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Abstract

Most modern wide-address computer architecture do not prescribe a page table format, but in-
stead feature a software-loaded TLB, which gives the operating system complete flexibility in the
implementation of page tables. Such flexibility is necessary, as to date no single page table format
has been established to perform best under all loads. With the recent trend to kernelised operating
systems, which rely heavily on mapping operations for fast data movement across address-spaces,
demands on page tables become more varied, and hence less easy to satisfy with a single structure.

This paper examines the issue of page tables suitable for 64-bit systems, particularly systems
based on microkernels. We have implemented a number of candidate page table structures in a
fast microkernel and have instrumented the kernel’s TLB miss handlers. We have then measured
the kernel’s performance under a variety of benchmarks, simulating loads imposed by traditional
compact address spaces (typical for UNIX systems) as well as the sparse address spaces (typical
for microkernel-based systems). The results show that guarded page tables, together with a soft-
ware TLB cache, do not perform significantly worse than any of the other structures, and clearly
outperform the other structures where the address space is used very sparsely.



1 Introduction

Most modern 64-bit microprocessors feature a software-loaded TLB, and thus leave the choice of
the page table format to the operating system (OS) designers. This is a reflection of the fact that to
date no single page table structure has been shown to provide the best performance in all relevant
circumstances.

At the same time, address-space usage by operating systems is changing. In particular, kernelised
systems, such as those based on Mach [1], make heavy use of virtual memory mappings in order
to transfer data efficiently between different address spaces. This leads to sparsely populated ad-
dress spaces, in contrast to the traditional two-segment model typical for UNIX systems. Sparse
address space use is also typical for some other client-server based systems, such as object-oriented
databases [2], or for single-address-space systems [3–5].

In order to get good performance out of such systems, it is important to use page tables which
support efficiently the operations these kernels require. In this paper we examine these issues in
detail. We use a representative architecture, the MIPS R4x00 family [6], and our own implementation
of the L4 microkernel [7,8] as a testbed. L4 is presently the fastest kernel available [9]; its low intrinsic
overhead makes it particularly sensitive to page-table performance, and therefore an ideal target for
such an investigation.

The goal of this study is to examine how various page table structures perform under different
conditions, as they are likely to exist in the next generation of computer systems. We will specifically
attempt to determine whether there exist page tables which perform well under all anticipated loads.
Such a structure would then be ideal for microkernels, which are supposed to present a platform on
top of which a variety of different systems, traditional as well as novel, can be implemented.

2 Page Tables for 64-Bit Architectures

In this section we give a brief description of various page table structures in use, for more details
see [10].

2.1 Linear and multi-level page tables

In most 32-bit systems forward-mapped page tables are used, which consist of page table entries
(PTEs) containing physical frame numbers and which are sorted by virtual page number. A single
root page table is enough to map all the pages of a page table covering a 32-bit address space. This
root page is kept in unmapped memory.

In a multi-level page table (MPT) the most significant bits of the virtual page number are used
as an index into the root page table. This contains a pointer to a secondary page table, which is then
indexed with the remaining bits of the page number to find a PTE containing the physical address. If
the secondary page is not mapped, a secondary fault occurs, which can be avoided by allocating the
page table in physical memory. Secondary page tables are allocated as needed. This scheme is used
on many 32-bit architectures, such as the SPARC and the Motorola 680x0. For larger address spaces
more levels are required (six for a 64-bit address space with a 4kb page size and 4kb page tables).

An elegant simplification is the linear page table, LPT, which removes the need for the tree struc-
ture by allocating the page table for the full virtual address space as an array in virtual memory. Any
PTE can be accessed by a single indexing operation into the page table, reducing the number of op-
erations required, compared to the MPT. However, if the appropriate page table page is not mapped,
a secondary fault is generated. In 32-bit systems the mapping for any page of the page table can be
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obtained from the root page which is held in unmapped memory. This approach has been used in the
VAX [11].

For larger address spaces, multiple misses can occur, up to six cascaded faults for 64-bits. This
is unavoidable, as it is infeasible to hold the complete LPT in physical memory. Hence, the LPT is
faster than the MPT only as long as all required portions of the page table are mapped. As the cost
of a nested TLB refill is much higher than that of indexing the 5 higher-levels of an MPT, an LPT
can outperform an MPT only if cascaded TLB misses are very infrequent. Furthermore, the necessity
to handle up to 5 nested TLB misses on the page table requires TLB entries for the relevant pages.
Hence a significant number of TLB entries are used up by the page table.

While both data structures work well in 32-bit address spaces, good performance in wide address
spaces can only be expected as long as address space usage is compact.

2.2 Hashed page tables

Large-address-space architectures generally use page tables based on the idea of an inverted page
table (IPT) [12, 13], which is a table sorted by frame numbers containing virtual page numbers. The
index is obtained from a hash table. The more popular version combines the two tables, resulting in
a table containing both, the virtual page number and the frame number [14]. It is indexed by some
easily computable hash of the page number. Some data structure, usually a linear list, is used for
resolving collisions. This structure is called a hashed page table (HPT).

Clustered page tables (CPTs) are a variant of HPTs designed to reduce space needs [15]. They
store mapping information for several consecutive pages with a single tag.

2.3 Guarded page tables

The guarded page table (GPT) is a forward-mapped structure recently proposed by Liedtke [16, 17],
specifically to deal with sparse memory usage in large address spaces. Sparsity is problematic in
MPTs as it leads to page tables with very few (maybe only a single) valid mapping in intermediate
nodes. This can at worst lead to excessive space overhead for page tables in extreme cases, and at best
wastes TLB entries. GPTs avoid this problem by storing a guard with each pointer in the page table.
If the virtual address to be translated is valid, this guard must be a prefix of the remaining address bits
(after removing bits already used at higher levels of the page table). In the case of a match, the prefix
can be removed as if it were used for indexing into a page table.
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Figure 1: Guarded Page Table: Storing the guard 1011 together with the child pointer at entry 11 of
the top-level table removes the need to store and traverse two intermediate page tables.
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This is shown in Figure 1: Two intermediate page tables each contain a single valid entry, corre-
sponding to address bits 10 and 11. The GPT short-circuits these intermediate pages by storing the
guard 1011 with the higher-level entry. The higher level is indexed with the leading bits (11), the
guard bits (1011) are stripped, and the remaining bits serve as an index into the next lower page table.

An interesting property of GPTs is that page tables can be of variable size, anything from a two-
PTE node to one as big as the hardware page size. A single GPT tree can arbitrarily mix node sizes,
even on the same level. Multiple page size can also easily be supported.

2.4 Software TLB cache

Instead of just using a page table for handling TLB misses, a software cache for TLB entries, called
software TLB (STLB) or secondary TLB, can be used [18]. The TLB miss handler first attempts to
load the missing entry from the STLB and only on a miss consults the proper page table. This can
significantly speed up TLB miss handling when using forward-mapped page tables.

Tagging the entries of the STLB with address space IDs allows sharing it between all processes.
This not only reduces the amount of memory required for the STLB, it also reduces address-space
setup and tear-down cost and context switching overhead.

3 Methodology

In order to investigate the performance implications of these page table structures, we have performed
a number of experiments, running a set of benchmarks on an instrumented �-kernel.

3.1 Test bed

As mentioned earlier, we use for our experiments the L4 �-kernel [7, 8] running on a 100MHz MIPS
R4700 processor [6]. The R4700 has a tagged, software-loaded TLB with 48 entries, each entry
mapping a pair of contiguous virtual pages of 4kb each. The processor supports a 40-bit address
space. However, we designed our page tables to work with full 64-bit addresses.

L4 is known for low system-call overhead and efficient IPC. The MIPS version takes �60 cycles
to perform a null system call and �100 cycles for a null IPC [9].

We created several versions of the kernel, each using a different page table structure. For the
study of absolute TLB miss handling costs, each TLB refill hander was carefully instrumented. The
instrumentation code counts all cycles spent in TLB refill, except the cost of the initial fault, the return
from the trap, and two instructions of the refill routine. The uncounted part of TLB refill, as well as
the instrumentation overhead, were exactly the same for all page table versions. For the measurement
of elapsed times (and thus the study of relative TLB miss handling cost) we used uninstrumented
versions of the kernel.

3.2 Page table implementations

We implemented the following page tables:

MPT A multi-level page table. Its internal nodes contain 32-bit pointers, an optimisation possible
by allocating the page table in high memory and using sign extension on 32-bit pointers. This
allows internal nodes to hold 1024 pointers to lower-level page tables. Leaf nodes contain
pairs of 4-byte PTEs as well as a pair of 4-byte mapping tree pointers. The latter are required
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by the �-kernel to manage mappings between (recursive) address spaces. 32-Bit leaf entries
suffice to map 16TB of RAM, which is more than what the R4700 supports. In spite of these
optimisations, a six-level page is required to map 64-bit addresses. The levels are indexed by
bits 63–61, 60–51, 50–41, 40–31, 30–21 and 20–13.

G2–G256 GPTs with various node sizes, fixed for the whole page table. “Gn” has nodes holding n
entries. Each internal entry consists of a 64-bit pointer and a 64-bit guard. The leaf nodes hold
pointers to external nodes containing two MIPS format PTEs, plus two 32-bit pointers to the
mapping tree. Leaf entries are therefore also 16 bytes in size.

H8k An 8kb hashed page table. It contains 32-byte entries consisting of a 64-bit tag, two 32-bit
PTEs, two 32-bit mapping tree pointers, and a 64-bit pointer to a linear overflow chain. The
refill routine moves the hit entry to the head of this list.

H128k A 128kb version of H8k.

C128k A 128kb CPT. Each bucket contains a 64-bit tag, eight 32-bit PTEs, eight 32-bit mapping
tree pointers, a 64-bit pointer to the overflow list, and 48 bytes padding for proper alignment,
for a total of 128 bytes. The overflow buckets contain the same fields, except no padding is
necessary.

S8k/G16 An 8kb tagged direct mapped software TLB cache containing 16-byte entries consisting of
a 64-bit tag and two 32-bit PTEs. The cache is backed by a G16 page table.

S128k/G16 A 128kb version of S8k/G16.

All page tables were allocated in physical memory. This is, of course, only realistic as long as
the page tables remain relatively small. If that is no longer the case, page tables must be allocated in
virtual memory, implying the occurrence of nested TLB misses, and thus reduced performance. Our
�-kernel presently cannot handle secondary TLB misses at all, which is why we could not implement
an LPT.

3.3 Benchmarks

In order to examine the effect of page table structures on system performance under various applica-
tion loads, we used a variety of standard and non-standard benchmarks. All benchmarks were run in
memory, i.e., there was no I/O activity during the runs.

3.3.1 Conventional benchmarks

In order to examine the performance of traditional UNIX-like applications, we ran a subset of the
SPEC95 benchmark [19]. The selected programs are characterised by high TLB miss handling over-
head. In addition we used a number of other popular benchmarks from a collection maintained by
Al Aburto [20]. Table 1 lists the benchmarks used. For simplicity we ran the gcc benchmark on a
single input file only (1amptjp.i). Furthermore, we ran mm only using the “normal” algorithm, as
the other algorithms do not exercise the TLB to any significant degree. All other benchmarks were
run unmodified. In the following, this suite will be referred to as the “conventional” benchmarks.
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name size [Mb] type remarks
go 0.8 I game of go
swim 14.2 F PDE solver
gcc 9.3 I GNU C compilery

compress 34.9 I file (un)compression
apsi 2.2 F PDE solver
wave5 40.4 F PDE solver
c4 5.1 I game of connect four
nsieve 4.9 I prime number generator
heapsort 4.0 I sorting large arrays
mm 7.7 F matrix multiplyy

tfftdp 4.0 F fast Fourier transform

Table 1: “Conventional” benchmarks used, the top six are from SPEC95. Type “I”, “F” stands for
integer or floating point, respectively. y indicates modification as explained in the text.

3.3.2 Sparse benchmarks

In order to evaluate the handling of sparse address use by the different page tables, we defined two
sets of synthetic sparse memory benchmarks. The first one, called “uniform”, allocates between 64
and 8192 single pages at uniformly distributed random addresses. This is obviously a “tough”, and
somewhat pathological benchmark, as the uniform distribution implies essentially no clustering of
pages.

The second benchmark, called “file”, allocates multi-page objects at uniformly distributed random
addresses. The sizes of these objects are taken from a measured file system size distribution [21]. We
expect this to be a more realistic model of sparse address-space usage in future 64-bit systems.

3.3.3 Tasking benchmarks

Task creation and deletion costs were measured by executing the loop

create task
wait for IPC from child
delete child

100 times. The child does nothing but send a null IPC to the parent; it requires only a single page to
run.

3.3.4 Mapping benchmarks

Appel and Li [22] point out the importance of efficient virtual memory primitives. The primitive most
relevant to this study is decreasing accessibility (unmapping or write protecting) of large regions of
the address space (their PROTN operation).

We implemented a version of Appel & Li’s benchmark, using processes, client and server. The
server initially maps 128 consecutive pages into the client’s address space. The benchmark times the
cost of write-protecting all 128 pages and then unprotecting them all in random order. In the PROT1
version the pages are write-protected one-by-one, while the PROTN version protects them in a single
system call.
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We also implemented a sparse scenario: Again we protect and unprotect a total of 128 pages,
but this time the pages are randomly (and uniformly) distributed in an otherwise unmapped region
of varying size (64kb–16Mb). Two versions of this benchmark are implemented: In the first one
the client only has a minimum set of pages mapped, only a code and a stack segment besides the
pages being protected and unprotected. This is not a particularly realistic scenario, as a process is
not likely to write-protect almost its whole address space (except for uses like checkpointing). The
second version therefore has, in addition, a large (64Mb) data segment, which is not affected by the
mapping operations.

4 Results

4.1 Optimal GPT size

As pointed out in Section 2.3, GPTs are a fairly general data structure; the design leaves a significant
amount of flexibility to the implementation. So far, practical experience with GPTs is very limited.
Liedtke [17] published a number of theoretical results mostly concerned with the behaviour of GPTs
under worst-case conditions. No results on GPT sizing under practical conditions have been published
to date.

For the purpose of comparing GPTs with other data structures we decided to use only GPTs of a
fixed size. This means that there is a potential for improving our results for GPTs by implementing
sophisticated sizing schemes; our results on GPTs therefore need to be understood as a scenario which
might be optimised further.

We used the conventional and the sparse benchmarks to determine a single GPT size which would
constitute a good compromise, suitable for comparison with the other data structures.
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Figure 2: TLB refill cost over GPT size, averaged over all conventional benchmarks. Error bars
indicate standard deviation.

Figure 2 shows the number of cycles used for TLB refills as a function of GPT size. These (as all
refill costs further on) are what is measured by the instrumentation code, and therefore do not include
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the time taken for the TLB miss trap and the return from the exception. Refill costs were averaged
over all 11 conventional benchmarks. As expected, increasing node size reduces the refill cost as a
result of reducing the tree depth. The improvement becomes small for node sizes exceeding about
four.

Figure 3 shows the total size of the page tables, normalised to the number of PTEs stored, as a
function of GPT node size. While the actual data depend on the particular program run, the general
picture is the same: Very small GPT nodes result in deep trees, leading to high overhead. Very large
nodes lead to high overhead, resulting from poor utilisation of the GPT nodes. In all benchmarks a
16-entry GPT has close to minimum space overhead.
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Figure 3: GPT space overhead over GPT size for the conventional benchmarks. The three values
are the biggest overhead observed in our benchmarks (go), the average overhead observed, and the
smallest overhead observed in our benchmarks (wave5).

If address space usage is very sparse, space overhead is minimised by small GPT nodes. This is
shown in Figure 4, which shows the page table size overheads obtained from running the synthetic
sparse benchmarks. Results fluctuated significantly (as indicated by the error bars) with the particular
random sequence used. Interestingly, we found essentially no dependence of the size overhead (per
PTE) on the number of pages mapped.

As expected, the overhead increases with increasing GPT node size. However, even in the rather
pathological “uniform” case, the increase is much less dramatic as predicted by the theoretical worst-
case scenario. In the more realistic “file” benchmark space overhead remains reasonable except for
the largest GPTs. All in all the space overhead remains reasonable for node sizes �16: G16 space
usage is about 2.5 times that of G2 for “uniform” and 1.7 times for “file”.

Based on these results we selected a GPT node size of 16 for the comparisons with other page
tables.
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Figure 4: GPT space overhead over GPT size for sparse benchmarks, compared to the theoretical
worst case. Error bars indicate standard deviation.

4.2 Comparison of page table structures

4.2.1 Conventional benchmarks

benchmark MPT G16 H8k H128k C128k S8k/G16 S128k/G16
go 1.0 1.00 0.98 0.98 0.99 0.97 0.97
swim 1.0 1.00 1.00 1.00 1.00 1.00 1.00
gcc 1.0 0.97 0.97 0.86 0.86 0.91 0.84
compress 1.0 0.99 0.95 0.91 0.92 0.91 0.91
apsi 1.0 0.99 0.96 0.96 0.97 0.96 0.96
wave5 1.0 0.97 0.97 0.91 0.91 0.91 0.91
c4 1.0 0.95 0.82 0.71 0.75 0.76 0.69
nsieve 1.0 0.97 0.94 0.93 0.93 0.93 0.93
heapsort 1.0 1.00 0.99 0.99 0.99 0.99 0.99
mm 1.0 0.96 0.67 0.67 0.63 0.64 0.63
tfftdp 1.0 0.90 0.84 0.80 0.80 0.80 0.79
geom. mean 1.0 0.97 0.91 0.88 0.88 0.88 0.87

Table 2: Elapsed time of traditional benchmark runs for different page table structures, normalised to
the time used with an MPT. The last line gives the geometric mean of all normalised execution times
for a particular page table.

Table 2 shows the elapsed times of the conventional benchmarks using the various page table struc-
tures. For most programs the page table structure affects the run time by a few percent, however, in
some cases (mm and c4) the page table can make a difference of more than 30 %. It is interesting to
note that these are by no means large benchmarks (7.7MB and 5.1MB respectively), but are obviously
the ones with the most “random” memory access patterns. Essentially the R4700’s TLB is too small
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to support these applications well, and an efficient page table structure is hence important even for
these traditional 32-bit applications.
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Figure 5: Number of cycles per refill, averaged over all traditional benchmarks, vs. page table struc-
ture.

The good news is that a software TLB can remedy the shortage of hardware TLB entries. This
becomes clearer in Figure 5, which shows the average number of cycles spent on TLB refills for
the different page tables. (The absolute minimum number, assuming no cache misses, would be nine
cycles.) The figure shows the reload cost of GPTs being in between that of MPTs and HPTs. However,
combining the GPT with a TLB cache performs even better than the HPT. The reason the STLB/G16
combination has a slight edge over the HPT is that the GPT can handle STLB misses faster than the
linear overflow chain used with the HPT. We did not implement a STLB/MPT combination, but there
is no reason to assume that its performance would be significantly different from STLB/G16.

The standard deviations (shown as error bars in Figure 5) indicate that, while even a small 8kb
cache in average reduces TLB miss handling costs significantly, there are some programs where it has
little effect. The swim benchmark actually performs better with a plain GPT than the 8kb HPT.

Figure 6 compares the space overhead of page tables. The GPT is by far the most compact struc-
ture (except H8k, which is only slightly bigger). The space required for a STLB was not included in
the comparison, as the (tagged) TLB cache is a system-wide data structure shared by all processes,
while all others are per-process. The important point to make here is that HPTs are fairly expensive
space-wise, as they need to be large to ensure good performance, but waste significant amounts of
memory for small processes. Clustering improves the size of the hashed page table somewhat, but it
is still far higher than the hierarchical data structures.

4.2.2 Task creation/deletion

Memory consumption by itself is not a significant issue nowadays. However, the cost of a large data
structure is not just the memory it consumes, but the time required to initialise it. This is reflected in
Figure 7, which shows the cost of creating and deleting tasks with the different page tables.
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Figure 6: Average space overhead for various page table structures in traditional benchmarks.
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Figure 7: Cost of task creation and deletion for different page tables.

The results clearly show that page table setup/tear-down cost dominates task creation/deletion.
GPTs have by far the lowest cost, the task creation/deletion cycle is about 70 % of that of the small
HPT, and more than an order of magnitude less than that of the MPT, the CPT or the large HPT. The
additional cost incurred through the TLB cache is minimal (about 10 %).
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Figure 8: Page table size overhead (bytes/PTE) for the sparse benchmarks. For each page table
structure, the upper line is for “uniform”, the lower for “file”.

4.2.3 Sparse memory use

Figure 8 shows the space overhead of the different page tables under very sparse memory use. MPTs
are uniformly bad, consuming about two orders of magnitude more memory than GPTs. The small
HPT (which becomes unusable at around 1000 pages because of excessive overflow chaining) uses the
least memory. The GPT’s space usage is quite stable at about twice the HPTs’ best case (for “file”).
The large HPT is space efficient only once the number of pages approaches the HPT’s capacity. The
behaviour of the CPT essentially mirrors the HPT.

4.2.4 Mapping operations

Figure 9 shows the cost per page of protecting and unprotecting all pages in a region of 128 pages.
The HPTs perform best, the MPT worst, CPT and GPTs in between. The differences are not very
substantial. Protecting all pages at once (PROTN) only reduces the cost by about 10–20 % compared
to performing all operations on individual pages (PROT1). This reflects the very low system-call
overhead of the �-kernel.

Figure 10 shows the results of the sparse mapping benchmark, where the pages to be protected
are sparsely allocated within a large region, and the task otherwise only has a minimum number
of mapped pages. There is little difference between the various page tables as long as the region
containing the pages is relatively small (note that a 64kb region is actually completely populated with
the 16 pages). However, once the region becomes large, performance with MPTs as well as the large
HPT and the CPT drops dramatically. The drop is less dramatic in the case of the small HPT, whereas
the performance of the GPT-based schemes is essentially unaffected by sparsity.

Figure 11 shows the result of performing the same mapping operations on a task which has an
additional compact data segment of 64Mb size. Here the small HPT performs worst, as it is too small
to hold all the relevant mappings. MPT and large HPT performance are further degraded compared
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to the previous benchmark. Similar for the CPT, although the degradation is much weaker. The
GPT-based schemes are essentially unaffected and perform consistently well.
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Figure 11: As Figure 10, except the client task also has an additional 64Mb segment mapped which is
untouched by the mapping operations measured.

5 Discussion

5.1 Conventional benchmarks

Even with the reasonably small conventional benchmarks (all small enough to fit into physical memory
on contemporary workstations) we found that the choice of the page table structure used in the kernel
had a significant effect on performance. We found that only hashing schemes are competitive, as
they support the fastest TLB refill routines. Furthermore, the hash table needs to be large for best
performance.

However, we found that, as far as performance is concerned, it mattered little whether we used a
HPT, a CPT, or a STLB reloaded from some hierarchical page table structure.

A large per-process hash table, as for the HPT or CPT, implies significant space overhead for
the (mostly relatively small) conventional benchmarks. However, the space effects do not seem big
enough to constitute a serious problem for traditional applications.

5.2 Task creation/deletion

These benchmarks showed that the set-up and clean-up costs of 6-level MPTs or large HPTs or CPTs
have a disastrous effect on task creation and deletion overhead. Neither type of page tables are usable
if inexpensive tasks are desired. As MPTs are also slower for refill, this essentially rules them out for
64-bit systems.

GPTs perform well, resulting from their ability to adapt: For small processes the GPT tree never
grows beyond a few levels, but they can grow to support large processes as well.
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5.3 Sparse address spaces

The sparse benchmarks confirm the unsuitability of MPTs for wide-address architectures. The large
HPT is only competitive for reasonably large processes, the same holds true for the CPT. GPTs,
however, perform very well. Their memory usage is at most about 2-3 times that of the (unrealistically
small) 8kb HPT, and is clearly less than the small HPT for very small processes. Particularly in the
more realistic “file” benchmark GPT space overhead is reasonable.

Recall that in Section 4.1 we opted for a 16-entry GPT as delivering the best size/speed tradeoff.
However, this is only the best solution as long as a fixed node size is assumed. A GPT implementation
which adapts the node size to the sparsity of virtual memory use would select two-entry GPTs in the
sparse benchmarks and have a space overhead less than or equal to the unrealistically small H8k.

5.4 Mapping

The cost of mapping operations is only weakly affected by the page table structure, as long as ad-
dress spaces are compact. However, as address space usage becomes sparse, performance deteriorates
strongly when using MPTs. HPT and CPT performance is only acceptable if the size of the table is
well tuned to the size of the mapped address space. Mapping operations on sparse parts of an address
space which contains many other pages (unaffected by the mapping operations) is expensive with any
size HPT. The CPT performs somewhat better but is still very costly. GPT performance, however, is
essentially unaffected by sparsity, independent of whether or not the GPT is combined with an STLB.
The GPT clearly meets its design goal of supporting sparse address space use.

5.5 LPTs

As mentioned earlier, we did not implement an LPT, because of the inability of our L4 implemen-
tation to handle nested TLB misses. However, we can speculate how LPTs would perform in our
benchmarks.

LPTs will be faster than MPTs as long as we have a high TLB hit rate when accessing the page
table. In most cases, such a high hit rate will be accompanied by a high hit rate on user pages, in
which case TLB miss handling costs are irrelevant. The cost of handling a secondary TLB miss is of
the order of 400–500 cycles [23].1 As it costs, in average, about 110 cycles to traverse the five upper
levels of the MPT, this implies that the LPT would outperform the MPT when the TLB hit rate for
page table accesses is about 80 % (higher if higher-level TLB misses occur). Hence, it is possible that
the LPT would perform somewhat better than the MPT on the conventional benchmarks. However, in
the case of sparse address space usage, TLB miss rates on the page table are most likely quite high,
and LPT performance is unlikely to be competitive.

Moreover, we already concluded that any forward-mapped page table should be combined with
an STLB. Once that is done, there is unlikely to be a significant performance advantage in a LPT.
Furthermore, LPTs have essentially the same space overhead as MPTs for sparse address spaces, and
the same or worse setup/tear-down overhead. The same arguments which rule out MPTs as a suitable
page table structure for 64-bit systems therefore apply to LPTs as well.

1Uhlig et al. measured the cost of a secondary miss on a MIPS R2000 CPU. The architecture of the R4700 is sufficiently
similar to expect the costs to be roughly the same.
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6 Summary

We have examined a number of different page table structures in order to determine their suitability
for 64-bit computer systems. Our results show that traditional forward-mapped page tables, which
have been used in most 32-bit systems, are no longer competitive on 64-bit architectures, particularly
when sparse address space use is an issue, as in �-kernel-based systems.

Hashing schemes, such as hashed page tables, generally exhibit good TLB refill costs, as long as
they are large enough. However, large per-process hash tables have a high space overhead for small
processes, and slow down process creation and deletion.

We found a system-wide software TLB cache, backed by per-process guarded page tables, to be
the best solution. This scheme outperforms all alternatives in TLB refill costs, task creation/deletion
overheads, and VM operations on sparse address spaces. It also exhibits the lowest space overhead for
conventional (compact) 32-bit applications, while retaining a reasonably low space overhead, com-
parable to optimally sized hashed page tables, in cases of extremely sparse address usage. Our GPT
implementation still leaves room for improvement, as it does not attempt to adapt GPT node sizes to
address space usage. An improved implementation has the potential to further reduce space overhead
for very sparse address spaces.

We conclude that GPTs form an excellent base for translation management in operating systems
for 64-bit architectures, particularly in microkernels which are meant to support a wide class of oper-
ating systems and user environments.
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