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Abstract

The creation of approximations for vectors for use in similarity searching (also known
the retrieval of the k-nearest neighbours) is examined. A measure is derived that is
suitable for judging the quality of a set of vector approximations. This measure is used
in the modification of a technique used in similarity searching known as the VA-file. The
modified VA-file is evaluated, and a clear improvement in performance is demonstrated.
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1 Introduction

The potential use of approzimate wvectors for similarity searching is investigated in this
report. An approximate vector is a vector that is constrained in the values it can take
and which is used to represent another vector. Approximate vectors are of interest as
they are effectively compressed forms of the vectors they represent. The major task in
creating approximations of vectors is to preserve as much of the information content present
in the original vectors as possible while compressing the representations. A measure is
presented that is useful for judging the quality of vector approximations. This measure is
used to modify a method for quickly searching vectors, known as the VA-file [8], and the
performance of this modified technique is then evaluated experimentally.

It is assumed that there is a large collection of objects and that searches are frequently
conducted on this collection in order to find some number of objects that are similar to the
given query objects. It is further assumed that the objects and the queries are represented
using vectors, and that these vectors are compared using a similarity measure. This form
of similarity searching is often called k-nearest neighbour searching. In this case, however,
objects are thought of as being represented as points, and a distance measure is used to
compare points. The terminology adopted here will be one of vectors and similarity, rather
than one of points and distances. The vectors that are being investigated here will typically
be long (from about 10 dimensions to a few hundred dimensions), and the searches that
are performed are likely to be incomplete, in that they will find most rather than all of
the vectors closest to a query vector. This type of search has a wide range of applications
2,1,4,7,3,6,5]

2 Measuring the Quality of Approximations

Given that a number of vectors are to be approximated in preparation for later indexing,
it will generally be desirable to minimise the error that results from the process of ap-
proximation. In order to determine how best to perform the approximations it is therefore
necessary to choose some measure of error that compares the true similarity of a pair of
vectors to the similarity achieved when using approximate forms of the vector pairs. Let X
be a vector random variable that represents an item in the collection and let Y be a vector
random Varlable that represents a query. Let S = s(X Y) be the 31m11ar1ty between X and
Y. Let X' and Y’ be - approximations of X and Y and let T = #(X',Y") be the approzimate
similarity of X and Y. s and ¢ are functions that return a similarity and they are probably
the same function. Note that each value of § has an associated approximate similarity 7.
If a sample of readings is taken, a set is obtained of the form {(s;,¢;) | 1 <14 < n} where n is
the sample size. The measure proposed here to determine the quality of the approximations
operates on this set of pairs. Measures that compare the similarity / approximate similarity
pairs have the virtue of not needing to explicitly refer to the similarity measure used or to
the distribution of the data.

Various measures could be used for comparing sets of pairs of elements, two examples
being the total sum of squares (T'SS) and the correlation. The measure that appears to be
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the most appropriate to use, however, is Var(S — T'). Justification for use of Var(S —T') as
a measure is largely provided by the Theorem 1, presented below.
First define the completeness (C) of a search to be:

CNR
- 4 | (1)

where C and R are the sets of close items and retrieved items respectively. Also let C and
R be their complements. It is assumed that |R| = |C]|.

Theorem 1 Let S, T and D be random variables with S representing the similarities be-
tween items in the collection and all possible queries, and T representing the approzimations
of these similarities. Let T = S+ D, where D is independent of S. Minimising Var(S —T)
mazimises the expected completeness of retrieval.

Proof: Let D = y+ 0N, where N is a standardised random variable. Note that Var(S —
T) = 02, and that minimising o is equivalent to minimising Var(S — T)).

Various values of o will considered. Let the unprimed forms of the variables (e.g. R)
relate to o, the primed forms (e.g. R') relate to o', and the double primed forms (e.g. R")
relate to o”. Let variables for which o = 0 be denoted using a * (e.g. R*).

For a particular query consider two values taken by T, t, and t,. All approximate
similarities may be calculated as:

ti =8;ton; +p (2)

where 7 is an item to be retrieved and s; and n; are values taken by S and N respectively.
From this it is evident that ¢, and ¢, are both linear with respect to 0. Consequently the
lines given by (o,t,) and (o, ;) cross at most once.

In the case where ¢, > t, and ¢, > ¢, given o/ > o > 0 the lines must cross in the
interval (0..0") as there is at most one crossover, ¢, > t for all o” > o'.

Consider two points ¢ ECNR' and beCNR'. a€ R*asa€Cand b€ R* as b € C.
All close items have similarities greater than those of non-close items so s, > s or, in an
alternative notation, ¢, > ¢, where 0 = 0. As @ € R and b € R/, and as all items that are
retrieved have approximate similarities greater than those that are not retrieved, it can be
seen that ¢, > ¢,. The lines given by (o,t,) and (o,t,) therefore must cross in the interval
(0..0"). Therefore

ty >t forall 0" >0 when a€CNR,beCNR (3)

Consider Equation 1. As |C| is fixed, an increase in € implies an increase in |C N R|.
An increase in |C N R| will only occur if an element of in C N R replaces an element in
C N R. Increasing o cannot result in such a replacement by Equation 3. Therefore 6 is
non-increasing with respect to o. Note that 6 is a function of R (Equation 1), which is
a function of the values of T', which are functions of o (Equation 2), so a non-increasing
functional relationship (f = f(o)) exists between 6 and o.
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The expected completeness is the expected value of 6 (Ef) over all searches. Now Ef =
‘—é‘ > geo fq(o), where Q is the set of queries. As each f; is non-increasing with respect
to o, Ef is non-increasing with respect to . Thus minimising ¢ maximises Ef, and as
minimising o is equivalent to minimising Var(S —T'), minimising Var(S —7') maximises the
expected completeness. Note, however, that not every reduction in Var(S — T') need lead
to an increase in the expected completeness. a

This theorem makes one assumption: that the true score and the error that is introduced
by creating an approximation of it are independent of one another. This assumption is
unlikely to ever hold entirely. For a 1-dimensional vector the dependency will be high. It is
believed, however, that as dimensions are added the effects due to any one dimension are
likely to be obscured. This belief is tested below. Furthermore is should be noted that if
the distribution of the error only shifts gradually, particularly for scores around the score
used as a cutoff for retrieval, then the measure should remain fairly effective.

In order to test the extent of the dependency of the error D on the similarity score S, four
simple experiments of the following form were conducted. A set of tuples whose elements
are vectors were generated. The Euclidean distance (S) between each pair of vectors was
calculated. The domain of each of the dimensions of the vectors was partitioned, and each
partition assigned an approximate value. The distance between the approximate vectors
was calculated (T), so the error between each pair of vectors was D = T'—S. The probability
density function (PDF) of D was calculated for those vector pairs whose values of S lay
within the largest 10%, middle 10% and smallest 10% of values. The PDFs for vectors
of dimensionality 1 and 10 are shown in Figure 1. This procedure was followed for four
data sets: for 1-dimensional uniformly distributed vectors, for 10-dimensional uniformly
distributed vectors, for 1-dimensional normally distributed vectors, and for 10-dimensional
normally distributed vectors. The standard normal distribution was used to generate the
elements in each of the dimensions in the normal data sets. In the case of the uniformly
distributed data the partition boundary points were placed at 0.125, 0.25, 0.375, 0.5, 0.625,
0.75 and 0.875, with the approximation values of each of the partitions being placed at
the midway points between the partition boundary points (where 0 and 1 are treated as
the endpoints of the end-most partitions). In the case of the normally distributed data the
partition boundary points were placed at by partitioning the domain of each element at the
points —3, —2, —1, 0, 1, 2 and 3, with the approximation values being —3.5, —2.5, —1.5,
—0.5, 0.5, 1.5, 2.5 and 3.5. The partitioning was somewhat arbitrary in both the uniform
and normal cases, but it was designed to cover the data fairly well.

These graphs demonstrate that adding dimensions does reduce the dependency of the
error on the similarity. When there is only one dimension there is a very strong dependency
whereas when there are 10 the PDFs more closely resemble one another. Nonetheless some
dependency is clearly present and this will effect the performance of Var(S—T') as a measure.
The persistence of the dependency is probably due to the strength of the dependency in
the single dimension case. The similarity measure used, which emphasises differences in
individual dimensions would also have an effect. The degree of dependency that is evident
for 10 dimensions does indicate that some caution is needed when using Var(S — T') as a
measure. It is possible that even in a data set which has a very large number of dimensions,
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Figure 1: The PDFs of the error D given that the similarity S is in the largest, middle or
smallest 10% of S values for 1- and 10-dimensional vectors respectively.

a few may dominate in their contribution to the overall similarity scores, and to the error.

3 Minimising Error in One Dimension

3.1 Simplifying Assumptions

It is desirable to be able to deal with each dimension independently of the others when
deciding where to place the partition boundary points as this simplifies calculations and
reduces computation time. To aid this, two assumptions are adopted.

3.1.1 Independence of Elements

It is assumed that the distributions of elements in each dimension are independent of the
other dimensions for both the item vectors and the query vectors.
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3.1.2 The Similarity Measure as a Summation

In order to work with the dimensions separately, it is useful to break the similarity measure
down into smaller components. Several measures can be represented as, or approximated
by, a sum of part-similarities, each part being attributable to one dimension. Thus the
similarity may be represented as:

d

s(Z,9) =Y si(zi,yi) (4)

1=1

where ¥ = (z1,%2,...,24) and § = (y1,¥2,...,yq4) are two vectors. In many cases s; = s,
forall 1 <i,5 <d.

One of the simplest cases is the dot product. It can easily be seen that the dot product
can be expressed in the form of Equation 4:

d
Fy=> ziy; (5)
i—1

The form in Equation 4 can normally also be used in conjunction with the [, metrics.
In retrieving nearest neighbours only the order of the distances of the items is generally
significant, not the actual value of the distances. Thus the same results are produced using
the measure [[,(Z, )P as are produced when using /,(Z, ). The first of these expressions
is simply a summation of terms each dependent on only one dimension each:

d

(T, D =D lwi — wil? (6)

=1

and this is in the form of Equation 4. In this case each term is a part-distance, rather than
a part-similarity.
The cosine measure cannot be represented exactly in this form. A possible approxima-

tion, however, is:
d

ZiYi
- - (7)
i=1 \/(wi —¥i)? +EX iz —v))
where E > j#(xj —yj)2 is treated as a constant. It is, however, simpler to normalise all of the
vectors (including the query vectors) and to use the dot product or the Euclidean distance

instead. The dependency between the elements of the dimensions which is introduced by
using the cosine measure is typically small and can probably be disregarded in most cases.

3.2 The Calculation of Error

In order to approximate the elements of one dimension it is desirable to have a separate
measure of error for each dimension. As has been seen, the similarity score may be expressed
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Figure 2: Approximating the elements in a dimension

as a summation of part-similarities. 7" may similarly be considered as a summation of part-
approximate similarities:

T=>T, (8)

So choosing Var(S — T') as the measure of error:
d d
Var(S —T) = Var (Z Si — ZTZ> (by Equations 4 and 8) (9)
d
ZVar S; — T;) (10)

Equation 10 uses the assumption that the dimensions are independent of one another. This
independence implies that the terms S; —7; are independent of one another. Note that they
are random variables and that the variances of independent random variables sum. Thus
minimising Var(S; — T;) for each dimension ¢ individually minimises Var(S — T') overall.

Let X be a random variable representing the elements from one dimension in a set of
vectors. In order to approximate X, let the domain of X be partitioned and associate with
each partition an approzimation value. Let X' be the approximation of X (see Figure 2).
Although the values of X’ are depicted as being drawn from the corresponding partitions,
this need not necessarily be the case.

3.3 Optimising the Parameters

It is possible to optimise the approximations for a dimension ¢ by adjusting the partition
boundary points and the values taken by X’ so as to minimise Var(S; — T;). If possible it
would be best to set these parameters so that Var(S; —T;) achieves its global minimum. No
technique for finding this minimum is known, so instead a heuristic optimisation algorithm
has been used. A number of algorithms were designed, implemented and tested. The
algorithm which performed the best, both in terms of minimising Var(S; — T;) and in
the speed of its operation, is presented in the appendix. This algorithm was used in the
experiments whose results are presented in Section 5.
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Collection Num. of Num. Index scan Seek Total

Name candidates seeks time time time
Uniform (l2) 22815.3 13.48 1.84secs  2.12secs  3.95 secs
Uniform (cos) 53087.7 17.70 291 secs  10.41 secs 13.33 secs
Normal( [3) 99863.7  30.12  1.74 secs  8.85 secs 10.59 secs
Normal (cos) 100000.0  31.45 1.55 secs  8.78 secs  10.33 secs
Mixed (l2) 717472 26.74  1.75secs  5.48 secs  7.23 secs
Mixed (cos) 99361.7  39.56  1.82secs  8.95 secs 10.77 secs
AustLIT (cos) 98571.3  30.91  2.93 secs  8.72secs 11.65 secs
ColourHistR1 (lp) | 47477.7 234 448 secs 8.0l secs 12.49 secs
ColourHistR5 (I2) | 59825.8 2293 11.54 secs  6.41 secs  17.95 secs

Table 1: Statistics for exact VA-file retrieval. All statistics are mean averages. Each
collection consists of 100 000 vectors, each element was approximated using 4 bits, and 100
queries were run for each collection.

4 The Modified VA-file

The VA-file as described by Weber [8] performs exact searches. Two separate files of vectors
are maintained, a set of full-length vectors and a set of vector approximations. In order
to create the file of vector approximations, the domain of each of the dimensions are first
partitioned. Weber forms partitions that contain equal numbers of elements. When a search
is conducted, the file of vector approximations is scanned and a minimum and maximum
distance is calculated between each of the points in the collection and the query point.
The kth smallest of the maximum distances is taken as a threshold. The closest k items
must have distances less than or equal to the threshold. The vectors which have minimum
distances that exceed this threshold are rejected. The remaining items will be referred
to here as the candidate vectors. The candidates now need to be checked by accessing
the full vectors from disk. In order to minimise the number of disk accesses required, the
candidates are first sorted according to their maximum distances. The candidate vectors
are then retrieved from the disk in this order, with the threshold being updated after
each access. Any vectors whose minimum distances exceed the current threshold can be
discarded. In practice it is unnecessary to retrieve the full vectors of most of the candidates.
Checking the candidates is time-consuming as they are spread throughout the file of full-
length vectors and each one requires a separate file seek. The seek times for some collections
are given in Table 1. Note that very few of the items identified as candidates result in a
seek. Nonetheless, the proportion of the search time devoted to these seeks is high. It
is also interesting that the proportion of time spent on seeks drops for very long vectors.
In the case of ColHistRb, with 320 dimensions, the proportion of total search time spent
on seeks was 35.7% whereas for ColHistR1, which is a very similar data set but with 64
dimensions, the proportion of the total search time was 64.1%. The actual times taken are
dependent on the hardware used (in this case a DEC Alpha with an unknown hard drive)
and the operating system (DEC’s OSF/1 UNIX). UNIX makes it difficult to give precise
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times due to automatic caching and time slicing. The most important parameters are of
the disk drive used are the average seek time and the speed of sequential search. The ratio
of these parameters largely determines the ratio of the seek time to the index scan time.
It is assumed that the same hard drive is used for both the file of complete vectors and for
the file of approximate vectors, although this admittedly need not always be the case.

Despite the limitations of the results in Table 1 it is clear that searching may be sped up
considerably by removing the requirement that a search be exact. Instead of being used to
identify candidates, the file of vector approximations may be used to calculate approximate
similarity scores. The final check of candidates can then be omitted, thus saving a large
amount of time. Other advantages to allowing incomplete searches are that the file of
complete vectors is not required, saving disk memory, and a number of searches may be
conducted simultaneously if the CPU time sufficiently exceeds the disk scanning speed.
Similarity searches are generally inherently heuristic, so exact solutions are rarely required.

Another possible modification is to set the partitions and approximation value so as to
minimise Var(S; —T;) for each dimension ¢. The algorithm presented in the appendix may be
used for this purpose. It is desirable also to allow the dimensions to have different numbers
of partitions, as this allows for the more efficient use of memory. If the overall number of
bytes for a vector approximation is fixed then the number of partitions may be assigned
so as to minimise Var(S — T') overall. For simplicity it is assumed that the number of
partitions for each dimension is a power of 2. This allows each element to be approximated
by a few bits that are kept independent of the other dimensions and thus simplifies the
encoding and decoding routines considerably. Algorithm 1 is used to allocate the available
bits between the dimensions. The allocation process involves adding and removing bits
from each dimension to determine the relative effects of each on the measure Var(S —7T'). It
is necessary to call the program implementing Algorithm 2 many times during this process,
so consequently the process is quite slow. It was, for instance, necessary to limit each
dimension to a maximum of 8 bits as it took too long to set the parameters if more bits
were allocated. It would be desirable to be able to predict the number of bits required for
each dimension by analysing the data distribution ahead of time. No adequate method,
however, has yet been found.

5 Results

In all of the tests presented here 100 queries were run on collections consisting of 100 000
vectors. In each case the completeness is the average percentage of the 10 items closest to
the query that were actually retrieved. Six different collections were used. The uniform
data set has 50 dimensions, with the data being uniformly distributed in a hypercube. The
normal data set has 50 dimensions, with the elements in each dimension having a standard
normal distribution. The mized data set has 50 dimensions, with each dimension being
distributed according to a different type of random distribution, and with the queries having
different distributions to the indexed vectors. The AustLII data set is a 100-dimensional
data set derived from performing dimension reduction on a collection of legal documents.
Finally ColourHistR1 and ColourHistR5 are two data sets derived using colour histograms
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Algorithm 1 Allocate Bits
Assign bits evenly amongst elements
while finding improvements do
fori=1toddo
b = current number of bits assigned to dimension 1
increase; = Vary(S; — T;) — Vary1(S; — T;)
{Var, indicates the variance given b bits. increase and decrease are lists.}
if b > 0 then
decrease; = Vary_1(S; — T;) — Vary(S; — T;)
end if
end for
Sort ¢ncrease into descending order
Sort decrease into descending order
for =1toddo
if increase; > decrease; then
decrement the number of bits assigned to the dimension of the decrease
increment the number of bits assigned to the dimension of the increase
end if
end for
end while

from the same collection of images taken from the Internet. The ColourHistR1 data set
contains histograms for one region and has 64 dimensions, whereas the ColourHistR5 data
set contains histograms for 5 regions and has 320 dimensions. These two data sets were
created by Roger Weber. The similarity measures used in testing were the cosine measure
(cos) and the Euclidean distance (l2).

Table 2 lists the average number of seeks required in searching through the candidates
in order to locate all of the 10 vectors most similar to the query vector. The first column
contains the figures for when each element is partitioned so that each partition contains an
equal number of elements (data partitioning) and the second column contains the figures
for when the Algorithm 2 is used to optimise the partition boundary points with respect to
the measure Var(S; — ¢;T;) (error minimisation). In most cases optimising Var(S; — ¢;T;)
produced better results, with considerable better results for the Normal and Mized data
sets. In the two cases which run against the trend (Uniform (l2) and AustLII (cos)), the
difference is small. Sampling error is the most likely cause, although another possible reason
is that the assumption in Theorem 1 may not be met sufficiently.

It is to be noted that in all cases in which both [5 and cos were tested, performance was
superior for /3. The reason for this is not clear. One possibility, however, is that when o is
used items close to the centre of the query distribution are likely to be retrieved regardless
of the query. Using cos is effectively the same as normalising the data and normalising the
data reduces the importance of the positioning of items relative to the centre of the query
distribution. Thus when cos is used as a measure there are a larger number of vectors that
are close to the query and the task of distinguishing between them is more difficult.
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Collection Data Partitioning Error Minimisation
Uniform (I2) 13.5 13.8
Uniform (cos) 17.7 15.0

Normal (l2) 30.1 17.6
Normal (cos) 31.5 19.8

Mixed (l2) 26.7 18.9
Mixed (cos) 39.6 23.5
AustLII (cos) 30.9 31.2

ColourHistR1 (I2) 234 21.2
ColourHistR5 (I2) 22.9 22.2

Table 2: The average number of seeks required when using data partitioning and when
using error minimisation. Each element has 16 partitions.

Collection Data Partitioning Error Minimisation
Uniform (l2) 82.4% 82.2%
Uniform (cos) 70.6% 82.6%

Normal (I2) 32.1% 74.1%
Normal (cos) 29.1% 70.0%

Mixed (Is) 41.5% 74.7%
Mixed (cos) 24.0% 51.2%
AustLII (cos) 31.1% 32.5%

ColourHistR1 (I2) 33.0% 57.0%
ColourHistR5 (I5) 42.6% 69.3%

Table 3: The average completeness when using data partitioning and when using error
minimisation. Each element has 16 partitions.

Table 3 again compares the partitioning of dimensions into equal parts with the min-
imisation of Var(S; — ¢;T;). In this case an approximate searches were performed, and the
figures given are completeness values. In the case of error minimisation the approximate
values used to the elements in each partition are real values that lie within the partition
that have been determined in accordance with the equations in the appendix. In the case
of data partitioning the values midway between the boundaries of each partition was used.
The outer boundary of an end-most partition is taken to be the minimum or maximum
of the values in the partition. In most cases error minimisation can be seen to provide
considerably better performance than data partitioning.

Using different numbers of partitions for each dimension may improve the quality of
retrieval. For the sake of simplicity the number of partitions each dimension is divided
into is a power of two. This allows each bit in the vector approximation to be dedicated
to only one dimension. Table 4 contains the results of tests that allow the number of
partitions for each dimension to vary, and these results are compared to the situation in
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Collection Same number of partitions Varying number of
for each dimension partitions
Mixed (I3) 74.7% 82.7%
Mixed (cos) 51.2% 58.7%
AustLII (cos) 32.5% 35.0%
ColourHistR1 (I2) 57.0% 82.2%
ColourHistR5 (I2) 69.3% 91.8%

Table 4: The average completeness when fixing the number of partitions of each dimension
to 16 and when allowing the bits to be redistributed.

which the number of partitions is the same for each dimension. Algorithm 1 is used to
allocate the number of partitions to for each dimension. [d/2] bytes are allocated for
each vector approximation (where d is the number of dimensions), with a maximum of 256
partitions allowed for any one dimension. The number of partitions is limited due to speed
limitations in optimisation algorithm that sets the boundary partition points. In order
to save more time during optimisation, when an element was allocated 256 partitions, the
optimisation routine was only run once in order to set the partition boundary points. When
128 partitions were allocated only two runs were performed. In all other cases three runs
were performed, with the best solution being used in testing. Only those test sets that do
not have identically distributed dimensions were tested. As can be seen, allowing different
numbers of bits to be allocated to different dimensions results in improved performance in
all cases. Allocating the bits to each dimension was a slow process, and a faster technique
would be desirable.

The completeness figures presented in the previous tests indicated the average of items
amongst the 10 closest to the query that were actually retrieved, where 10 items were
retrieved. In the results presented in Table 5 the number of items amongst the closest 10
that appear in the top 10, 20, 30, 40 and 50 are presented. It is evident that if more than
10 items are retrieved then the completeness of the search rapidly increases. In most cases
nearly all of the 10 items closest to the query are retrieved within the top 50 items. These
results agree with Table 1 in which it can be seen that the average number of seeks required
to find all of the closest 10 items is typically between about 15 and 40.

The effect of using different lengths of approximations vectors was tested, and the results
are presented in Table 6. The number of partitions for each dimension was allowed to vary.
Approximation vectors that had an average of 1, 2, 3 and 4 bits per dimension were tested.
As would be expected, using longer vectors increases the completeness in all cases. It
appears that in general 4 or more bits per dimension are required. It is to be noted that for
ColourHistR5, with 320 dimensions, fewer bits are required than for ColourHistR1, with 64
dimensions, which is a very similar data set.

Table 7 presents an overview of exhaustive search, the VA-file and the modified VA-file.
Note that the number of seeks includes the initial seek necessary to locate the index file.
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Collection 10/10 10/20 10/30  10/40  10/50
Uniform (Iz) | 82.8% 98.4% 100.0% 100.0% 100.0%
Uniform (cos) | 82.8% 98.1%  99.7% 100.0% 100.0%
Normal (I5) 72.7% 91.6% 97.4%  99.2%  99.7%
Normal (cos) | 7L.9% 92.6% 97.9%  99.3%  99.7%
Mixed 82.7% 98%  99.9%  100.0% 100.0%
Mixed (cos) | 58.7% 89.1% 98.0%  99.2%  99.9%
AustLII (cos) | 35.0% 48.7% 55.1%  60.0%  63.9%
ColourHistR1 (Iy) | 82.2% 97.5% 99.6%  99.9%  100.0%
ColourHistR5 (Ip) | 91.8% 99.5%  99.8%  100.0%  100.0%

Table 5: The percentage of the top 10 items retrieved in the first 10, 20, 30, 40 and
50 items. Each approximation vector was allocated [d/2] bytes, with dimensions having
variable numbers of partitions.

Collection Average bits per element
1 2 3 4
Uniform (l3) 3.5% 34.8% 62.3% 82.8%
Uniform (cos) 52% 32.9% 60.2% 82.8%

Normal (o) | 1.6% 20.0% 46.8% 72.7%
Normal (cos) 27% 18.7% 47.1% 71.9%
Mixed (Is) 8.7% 44.9% 67.2% 82.7%

Mixed (cos) 16.4% 30.6% 42.2% 58.7%
AustLII (cos) | 2.5% 15.0% 27.9% 35.0%
ColowrHistR1 (I») | 39.8% 62.3% 75.8% 82.2%
ColourHistR5 (I9) | 51.3% 72.5% 82.6% 91.8%

Table 6: The average completeness of search given different lengths of approximation vector.
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It is apparent that the modified VA-file will be appreciably faster than the original VA-
file as only one seek is required. On the other hand there is a cost in terms of completeness.
If the average completeness of searching is too low then possible solutions include using
longer approximation vectors, or retrieving more than the required & items. CPU costs are
ignored here as it is assumed that disk speeds are the limiting factor. Whether or not this
is so depends upon the architecture of the machine in question.

6 Conclusion

The measure Var(S —T') should prove to be useful for judging the quality of the approxima-
tions of vectors for use in similarity searching for a wide range of data sets. This measure
was proven to be optimal under one assumption. It was shown that the assumption comes
closer to being met as the dimensionality of the vectors increases, so long as no dimensions
dominate in their contribution to the similarity scores. Given two further assumptions re-
garding the independence of elements in different dimensions, the measure may be used in
constructing vector approximations. The VA-file was selected as an example of one appli-
cation that can take advantage of vector approximations, and it was seen that when the
measure was used to construct the vector approximations, improved performance resulted
for a number of data sets.
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A The Optimisation Algorithm

A.1 Overview

In order to perform the optimisation the variance between the true similarities (S) and
approximate similarities (7) is used. This variance is estimated by calculating the variance
for a random sample of n pairs of values of S and T'. A value of 100000 was used for n
during testing. Let s; and ¢; be the ith readings of S and 7', so the variance is:

[li( t)?] [%( t>r (1)
- Si — )" — | = 8; — 1
iz iz

Clearly this is slow calculation to make. It is even slower when there are many dimensions
as s; and t; are dependent on the number of dimensions. Samples smaller than 100 000
could be used, but doing so will of course result in less accurate optimisation.

One way of increasing the speed of optimisation is to make only slight changes to
the parameters (these being the boundary points of the partitions and the approximation
values), and to update the score by only considering those readings of T' that are affected
(the values of S do not change). This avoids the need to fully recalculate the variance each
time. The increased speed of the calculations also allow many more optimisation steps to
be conducted, resulting in improved optimisation.

In order to simplify calculations only one partition boundary point is moved at a time
and by a small distance. Moves are determined using a random descent strategy. While in
theory moving only one point at a time can result in missing minima in the error surface,
this is unlikely to occur in high-dimensional space, where there are many possible directions
to take to and from any given point. Changing a number of points by a small amount in
turn is almost equivalent to changing all the points simultaneously. In order to remove some
potential bias the order of update is chosen randomly. To further simplify calculations all
moves are made relative to the rank order of elements, not to their values.

The approximation values used for each partition also need to be optimised. This,
however, is not done using random descent. Instead it is possible to set an approximation
value optimal in constant time if it is assumed that all of the partition boundary points
and other approximations are fixed. Note that setting one approximation value affects the
optimal approximations of all of the other partitions and of the placement of the boundary
partition points. As boundary partition points are only moved small amounts the approxi-
mations generally only vary by small amounts. In order to give the system extra stability
the approximation values may also be restricted to be within the partitions they represent.
As it is very quick to set an approximation value, all of the approximation values may set
one or more times each time a boundary partition point is moved.

The Algorithm 2 is used to update the parameters. To start with the algorithm tries to
move the partition boundary points by moderately-sized steps, and when no improvements
can be found the size of the steps is reduced. The approximation values are updated
frequently to take advantage of the fact that this update is a quick operation.
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Algorithm 2 Optimisation algorithm for setting partition boundary points and approxi-
mations using incremental update of statistics

Set all partition boundary points using data partitioning

Set all approximations to be mid-way values between boundary points

Derive all statistics
for all Partition in random order (repeat 3 times) do
Set approximation value
Update statistics (1)
end for
commonRadius = 1000 {For a sample size of 100 000}
while commonRadius > 0 do
radius = commonRadius
for all boundary points and both directions in random order do
while no improvement in Var(S — T') and radius > 0 do
Calculate prospective Var(S — T') for a change in the boundary point by radius
in the given direction
if improvement then
Set the new partition boundary point
Update statistics (2)
Set approximation value of partition to the left of boundary point
Update statistics (1)
Set approximation value of partition to the right of boundary point
Update statistics (1)
for all partitions in random order do
Set approximation value
Update statistics (1)
end for
end if
radius = radius/2
end while
end for
if Number of moved boundary partition points < 2 (or 1 for 4 partitions or fewer)
then
commonRadius = commonRadius/2
end if
end while
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A.2 Finding the Best Approximations

If it is assumed that all the partition boundary points and all the approximation values
bar one are constant then it is possible to calculate the best possible value for the free
approximation value in constant time. Let A = S — T where S is the part-similarity and
T is its approximation. Let z be the approximation value that is being set and let z be in
interval i. Let I represent the fact that X is in interval i, and I represent the fact that it
is not in the interval. Let an I subscript to a random variable (e.g. 77) indicate that the
X value the random variable is dependent upon is in partition I. Then:

VarA = E(A?%) — (EA)?
= PrIEA} +PrIEA?—[PrlIEA;+PrlEA;?
= PrlIEA]+PrIEA%— (Pr1)*(EA;)?
—2PrI PrIEA; EA; — (Prl)*(EAj)?
= PrI[EA? —PrI(EA;)? —2PrI EA; EAf]
+PrI[EA? — PrI(EA;)? (12)

Note that this expression is true regardless of the similarity measure.
In order to find the optimal value of z the expression % will be considered. In
Equation 12 only the terms E(A;), E(A%) and E(A;)? are dependent upon z. The partial

derivates of these terms are:

OEA;  OE(Sr—Ti)
ozx - ox
0Ty
= —Ea—x (13)
OEA} _ OE(S} - 28/T; +1T7)
or or
B Ty Ty
= oo (n ) (5,20 "
8(EA[)2 B 8EAI
T - B,
B Ty
= 2[ETI—ESI]E8—x (15)

If the Euclidean distance is used to measure dissimilarity then the part-similarity for
one dimension is S = (X —Y)? and the part-approximate similarity is 7' = (z — Y')2. Note
that x is in interval I. The above partial derivatives are thus:

OEA; B oTr

oz Oz
= 2(EY - ) (16)
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2
e () e 522

ox 0

= 4[E(z -Y)’ - E(z - Y)S/]

= 4(z® — 32°EY; + 3¢EY? — EY} — 2ES; + ES;Y)) (17)
O(EA[)? oT.,
% — 2[ET; - ES/BS

= 4(z? — 2¢EY; + EY? —ES;)(z — EY7)
4{x® — 32°EYs + [2(EY7)? — ES; + EY7 ]z +
EY;(ES; — EY?)} (18)
. I£ Equations 16, 17 and 18 are substituted into Equation 12 then the partial differential
A2 s

T oxr
OVarA
ox

= 4PrI{sz® — 32°EY7 + 32EY? — EY} — 2ES; + ES;Y; — PrI{z® —

32°EY7 + [2(EY7)? — ES + EY?]z + EY7(ES — EY?)} —
PrlE(A; | I)(EY; —z)} (19)
Rearranging this expression and fixing it equal to 0 gives:
Prlz® — 3EY; Priz? +[-ES;Prl +3EY? —2PrI(EY;)?—
Pr IEY} + PrIEAf]z + [—EY[3 +ES;Y; — Pr1EY; ES/+

PrIEY; EY;2-PrIEA fEYI] = 0 (20)

This is a cubic polynomial with « as the variable. It may be solved using standard techniques
to find the turning points. The optimal value of z must lie at one of the turning points. If
in addition the approximation value x is constrained to lie within the domain of partition 7,
then the boundaries of I must also be tested. In order to solve this equation it is necessary
to store and maintain each of the statistics used (i.e. EY;,EY? EY? PrI,ES and ES[Y7).
These statistics need to be updated each time a partition boundary point is moved or an
approximation value that belongs to a partition is changed. This involves many update
operations, most of which are fairly straightforward. The more complex calculations are
described in the next section.

A.3 Updating Statistics after Changing an Approximation Value

Let z be an approximation value that is changed to z’. z is in partition I. Only those
elements whose X value is in [ is affected. Consider updating VarA after changing one
approximation value. From Equation 12 it may be seen that

VarA' — VarA = PrI{(EA,?> — EA2) — PrI[(EA})? — (EA[)?]
—2PrI EA;(EA, — EA;)}
= PrI{(EA,” — EA2) — PrI[(EA})? — (EA[)?]
+2Pr I EA;(ET] — ET})} (21)
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Furthermore:

EA}" —BA] = [B(S; - TP - [E(S; - T1)]?
= ET)® — ET}? — 2(ES;T} — ES/T}) (22)

(EA})? — (EA)? = (ES;—1Ty)? — (ES; —T1)?
= (ET})? — (ETy)? — 2ES;(ET} — ETy) (23)

At this point it is necessary to specify the similarity measure that is used. If the square
of the Fuclidean distance is used then:

ET) — ET; = 2'° — 22 — 2(z' — 2)EY; (24)

ES;T) — ES;T; = (z'* — #*)ES; — 2(z' — z)ES[Y] (25)

(ETp)? - (BT7)? = [B(z' —Y1)’) — [E(z — Y1)*)?
= (" =2 — 42" - 2P)EY] + 2(2” — #})EY?
+4(z'? — 22)(BY7)? — 4(2/ — 2)EY[EY} (26)

ET)> —ET? = E(@ -Y)'—E(-Y;)!
= (2" = 2%) — 4EY;(2"° — 2%) + 6EYP (2" — 2?)
—4EY} (¢! — z) (27)

The simpler working has been omitted. Several of the statistics used above also need to be
updated when an approximation value is changed or when a partition boundary point is
moved. These updates are less complicated than the ones presented and so have been omit-
ted. If a measure other than the Euclidean distance is used then similar calculations to the
ones above need to be made if the full calculation of Var(S; —T;) is to be avoided after each
change of a parameter. Note that for the cosine measure it is possible to simply normalise
the original vectors and to use the Euclidean distance as the measure of dissimilarity.
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