. Let D_m_w denote Drink_a_mouthful_of _water. It is easy to see
that i [while thirsty do D_m_w]-thirsty. Now we prove that > (while
thirsty do D_m_w)—thirsty.
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(1)* > thirsty — (D_m_w)—thirsty (AD)
(2)* % thirsty — (thirsty A (D_m_w)—thirsty) (1)
(3)* % [(thirsty?; D_m_w)x|(thirsty — (thirsty A (D_m_w)—thirsty))
(2 and EN)

(4)* == ((thirsty?; D_m_w)*)thirsty — ((thirsty?; D_m_w)*)(thirsty A
(D_m_w)—thirsty)) (3)

(5)* = [(thirsty?; D_m_w)*|=thirsty V ((thirsty?; D_m_w)«)(thirsty A
(D_m_w)—thirsty)) (4)

(6)* F= —thirsty V ((thirsty?; D_m_w)x)(thirsty A (D_m_w)-thirsty))
(5 and Mizx)

(7)* B —thirsty — {((thirsty?; D_m_w)*)—thirsty (Miz)

(8)* F* ((thirsty?; D_m_w)*)(D_m_w)—thirsty — ((thirsty?; D_m_w)%*)
—thirsty (Miz)

(9)* > ((thirsty?; D_m_w)x)—thirsty (7 and 8)

(10)* > ((thirsty?; D_m_w)*)(—thirsty A —thirsty) (9)

(11)* = ((thirsty?; D_m_w)*; ~thirsty?)—thirsty (10 and Test)

(12)* > (while thirsty do D_m_w)—thirsty (11) O

Lemma 3

1. - A implies F> A.

2. A €Y implies F= [y]A.

3. If b o — o, then F* []A — [p]A.

4. If > [y]p A [p]A, then = [y]A.

5. If ©1 F C for each C € ¥y, then F>2 A implies F>1 A.
Proof. (1) and (2) are straightforward.

For (3), suppose that - ¢ — 1. By (LC) we have F [¢]A — [p]A, so
= [P]A = [p]A.

For (4), suppose that = [y]p A[p]A. Then by (CW) we have F* ¢ — A.

So F* [y](¢ — A), or, F* [y]o — [a]A. Therefore > [y]A.
For (5), since ¥ - C implies F*! C, any Ys-theorem is ¥;-theorem. O

Lemma 4 T' I/* A iff T U {-A} is S-consistent.
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Proof.  Suppose that I' I/ A. If ' U {=A} is not Y-consistent, that is,
I U{=A} F* 1, then T ¥ A, a contradiction. Conversely, if T U {-A} is
Y-consistent but I' F* A, then there exist A, --- A, € I’ such that F* 4; —
(---(A, = A)---). Then = A; — (--- (4, — (=A — 1))---). That means
that I' U {—A} is not ¥-consistent, a contradiction. O

Theorem 3 (soundness and completeness for X-provability)

== A if and only if = A.

Proof. For soundness, suppose that > A. For any Y-model M, ac-
cording to the completeness of EPDL, all the theorems of EPDL belong
to {B : M | B}. It is not hard to verify that {B : M = B} is closed
under M P and EN. Therefore {B : M |= B} contains all the X-theorems,
specially, A € {B : M |= B}, or M > A.

For completeness, suppose that = A but /> A. Then {-A} is 2-
consistent and can be extended to a maximal Y-consistent set. Then we
construct a canonical ¥-model M€ of Lgppr such that

WY = {w : w is maximal ¥-consistent}

Rg = {(w,w") : V[y]A € w(A € w')}, where v € Fmap U Act

V) ={we WY : f € w}

It is easy to see that M© exists and we can verify that M© =, B iff
B € w for all w € W by using the lemmas in Section 3.2.2. Since for any
w € WY ¥ C w, every element of ¥ is valid in M, but A is not valid
in MY, hence'l, it is not valid in the FL(X U {A})-filtration of M, which
contradicts to the condition of the theorem. Therefore > A, as desired. O

Lemma 7 If [p]yp € %%, then F= [p]s).

Proof.  Straightforward from the construction (Definition 1) and Lemma
3.
Lemma 8 -* ¢ if and only if D(X) - ¢.

Proof. We only prove the non-trivial direction. Suppose that F= ¢.
If D(X) i/ ¢, then D(X) U {—¢} is consistent. Thus we can construct a
standard model M = ({w}, {Ry : 9 € Fmap}, V) such that

o Ry ={(w,w): M =, 9} and

'L A very careful check of every step in the proof for Filtration Lemma has to been made
because we have changed the definition of canonical model.
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o« Mk, D(S)U{~p}.

It is easy to see that M is a ¥-model and M |= {—¢}, which contradicts
FX . O

Lemma 9 [p]yp € ¥* iff D(X) & or there exists [x]\ € £ such that p - x
and D(EZ)U U {A:[x]x € 2} 9.
phx

Proof. Let
Pi(p) ="D(Z) F ¢
Py(p) =“3[x]A € E(p - x)7;
Py(p,9) =“D(X) U Lg A xr e B Ey7
kX

P(p,9) = Pr(4) V (Pa(p) A P3(p,)).
Then this lemma says that “[]y € * iff P(p,1)”.

“=” We prove by induction on the rules in Definition 1 that if [p]i) € X*,
then P(p, ).

Rule 1. If [p]yp € X, then Pa(p) A P3(p,) is obviously true. So is
P(p,9).

Rule 2. If -* 4, then by Lemma 8 P;(¢)) holds. So do P(¢p,)).

Rule 3. Suppose that [p]yy € . By hypothesis of induction, [p]y
satisfies P(yp,1). If Pi(¢), then Pi(p — 1); otherwise, Py(p) A Ps(p,1),
that is, I[x]\ € (¢ F x) and D(Z)U U {A: [x]\ € £} F 9. Then there

pkx

exist Xx1,--,Xn such that for each j (1 < j < n), ¢ F x; and there are
M, -+, M, such that for any k (i < k < mj), [x;]N, € ¥ and D(X) U {X] :
1<j<mandl<k<m}kF . Sincept x; and [x;]\] € &, we obtain
that {¢} UD(Z) F )\‘,1 for each j and k because x; — )\‘,1 € D(X). Thus
{e} UD(X) F 4, or, D(X) F ¢ — 1. That is Pi(¢ — 9), so P(x,¢ — ).
Rule 4. Suppose that F x — ¢ and [p]¢y € ¥. By hypothesis of
induction, [¢]t) satisfies P(p, ). Then if P (v), we have P(x,); otherwise,
Py(¢) A P3(p,1) holds. Since Py(yp), or there exists [xi]A € ¥ such that
¢ F x1, we have x - x1 because x F ¢. So P»(x) holds. To show Ps(x,),
since x ¢ implies that J {A: [X]A € B} C U {X: [X]\ € £}, we yield
Fx Fx!
that P3(p, ) implies P; (f(,)fL/J) Therefore P(X,>1<p)x.
Rule 5. Suppose that - 1 — x and [p|1p € 3. By hypothesis of
induction, [¢]¢ satisfies P(yp, ). Then if Pi(1)), we have P;(x); otherwise,
Py(p) A P3(p, ). In this case, we only need to prove Ps(¢p,x). Since ¥ F x,
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DE)YU U{A:[x]A € £} F ¢ implies D(X)U U{A: [x]A € £} F x. So
= F
P3(<p,¢)wiri<1plies Ps(p, x). Therefore P(yp, x). o

Rule 6. Similar to the rule 5.

“<” If D(X) I 1, then by Lemma 8 > 4. It follows from rule 2 that

[y € 5.
If both P>(p) and P3(p,) hold, or, I[x]A € X(p F x) and D(X) U

UA{X: [x]X € X} F 9, then there exist xi,---,xn such that for each j
phx

(1 <j <n), ¢ F x; and there are )\{,---,Agn such that for any k (1 <
. n mj . .
k< my), [GIM € B and D) U{A A M} 4. Since [xj]\ € 3 for
Jj=1k=1

m; .
any k (i <k < my), [Xj](k/\]1 A]) € ¥*. Again, by ¢ F xj, it follows that

[]( A M) € £*. Then we have [g]( A A X)) € =*. On the other hand, it
k=1 j=1k=1
is always true that [¢] A (x = A) € ¥¥, that is, [¢](A D(X)) € £*. So

[x]Aex
WIADE) A (A A M) e By DE)U{A A M} F 1 and rule 5 we
J=1k=1 j=1k=1
conclude that [p]yp € ¥*. O
Theorem 4 > [p]t) if and only if [p]y € B*.

Proof. The direction of “if” is straightforward from Lemma 7.

For the other direction, if ¥ 4, then by Lemma 8, D(X) F 1. So
by Lemma 9, [¢]sy € ©*. This means that we can assume that /> 1, or,
D) ¥ .

Now suppose that [¢]i) & X*. We prove that /> [¢]d).

By Lemma 9 and the above assumption, V[x]A € (¢ I/ x), or D(X) U

U{r: XA e Zp i/ 9.
ekx
Case 1: V[x]\ € (¢ I x). Since I#* 1, there exists a X-model M and a
worlds wg of M such that M |=,, —.
Case 2: J[x]A € £ (p F x) and D(X) U Q{A : [x]A € B} 4. By
phx

Lemma 8, U{\: [x]A € &} ¥ 9. So U{X: [x]A € B} U {-y} is
pEx -
Y-consistent. Thus there exists a X-model M and a world wy such that

M Fuw, UA{X:[x]x € B}U {4}
phx
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For both cases, we call the model M~ is the reduction of M if it is as
same as M except for R, = R, for any x € Fmap. In the other words,
R is generated by deleting all the non-reflexive elements from R,. It is
easy to see that M =, [x|A implies M~ [=, [x]A because R} C R, for any
world w of M and any x € Fmap. Then M is a Y-model implies that M~
is a X-model.

Let M is just as same as M~ except for R} = R U{(wo,wo)} whenever
@ F x. Then

(a). M is a standard model. In fact, if M+ =, x, then (w,w) € Ry» =
Ry C R. Suppose that = x1 — x2. If ¢ | x1, then ¢ = x3. It follows that
R;l C R;2 iff R;l U {(U)o,’w())} C R;2 U {(’LU(),’UJ())} iff R;l C R;&. If o  x1
but ¢ - x2, Ry, C R, implies R, C R, U {(wo,wp)}, or R;ic_l C R;'C'z. If
both ¢ i x1 and ¢ I x2, R, C Ry, holds obviously.

(b). MT is a ¥-model. In fact, for any [x]A € %, according to the
construction of M, if o I/ x or if ¢ - x and w # wp, then M+ =, [x]\ iff
M~ Ey [X]A If o - x and w = wy, according to the speciality of wy in case
2, M =y, . So M T =y [x]\. Therefore M is a ¥-model.

Finally, M k=, @]y because (wy, wy) € R, but M T f=,, —1p. O

Proposition 3 Let ¥ be a set of causal laws. Let X1 = {4 : I F ¢ for
[l € B}, where I is an interpretation of Flu. If I is a model of ¥, then
I is a model of (¥*)!.

Proof. Assume that 1 € (X*)!. Then there exists ¢ such that I - ¢ and
(o] € *. According to Lemma 9,
(1). D(X) 1 or
(2). U :[x]reZ}#dpand D(E)U U {N: [x] € Z} 4.
px px

If (1) is true, we have I F ¢ because I = A D(X). If (2) is true, since

U{X:[x]A € X} C X!, we obtain I F1. O
phx
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