
L� Reference Manual

MIPS R�x��

Version ���

Kernel Version ��

Kevin Elphinstone� Gernot Heiser

Department of Computer Systems

School of Computer Science and Engineering

The University of New South Wales

Sydney ����� Australia

fkevine�gernotg�cse�unsw�edu�au

Jochen Liedtke

IBM T� J� Watson Research Center

�� Saw Mill River Road� Hawthorne� NY ������ USA

jochen�watson�ibm�com

UNSW�CSE�TR����� � December ����

Department of Computer Systems

School of Computer Science and Engineering

The University of New South Wales

Sydney ����� Australia

Note

This document describes release ��� of the L� microkernel for the MIPS R�x�� microproces	
sor family� It is based on the L�
x�� reference manual Version ��� by Jochen Liedtke and
has been modi
ed to describe the MIPS implementation� Some material has been added
to clarify the L� message structure� Comments and critiques� as well as proposed additions
and alternatives for future versions are most welcome�
The source code for L�
R�x�� is available free of charge under the terms of the GNU

General Public License� To obtain the source contact disy�cse�unsw�edu�au� Future versions
of this document� as well as related documents and tools� will be available from URL
http���www�cse�unsw�edu�au��disy��

How To Read This Manual

This reference manual consists of two parts� ��� a processor	independent description of the
principles and mechanisms of L� and ��� a more detailed processor	speci
c description� Part
� refers to the IDT R�x���
Where L�
MIPS di�ers from L�
x�� signi
cantly� or something is partially or completely

unimplemented� then an implementation note appears as below� There is also a summary
of various implementation details in section ����

MIPS Implementation Note� This is what an implementation note looks like�

Acknowledgements

The original L� reference manual was written by Jochen Liedtke� who would like to thank
many people for their helpful contributions for improving the reference manual and the
L� interface� Particular thanks go to Bryan Ford� Hermann H�artig� Michael Hohmuth�
Sebastian Sch�onberg and Jean Wolter� For the MIPS version we would like to thank in
particular Jerry Vochteloo for testing the kernel� Alan Au for contributions to the manual�
as well as the ���� class of UNSW COMP���� �guinea pigs� who built their operating
systems on top of the MIPS version of the kernel�

Permission to make digital�hard copy of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for pro�t or commercial

advantage� the copyright notice� the title of the publication and its date appear� and notice is given

that copying is by permission of the authors� To copy otherwise� to republish� to post on servers� or

to redistribute to lists requires prior speci�c permission and�or a fee�

Copyright c����� by Gernot Heiser� The University of New South Wales�

Contents

� L� in General �

��� Basic Concepts �

����� Address Spaces �

����� Threads and IPC ��

����� Clans � Chiefs ��

����� Unique Identi
ers ��

����� Flexibility ��

��� Data Types ��

����� Unique Ids ��

����� User	Level Operations on Uids ��

����� Fpages ��

����� Messages ��

��� �	Kernel Calls ��

� L��MIPS ��

��� Implementation Notes ��

����� Cache ��

����� IPC ��

����� Scheduling ��

����� �� ��

����� Exceptions ��

��� Notational conventions ��

��� Data Types ��

����� Unique Ids ��

����� Fpages ��

����� Messages ��

����� Timeouts ��

��� �	Kernel Calls ��

ipc ��

id nearest ��

fpage unmap ��

thread switch ��

thread schedule ��

lthread ex regs ��

task new ��

��� Exception Handling ��

��� The Kernel	Info Page ��

��� Page	Fault and Preemption RPC ��

�

��� �� RPC protocol ��
��� DIT header ��

A DIT ��

B Serial Port Server ��
B�� Output ��
B�� Input ��

C Kernel Debugger ��
C�� assert ��

D L� C Library Headers ��
D�� types�h ��
D�� syscalls�h ��
D�� ipc�h ��
D�� sigma��h ��
D�� dit�h ��

Chapter �

L� in General

��� Basic Concepts

The following section contains excerpts from �Lie��b� Lie��a� Lie����

We reason about the minimal concepts or �primitives� that a �	kernel should implement��

The determining criterion used is functionality� not performance� More precisely� a concept
is tolerated inside the �	kernel only if moving it outside the kernel� i�e� permitting competing
implementations� would prevent the implementation of the system�s required functionality�

We assume that the target system has to support interactive and
or not completely
trustworthy applications� i�e� it has to deal with protection� We further assume that the
hardware implements page	based virtual memory�

One inevitable requirement for such a system is that a programmer must be able to
implement an arbitrary subsystem S in such a way that it cannot be disturbed or corrupted
by other subsystems S�� This is the principle of independence� S can give guarantees
independent of S�� The second requirement is that other subsystems must be able to rely
on these guarantees� This is the principle of integrity� there must be a way for S� to
address S� and to establish a communication channel which can neither be corrupted nor
eavesdropped by S��

Provided hardware and kernel are trustworthy� further security services� like those de	
scribed by �GGKL���� can be implemented by servers� Their integrity can be ensured by
system administration or by user	level boot servers� For illustration� a key server should
deliver public	secret RSA key pairs on demand� It should guarantee that each pair has the
desired RSA property and that each pair is delivered only once and only to the demander�
The key server can only be realized if there are mechanisms which �a� protect its code and
data� �b� ensure that nobody else reads or modi
es the key and �c� enable the demander
to check whether the key comes from the key server� Finding the key server can be done
by means of a name server and checked by public key based authentication�

����� Address Spaces

At the hardware level� an address space is a mapping which associates each virtual page to
a physical page frame or marks it �non	accessible�� For the sake of simplicity� we omit access
attributes like read	only and read
write� The mapping is implemented by TLB hardware
and page tables�

�Proving minimality� necessarity and completeness would be nice but is impossible� since there is no
agreed�upon metric and all is Turing�equivalent�

�

The �	kernel� the mandatory layer common to all subsystems� has to hide the hardware
concept of address spaces� since otherwise� implementing protection would be impossible�
The �	kernel concept of address spaces must be tamed� but must permit the implementation
of arbitrary protection �and non	protection� schemes on top of the �	kernel� It should be
simple and similar to the hardware concept�
The basic idea is to support recursive construction of address spaces outside the kernel�

By magic� there is one address space �� which essentially represents the physical memory
and is controlled by the
rst subsystem S� � At system start time� all other address spaces are
empty� For constructing and maintaining further address spaces on top of �� � the �	kernel
provides three operations�

Grant	 The owner of an address space can grant any of its pages to another space� provided
the recipient agrees� The granted page is removed from the granter�s address space and
included into the grantee�s address space� The important restriction is that instead of
physical page frames� the granter can only grant pages which are already accessible to
itself�

Map	 The owner of an address space can map any of its pages into another address space�
provided the recipient agrees� Afterwards� the page can be accessed in both address spaces�
In contrast to granting� the page is not removed from the mapper�s address space� Compa	
rable to the granting case� the mapper can only map pages which itself already can access�

Flush	 The owner of an address space can �ush any of its pages� The �ushed page remains
accessible in the �usher�s address space� but is removed from all other address spaces which
had received the page directly or indirectly from the �usher� Although explicit consent of
the a�ected address	space owners is not required� the operation is safe� since it is restricted
to own pages� The users of these pages already agreed to accept a potential �ushing� when
they received the pages by mapping or granting�

Reasoning

The described address	space concept leaves memory management and paging outside the
�	kernel� only the grant� map and �ush operations are retained inside the kernel� Mapping
and �ushing are required to implement memory managers and pagers on top of the �	kernel�
The grant operation is required only in very special situations� consider a pager F which

combines two underlying
le systems �implemented as pagers f� and f�� operating on top
of the standard pager� into one uni
ed
le system �see
gure ����� In this example� f�

user A � � � � � � user X

F

f� f�

std pager

�
��map

HH
HH

HY
grant

HH
HH

HY
map

A
A
A
A
A
A
A

A
A
A

��
��
disk

�
���

Figure ���� A Granting Example�

maps one of its pages to F which grants the received page to user A� By granting� the page

disappears from F so that it is then available only in f� and user A� the resulting mappings
are denoted by the thin line� the page is mapped in user A� f� and the standard pager�
Flushing the page by the standard pager would a�ect f� and user A� �ushing by f� only
user A� F is not a�ected by either �ush �and cannot �ush itself�� since it used the page only
transiently� If F had used mapping instead of granting� it would have needed to replicate
most of the bookkeeping which is already done in f� and f�� Furthermore� granting avoids
a potential address	space over�ow of F �
In general� granting is used when page mappings should be passed through a controlling

subsystem without burdening the controller�s address space by all pages mapped through
it�
The model can easily be extended to access rights on pages� Mapping and granting copy

the source page�s access right or a subset of them� i�e�� can restrict the access but not widen
it� Special �ushing operations may remove only speci
ed access rights�

I�O

An address space is the natural abstraction for incorporating device ports� This is obvious
for memory mapped I
O� but I
O ports can also be included� The granularity of control
depends on the given processor� The ��� and its successors permit control per port �one
very small page per port� but no mapping of port addresses �it enforces mappings with
v�v��� the PowerPC uses pure memory mapped I
O� i�e�� device ports can be controlled and
mapped with �K granularity� Controlling I
O rights and device drivers is thus also done by
memory managers and pagers on top of the �	kernel�

An Abstract Model of Address Spaces

We describe address spaces as mappings� �� � V � R�f�g is the initial address space�
where V is the set of virtual pages� R the set of available physical �real� pages and �

the nilpage which cannot be accessed� Further address spaces are de
ned recursively as
mappings � � V � �� � V ��f�g� where � is the set of address spaces� It is convenient
to regard each mapping as a one column table which contains ��v� for all v�V and can be
indexed by v� We denote the elements of this table by �v�
All modi
cations of address spaces are based on the replacement operation� we write

�v � x to describe a change of � at v� precisely�

�ush ��� v� � �v �� x �

A page potentially mapped at v in � is �ushed� and the new value x is copied into �v�
This operation is internal to the �	kernel� We use it only for describing the three exported
operations�
A subsystem S with address space � can grant any of its pages v to a subsystem S� with

address space �� provided S� agrees�

��v� � �v � �v � � �

Note that S determines which of its pages should be granted� whereas S� determines at which
virtual address the granted page should be mapped in ��� The granted page is transferred
to �� and removed from ��
A subsystem S with address space � can map any of its pages v to a subsystem S� with

address space �� provided S� agrees�

��v� � ��� v� �

In contrast to grant� the mapped page remains in the mapper�s space � and a link to the
page in the mapper�s address space ��� v� is stored in the receiving address space ��� instead
of transferring the existing link from �v to �

�
v� � This operation permits to construct address

spaces recursively� i�e� new spaces based on existing ones�

Flushing� the reverse operation� can be executed without explicit agreement of the
mappees� since they agreed implicitly when accepting the prior map operation� S can
�ush any of its pages�

���
v�

� ���v� � �
�
v� � � �

Note that� and �ush are de
ned recursively� Flushing recursively a�ects also all mappings
which are indirectly derived from �v�

No cycles can be established by these three operations� since � �ushes the destination
prior to copying�

Implementing the Model

At a
rst glance� deriving the physical address of page v in address space � seems to be
rather complicated and expensive�

��v� �

���
��

���v�� if �v���
�� v��

r if �v�r

� if �v��

Fortunately� a recursive evaluation of ��v� is never required� The three basic operations
guarantee that the physical address of a virtual page will never change� except by �ushing�
For implementation� we therefore complement each � by an additional table P � where Pv

corresponds to �v and holds either the physical address of v or �� Mapping and granting
then include

P �
v� �� Pv

and each replacement �v � � invoked by a �ush operation includes

Pv �� � �

Pv can always be used instead of evaluating ��v�� In fact� P is equivalent to a hardware
page table� �	kernel address spaces can be implemented straightforward by means of the
hardware	address	translation facilities�

The recommended implementation of � is to use one mapping tree per physical page
frame which describes all actual mappings of the frame� Each node contains �P� v�� where
v is the according virtual page in the address space which is implemented by the page table
P �

Assume that a grant	� map	 or �ush	operation deals with a page v in address space �
to which the page table P is associated� In a
rst step� the operation selects the according
tree by Pv� the physical page� In the next step� it selects the node of the tree that contains
�P� v�� �This selection can be done by parsing the tree or in a single step� if Pv is extended
by a link to the node�� Granting then simply replaces the values stored in the node and map
creates a new child node for storing �P �� v��� Flush lets the selected node una�ected but
parses and erases the complete subtree� where P �

v �� � is executed for each node �P �� v�� in
the subtree�

����� Threads and IPC

A thread is an activity executing inside an address space� A thread � is characterised by a set
of registers� including at least an instruction pointer� a stack pointer and a state information�
A thread�s state also includes the address space ���� in which � currently executes� This
dynamic or static association to address spaces is the decisive reason for including the
thread concept �or something equivalent� in the �	kernel� To prevent corruption of address
spaces� all changes to a thread�s address space ����� �� ��� must be controlled by the
kernel� This implies that the �	kernel includes the notion of some � that represents the
above mentioned activity� In some operating systems� there may be additional reasons for
introducing threads as a basic abstraction� e�g� preemption� Note that choosing a concrete
thread concept remains subject to further OS	speci
c design decisions�

Consequently� cross	address	space communication� also called inter	process communi	
cation �IPC�� must be supported by the �	kernel� The classical method is transferring
messages between threads by the �	kernel�

IPC always enforces a certain agreement between both parties of a communication� the
sender decides to send information and determines its contents� the receiver determines
whether it is willing to receive information and is free to interpret the received message�
Therefore� IPC is not only the basic concept for communication between subsystems but
also� together with address spaces� the foundation of independence�

Other forms of communication� remote procedure call �RPC� or controlled thread mi	
gration between address spaces� can be constructed from message	transfer based IPC�

Note that the grant and map operations �section ������ need IPC� since they require an
agreement between granter
mapper and recipient of the mapping�

Interrupts

The natural abstraction for hardware interrupts is the IPC message� The hardware is
regarded as a set of threads which have special thread ids and send empty messages �only
consisting of the sender id� to associated software threads� A receiving thread concludes
from the message source id� whether the message comes from a hardware interrupt and
from which interrupt�

driver thread�
do

wait for �msg� sender� �
if sender � my hardware interrupt

then read�write io ports �
reset hardware interrupt

else � � �
�

od �

Transforming the interrupts into messages must be done by the kernel� but the �	
kernel is not involved in device	speci
c interrupt handling� In particular� it does not know
anything about the interrupt semantics� On some processors� resetting the interrupt is a
device speci
c action which can be handled by drivers at user level� The iret	instruction
then is used solely for popping status information from the stack and
or switching back to
user mode and can be hidden by the kernel� However� if a processor requires a privileged
operation for releasing an interrupt� the kernel executes this action implicitly when the
driver issues the next IPC operation�

����� Clans � Chiefs

Within all systems based on direct message transfer� protection is essentially a matter of
message control� Using access control lists �acl� this can be done at the server level� but
maintenance of large distributed acls becomes hard when access rights change rapidly� So
�HKK��� have proposed that object �passive entity� protection be complemented by subject
�active entity� restrictions� In this approach the kernel is able to restrict the outgoing
messages of a task �the subject� by means of a list of permitted receivers�

The clan concept �Lie��� is an algorithmic generalisation of this idea�

i
i
ii

ii
i iPPPPq

BBM

�
���

�

�
�
�
�
�
	

�

�

�

�

�

�

�

�

�
A clan �denoted as an oval� is a set of tasks �denoted as a circle� headed by a chief

task� Inside the clan all messages are transferred freely and the kernel guarantees message
integrity� But whenever a message tries to cross a clan�s borderline� regardless of whether
it is outgoing or incoming� it is redirected to the clan�s chief� This chief may inspect the
message �including the sender and receiver ids as well as the contents� and decide whether
or not it should be passed to the destination to which it was addressed� As demonstrated
in the
gure above� these rules apply to nested clans as well� Obviously subject restrictions
and local reference monitors can be implemented outside the kernel by means of clans� Since
chiefs are tasks at user level� the clan concept allows more sophisticated and user de
nable
checks as well as active control� Typical clan structures are

Clan per machine� In this simple model there is only one clan per machine covering all
tasks� Local communication is handled directly by the kernel without incorporating
a chief� whereas cross machine communication involves the chief of the sending and
the receiving machine� Hence� the clan concept is used for implementing remote ipc
by user level tasks�

Clan per system version� Sometimes chiefs are used for adapting di�erent versions� The
servers of the old or new versions are encapsulated by a clan so that its chief can
translate the messages�

Clan per user� Surrounding the tasks of each user or user group by a clan is a typical
method when building security systems� Then the chiefs are used to control and
enforce the requested security policy�

Clan per task� In the extreme case there are single tasks each controlled by a speci
c chief�
For example these one	task	clans are used for debugging and supervising suspicious
programs�

In the case of intra	clan communication �no chief involved�� the additional costs of the
clan concept are negligible �below � of minimal ipc time�� Inter	clan communication

however multiplies the ipc operations by the number of chiefs involved� This can be tol	
erated� since �i� L� ipc is very fast �see above� and �ii� crossing clan boundaries occurs
seldom enough in practice� Note that many security policies can be implemented simply by
checking the client id in the server and do not need clans�

����� Unique Identi�ers

A �	kernel must supply unique identi
ers �uid� for something� either for threads or tasks or
communication channels� Uids are required for reliable and e!cient local communication�
If S� wants to send a message to S�� it needs to specify the destination S� �or some channel
leading to S��� Therefore� the �	kernel must know which uid relates to S�� On the other
hand� the receiver S� wants to be sure that the message comes from S�� Therefore the
identi
er must be unique� both in space and time�

In theory� cryptography could also be used� In practice� however� enciphering messages
for local communication is far too expensive and the kernel must be trusted anyway� S�
can also not rely on purely user	supplied capabilities� since S� or some other instance could
duplicate and pass them to untrusted subsystems without control of S��

����� Flexibility

To illustrate the �exibility of the basic concepts� we sketch some applications which typically
belong to the basic operating system but can easily be implemented on top of the �	kernel�

Memory Manager	 A server managing the initial address space �� is a classical main
memory manager� but outside the �	kernel� Memory managers can easily be stacked� M�

maps or grants parts of the physical memory ���� to �� � controlled by M�� other parts to
�� � controlled by M�� Now we have two coexisting main memory managers�

Pager	 A Pager may be integrated with a memory manager or use a memory managing
server� Pagers use the �	kernel�s grant� map and �ush primitives� The remaining interfaces�
pager " client� pager " memory server and pager " device driver� are completely based on
IPC and are user	level de
ned�

Pagers can be used to implement traditional paged virtual memory and
le
database
mapping into user address spaces as well as unpaged resident memory for device drivers
and
or real time systems� Stacked pagers� i�e� multiple layers of pagers� can be used for
combining access control with existing pagers or for combining various pagers �e�g� one
per disk� into one composed object� User	supplied paging strategies �LCC��� CFL��� are
handled at the user level and are in no way restricted by the �	kernel� Stacked
le systems
�KN��� can be realized accordingly�

Multimedia Resource Allocation	 Multimedia and other real	time applications require
memory resources to be allocated in a way that allows predictable execution times� The
above mentioned user	level memory managers and pagers permit e�g�
xed allocation of
physical memory for speci
c data or locking data in memory for a given time�

Note that resource allocators for multimedia and for timesharing can coexist� Managing
allocation con�icts is part of the servers� jobs�

Device Driver	 A device driver is a process which directly accesses hardware I
O ports
mapped into its address space and receives messages from the hardware �interrupts� through
the standard IPC mechanism� Device	speci
c memory� e�g� a screen� is handled by means
of appropriate memory managers� Compared to other user	level processes� there is nothing
special about a device driver� No device driver has to be integrated into the �	kernel��

Second Level Cache and TLB	 Improving the hit rates of a secondary cache by means
of page allocation or reallocation �KH��� RLBC��� can be implemented by means of a pager
which applies some cache	dependent �hopefully con�ict reducing� policy when allocating
virtual pages in physical memory�
In theory� even a software TLB handler could be implemented like this� In practice�

the
rst	level TLB handler will be implemented in the hardware or in the �	kernel� How	
ever� a second	level TLB handler� e�g� handling misses of a hashed page table� might be
implemented as a user	level server�

Remote Communication	 Remote IPC is implemented by communication servers which
translate local messages to external communication protocols and vice versa� The commu	
nication hardware is accessed by device drivers� If special sharing of communication bu�ers
and user address space is required� the communication server will also act as a special pager
for the client� The �	kernel is not involved�

Unix Server	 Unix� system calls are implemented by IPC� The Unix server can act as a
pager for its clients and also use memory sharing for communicating with its clients� The
Unix server itself can be page	able or resident�

Conclusion	 A small set of �	kernel concepts lead to abstractions which stress �exibility�
provided they perform well enough� The only thing which cannot be implemented on top
of these abstractions is the processor architecture� registers�
rst	level caches and
rst	level
TLBs�

�In general� there is no reason for integrating boot drivers into the kernel� The booter� e�g� located in
ROM� simply loads a bit image into memory that contains the micro�kernel and perhaps some set of initial
pagers and drivers �running in user mode and not linked but simply appended to the kernel�� Afterwards�
the boot drivers are no longer used�

�Unix is a registered trademark of UNIX System Laboratories�

��� Data Types

����� Unique Ids

Unique ids identify tasks� threads and hardware interrupts� They are also unique in time�
Unique ids are ��	bit values�

����� User�Level Operations on Uids

a � b � a � b

task�a� � task �b� � �a AND NOT lthread mask� � �b AND NOT lthread mask�

chief�a� � chief �b� � �a AND NOT chief mask� � �b AND NOT chief mask�

site�a� � site �b� � �a AND NOT site mask� � �b AND NOT site mask�

lthread no�a� � �a AND lthread mask� SHR lthread shift
extract lthread no from thread id a

thread�a�n� � �a AND NOT lthread mask� # �n SHL lthread shift�
construct thread id from task id a and lthread no n

task no�a� � �a AND task mask� SHR task shift

chief no�a� � �a AND chief mask� SHR chief shift

site no�a� � �a AND site mask� SHR site shift

����� Fpages

Fpages �Flexpages� are regions of the virtual address space� An fpage consists of all pages
actually mapped in this region� The minimal fpage size is the minimal hardware	page size�

An fpage of size �s has a �s	aligned base address b� i�e� b mod �s��� An fpage with base
address b and size �s is denoted by the ��	bit value

b# �s�

On R�x�� processors� the smallest possible value for s is ��� since the hardware page size
is �K�

����� Messages

S �� snd � EMPTY �

R �� rcv � EMPTY �

EMPTY �� �

S R message� rcv fpage option �
size dope �
S R msg dope �
S R mwords �
S R string dopes �

rcv fpage option� rcv fpage�fpage �
zero�word�

size dope� reserved�byte �
string dope number��bits � � S

mwords number���bits � �W

snd R msg dope� unde
ned�byte �
string dope number��bits � � s s � S

mwords number���bits � � w w � W

rcv msg dope� unde
ned�word �

snd R mwords� w � send receive word �
�W � w� � receive word �

m � snd fpage receive double word � �m�w

w � �m � send receive words �
�W � w� � receive word �

rcv mwords� W � receive word �

snd R string dopes� s � snd R string dope �
�S � s� � R string dope �

rcv string dopes� S � rcv string dope �

snd rcv string dope� snd addr�word �
snd size�word � � �MB
rcv addr�word �
rcv size�word � � �MB

snd string dope� snd addr�word �
snd size�word � � �MB
unde
ned�word �
unde
ned�word �

rcv string dope� unde
ned�word �
unde
ned�word �
rcv addr�word �
rcv size�word � � sr sr � �MB

snd map fpage� grant �ag��bit �
write �ag��bit �
snd base���bits �
snd fpage�fpage �

��� ��Kernel Calls

ipc �dest option� snd descriptor option� rcv descriptor option� timeouts�
� �source option� result code�

call
�dest� snd descriptor� closed rcv descriptor� timeouts�
� �dest option� result code�

send�receive
�dest� snd descriptor� open rcv descriptor� timeouts�
� �source option� result code�

send
�dest� snd descriptor� "nil" � timeouts� � ��� result code�

receive from
�source� "nil" � closed rcv descriptor� timeouts�
� �source option� result code�

receive
��� "nil" � open rcv descriptor� timeouts�
� �source option� result code�

receive intr
�intr� "nil" � closed rcv descriptor� timeouts�
� �source option� result code�

sleep
�"nil" � "nil" � closed rcv descriptor� timeouts� � ��� result code�

id nearest �dest id� � �nearest id�

fpage unmap �fpage� map mask� � ��

thread switch �dest� � ��

lthread ex regs �lthread no� SP� IP� excpt� pager�
� �FLAGS� SP� IP� excpt� pager�

MIPS Implementation Note� Added exception handler identi
er �see section ����� and

removed preempter which is currently not supported in L�
MIPS

thread schedule �dest� prio� timeslice� ext preempter�
� �prio� timeslice� state� ext preempter� partner� time�

MIPS Implementation Note� thread schedule is not currently implemented in

L�
MIPS

task new �dest task id� mcp
new chief� SP� IP� pager id� excpt id� � �new task id�

MIPS Implementation Note� Added an exception handler identi
er �see section ����

Chapter �

L��MIPS

L��R�x��

��� Implementation Notes

What follows is a list of implementation details of the current L�
MIPS implementation�
It is here to serve as a quick reference as to what may or may not be implemented for those
that are familiar with L�
x���

����� Cache

The R���� has ��KB data cache and ��KB instruction cache� Both are two	way associative�
virtually indexed with physical tags� The data cache has either a write	through or write	
back policy�
To avoid aliasing problems� shared memory regions must lie at the same o�set from a

�KB boundary in the virtual address space�
Write	back caching is not used in the current version �other than in the L� kernel itself�

as there is potential for the cache to write	back data from a recycled page no longer used
at its original address� ie when it appears elsewhere in the cache�
I envisage adding a MIPS speci
c system call in the future to perform cache management

functions� This will allow write	back caching to once again be re	enabled�

����� IPC

� Granting is not supported�

� Sending multiple fpages is supported in registers only� i�e� up to � valid fpages plus the
terminating nil fpage� Sending fpages in memory based messages is not supported�

� Dwords sent in memory based messages are ��	bit� not ��	bit as in L�
x��� This
allows sending direct messages of up to �MB in size�

� Indirect strings can be up to �MB in size�

��

����� Scheduling

� thread schedule is not implemented�

� The current scheduler uses a simple round robin scheme with no priorities�

� Internal and external preempters are not supported�

� Constant interrupts will prevent other threads from running�

����� ��

� Multiple mappings of the same physical frame is not supported�

� The RPC protocol is slightly di�erent� see section ��� for details�

����� Exceptions

Exceptions are handled using IPC� Each thread has it�s own exception handling thread� see
section ��� for details�

��� Notational conventions

� If this refers to an input parameter� its
value is meaningless� If it refers to an out	
put parameter� its value is unde
ned�

a
�a�� � � denote the processor�s general registers�
Note that the SGI ��	bit ABI register
names are used�

��� Data Types

����� Unique Ids

Unique ids identify tasks� threads and hardware interrupts� Each unique id is a ��	bit value
which is unique in time� An unique id in R�x�� format consists of a single ��	bit word�

thread id nest ��� chief ���� site ����

ver	 ��� task ���� lthread ��� ver
 ����

task id nest ��� chief ���� site ����

ver	 ��� task ����
 ��� ver
 ����

interrupt id
 �	�� intr � 	 ���

nil id
 �	��

invalid id
xFFFFFFFFFFFFFFFF �	��

����� Fpages

Fpages �Flexpages� are regions of the virtual address space� An fpage consists of all pages
actually mapped in this region� The minimal fpage size is � K� the minimal hardware	page
size�

An fpage of size �s has a �s	aligned base address b� i�e� b mod �s��� On the R�x��
processors� the smallest possible value for s is ��� since hardware pages are at least �K� The
complete user address space �base address �� size ����K� where K is the size of the kernel
area� is denoted by b � �� s � ��� An fpage with base address b and size �s is denoted by a
��	bit word�

fpage�b� �s� b��

� �
��
 ��� s ��� ��

fpage��� ��� �K�
 �
��
 ��� �� ��� ��

MIPS Implementation Note� The user address space on the R���� is one terabyte

����� beginning at �x�� Values of s � �� are equivalent� however if the intention is to
speci
y the whole address space one should of course use s � �� for future compatibility�

����� Messages

A message contains between �� and ��� # �� bytes of in	line data �mwords�� The
rst ��
bytes �eight dwords� are transfered via registers� the �optional� remainder is contained in
a dword	aligned memory bu�er pointed to by a message descriptor� Every successful IPC
operation will always copy at least eight dwords to the receiver�

The bu�er pointed to by the optional message descriptor contains a � dword message
header� followed by a number of mwords� followed by a number of string dopes� The number
of mwords �in ��	bit dwords� excluding those copied in registers� and string dopes is speci
ed
in the message header�

string dopes

mwords

message� msg header

The beginning of the message bu�er has the following format�

���

dword 	 �	�� #��

msg dwords� dword
 �	�� #��

msg snd dope�
 ���� dwords ���� strings �
� � ��� #��

msg size dope�
 ���� dwords ���� strings �
� � ��� #�

msg rcv fpage option� fpage �	�� #�

The receive fpage describes the address range in which the caller is willing to accept
fpage mappings or grants in the receive part �if any� of the IPC� The size dope de
nes the
size �in dwords� of the mword bu�er �and hence the o�set of the string dopes from the end
of the header�� and the number of string dopes�

The send dope speci
es how many dwords and strings are actually to be sent� �Specifying
send dope values less than the size dope values makes sense when the caller is willing to
receive more data than sending��

Strings are out	of	line by	value data� Their size and location is speci
ed by the corre	
sponding string dopes� The string dope format is�

�rcv string �	�� #��

rcv string size �	�� #��

�snd string �	�� #�

string dope� snd string size �	�� #�

The
rst part of the string dope speci
es the size and location of the string the caller
wants sent to the destination� while the second part speci
es the size and location of a
bu�er where the caller is willing to receive a string� Note that strings do not have to be
aligned� and that their size is speci
ed in bytes�

The in	line part of the message consists of the eight dwords passed in registers followed
by any dwords speci
ed by the message descriptor� This part consists of optional fpage
descriptors followed by by	value data� If the receiver of an IPC has speci
ed a valid receive
fpage� the kernel will interpret each pair of dwords of the in	line part as fpage descriptors�
until an invalid descriptor is encountered� This and any further dwords are then passed by
value�

MIPS Implementation Note� Presently at most three fpages can be passed on the
R�����

The format of an fpage descriptor is�

snd fpage �	�� w g #�

snd fpage� snd base �	�� #�

The
rst word contains the address of the hot spot� while the second word describes the
sender�s fpage in the format given in Sect� ������ The g	bit� if set� indicates that the fpage
is to be granted to the receiver� otherwise it is just mapped� The w	bit indicates whether
the receiver will be given write or read	only access to the address	space region�

Each fpage speci
ed by the sender is mapped individually into the address	space window
speci
ed by the receiver�s receive fpage� If the sender and receiver specify di�erent fpage
sizes� the hot	spot speci
cation is used to determine how the mapping between the two
di�erent size fpages occurs� If �s is the size of the larger� and �t the size of the smaller
fpage� then the larger fpage can be thought as being tiled by �s�t fpages of the smaller size�
One of these is uniquely identi
ed as containing the hot spot address �mod �s�� This is the
fpage which will actually be mapped�

MIPS Implementation Note� The current message headers are not as compact as
they could be� They will be optimised in a future version�

����� Timeouts

Timeouts are used to control ipc operations� The send timeout determines how long ipc
should try to send a message� If the speci
ed period is exhausted without that message
transfer could start� ipc fails� The receive timeout speci
es how long ipc should wait for
an incoming message� Both timouts specify the maximum period of time before message
transfer starts� Once started� message transfer is no longer in�uenced by send or receive
timeout�

Pagefaults occuring during ipc are controlled by send and receive pagefault timeout� A
pagefault is translated to an RPC by the kernel� In the case of a pagefault in the receiver�s
address space� the corresponding RPC to the pager uses send pagefault timeout �speci
ed
by the sender� for both send and receive timeout� In the case of a pagefault in the sender�s
address space� receive pagefault timeout speci
ed by the receiver is taken�

Besides the special timeouts � �do not wait at all� and� �wait forever�� periods from �
�s up to approximately �� hours can be speci
ed� The complete quadruple is packed into
one ��	bit word�

mr ��� ms ��� ps ��� pr ��� es ��� er ���

Note that for e!ciency reasons the highest bit of any mantissa m must be �� except for
m���

snd timeout �

����
���

� if es�

��
�esms �s if es�

 if ms�
� es ��

rcv timeout �

����
���

� if er�

��
�ermr �s if er�

 if mr�
� er ��

snd pagefault timeout �

����
���

� if ps�

��
�ps�s if
�ps�	�

 if ps�	�

rcv pagefault timeout �

����
���

� if pr�

��	�pr�s if
�pr�	�

 if pr�	�

approximate timeout ranges

es� er� ps� pr snd�rcv timeout pf timeout

 � �

	 ��� s � � � 	
 h ��� s
� �� s � � � �� h �� s
� 	� s � � � �	 m 	� s
� � s � � � 	� m � s
� 	 s � � � � m 	 s
� ��� ms � � � �� s ��� ms
� �� ms � � � 	� s �� ms
� 	� ms � � � � s 	� ms

 � ms � � � 	 s � ms
	
 	 ms � � � ��	 ms 	 ms
		 ��� �s � � � �� ms ��� �s
	� �� �s � � � 	� ms �� �s
	� 	� �s � � � � ms 	� �s
	� � �s � � � 	 ms � �s
	� 	 �s � � � ��� �s

m�
� e�

 �

��� ��Kernel Calls

System calls are implemented using the syscall instruction in conjunction with the AT
register which is set to the system call number prior to the call� All registers� unless
otherwise stated� are returned unde
ned after the system call except for the stack pointer
sp�
This section describes the � system calls of L��

� ipc AT �

� id nearest AT �

� fpage unmap AT �

� thread switch AT �

� thread schedule AT �

� lthread ex regs AT �

� task new AT �

MIPS Implementation Note� The system call numbers will be cleaned up some
time in the future�

ipc

� AT �x��

snd descriptor a� a� �
rcv descriptor a� a� �

timeouts a� a� �
dest id a� a� �

waiting for id � � a� a� �
virtual sender id � � a� a� �

msg�w� s� s� msg�w� 	 �
msg�w� s� s� msg�w� 	 �
msg�w� s� s� msg�w� 	 �
msg�w� s� s� msg�w� 	 �
msg�w� s� s� msg�w� 	 �
msg�w	 s� s� msg�w	 	 �
msg�w
 s� s� msg�w
 	 �
msg�w� s� s� msg�w� 	 �

� v� v� msgdope � cc 	 cc
� v� v� source id

This is the basic system call for inter	process communication and synchronisation� It may
be used for intra	 as inter	address	space communication� All communication is synchronous
and unbu�ered� a message is transferred from the sender to the recipient if and only if the
recipient has invoked a corresponding ipc operation� The sender blocks until this happens
or a period speci
ed by the sender elapsed without that the destination became ready to
receive�

Ipc can be used to copy data as well as to map or grant fpages from the sender to the
recipient� For the description of messages see section ������

��	byte messages �plus ��	bit sender id� can be transferred solely via the registers and
are thus specially optimised� If possible� short messages should therefore be reduced to
��	byte messages�

A single ipc call combines an optional send operation with an optional receive operation�
Whether it includes a send and
or a receive is determined by the actual parameters� If the
send or receive address is speci
ed as nil ��xFFFFFFFFFFFFFFFF�� the corresponding
operation is skipped�

No time is required for the transition between send and receive phase of one ipc operation
�i�e�� the destination can reply with a timeout of zero��

Parameters

snd descriptor
nil�
xFFFFFFFFFFFFFFFF �	��

Ipc does not include a send operation�

mem� �snd msg�� �	�� md

Ipc includes sending a message to the destination speci
ed by dest
id� $snd msg must point to a valid message� The
rst � ��	
bit words of the message �msg�w� to msg�w�� are not taken from
the message data structure but must be contained in registers s

through s��

snd descriptor
reg�
 �	�� md

Ipc includes sending a message to the destination speci
ed by dest
id� The message consists solely of the � ��	bit words msg�w� to
msg�w� in registers s
 through s��

m�� Value	copying send operation� the dwords of the message are sim	
ply copied to the recipient�

m�� Fpage	mapping send operation� The dwords of the message to be
sent are treated as �send fpages�� The described fpages are mapped
or granted �depending on the g bit in the fpage descriptor�
cbend
into the recipient�s address space� Mapping
granting stops when
either the end of the dwords is reached or when an invalid fpage
denoter is found� in particular �� The send fpage descriptors and
all potentially following words are also transferred by simple copy
to the recipient� Thus a message may contain some fpages and
additional value parameters� The recipient can use the received
fpage descriptors to determine what has been mapped or granted
into its address space� including location and access rights�

d�� Normal send operation� The recipient gets the true sender id�

d�� Deceiving send operation� A chief can specify the virtual sender
id which the recipient should get instead of the chief�s id� The
virtual sender id parameter contained in a� is only required if
d��� Recall that deceiving is secure� since only direction�preserving
deceit is possible� If the speci
ed virtual�sender id does not ful
l
this constraint� the send operation works like d���

rcv descriptor
nil�
xFFFFFFFFFFFFFFFF �	��

Ipc does not include a receive operation�

mem� �rcv msg�� �	��
 o

Ipc includes receiving a message or waiting to receive a message�
$rcv msg must point to a valid message� The � ��	bit words of the
received message �msg�w� to msg�w�� are not stored in the message
data structure but are returned in registers s
 through s��

reg�
 �	��
 o

Ipc includes receiving a message or waiting to receive a message�
However� only messages up to � ��	bit wordsmsg�w� to msg�w� are
accepted� The received message is returned in registers s
 through
s��

rcv descriptor
rmap� rcv fpage �	�� 	 o

Ipc includes receiving a message or waiting to receive a message�
However� only send	fpage messages or up to � ��	bit words msg�w�
to msg�w� are accepted� The received message is returned in reg	
isters s
 through s�� If a map message is received� �rcv fpage�
describes the receive fpage �instead of �rcv fpage option� in a mem	
ory message bu�er�� Thus fpages can also be received without a
message bu�er in memory�

o MIPS Implementation Note� o is currently not used in

L�
MIPS� See waiting for id below�

o�� Only messages from the thread speci
ed as dest id are accepted
��closed wait��� Any send operation from a di�erent thread �or
hardware interrupt� will be handled exactly as if the actual thread
would be busy�

o�� Messages from any thread will be accepted ��open wait��� If the
actual thread is associated to a hardware interrupt� also messages
from this hardware interrupt can arrive�

waiting for id �Open� and �closed� waits are not speci
ed in bit zero of rcv
descriptor as in L�
x��� Instead if waiting for id� � the receive
is an open wait� else the wait is for the thread id speci
ed� Note
that operation when waiting for any thread id other than dest id
is unde
ned�

MIPS Implementation Note� This will likely change back to

the way L�
x�� does it in the future using o�

dest id ��nil Sending is directed to the speci
ed thread� if it resides in the
sender�s clan� If the destination is outside the sender�s clan� the
message is sent to the sender�s chief� If the destination is in an
inner clan �a clan whose chief resides in the sender�s clan�� it is
redirected to that chief� �See also �nchief� operation�� If no send
part was speci
ed �snd descriptor �nil�� dest id speci
es the source
from which messages can be received� �However recall that the re	
ceive restriction is only e�ective if o � ���

�nil �nil��� Although specifying nil as the destination for a send oper	
ation is illegal �error� �destination not existent��� it can be legally
speci
ed for a receive	only operation� In this case� ipc will not re	
ceive any message but will wait the speci
ed rcv timeout and then
terminate with error code �receive timeout�� �However recall that
the receive restriction is only e�ective if o � ���

source id If a message was received this is the id of its sender� �If a hardware
interrupt was received this is the interrupt id�� The parameter is
unde
ned if no message was received�

msg�w� � � � w�
snd� First � ��	bit words of message to be sent� These message words
are taken directly from registers s
 through s�� They are not read
from the message data structure�

rcv� First � ��	bit words of received message� unde
ned if no message
was received� These message words are available only in registers
s� through s�� The �	kernel does not store it in the receive mes	
sage bu�er� The user program may store it or use it directly in
the registers�

msg�dope � cc
 ���� mwords ���� strings �
� cc ���

Message dope describing received message� If no message was re	
ceived� only cc is delivered� The dope word of the received message
is available only in register v�� The �	kernel does not store it in
the receive message bu�er� The user program may store it or use
it directly in the register� �Note that the lowermost � bits of msg
dope and size dope in the message data structure are unde
ned�
So it is legal to store v
 in the msg	dope
eld� even if cc�����

cc ec ��� i r md

d�� The received message is transferred directly ��undeceived�� from
source id�

d�� The received message is �deceived� by a chief� source id is the
virtual source id which was speci
ed by the sending chief�

m�� The received message did not contain fpages�
m�� The sender mapped or granted fpages� The sender�s fpage descrip	

tors were also �besides mapping
granting� transferred as mwords�
r�� The received message was directed to the actual recipient� not

redirected to a chief� I�e� sender and receiver a part of the same
clan� The i	bit has no meaning in this case and is zero�

r�� The received message was redirected to the chief which was next on
the path to the true destination� Sender and addressed recipient
belong to di�erent clans�

i�� If r��� the received message comes from outside the own clan�
i�� If r��� the received message comes from an inner clan�

ec � � ok� the optional send operation was successful� and if a receive
operation was also speci
ed �rcv descriptor ��nil� a message was
also received correctly�

�� � If ipc fails the completion code is in the range �x��� � � �xF�� If
the send operation fails� ipc is terminated without attemtping any
receive operation� s speci
es whether the error occurred during
the receive �s� �� operation or during the send �s� �� operation�

� Non�existing destination or source�

� # s Timeout�

� # s Cancelled by another thread �system call lthread ex regs��

� # s Map failed due to a shortage of page tables�

� # s Send pagefault timeout�

A# s Receive pagefault timeout�

C # s Aborted by another thread �system call lthread ex regs or
task new��

E # s Cutmessage� Potential reasons are �a� the recipient�s mword bu�er
is too small� �b� the recipient does not accept enough strings� �c�
at least one of the recipient�s string bu�ers is too small�

�� � � � The respective operation was terminated before a real message
transfer started� No partner was directly involved�

�� � � F The respective operation was terminated while a message trans	
fer was running� The message transfer was aborted� The current
partner �sender or receiver� was involved and received the corre	
sponding error code� It is not de
ned which parts of the message
are already transferred and which parts are not yet transferred�
The source id returned to the receiver is also unde
ned�

timeouts This ��	bit word speci
es all � timeouts� the quadruple �snd� rcv�
snd pf� rcv pf�� For A detailed description see section ������ Fre	
quently used values are

snd rcv snd pf rcv pf

x

 � � � �

x

	
 � � �

x

		

 � �

snd� If the required send operation cannot start transfer data within
the speci
ed time� ipc is terminated and fails with completion code
�send timeout� ��x���� If ipc does not include a send operation�
this parameter is meaningless�

rcv� If ipc includes a receive operation and no message transfer starts
within the speci
ed time� ipc is terminated and fails with comple	
tion code �receive timeout� ��x���� If ipc does not include a receive
operation� this parameter is meaningless�

spf� If during sending data a pagefault in the receiver�s address space
occurs� snd pf speci
ed by the sender is used as send and receive
timeout for the pagefault RPC�

rpf� If during receiving data a pagefault in the sender�s address space
occurs� rcv pf speci
ed by the receiver is used as send and receive
timeout for the pagefault RPC�

Basic Ipc Types

call

� AT �x��

�snd msg � � a� a� �
�rcv msg � � a� a� �

timeouts a� a� �
dest id a� a� �
dest id a� a� �
msg�w� s� s� msg�w�
msg�w� s� s� msg�w�
msg�w� s� s� msg�w�
msg�w� s� s� msg�w�
msg�w� s� s� msg�w�
msg�w	 s� s� msg�w	
msg�w
 s� s� msg�w

msg�w� s� s� msg�w�

� v� v� msgdope � cc
� v� v� dest id

This is the usual blocking RPC� snd msg is sent to dest id and the invoker waits for a
reply from dest id� Messages from other sources are not accepted� Note that since the
send
receive transition needs no time� the destination can reply with snd timeout � ��

This operation can also be used for a server with one dedicated client� It sends the reply

to the client and waits for the client�s next order�

send�receive

� AT �x��

�snd msg � � a� a� �
�rcv msg � � a� a� �

timeouts a� a� �
dest id a� a� �

� a� a� �
msg�w� s� s� msg�w�
msg�w� s� s� msg�w�
msg�w� s� s� msg�w�
msg�w� s� s� msg�w�
msg�w� s� s� msg�w�
msg�w	 s� s� msg�w	
msg�w
 s� s� msg�w

msg�w� s� s� msg�w�

� v� v� msgdope � cc
� v� v� source id

snd msg is sent to dest id and the invoker waits for a reply from any source� This is the
standard server operation� it sends a reply to the actual client and waits for the next order
which may come from a di�erent client�

send

� AT �x��

�snd msg � � a� a� �
�xFFFFFFFFFFFFFFFF a� a� �

timeouts a� a� �
dest id a� a� �
msg�w� s� s� �
msg�w� s� s� �
msg�w� s� s� �
msg�w� s� s� �
msg�w� s� s� �
msg�w	 s� s� �
msg�w
 s� s� �
msg�w� s� s� �

� v� v� msgdope � cc

snd msg is sent to dest id� There is no receive phase included� The invoker continues

working after sending the message�

receive from

� AT �x��

�xFFFFFFFFFFFFFFFF a� a� �
�rcv msg � � a� a� �

timeouts a� a� �
dest id a� a� �
dest id a� a� �

� s� s� msg�w�
� s� s� msg�w�
� s� s� msg�w�
� s� s� msg�w�
� s� s� msg�w�
� s� s� msg�w	
� s� s� msg�w

� s� s� msg�w�
� v� v� msgdope � cc
� v� v� dest id

This operation includes no send phase� The invoker waits for a message from source id�
Messages from other sources are not accepted� Note that also a hardware interrupt might
be speci
ed as source�

receive

� AT �x��

�xFFFFFFFFFFFFFFFF a� a� �
�rcv msg � � a� a� �

timeouts a� a� �
dest id a� a� �

� a� a� �
� s� s� msg�w�
� s� s� msg�w�
� s� s� msg�w�
� s� s� msg�w�
� s� s� msg�w�
� s� s� msg�w	
� s� s� msg�w

� s� s� msg�w�
� v� v� msgdope � cc
� v� v� source id

This operation includes no send phase� The invoker waits for a message from any source

�including a hardware interrupt��

receive intr

� AT �x��

�xFFFFFFFFFFFFFFFF a� a� �
�rcv msg � � a� a� �

timeouts a� a� �
intr � � a� a� �
intr � � a� a� �

� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� v� v� msgdope � cc
� v� v� intr � �

This operation includes no send phase� The invoker waits for an interrupt message coming
from interrupt source intr� Note that interrupt messages come only from the interrupt
which is currently associated with this thread�

The intr parameter is only evaluated if rcv timeout � � is speci
ed� see �associate intr��

associate intr

� AT �x��

�xFFFFFFFFFFFFFFFF a� a� �
�rcv msg � � a� a� �

rcv timeout � � a� a� �
intr � � a� a� �
intr � � a� a� �

� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� v� v� msgdope � cc
� v� v� intr � �

The intr parameter is evaluated if rcv timeout � � is speci
ed� If no �currently associ	
ated� interrupt is pending� the current thread is ��� detached from its currently associated
interrupt �if any� and ��� associated to the speci
ed interrupt provided that this one is free�
i�e� not associated to another thread� If the association succeeds� the completion code is
receive timeout ��x��� and no interrupt is received�

If an interrupt from the currently associated interrupt was pending� this one is delivered
together with completion code ok ��x���� the interrupt association is not modi
ed� If the

requested new interrupt is already associated to another thread or is not existing� completion
code non existing ��x��� is delivered and the interrupt association is not modi
ed�
Getting rid of an associated interrupt without associating a new one is done by issuing

a receive from nilthread ��� with rcv timeout � ��

sleep

� AT �x��

�xFFFFFFFFFFFFFFFF a� a� �
� a� a� �

timeouts a� a� �
� a� a� �
� a� a� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� s� s� �
� v� v� cc � �x��
� v� v� �

This operation includes no send phase� Since nil ��� is speci
ed as source� no message can
arrive and the ipc will be terminated with �receive timeout� after the time speci
ed by the
rcv�timeout parameter is elapsed�

id nearest

� AT �x��

dest id a� a� �
� v� v� type
� v� v� nearest id

If nil is speci
ed as destination� the system call delivers the uid of the current thread�
Otherwise� it delivers the nearest partner which would be engaged when sending a message
to the speci
ed destination� If the destination does not belong to the invoker�s clan� this
call delivers the chief that is nearest to the invoker on the path from the invoker to the
destination�

� If the destination resides outside the invoker�s clan� it delivers the invoker�s own chief�

� If the destination is inside a clan or a clan nesting whose chief C is direct member of
the invoker�s clan� the call delivers C�

� If the destination is a direct member of the invoker�s clan� the call delivers the desti	
nation itself�

� If the destination is nil� the call delivers the current thread�s id�

Concluding� nchief �dest id �� nil� delivers exactly that partner to which the kernel would
physically send a message which is targeted to dest id� On the other hand� a message from
dest id would physically come from exactly this partner�

Parameters

dest id Id of the destination�

type Note that the type values correspond exactly to the completion
codes of ipc�

�� Destination resides in the same clan� dest id is delivered as nearest
id�

�C Destination is in an inner clan� The chief of this clan or clan
nesting is delivered as nearest id�

�� Destination is outside the invoker�s clan� The invoker�s chief is
delivered as nearest id�

nearest id Either the current thread�s id or the id of the nearest partner
towards dest id�

fpage unmap

� AT �x��

fpage a� a� �
map mask a� a� �

The speci
ed fpage is unmapped in all address spaces into which the invoker mapped it
directly or indirectly�

Parameters

fpage Fpage to be unmapped�

map mask
f
 �	�� w

w�� Fpage will partially unmapped� Already read
write mapped parts
will be set to read only� Read only mapped parts are not a�ected�

w�� Fpage will be completely unmapped�

f�� Unmapping happens in all address spaces into which pages of the
speci
ed fpage have been mapped directly or indirectly� The orig�
inal pages in the own task remain mapped�

f�� Additionally� also the original pages in the own task are unmapped
��ushing��

thread switch

� AT �x��

dest id a� a� �

The invoking thread releases the processor �non	preemtively� so that another ready thread
can be processed�

Parameters

dest id �nil ���� Processing switches to an unde
ned ready thread which is
selected by the scheduler� �It might be the invoking thread�� Since
this is �ordinary� scheduling� the thread gets a new timeslice�

��nil If dest id is ready� processing switches to this thread� In this �ex	
traordinary� scheduling� the invoking thread donates its remaining
timeslice to the destination thread� �This one gets the donation
additionally to its ordinary scheduled timeslices��
If the destination thread is not ready� the system call operates as
described for dest id �nil�

thread schedule

� AT �x��

MIPS Implementation Note� thread schedule is yet to be implemented in L�
MIPS

The system call can be used by schedulers to de
ne the priority� timeslice length and external
preempter of other threads� Furthermore� it delivers thread states� Note that due to security
reasons thread state information must be retrieved through the appropriate scheduler�

The system call is only e�ective if the current priority of the speci
ed destination is less
or equal than the current task�s maximum controlled priority �mcp��

Parameters

dest id Destination thread id� The destination thread must currently exist
and run on a priority level less than or equal to the current thread�s
mcp� Otherwise� the destination thread is not a�ected by this
system call and all result parameters except old param word are
unde
ned�

param word valid mt ��� et ���
 ��� small ��� prio ���

prio New priority for destination thread� Must be less than or equal to
current thread�s mcp�

small �Only e�ective for Pentium�� Sets the small address space number
for the addressed task� On Pentium� small address spaces from �
to ��� currently available� A value of � or ��� in this
eld does
not change the current setting for the task� This
eld is currently
ignored for ��� and PPro�

mt� et New timeslice length for the destination thread� The timeslice
quantum is encoded like a timeout� ��
�etmt �s�
The kernel rounds this value up towards the nearest possible value�
Thus the timeslice granularity can be determined by trying to set
the timeslice to � �s� However note that the timeslice granularity
may depend on the priority�
Timeslice length � �mt � �� et �� �� is always a possible value� It
means that the thread will get no ordinary timeslice� i�e� is
blocked� However� even a blocked thread may execute in a times	
lice donated to it by ipc�

inv� ��xFFFFFFFF� The current priority and timeslice length of the
thread is not modi
ed�

ext preempter valid De
nes the external preempter for the destination thread�
�Nilthread is a valid id��

inv� ��xFFFFFFFF��� The current external preempter of the thread
is not changed�

old param wordvalid mt ��� et ��� ts ��� � ��� prio ���

prio Old priority of destination thread�

mt� et Old timeslice length of the destination thread� ��
�etmt �s�

ts � Thread state�
� # k Running� The thread is ready to execute at user	level�
� # k Sending� A user	invoked ipc send operation currently transfers an

outgoing message�
� # k Receiving� A user	invoked ipc receive operation currently receives

an incoming message�
C Waiting for receive� A user	invoked ipc receive operation currently

waits for an incoming message�
D Pending send� A user	invoked ipc send operation currently waits

for the destination �recipient� to become ready to receive�
E Reserved�
F Dead� The thread is unable to execute�

k � � Kernel inactive� The kernel does not execute an automatic RPC
for the thread�

� Pager� The kernel executes a pagefault RPC to the thread�s pager�
� Internal preempter� The kernel executes a preemption RPC to the
thread�s internal preempter�

� External preempter� The kernel executes a preemption RPC to
the thread�s external preempter�

inv� ��xFFFFFFFF� The addressed thread does either not exist or has
a priority which exceeds the current thread�smcp� All other return
parameters are unde
ned ����

old ext preempter Old external preempter of the destination thread�

partner Partner of an active user	invoked ipc operation� This parameter
is only valid� if the thread�s user state is sending� receiving� pend�
ing or waiting ��� � � D�� An invalid thread id ��xFFFFFFFF��� is
delivered if there is no speci
c partner� i�e� if the thread is in an
open receive state�

time mw ��� ew ��� ep ��� Thigh ��	� EDX

Tlow ���� ECX

T Cpu time ���	bit value� in microseconds which has been consumed
by the destination thread�

mw� ew Current user	level wakeup of the destination thread� encoded like
a timeout� The value denotes the still remaining timeout interval�
Valid only if the user state is waiting �C� or pending �D��

ep E�ective pagefault wakeup of the destination thread� encoded like
a �	bit pagefault timeout� The value denotes the still remaining
timeout interval� Valid only if the kernel state is pager �k � ���

lthread ex regs

� AT �x��

lthread no a� a� �
IP a� a� old IP
SP a� a� old SP

excpt id a� a� old excpt id
pager id a� a� old pager id

This function reads and writes some register values of a thread in the current task�

It also creates threads� Conceptually� creating a task includes creating all of its threads�
Except lthread �� all these threads run an idle loop� Of course� the kernel does neither
allocate control blocks nor time slices etc� to them� Setting stack and instruction pointer
of such a thread to valid values then really generates the thread�

Note that this operation reads and writes the user�level registers �SP and IP�� Ongoing
kernel activities are not a�ected� However an ipc operation is cancelled or aborted� If
the ipc is either waiting to send a message or waiting to receive a message� i�e� a message
transfer is not yet running� ipc is cancelled �completion code �x�� or �x���� If a message
transfer is currently running� ipc is aborted �completion code �xC� or �xD���

MIPS Implementation Note� The L�
x�� int preempter is currently not supported

in L�
MIPS and has been removed from the arguments� excpt id has been added to
L�
MIPS to specify the exception handling thread for the thread� see section ��� for details�

Parameters

lthread no
 �
�� lthread ���

Number of addressed lthread ��� � � ���� inside the current task�

SP valid New stack pointer �SP� for the thread� It must point into the
user	accessible part of the address space�

inv� ��xFFFFFFFFFFFFFFFF� The existing stack pointer is not mod	
i
ed�

IP valid New instruction pointer �IP� for the thread� It must point into
the user	accessible part of the address space�

inv� ��xFFFFFFFFFFFFFFFF� The existing instruction pointer is not
modi
ed�

excpt id valid De
nes the exception handling thread used by the thread�

inv� ��xFFFFFFFFFFFFFFFF� The existing excpt id is not modi
ed�

pager valid De
nes the pager used by the thread�

inv� ��xFFFFFFFFFFFFFFFF� The existing pager id is not modi
ed�

old SP Old stack pointer �SP� of the thread�

old SP Old instruction pointer �IP� of the thread�

old excpt id Id of the thread�s old exception handler�

old pager Id of the thread�s old pager�

Example

Signalling can be implemented as follows�

signal �lthread� �
sp �� receive signal stack �
ip �� receive signal �
mem �sp " "� �� � �
lthread ex regs �lthread� sp� ip� "� "� �
mem �sp " "� �� ip �
mem �idle stack " wordlength� �� sp �

receive signal �
push all regs �
while mem �sp # � � wordlength� � � do
thread switch �nilthread�

od �
pop all regs �
pop �sp� �
jmp �signal ip� �

task new

� AT �x��

IP a� a� �
pager a� a� �
SP a� a� �

dest task a� a� �
mcp � new chief a� a� �

excpt id a� a� �
� v� v� new task id

This function deletes and
or creates a task� Deletion of a task means that the address
space of the task and all threads of the task disappear� The cputime of all deleted threads
is added to the cputime of the deleting thread� If the deleted task was chief of a clan� all
tasks of the clan are deleted as well�

Tasks may be created as active or inactive� as de
ned by the pager attribute� For an
active task� a new address space is created together with ��� threads� Lthread � is started�
the other ones wait for a �real� creation by lthread ex regs� An inactive task is empty� It
occupies no resources� has no address space and no threads� Communication with inactive
tasks is not possible� Loosely speaking� inactive tasks are not really existing but represent
only the right to create an active task�

A newly created task gets the creator as its chief� i�e� it is created inside the creator�s
clan� Symmetrically� a task can only be deleted either directly by its chief �its creator� or
indirectly by a higher	level chief�

Parameters

dest task Task id of an existing task �active or inactive� whose chief is the
current task� If one of these preconditions is not ful
lled� the
system call has no e�ect� Simultaneously� a new task with the
same task number is created� It may be active or inactive �see
next parameter��

pager �� nil The new task is created as active� The speci
ed pager is associated
to lthread ��

� nil ��� The new task is created as inactive� Lthread � is not created�

SP Initial stack pointer for lthread � if the new task is created as an
active one� Ignored otherwise�

IP Initial instruction pointer for lthread � if the new task is created
as an active one� Ignored otherwise�

mcp MIPS Implementation Note� mcp is currently ignored on

L�
MIPS�
Maximum controlled priority �mcp� de
nes the highest priority
which can be ruled by the new task acting as a scheduler� The
new task�s e�ective mcp is the minimum of the creator�s mcp and
the speci
ed mcp�
a� contains this parameter� if the newly generated task is an active
task� i�e� has a pager and at least lthread ��

new chief Speci
es the chief of the new inactive task� This mechanism per	
mits to transfer inactive ��empty�� tasks to other tasks� Transfer	
ring an inactive task to the speci
ed chief means to transfer the
related right to create a task� Note that the task number remains
unchanged�
a� contains this parameter� if the newly generated task is an in�
active task� i�e� has no pager and no threads�
The lthread no of the chief id is ignored� the e�ective chief �as far
as ipc delivery is concerned� is the chief tasks� lthread ��

new task id ��nil Task creation succeeded� If the new task is active� the new task
id will have a new version number so that it di�ers from all task
ids used earlier� Chief and task number are the same as in dest
task� If the new task is created inactive� the chief is taken from
the chief parameter� the task number remains unchanged� The
version is unde
ned so that the new task id might be identical
with a formerly �but not currently and not in future� valid task id�
This is safe since communication with inactive tasks is impossible�

�nil ��� The task creation failed�

excpt id Speci
es the default exception handler thread id for new task�

��� Exception Handling

Exceptions in L�
MIPS are handled with IPC� unlike L�
x�� which handles exceptions via
x�� mirrored exception handling using a per thread IDT�
In L�
MIPS a thread which raises an exception which is caught by L�� has a RPC done

on it�s behalf to an exception handling thread� which can be speci
ed per thread�
The thread that took the exception is left waiting� the exception handling thread can

either shut down the o�ending thread� or generate a signal� or implement any other model
the OS designer chooses�
When a thread takes an exception� the kernel sends the following to the thread�s excep	

tion handler�

msg�w� �s
�
 ���� Cause ����

msg�w� �s�� EPC �	��

msg�w� �s�� BVA �	��

Cause Contents of the R���� Cause register� It describes what type of exception was
taken�

EPC Contents of the R���� EPC register� It contains the address of the instruction that
caused the exception� except when the instruction is in the branch delay slot� in which
case it contains the address of the preceding branch instruction�

BVA Contents of the R���� BVA register� It contains the virtual address that caused the
exception�

See the R���� processor manual�Int��� for more details of these registers including how
and when they are set�

��� The Kernel�Info Page

The kernel	info page contains kernel	version data� memory descriptors and the clock� The
remainder of the page is unde
ned� The kernel	info page is mapped read�only in the ��	
address space� �� can use the memory descriptors for its memory management� �� can map
the page read	only to other address spaces�

The kernel information page contains information useful for the initial servers to
nd
out about the environment they were started in� Its layout is as follows�

kernel data �	�� #��

dit header �	�� #��

kernel �	�� #��

memory size �	�� #��

clock �	�� #�

build ��	� version ��	� �L�uK� ���� #�

version L�
R���� version number�

build L�
R���� build number of above version

clock Number of � milliseconds ticks since L� booted�

memory size The amount of RAM installed on machine L� is running on�

kernel The address # � of last byte reserved by the kernel of low physical
memory�

dit header The address of the DIT header which maps out what was loaded
with the kernel image�

kernel data The address of the start of kernel reserved memory in the upper
physical memory region�

The physical memory initially available for applications lies between kernel and kernel
data�

��� Page�Fault and Preemption RPC

Page Fault RPC

kernel sends� w� �s
� fault address � � �	�� w�

w� �s�� faulting user�level IP �	��

w � � Read page fault�
w � � Write page fault�

kernel receives� The kernel provides a receive fpage covering the complete user
address space� The kernel accepts mappings or grants into this
region� Only a short �i�e�� register	only� message is accepted� and
its contents are ignored�

timeouts PF at PF at ipc in PF at ipc in
used for user receiver�s sender�s

pagefault RPC level space space

snd � sender�s snd pf receiver�s rcv pf
rcv � sender�s snd pf receiver�s rcv pf
snd pf � sender�s snd pf receiver�s rcv pf
rcv pf � sender�s snd pf receiver�s rcv pf

Preemption RPC

MIPS Implementation Note� Preemption RPC is yet to be implemented in L�
MIPS�

kernel sends� w� �EDX� user�level ESP ����

w� �EBX� user�level EIP ����

ESP and EIP are the R�x���s exception stack pointer and exception instruction pointer
registers� respectively�

kernel receives� The kernel only accepts a short �in	register� message� whose con	
tents are ignored�

timeouts
used for

preemption RPC

snd �
rcv �
snd pf �
rcv pf �

��	 �� RPC protocol

�� is the initial address space� Although �� may not be part of the kernel its basic protocol
is de
ned by the �	kernel� Special �� implementations may extend this protocol�

The address space �� is idempotent� i�e� all virtual addresses in this address space are
identical to the corresponding physical address� Note that pages requested from �� continue
to be mapped idempotently if the receiver speci
es its complete address space as receive
fpage�

�� gives pages to the kernel and to arbitrary tasks� but only once� The idea is that all
pagers request the memory they need in the startup phase of the system so that afterwards
�� has spent all its memory� Further requests will then automatically denied �by sending a
null reply��

MIPS Implementation Note� L�
MIPS �� behaves similar to L�
x�� ��� however
the actual RPC protocol is slightly modi
ed and de
ned below� �� handles device mappings
via a special case in the page fault protocol only recognised in general by ��� This special
case when used to map a page� will map it with �uncacheable� attributes suitable for doing
device I
O�

A page mapped as above� when passed on to another task via fpage ipc� will continue
to retain its uncacheable attributes�

General Memory Mapping

Physical memory

msg�w� �s
� address �	��

msg�w� �s�� � �	��

If address is in the available memory range and not previously mapped� �� sends a
writable mapping to the requester�

Unlike L�
x��� multiple mappings of the same physical frame is not supported� any
frame is only mapped once�

Kernel information page

msg�w� �s
�
xFFFFFFFFFFFFFFFD �	��

msg�w� �s�� � �	��

Maps the kernel info page to the requester read	only� The requester receives the address
of the info page in s
 assuming a one to one mapping� Multiple mappings to multiple
requesters are supported� Note that the address of the dit header can be found in the
kernel information page �Sect� �����

Dit header page

msg�w� �s
� dit header address �	��

msg�w� �s�� � �	��

Maps the dit header page read	only� Multiple mappings to multiple requesters are
supported�

Devices

msg�w� �s
�
xFFFFFFFFFFFFFFFE �	��

msg�w� �s�� address �	��

If address is not in the normal memory range� �� maps address writable and uncacheable
so as to enable access to device registers etc� The current implementation supports multiple
mappings to any of the initial servers started �that is anyone in ���s clan��
It is expected that initial servers protect devices from untrusted access via the clans

and chiefs mechanism� Device mappings retain their cacheability attributes if passed on via
mapping IPC�

��
 DIT header

DIT is the tool used to build kernel images for download� Like the L� kernel itself� it has
an information page describing the layout of various programs and data that were part of
the downloaded kernel image� It consists of two parts� the initial header followed by zero
of more
le headers as speci
ed by the initial header� The initial headers format follows
below�

vaddr end ���� #��

�le end ���� #��

phdr num ���� #��

phdr size ���� #�

phdr o� ���� #�

�dhdr� ���� #�

phdr o� The o�set from the beginning of this header to where the
le head	
ers start�

phdr size The size of each of the
le headers�

phdr num The number of
le headers that follow�

�le end The o�set to the end of the kernel image
le� For DIT internal
use only�

vaddr end The end of currently used physical memory space� This includes
the L� kernel and all other programs and data in the downloaded
kernel image�

Each of the
le headers is laid out as follows�

�ags ���� #��

entry ���� #��

size ���� #��

base ���� #��

name string ���� #��

name string ���� #�

name string ���� #�

name string ���� #�

name string Null terminated string containing name of program or data
le
�truncated to �� characters��

base The base address of the program or data
le �

size The size of the program or data�

entry The start address of the program if it is executable� zero otherwise�

�ags Miscellaneous �ags de
ned below�

� ���� r

r If set the kernel runs this program as part of the initial servers
upon startup� If not set� the program or data has simply been
loaded into memory and has not been invoked�

Appendix A

DIT

Downloadable Image Tool �DIT� is used to construct downloadable images that contain
several parts� It exists as the boot monitor on several systems we use only supports the
download of a single ��	bit ELF
le� The L�	kernel is ��	bit ELF and we also needed to
append various initial servers� so dit was created to achieve this�
DIT does this by �massaging� the L� ��	bit elf header into something that fools the boot

monitor into thinking it is ��	bit elf� It also appends an ELF program segment containing
the dit header�
Appending arbitrary
les to the image is achieved by copying the
le into the newly

added program segment and noting it in the dit header�
DIT has the following arguments�

�i l� kernel kernel image Transforms the initial ��	bit kernel l� kernel into a ��	bit
downloable image kernel image� Also adds the dit header�

�l kernel image Prints out the next available address in the physical memory space that
a program to be appended should be linked at� This is also the default address that
unstructured data is appended at�

�m kernel image Prints out a map of what is in the current kernel image�

�a file kernel image Appends file to kernel image� If the file is ��	bit elf� ��	bit
elf� or ��	bit eco�� then dit acts as a program loader laying out the contents of the
executable ��text� �data� �bss etc�� inside the kernel image such that it forms a runnable
image once downloaded�

If the
le is not of the above format� it is simply appended as is� Note that dit enforces
page alignment of � kbytes and rounds
le size up accordingly�

�h addr Used in conjunction with �a� Instead of the image being appended at the default
address� it is appended at address addr in the physical address space�

�n Used in conjunction with �a� it unsets the run �ag for the image being appended so it is
not started by L� as one of the initial servers� This is default for unstructured data�

�f Used in conjunction with �a� Forces the the
le to be appended as unstructured data
even if it is a co� or elf format executable�

�z Does not include the bss section in the image� Expects bss to be allocated and zeroed
at load time�

��

Appendix B

Serial Port Server

This is a description of the simple serial port server we are currently using on L�
MIPS� It
could be described as �focused on fast implementation�� or in other words �a quick hack��
We use a serial port server� rather than access the hardware directly as it provides

reliable output una�ected by unreliable servers that are under development� Any �real�
system would use a more e!cient method than the simple method described below�

B�� Output

The server waits for IPC �short� ��	byte message only� and upon receiving it� converts the
received message into a string bu�er and sends the null terminated string out the serial
port� A simple code fragment to print �hello world� follows�

const l��threadid�t SERIAL�TID � ��x����������������LL	

l��ipc�reg�msg�t msg

l��msgdope�t result

char �c

c � �char �
 �msg�reg���

sprintf�c��Hello World�n�

r � l��mips�ipc�send�SERIAL�TID�

L��IPC�SHORT�MSG��msg�

L��IPC�NEVER� �result

The maximum string length is �� bytes� which is the maximum amount of data that
can be transfered in registers� Strings of less than �� bytes are null	terminated� Also note
the threadid assumes it is the
rst task loaded after ���

B�� Input

The simple server also supports receiving input from the serial port� Upon receiving a char	
acter from the serial port� the server will IPC the single character to whoever is registered
as the receiver�
To register as the receiver� one should send a message to the server with the
rst ��	bit

word being zero� and the second word being the thread id of the thread that is to receive
the input characters�
A sample code fragment follows�

��

�� register to receive serial input ��

id � l��myself�

msg�reg��� � �

msg�reg��� � id�ID

r � l��mips�ipc�send�SERIAL�TID� L��IPC�SHORT�MSG� �msg�

L��IPC�NEVER� �result

�� loop receiving input ��

while ��

�

r � l��mips�ipc�wait��id� L��IPC�SHORT�MSG� �msg�

L��IPC�NEVER� �result

rcv�buffer�i��� � �char
 msg�reg���

	

Note that thread � is used to receive IPC for output and registration� and thread � is
used to send input characters to the registered receiver�

Appendix C

Kernel Debugger

The L� kernel debugger� as it�s name suggests� is used for debugging the L� kernel itself�
It is not intended to be used for debugging applications� though it can be used to if one
understands enough of the internals of L��
The debugger is very primitive in functionality� It allows basic exploration of kernel data

�both global and task speci
c data�� memory� and R���� registers including co	processor
registers�

The kernel debugger is contantly evolving with extra features added when required to
assist in debugging new problems� A description of the current list of commands follows�

� Print out a short help message�

rbt Reboot the system�

bl Print out the current busy list in the scheduler�

ct Change the debuggers �current task control block� to the one speci
ed by the given
address�

pm Print out number of ��	bit memory locations starting at address� The number argument
is optional�

pt Print out the state of the �current TCB��

pr Print out the general register set� If register argument is given� then print only the
register speci
ed�

pk Print out the kernel data�

pc Print out co	processor register speci
ed� Valid register names are bva� epc� ehi� prid�
tlb� xc� st� cs�

pgpt Print out the page table associated with the current TCB�

bon Switch on the compiled in kernel break points�

version Print out the version and build number of the current kernel�

Note when in the debugger� a cntrl�D will exit the debugger and continue L�� This is
only sensible to do when the debugger was invoked via a kernel breakpoint� and application
assertion� or by pressing the interrupt key�

��

C�� assert

The supplied library libl��a and header
le assert�h� implement the usual assert�

function� ie if the assertion fails� the application stops and the
le and line number of the
failed assertion is printed� However� unlike a normal assert� after printing the above message
the kernel debugger is called and the whole system is stopped� The system can be continued
as mentioned above by entering cntrl�D�

Appendix D

L� C Library Headers

The following are the self documented header
les for the C library interface to L� on
the MIPS R�x�� platform� The headers contain useful constants� macros� and function
prototypes for programming in the L� environment�

D�� types�h

�ifndef ��L�TYPES�H��

�define ��L�TYPES�H��

���

� Define the basic types upon which to build other types

���

�if defined��LANGUAGE�C

�if �MIPS�SZPTR �� �� �� SGI ���bit compiler ��

typedef unsigned char byte�t
 �� ��bit int ��

typedef unsigned short int hword�t
 �� ���bit int ��

typedef unsigned int word�t
 �� ���bit int ��

typedef unsigned long dword�t
 �� ���bit int ��

typedef long cpu�time�t

�else �� gcc or SGI ���bit compiler ��

typedef unsigned char byte�t

typedef unsigned short int hword�t

typedef unsigned int word�t

typedef unsigned long long dword�t

typedef long long cpu�time�t

�endif

�� define struct to access upper

and lower ���bits of ���bit int ��

typedef struct �

��

word�t high� low

	 l��low�high�t

���

� Structures for accessing L� thread identifiers

���

�� the basic layout of a tid ��

typedef struct �

unsigned nest��

unsigned chief���

unsigned site���

unsigned version�high��

unsigned task���

unsigned lthread��

unsigned version�low���

	 l��threadid�struct�t

�� the general purpose thread id type giving access as ��

typedef union �

dword�t ID
 �� ���bit int ��

l��low�high�t lh
 �� two ���bit ints ��

l��threadid�struct�t id
 �� individual fields in struct ��

	 l��threadid�t

typedef l��threadid�t l��taskid�t
 �� task id is same as thread id ��

�� the layout of an interrupt id ��

typedef struct �

unsigned �pad���

unsigned �pad����

unsigned intr��

	 l��intrid�struct�t

�� the general purpose interrupt id ��

typedef union �

dword�t ID

l��low�high�t lh

l��intrid�struct�t id

	 l��intrid�t

���

� useful thread id constants� macros and functions

���

�ifdef ��GNUC�� �� for gcc ��

�define L��NIL�ID ��l��threadid�t
�ULL

�define L��INVALID�ID ��l��threadid�t
�xffffffffffffffffULL

�define l��is�nil�id�id
 ��id
�ID �� �uLL

�define l��is�invalid�id�id
 ��id
�ID �� �xffffffffffffffffuLL

�else �� for SGI ���bit compiler ��

extern const l��threadid�t �l��nil�tid
 �� constants defined in libl��a ��

extern const l��threadid�t �l��invalid�tid

�define L��NIL�ID �l��nil�tid

�define L��INVALID�ID �l��invalid�tid

�define l��is�nil�id�id
 ��id
�ID �� �ul

�define l��is�invalid�id�id
 ��id
�ID �� �xfffffffffffffffful

�endif

�define thread�equal�t�� t�
 ��t�
�ID �� �t�
�ID

�� test if two threads are in same task ��

extern int task�equal�l��threadid�t t�� l��threadid�t t�

�� get the task id of given thread� ie thread id of lthread � ��

extern l��threadid�t get�taskid�l��threadid�t t

�else �� for SGI ���bit assembly ��

�define L��NIL�ID �

�define L��INVALID�ID �xffffffffffffffff

�endif

���

� L� flex pages

���

�if defined��LANGUAGE�C

�� layout of an fpage ��

typedef struct �

unsigned pageh���
 �� upper ���bits ��

unsigned page���
 �� lower ���bits ��

unsigned zero��

unsigned size��

unsigned write��

unsigned grant��

	 l��fpage�struct�t

�� general purpose fpage type allowing access as ��

typedef union �

dword�t fpage
 �� a ���bit int ��

l��fpage�struct�t fp
 �� fields in struct ��

	 l��fpage�t

�� a send page ��

typedef struct �

dword�t snd�base

l��fpage�t fpage

	 l��snd�fpage�t

�ifdef ��GNUC��

�define L��PAGESIZE ��x����uLL
 �� L��MIPS page size ��

�else

�define L��PAGESIZE ��x����ul

�endif

�else �� assembler ��

�define L��PAGESIZE �x����

�endif

���

� useful constants� macros and functions to manipulate fpages

���

�define L��PAGEMASK ���L��PAGESIZE � �

�define L��LOG��PAGESIZE ���

�define L��WHOLE�ADDRESS�SPACE ���

�define L��FPAGE�RO � �� read�only fpage ��

�define L��FPAGE�RW � �� read�write fpage ��

�define L��FPAGE�MAP � �� map fpage ��

�define L��FPAGE�GRANT � �� grant fpage ��

�define L��FPAGE�GRANT�MASK � �� masks for manipulations as integer ��

�define L��FPAGE�RW�MASK �

�if defined��LANGUAGE�C

�� function to build fpage descriptors ��

extern l��fpage�t l��fpage�dword�t address� �� address of fpage ��

unsigned int size� �� size of fpage in �bits� ��

unsigned char write� �� read�only � read�write ��

unsigned char grant

 �� map or grant ��

���

� L� message dopes

���

�� layout of a message dope ��

typedef struct �

unsigned pad���
 �� upper ���bits zero ��

unsigned dwords���

unsigned strings�

unsigned error�code��

unsigned snd�error��

unsigned src�inside��

unsigned msg�redirected��

unsigned fpage�received��

unsigned msg�deceited��

	 l��msgdope�struct�t

�� general purpose msgdope type allowing access as ��

typedef union �

dword�t msgdope
 �� ���bit int ��

l��msgdope�struct�t md
 �� fields in struct ��

	 l��msgdope�t

���

� L� string dopes

���

typedef struct �

dword�t snd�size
 �� size of string to send ��

dword�t snd�str
 �� pointer to string to send ��

dword�t rcv�size
 �� size of receive buffer ��

dword�t rcv�str
 �� pointer to receive buffer ��

	 l��strdope�t

���

� L� message header

���

typedef struct �

l��fpage�t rcv�fpage
 �� rcv fpage option ��

l��msgdope�t size�dope
 �� size dope of message ��

l��msgdope�t snd�dope
 �� send dope of message ��

	 l��msghdr�t

���

� L� timeouts

���

�� layout of a timeout ��

typedef struct �

unsigned pad���

unsigned rcv�man��
 �� receive mantissa ��

unsigned snd�man��
 �� send mantissa ��

unsigned rcv�pfault��
 �� receive pagefault timeout ��

unsigned snd�pfault��
 �� send pagefault timeout ��

unsigned snd�exp��
 �� send exponent ��

unsigned rcv�exp��
 �� receive exponent ��

	 l��timeout�struct�t

�� general purpose timeout type that allows access as ��

typedef union �

dword�t timeout
 �� timeout as ���bit int ��

l��timeout�struct�t to
 �� timeout as fields in struct ��

	 l��timeout�t

�endif

���

� useful constants� macros and functions for manipulating timeouts

���

�� masks for manipulating timeouts as integers ��

�define L��RCV�EXP�MASK �x�������f

�define L��SND�EXP�MASK �x������f�

�define L��SND�PFLT�MASK �x�����f��

�define L��RCV�PFLT�MASK �x����f���

�define L��SND�MAN�MASK �x��ff����

�define L��RCV�MAN�MASK �xff������

�if defined��LANGUAGE�C

�� function to build timeout descriptor ��

extern l��timeout�t L��IPC�TIMEOUT�byte�t snd�man� �� send mantissa ��

byte�t snd�exp� �� send exponent ��

byte�t rcv�man� �� receive mantissa ��

byte�t rcv�exp� �� receive exponent ��

byte�t snd�pflt� �� send pageflt timeout ��

byte�t rcv�pflt

 �� rcv pageflt timeout ��

�� constant to specify to never timeout during ipc ��

�ifdef ��GNUC��

�define L��IPC�NEVER ��l��timeout�t
 �timeout� �	

�else

�define L��IPC�NEVER �l��ipc�never

extern const l��timeout�t �l��ipc�never

�endif

�else �� assembler ��

�define L��IPC�NEVER �

�endif

���

� l��schedule param word� NOT USED in current version

���

�if defined��LANGUAGE�C

typedef struct �

unsigned time�man��

unsigned time�exp��

unsigned zero���

unsigned prio��

	 l��sched�param�struct�t

typedef union �

dword�t sched�param

l��sched�param�struct�t sp

	 l��sched�param�t

�endif

�endif �� ��L�TYPES�H�� ��

D�� syscalls�h

�ifndef ��L��SYSCALLS�H��

�define ��L��SYSCALLS�H��

�include !l��types�h"

���

� system call numbers for assembly hackers

���

�if defined��LANGUAGE�ASSEMBLY

�define SYSCALL�IPC �

�define SYSCALL�FPAGE�UNMAP �

�define SYSCALL�ID�NEAREST �

�define SYSCALL�ID�NCHIEF �

�define SYSCALL�THREAD�SWITCH �

�define SYSCALL�THREAD�SCHEDULE

�define SYSCALL�LTHREAD�EX�REG �

�define SYSCALL�TASK�CREATE �

�define MAX�SYSCALL�NUMBER �

�endif

���

� prototypes and constants for system calls other than ipc

���

�ifdef �LANGUAGE�C

extern void l��fpage�unmap�l��fpage�t fpage� dword�t map�mask

�� valid values for mask ��

�define L��FP�REMAP�PAGE �x�� �� Page is set to read only ��

�define L��FP�FLUSH�PAGE �x�� �� Page is flushed completely ��

�define L��FP�OTHER�SPACES �x�� �� Page is flushed in all other ��

�� address spaces ��

�ifdef ��GNUC��

�define L��FP�ALL�SPACES �x����������������LL

�� Page is flushed in own address ��

�� space too ��

�else

�define L��FP�ALL�SPACES �x����������������ul

�endif

extern l��threadid�t l��myself�void

extern int l��id�nearest�l��threadid�t destination�

l��threadid�t �next�chief

�endif

�� return values of l��id�nearest ��

�define L��NC�SAME�CLAN �x�� �� destination resides within the ��

�� same clan ��

�define L��NC�INNER�CLAN �x�C �� destination is in an inner clan ��

�define L��NC�OUTER�CLAN �x�� �� destination is outside the ��

�� invoker�s clan ��

�if defined��LANGUAGE�C

extern void l��thread�ex�regs�l��threadid�t destination�

dword�t eip� dword�t esp�

l��threadid�t �excpt� l��threadid�t �pager�

dword�t �old�eip� dword�t �old�esp

extern void l��thread�switch�l��threadid�t destination

�� l��thread�schedule not implemented ��

extern cpu�time�t

l��thread�schedule�l��threadid�t dest� l��sched�param�t param�

l��threadid�t �ext�preempter� l��threadid�t �partner�

l��sched�param�t �old�param

extern l��taskid�t

l��task�new�l��taskid�t destination� dword�t mcp�or�new�chief�

dword�t esp� dword�t eip� l��threadid�t pager�

l��threadid�t excpt

�endif

�endif

D�� ipc�h

�ifndef ��L��IPC�H��

�define ��L��IPC�H��

�include !l��types�h"

���

� L� IPC

���

�ifdef �LANGUAGE�C

���

� For backward compatibility only � do not use#

���

�define L��IPC�MSG�DECEITED L��IPC�MSG�DECEIVED

�define l��mips�ipc�reply�deceiting�and�wait l��mips�ipc�reply�deceiving�and�wait

�define l��mips�ipc�send�deceiting l��mips�ipc�send�deceiving

�define l��ipc�sleep l��mips�ipc�sleep

���

� L� registered message� Structure used to pass registered message to the

� libl� C library which loads�stores messages to be sent�received into�from

� registers from�into this structure� If you get my gist ��

���

�define L��IPC�MAX�REG�MSG �

typedef struct �

dword�t reg�L��IPC�MAX�REG�MSG�

	 l��ipc�reg�msg�t

�endif

���

� Defines used for constructing send and receive descriptors

���

�define L��IPC�SHORT�MSG � �� register only ipc ��

�ifdef �LANGUAGE�C

�define L��IPC�STRING�SHIFT � �� shift amount to get strings

from message dope ��

�define L��IPC�DWORD�SHIFT �� �� shift ammount to get dwords

from message dope ��

�define L��IPC�SHORT�FPAGE ��void �
�ul
 �� register only ipc including

sending fpages in registers ��

�� macro for creating receive descriptor that receives register

only ipc that includes fpages ��

�define L��IPC�MAPMSG�address� size
 �

��void �
�dword�t
� ��address
 � L��PAGEMASK
 $ ��size
 !! �
 �

$ �unsigned long
L��IPC�SHORT�FPAGE

�else �� assembly ��

�define L��IPC�SHORT�FPAGE �

�define L��IPC�NIL�DESCRIPTOR ���

�define L��IPC�DECEIT �

�define L��IPC�OPEN�IPC �

�endif

���

� Some macros to make result checking easier

���

�define L��IPC�ERROR�MASK �xF�

�define L��IPC�DECEIT�MASK �x��

�define L��IPC�FPAGE�MASK �x��

�define L��IPC�REDIRECT�MASK �x��

�define L��IPC�SRC�MASK �x��

�define L��IPC�SND�ERR�MASK �x��

�ifdef �LANGUAGE�C

�define L��IPC�IS�ERROR�x
 ���x
�msgdope
 � L��IPC�ERROR�MASK

�define L��IPC�MSG�DECEIVED�x
 ���x
�msgdope
 � L��IPC�DECEIT�MASK

�define L��IPC�MSG�REDIRECTED�x
 ���x
�msgdope
 � L��IPC�REDIRECT�MASK

�define L��IPC�SRC�INSIDE�x
 ���x
�msgdope
 � L��IPC�SRC�MASK

�define L��IPC�SND�ERROR�x
 ���x
�msgdope
 � L��IPC�SND�ERR�MASK

�define L��IPC�MSG�TRANSFER�STARTED �

����x
�msgdope
 � L��IPC�ERROR�MASK
 !

���

� Prototypes for IPC calls implemented in libl��a

���

extern int

l��mips�ipc�call�l��threadid�t dest�

const void �snd�msg�

l��ipc�reg�msg�t �snd�reg�

void �rcv�msg�

l��ipc�reg�msg�t �rcv�reg�

l��timeout�t timeout�

l��msgdope�t �result

extern int

l��mips�ipc�reply�and�wait�l��threadid�t dest�

const void �snd�msg�

l��ipc�reg�msg�t �snd�reg�

l��threadid�t �src�

void �rcv�msg�

l��ipc�reg�msg�t �rcv�reg�

l��timeout�t timeout�

l��msgdope�t �result

extern int

l��mips�ipc�reply�deceiving�and�wait�l��threadid�t dest�

l��threadid�t vsend�

const void �snd�msg�

l��ipc�reg�msg�t �snd�reg�

l��threadid�t �src�

void �rcv�msg�

l��ipc�reg�msg�t �rcv�reg�

l��timeout�t timeout�

l��msgdope�t �result

extern int

l��mips�ipc�send�l��threadid�t dest�

const void �snd�msg�

l��ipc�reg�msg�t �snd�reg�

l��timeout�t timeout�

l��msgdope�t �result

extern int

l��mips�ipc�send�deceiving�l��threadid�t dest�

l��threadid�t vsend�

const void �snd�msg�

l��ipc�reg�msg�t �snd�reg�

l��timeout�t timeout�

l��msgdope�t �result

extern int

l��mips�ipc�wait�l��threadid�t �src�

void �rcv�msg�

l��ipc�reg�msg�t �rcv�reg�

l��timeout�t timeout�

l��msgdope�t �result

extern int

l��mips�ipc�receive�l��threadid�t src�

void �rcv�msg�

l��ipc�reg�msg�t �rcv�reg�

l��timeout�t timeout�

l��msgdope�t �result

extern int l��mips�ipc�sleep�l��timeout�t t�

l��msgdope�t �result

���

� some functions to examine fpages

���

extern int l��ipc�fpage�received�l��msgdope�t msgdope

 �� test if fpages

received ��

extern int l��ipc�is�fpage�granted�l��fpage�t fp

extern int l��ipc�is�fpage�writable�l��fpage�t fp

���

� Symbolic constants for error codes� see reference manual for details

���

�define L��IPC�ERROR�x
 ���x
�msgdope
 � L��IPC�ERROR�MASK

�endif

�define L��IPC�ENOT�EXISTENT �x��

�define L��IPC�RETIMEOUT �x��

�define L��IPC�SETIMEOUT �x��

�define L��IPC�RECANCELED �x��

�define L��IPC�SECANCELED �x �

�define L��IPC�REMAPFAILED �x��

�define L��IPC�SEMAPFAILED �x��

�define L��IPC�RESNDPFTO �x��

�define L��IPC�SESNDPFTO �x��

�define L��IPC�RERCVPFTO �xA�

�define L��IPC�SERCVPFTO �xB�

�define L��IPC�REABORTED �xC�

�define L��IPC�SEABORTED �xD�

�define L��IPC�REMSGCUT �xE�

�define L��IPC�SEMSGCUT �xF�

���

� Size limitations on memory based IPC

���

�define L��MAX�DMSG�SIZE ������������
 �� max direct message size ��

�define L��MAX�STRING�SIZE ������������
 �� max indirect message size ��

�endif �� ��L��IPC�� ��

D�� sigma��h

�ifndef ��L��SIGMA��H��

�define ��L��SIGMA��H��

�include !l��types�h"

���

� define some constants relevent to sigma�

���

�ifdef �LANGUAGE�C

�ifdef ��GNUC��

�define SIGMA��DEV�MAP ��xfffffffffffffffeULL

�define SIGMA��KERNEL�INFO�MAP ��xfffffffffffffffdULL

�define SIGMA��TID ��l��threadid�t
 �ID� �� !! ��
	

�else

�define SIGMA��DEV�MAP ��xfffffffffffffffeul

�define SIGMA��KERNEL�INFO�MAP ��xfffffffffffffffdul

�define SIGMA��TID �l��sigma��tid

extern const l��threadid�t �l��sigma��tid

�endif

�else

�define SIGMA��DEV�MAP �xfffffffffffffffe

�define SIGMA��KERNEL�INFO�MAP �xfffffffffffffffd

�define SIGMA��TID �� !! ��

�endif

���

� define format of kernel info page

���

�ifdef �LANGUAGE�C

typedef struct �

word�t magic
 �� L�uK ��

hword�t version

hword�t build

dword�t clock

dword�t memory�size

dword�t kernel

dword�t dit�hdr

dword�t kernel�data

	 l��kernel�info

�else

�define LKI�MAGIC �

�define LKI�VERSION �

�define LKI�BUILD �

�define LKI�CLOCK �

�define LKI�MEMORY�SIZE ��

�define LKI�KERNEL ��

�define LKI�DIT�HDR ��

�define LKI�KERNEL�DATA ��

�endif

�endif

D�� dit�h

�ifndef DIT�H

�define DIT�H

�define DIT�NIDENT �

�define DIT�NPNAME ��

�define DHDR�SEG�SIZE ����

�define DHDR�ALIGN ����

�define DIT�RUN �

�if defined��LANGUAGE�ASSEMBLY

�define D�D�IDENT �

�define D�D�PHOFF �

�define D�D�PHSIZE �

�define D�D�PHNUM ��

�define D�D�FILEEND ��

�define D�D�VADDREND ��

�define D�P�BASE �

�define D�P�SIZE �

�define D�P�ENTRY �

�define D�P�FLAGS ��

�define D�P�NAME ��

�else �� assume C ��

typedef unsigned int Dit�uint

typedef struct �

unsigned char d�ident�DIT�NIDENT�

Dit�uint d�phoff

Dit�uint d�phsize

Dit�uint d�phnum

Dit�uint d�fileend

Dit�uint d�vaddrend

	 Dit�Dhdr

typedef struct �

Dit�uint p�base

Dit�uint p�size

Dit�uint p�entry

Dit�uint p�flags

unsigned char p�name�DIT�NPNAME�

	 Dit�Phdr

�endif

�endif

Bibliography

�CFL��� P� Cao� E� W� Felton� and K� Li� Implementation and performance of
application	controlled
le caching� In �st USENIX Symposium on Operating
Systems Design and Implementation �OSDI�� pages ���"���� Monterey� CA�
�����

�GGKL��� M� Gasser� A� Goldstein� C� Kaufmann� and B� Lampson� The Digital dis	
tributed system security architecture� In ��th National Computer Security Con�
ference �NIST�NCSC�� pages ���"���� Baltimore� �����

�HKK��� H� H�artig� O� Kowalski� and W� K�uhnhauser� The Birlix security architecture�
Journal of Computer Security� ������"��� �����

�Int��� Integrated Device Technology� IDT��R�
�� and IDT��R���� RISC Processor
Hardware User�s Manual� rev ��� edition� April �����

�KH��� R� Kessler and M� D� Hill� Page placement algorithms for large real	indexed
caches� ACM Transactions on Computer Systems� ��������"��� November �����

�KN��� Y� A� Khalidi and M� N� Nelson� Extensible
le systems in spring� In ��th ACM
Symposium on Operating System Principles �SOSP�� pages �"��� Asheville� NC�
�����

�LCC��� C� H� Lee� M� C� Chen� and R� C� Chang� HiPEC� high performance external
virtual memory caching� In �st USENIX Symposium on Operating Systems
Design and Implementation �OSDI�� pages ���"���� Monterey� CA� �����

�Lie��� J� Liedtke� Clans � chiefs� In ��� GI�ITG�Fachtagung Architektur von Rechen�
systemen� pages ���"���� Kiel� ����� Springer�

�Lie��a� J� Liedtke� Improving IPC by kernel design� In ��th ACM Symposium on
Operating System Principles �SOSP�� pages ���"���� Asheville� NC� �����

�Lie��b� J� Liedtke� A persistent system in real use " experiences of the
rst �� years�
In �rd International Workshop on Object Orientation in Operating Systems
�IWOOOS�� pages �"��� Asheville� NC� �����

�Lie��� J� Liedtke� On �	kernel construction� In �	th ACM Symposium on Operating
System Principles �SOSP�� pages ���"���� Copper Mountain Resort� CO� �����

�RLBC��� T� H� Romer� D� L� Lee� B� N� Bershad� and B� Chen� Dynamic page mapping
policies for cache con�ict resolution on standard hardware� In �st USENIX
Symposium on Operating Systems Design and Implementation �OSDI�� pages
���"���� Monterey� CA� �����

��

