
Resource Management in the
Mungi Single-Address-Space Operating System

Gernot Heiser, Fondy Lam and Stephen Russell
Department of Computer Systems

School of Computer Science and Engineering, University of NSW, Sydney 2052, Australia
E-mail: G.Heiser@unsw.edu.au, WWW: http://www.cse.unsw.edu.au/̃ disy

UNSW-CSE-TR-9705 — August 1997

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



2

Abstract

We present the accounting system used for backing store management in the Mungi single-
address-space operating system. The model is designed such that all accounting can be done asyn-
chronously to operations on storage objects, and hence without slowing down such operations. It is
based on bank accounts from which rent is collected for the storage occupied by objects. Rent au-
tomatically increases as available storage runs low, forcing users to release unneeded storage. Bank
accounts receive income, with a taxation system being used to prevent excessive buildup of funds
on underutilised accounts.

The accounting system is mostly implemented at user level, with minimal support from the
kernel. As a consequence, the accounting model can be changed without modifying the Mungi
kernel.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that copying is by permission of the authors. To
copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or
a fee.

Copyright c�1997 by Gernot Heiser, The University of New South Wales.



3

1 Introduction

Fair allocation of shared resources is a traditional duty of an operating system. The most important
resources are CPU time, RAM and secondary storage. The CPU is a pre-emptible resource, users of
which are scheduled for short periods of time, based on considerations such as total system throughput
and process priorities. RAM is usually also treated as a pre-emptible resource and assignment to users is
based on similar considerations as in the case of CPU time. Secondary storage, by contrast, is an example
of an allocated resource: As it is used for long-term data storage it is generally not pre-emptible. The
amount of secondary storage allocated for a particular purpose has little impact on system performance,
but much on whether or not users can get the service they want from the system. The system must ensure
that individual users cannot starve others by using an unreasonable amount of storage.

The major challenge for the system is to control the proliferation of unneeded objects in a system in
which it is difficult to use conventional garbage collection methods. This paper examines the problem of
managing the allocation of secondary storage. It does so in the specific context of the Mungi operating
system developed at UNSW.

2 Overview of Mungi

Mungi [1] is a single-address-space operating system (SASOS); i.e., all processes throughout all com-
puting nodes in the system share the same virtual address space. That address space contains all data,
transient as well as persistent. Within this single-level store data are identified through their (64-bit)
addresses.

Virtual memory is allocated in contiguous, page-aligned segments called objects, which are also
the unit of protection: A process is granted certain access rights to all or none of an object. Access is
controlled via password capabilities: When an object is created, the system returns a capability to the
user, which contains the object’s base address and a password. Such a capability grants full (read, write,
execute and destroy) rights to the object and is called an owner capability. A process holding an owner
capability (an “owner” for short) can register less powerful capabilities for an object.

Capabilities can freely be stored or passed around without system intervention. They are protected
from forgery by their password, which is registered in a global, distributed data structure called the
object table (OT). When validating a capability the system compares its password with the list of valid
passwords stored in the OT and grants access if the requested operation is compatible with the access
mode stored with the password in the OT.

Backing store for virtual memory objects is allocated on demand, i.e., no backing store is reserved
when an object is first created. Once a particular page of an object is first accessed, the system allocates
backing store for that page. Virtual memory is cheap in this system (there are 16 billion gigabytes of it),
but allocated pages are, of course, limited by the amount of disk connected to the system. Hence the use
of backing store needs to be controlled. At first glance, it might seem that automatic garbage collection
would solve the problem. However, as explained in Section 3.2, we are not addressing the same issues
as those faced by garbage collection. The objective of our system is to discourage users from over-using
secondary storage.

3 Previous approaches

This section summarises existing approaches applicable to the management of backing store.



4 3 PREVIOUS APPROACHES

3.1 Ignoring the problem

The simplest approach to is to ignore the fact that secondary storage is a limited resource, and allocate
storage to users on demand. This may lead to all storage being exhausted, in which case a process
attempting to allocate data will fail, and users are asked (by the system operator) to “clean up”.

This approach is reasonable on a single-user system, such as a personal computer, or on a system
shared by a number of cooperating users, such as a work-group environment. It is unsuitable in a
general multi-user environment; e.g., a university environment where staff and students share the same
physical disks. The ability of individuals, by malice or accident, to prevent others from using the system
productively is unacceptable in such an environment.

3.2 Automatic garbage collection

Data which have no more use in the system, e.g. because they are no longer accessible, constitute
garbage, which should be removed to minimise waste of resources. Garbage collection on secondary
storage is usually integrated with the file system: The file system maintains reference counts (e.g. the
number of links to a file) and automatically removes the file when the count reaches zero.

This is, however, insufficient for controlling disk space usage. A file which contains nothing of
interest to any user, and which will therefore never be accessed again, is not “garbage” in the above
sense, as it is still referenced by a directory entry and it is therefore impossible for the system to discover
its uselessness and remove it. In the end, users must decide whether they want to keep or remove data.
The best the system can do is to provide an incentive for users to clean up (or a penalty for failing to do
so).

3.3 Quotas

The usual approach is to introduce fixed, per-agent storage limits or quotas. These are usually set on a
per-user basis, where users are allowed to allocate storage up to their quota, after which point no further
allocation is possible (i.e., the “penalty” for not cleaning up is to prevent users from storing further data).
A distinction is often made between “soft” and “hard” limits, the former can be exceeded (possibly for
a limited time only, and generally resulting in some warning) while the latter cannot. Users are fully
responsible for managing their own storage within their quota. Such a system is implemented in most
commercial multi-user systems such as UNIX.

One of the main drawbacks of quota systems is their inflexibility. Users may exhaust their quota,
and thus be forced to free up storage, even though there is plenty of free storage available system-wide,
and even though a user may need a large amount of storage for only a very short time. This approach
cannot make any difference between more or less valuable data, or distinguish between long-term or
short-term storage.

The inflexibility of quota systems becomes evident when looking at the resource use they permit.
Quotas may be set such that the sum of all quotas does not exceed the available storage. In this case
the system cannot run out of storage, but as a large section of users will not exhaust their quota, a large
fraction of the resource will always be unused. Alternatively, the resource can be over-committed (i.e.,
the sum of all quotas is allowed to exceed the total amount of available resource). In that case, the
system may not be able to grant a request for resources even though the requesters are well within their
quotas.

Quotas can have obscure effects. For example, consider a UNIX file system with quotas. Every file
has a user dedicated as its owner, and every user has a disk quota. Disk space allocated to files owned by



3.4 Economic models 5

a particular user is charged against that user’s quota. Consider a malicious user A who (hard-) links all
files of another user B which are accessible to A and reside on a file system on which A has a directory.
If A creates these links in a directory which is not accessible to B, B cannot discover these alternative
links to her files. She can only infer from the link count on her files that such links exist. B can now
no longer remove these files (she can only unlink her own paths) and therefore they keep being charged
against her quota. By using this method systematically, A can mount a denial-of-service attack against
B, because B will eventually run out of disk quota. B cannot even detect who is attacking her. The only
way out is for B to ask the superuser to run a search over all files in the respective partition.1

A final, very significant, drawback of quotas is that they need to be checked and updated whenever
resource usage changes, e.g. every time a file is created, destroyed, extended or truncated. A system-
wide directory of all user quotas could be kept which must be updated consistently whenever any file
changes size, a huge problem in a distributed system. The problem can be eased by keeping per-partition
quotas, at the expense of making the system less transparent to users, who now need to be aware of a set
of quotas, one for each file system partition.

3.4 Economic models

An alternative approach is based on an economic view of resources. While in a quota system resource
use is essentially free, but limited, an economic model puts a cost on any resource use, and leaves it to
users (or “clients”) to decide whether the benefit obtainable from using a resource outweighs the cost.
While computer operators have been charging for machine time since the early days of computing, and
on many commercial timesharing system it has been possible to buy scheduling priority with “real”
dollars, only few attempts have been made in the past to use an economic approach for internal resource
allocation in a context where “real” money is not necessarily an issue.

3.4.1 “Money” and “rent” in the Monash Password Capability System

Possibly the earliest use of an economic model for resource management was in the Monash Password
Capability System [2]. That system charges size-dependent rent for each object, and defines an object
as garbage when it cannot pay its rent. To this end, every object is associated with some amount of
money, where money is defined as a transferable right to use system services. This association is done
by assigning a monetary value to every capability. Every object has a unique master capability, from
which (potentially lesser) capabilities can be derived. Monetary values belonging to derived capabilities
are subsets of the respective master capability’s money, and withdrawal from a derived capability’s
money implies a withdrawal from the master. A rent collector periodically scans the address space and
withdraws money from the master capabilities of all objects. Garbage objects are removed.

This system avoids the problems associated with garbage collection by shifting the responsibility
for resource management to users. A user who wants to ensure that a particular object continues to
exist must ensure that sufficient money remains associated with the object’s master capability. Processes
(being objects themselves) can do this by transferring some of their own money to other objects. Besides
freeing the system from the need to decide what is garbage, this system has the significant advantage
that all accounting is done “off-line” (i.e., by a background process) so user operations on objects are
not slowed down by the need to perform accounting, as they are in a quota system.

Money in the password capability system is also used to purchase services other than storage, in
particular processor time.

1Note that this problem cannot be solved by garbage collection: The files are not garbage, as they are linked to A’s directory.



6 3 PREVIOUS APPROACHES

3.4.2 Amoeba’s “bank accounts”

Amoeba’s resource management system [3] was developed at about the same time as that of the Pass-
word Capability System. It is also based on the idea that money is used to pay for resources. Amoeba
achieves this by introducing bank accounts as objects in their own right, rather than associating a mon-
etary value with each object. Accounts are maintained by a bank account server, which is contacted for
transactions on accounts.

Bank accounts are typically associated with individual human users of the system, whom they pro-
vide with the means to purchase services. This approach has the advantage that most users normally
only need to be concerned with a simple account, which makes the accounting system quite transparent.
Another advantage is that different subsystems can implement their own accounting policies (and one
can easily envision setting up “competing” servers providing similar services with different accounting
policies, leaving to users the decision which policy is best suited to their needs). This is supported by
the provision of several, possibly convertible, currencies.

The system is flexible enough to allow implementation of a quota system (where disk blocks are
“purchased” on allocation, and money is refunded on deallocation) or a rent system, where storage
usage implies a continuous flow of money from client to server. The latter requires either the client to
pay the server a sufficient amount in advance, or regular communication between client and server (e.g.
via an alert mechanism) to keep the money flowing. The client needs to trust the server to provide as
much of a resource as the client has paid for.

A similar system was presented by Neuman [4].

3.4.3 Drexler and Miller’s market model

Drexler and Miller [5] present a detailed discussion of various “ecological” models for resource manage-
ment. Their models of storage management envision storage providers optimised to maximise storage
usage, by adjusting the price of storage to market demand, determined by a bidding process. More
important objects would bid more for space than less important ones. Objects recover their rent by
charging their clients for use. Objects which run out of funds are garbage collected. Alerts can be used
by cash-stripped objects to ensure their survival.

The model carries significant overhead, which restricts its use to systems of fairly heavyweight
objects. Also it would seem that, in order to make full use of what it offers, applications would be
forced to constantly “play the markets” for the best deal, or lose out. For example, cache sizes must
constantly be adjusted according to the price of storage as otherwise performance or account balance
would suffer. We suspect that this model would create an environment which is rather different from the
“look-and-feel” of present computing systems. This is not necessarily bad, and it would be interesting to
see such a system in action. However, introducing such a dramatically different resource management
model at the same time with another change in paradigm (i.e., the single address space) would make
fair performance evaluations of the system more difficult and, most likely, also increase the reluctance
to migrate to the new system.

However, the main drawback for our purposes is that the system does not operate off-line, but re-
quires accounting operations whenever storage is allocated or freed.

3.4.4 Opal’s resource groups

The Opal SASOS [6] uses a form of bank accounts called resource groups. Objects are created with a
reference to a resource group, which is charged for the resource use. This is combined with reference



7

counting based on entities explicitly registering “an interest” in a particular object; objects are deleted
when that reference count becomes zero.

3.4.5 Min-funding revocation

Waldspurger [7] presents the min-funding revocation algorithm, where agents hold tickets which repre-
sent relative rights to resources, that is the amount of a resource a particular ticket can buy depends on
the value of the ticket as well as on the total value of tickets which are bidding for the particular resource.
When a resource is released (voluntarily, or as a result of being out-bid) the respective ticket value is
released to the holder. This system revokes resources with little notice and seems more appropriate for
allocating caches or RAM than backing store. Again, accounting is done on-line, which to us negates
one of the main advantages of economic accounting models.

4 Mungi’s bank accounts

4.1 Motivation

Many of the above economic schemes are based on the assumption that users can perform their tasks
more effectively if they increase their resource usage, as long as “the price is right”, and that the system
should encourage high average resource usage. This is clearly the case for physical memory or other
cache stores, where system throughput is expected to be increased if all such storage is used, and it is
the task of the accounting system to ensure that different users get a fair share of the resource (and the
resulting performance advantage).

However, as far as backing store is concerned, we do not believe that it is generally advantageous
for the system to maximise utilisation of this resource. Rather we believe that users have an inherent
need for some amount of storage, dictated by the amount of data involved in their operations. On top of
this, garbage tends to accumulate, due to faulty programs or because some information loses its value
over time. We also believe that only the users themselves can make the decision whether a particular
object is still needed. Hence, the actual removal of garbage objects needs to be fully under user control,
implying that the system cannot automatically remove user objects.

Furthermore we want a system which is easy to use, and which is similar enough to established
approaches that the difference is not evident to most applications. In particular we do not want to
require users to maintain explicit reference to persistent objects, as these tend to be unreliable (due to
cycles, or users “forgetting” references).

4.2 Basic model

Our model [8] is also based on bank accounts. Whenever an object is created, a reference to a bank
account, which is to pay for the object’s backing store, is supplied to the system and recorded in the OT.
As the main intention is to charge for backing store (not virtual memory) and a newly allocated object is
not using any backing store, no accounting is required at that stage. The system only confirms that a valid
bank account has been supplied. This is like validating access to any other object; validation information
is cached and hence validations are very fast [9, 10]. Object creation (or destruction) is therefore not
slowed down significantly by accounting. Furthermore, no accounting operations are performed when
backing store is allocated to, or removed from, an object.

As in the Password Capability System (see Section 3.4.1) the actual accounting is performed by a
background process, the rent collector. That process traverses the OT and for each object charges the



8 4 MUNGI’S BANK ACCOUNTS

associated bank account for the actual amount of backing store allocated to it. If the rent collector finds
an account overdrawn, this account is marked as such and can no longer be used to create new objects.2

If it finds an invalid bank account reference (due to the bank account having been destroyed, or converted
into a “regular” object) the corresponding object is removed.

To make up for the constant drain on accounts, a source of income is required. We therefore asso-
ciate a salary with each account. A pay master process periodically visits all accounts and deposits an
appropriate amount.

4.3 Storage cost

One of the main advantages of economic models is their ability to respond to situations where demand
for a resource exceeds supply. This is generally done by increasing the price of a resource during high
demand. In our model this means that the rent charged to objects increases as free storage becomes
scarce.

In order to prevent the system from ever completely running out of free storage, we can impose a
rent which approaches infinity as free storage approaches zero. That way, when storage becomes scarce,
rent increases to arbitrarily high levels, forcing users to free up storage (as they can no longer afford to
pay) and thereby increasing availability.

A main characteristic of our approach is that it be as transparent to users as possible. Hence we want
to avoid drastically varying storage costs (which would require users to make frequent decisions on
which objects to keep and which to remove) as much as possible, and thus restrict significant variations
of the basic rent to the case of a heavily utilised system. This implies using a rent formula which is
almost constant at low utilisation, increases slightly with increasing utilisation, and only raises sharply
with very high utilisation.

A “smooth” (i.e., analytical) cost function with zero derivative for an empty system is preferable.
We use for the cost � per unit of storage (e.g., a page):

���� � � � �p�� exp

�
�

�� �
� �

�
� (1)

where � (� � � � �) is the storage utilisation of the system (� � �: empty, � � �: full), and p is a
parameter which the system administrator can use to determine how quickly the storage cost increases
with increasing system utilisation. That parameter has an intuitive meaning which becomes clear when
we observe that

������ � � � p� (2)

i.e., p is the relative increase in rent of a half saturated over an empty system. Fig. 1 shows the cost
function for various values of p.

4.4 Income and taxation

A fixed income has the disadvantage that an account which is used very little can accumulate large
amounts of money. Consider a user who goes on an extended leave after some thorough “cleaning up”
(i.e., removing most of his objects). Income during the period of absence would far exceed rent charged
to his account, with the effect that the user would be very “rich” upon his return. He could then (for a

2As access validations are cached, this does not necessarily take immediate effect. However, validation caches are guaran-
teed to be flushed regularly, hence the revocation of rights, including the right to use a bank account to create objects, can only
be delayed for a certain maximum amount of time.



4.5 Timing issues 9

1

10

100

0 0.2 0.4 0.6 0.8 1

st
or

ag
e 

co
st

storage utilisation

p=10
p=1

p=0.1
p=10-2

p=10-3

p=10-4

Figure 1: Storage cost, �, as a function of storage utilisation, �, for various values of the parameter p.

short time, at least) allocate vast amounts of storage, effectively “buying out” other users. This is not
the intention of the system, as incomes are supposed to reflect the share of the system a user can get.

To prevent such distortions we introduce a form of taxation.3 Our taxation formula should have
virtually no effect for accounts with a low balance (compared to income), while limiting the amount of
money that can be accumulated. If we define � to be the account balance divided by salary (� � � � �),
we want an analytic function which approaches identity (i.e., no taxation) at � � � and has vanishing
slope (i.e., saturates) at � � �. In addition we require the function to be strictly monotonic, to avoid
anomalies such as an account A with a pre-tax balance exceeding that of account B, ending up with a
post-tax balance less than B’s. We use the tax function

���� � b

�
�� exp

�
�

�

b

��
� (3)

where b is again a configuration parameter. We observe that

���� � b� (4)

giving b the meaning of the maximum multiple of income which can accumulate in any account (post
tax). Fig. 2 shows the effect of taxation for different values of the parameter b.

4.5 Timing issues

Rent collection should happen more or less regularly and reasonably frequently to prevent distortions
from arising. Once a day (during times of low system usage) seems to be an appropriate frequency; the

3This is different from real economies, where taxation is imposed to provide the government with income.



10 4 MUNGI’S BANK ACCOUNTS

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

po
st

-t
ax

 b
al

an
ce

pre-tax balance

b = 0.1
b = 1
b = 3

b = 10
b = 100

no taxation

Figure 2: Effect of taxation for various values of the balance limit b.

current charge per page is determined once according to Eq. 1 at the beginning of the rent run. The exact
timing of rent collection is uncritical, as a time stamp is kept in each object’s OT entry specifying when
rent was last collected. The rent collector charges for the actual time elapsed since the time stamp, i.e.,
the rent deducted is the product of the present rate and the actual time elapsed.

The pay master is also run at roughly regular intervals. It uses a time stamp in the bank account to
scale the basic salary by the time elapsed since the last deposit.

Taxation happens immediately before salary deposition: Before depositing income, the paymaster
first taxes the previous balance. This can, potentially, cause problems when salary is not paid at regular
intervals, as accounts where salary is deposited more frequently (and in smaller increments) would be
excessively taxed if Eq. 3 was applied naively. However, taxation can also be scaled by the elapsed
time interval, by replacing b in Eq. 3 by b��t, where �t is the time elapsed since the last salary was
deposited. This cannot completely prevent that results depend on the frequency of taxation, however,
as Fig. 3 shows, the differences are quite small even when comparing once-a-day deposits with several
daily runs.

For the normal case of daily runs with slight variations of timing (of the order of a few hours) the
difference will be hardly noticeable. This is shown in Fig. 4, where, starting from an initial balance
of zero, for ten successive days the remaining balance is taxed, new salary deposited, and a constant
rent is charged. This is done either in exact daily intervals, or in intervals of mean length of one day
and a standard deviation of one hour; the times add up to exactly ten days in either case. The resulting
differences in the final balance is only a few percent.

Short-lived objects are charged only if they happen to be around during the rent run. If rent runs are
scheduled at fixed times, users could conceivably adapt their activities to minimise storage usage during
that time. If they are able to do this, then they obviously do not really need that storage, but only make



11

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

ne
w

 b
al

an
ce

previous balance

once per day, b=10
twice per day, b=10

4 times per day, b=10
once per day, b=3
twice per day, b=3

4 times per day, b=3

Figure 3: Effect of frequency of taxation and salary deposition on balance after one day, assuming no
rent charges.

use of an idle resource (e.g. to increase performance). From the system management point of view this
is not objectionable. If, however, this was conceived as a problem, it could be countered by performing
the rent run at random times, possibly several times a day. Rent collection does not need to be coupled
to salary deposition and taxation, hence there is no reason why rent could not be collected several times
a day, while salaries are only deposited once a day.

Alternatively it would be possible to introduce, in addition to the rent, a once-per-lifetime object
charge. If this is collected at object deletion time, it would not slow down object operations as deletions
can be performed asynchronously. That approach, however, would require some (simple) change to the
kernel support presented in Section 5.1.

5 Bank account objects

5.1 Kernel support for accounting

The kernel support for the accounting system is minimal, as almost everything can be done at user level.
The kernel, while not having to know about the operation of the accounting system, only needs to ensure
that users cannot bypass it — an example of the separation of policy and mechanisms in Mungi.

Kernel support consists of two parts: the kernel ensures that

1. every object, when created, has a valid bank account, and

2. bank accounts cannot be tampered with.



12 5 BANK ACCOUNT OBJECTS

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

fin
al

 b
al

an
ce

daily rent

regular, b=3
random, b=3
regular, b=10

random, b=10

Figure 4: Effect of regular vs. random taxation intervals, assuming constant rent charges.

The first point requires that a bank account reference (read capability) is passed to the ObjCreate
system call, and that the kernel validates that this capability actually refers to a financial bank account.
To this end, the OT entry for each object contains a flag is acct to identify bank accounts, plus a flag
is financial only relevant to bank accounts.4 On object creation the kernel verifies that both flags are
set in the object referred to by the bank account capability provided by the user. That capability is then
recorded in the new object’s OT entry.

To make bank accounts tamper-proof the kernel only allows creation of bank accounts by processes
which have read access to the OT. (Note that reading the OT gives access to all passwords, and hence to
all objects. Read access to the OT is like having an effective UID of “root” in UNIX.)

5.2 Bank account operations

Fig. 5 shows the bank account data structure. The charges array contains the list of objects which were
charged to the account during the last rent collection cycle, together with the amount of backing store
consumed by each. The field total charge is the total amount which was charged by the last run of the
rent collector. It is equal to the sum of all sizes in the charges list, multiplied by the present storage
cost (Eq. 1). When the account balance falls below alert thresh, the alert procedure is called to alert the
owner of the account.5

Bank accounts receive their income from parent accounts. There is a special “root” account with
infinite income from which all first-order accounts receive their income. The paymaster on each run first

4Both flags are part of the access information kept in the validation cache [10].
5This call uses PDX, Mungi’s protected procedure call mechanism [9], to execute in the owner’s protection context.



5.3 Lost and found objects 13

typedef struct {
address object;
int size;

} BA_charge;
typedef struct {

Cap_t parent;
float salary;
float balance;
time_t last_deposit;
float alert_thresh;
void (*alert)();
float total_charge;
int n_charges;
BA_charge charges[];

} Bank_account;

Figure 5: Bank account data structure.

updates the timestamp of the root account, and then traverses the list of other accounts. For each account
it taxes the present balance, debits the parent for the salary earned (after first processing the parent if
it has not already received its salary; this can be checked by comparing the timestamp with the root),
updates the balance with the salary and updates the timestamp.

Bank accounts, being objects themselves, also pay rent for their storage (which is usually charged to
their parent account). Bank accounts are created by the bank manager upon request from a user process
(which might be the system administrator). The request must be accompanied by a read capability to
a parent account from which the new accounts is to draw its salary. The system administrator holds a
read capability to the (infinitely rich) root account and can thus create new income streams. The bank
manager returns to the caller a bank account read capability, and keeps all owner (or write) capabilities
to itself. This ensures that modifications of bank accounts can only be done by the accounting software
(which includes the rent collector and pay master).

5.3 Lost and found objects

The charges list in the bank account contains all objects which are charged to an account, including
those a user may have “lost”. In most cases the user will want to remove such objects. This makes it
important to be able to distinguish between “lost” and “known” objects.

User-level naming in Mungi is based on the Plan 9 naming service [11], which allows users to
tailor their own name spaces. There is no system-wide human-readable name for objects, lost objects
in this context are those who do not appear in a user’s name space. In order to identify those, the
name service supports not only a mapping from human-readable names to object addresses, but also
the inverse mapping. A user can therefore run a library function converting the object references in the
charges list back into textual names bound to that user’s name space. Objects for which this inverse
mapping fails are lost and can be removed.



14 REFERENCES

5.4 User operations

Typical user operations on bank accounts are a modification (or cancellation) of an account’s income
stream, and one-off transfers between accounts. The former are performed by the bank manager on
behalf of a user who presents a valid capability to the source account (as in the case when the income
stream was initially set up). In the case of a one-off transfer, a capability for the source account is
required. Should the transfer of money without agreement by the recipient be considered unsafe, the
bank manager could instead issue the sender of the money with a signed certificate which the recipient
can present to have the money credited to his account.

Another important operation is the deletion of (lost) objects drawing rent on an account. While the
protection system will not let a process perform any operations on an object to which that process has
no capability, it is important that the owner of a bank account can delete objects for which she is paying.
Therefore the bank manager system will, on request from a process presenting a read capability to an
account on which a particular object’s rent is drawn, delete that object. The bank manager can do this,
since it holds a read capability to the OT and therefore has full access to all objects. Note that this does
not in any way bypass Mungi’s protection system, or users’ views thereof. Logically, when creating a
new object (and presenting a bank account capability to which rent will be charged), the system records a
delete capability to the new object in the bank account. The same effect can be achieved more efficiently
as outlined above, so that such recording of object capabilities in a bank account is not necessary, but
users are still aware that a read capability to a bank account implies delete capabilities to all objects
whose rent is charged to that account.

6 Conclusions

We have presented Mungi’s bank-account-based resource accounting system. Its main advantage is that
it operates off-line, so that operations on objects (such as creation, deletion, and initialisation) are not
slowed down by accounting.

An accounting system must be trusted as some of its operations are inherently privileged. Therefore,
in a system where accounting is left to the providers of services, these servers must be trusted too (as in
the case of Amoeba). We have gone the other way by providing accounting for storage, one of the basic
resources, as part of the system. This can then be used to implement services at user-level without any
need for trust.

The accounting system presented in this paper provides a high degree of flexibility to the system
administrator. While it automatically responds to resource shortages, the system administrator has sig-
nificant control over how soon, and how strongly, the market forces, which keep the system operational,
take effect.

As all policies are implemented at user level, they are easily extended or modified. It is particularly
easy to deal with special cases, such as users enjoying particular privileges.

The system also helps to solve the issue of garbage collection which could otherwise be a significant
problem in Mungi, due to its large flat address space.

References

[1] Gernot Heiser, Kevin Elphinstone, Stephen Russell, and Jerry Vochteloo. Mungi: A distributed
single address-space operating system. In Proceedings of the 17th Australasian Computer Science
Conference, pages 271–80, Christchurch, New Zealand, January 1994.



REFERENCES 15

[2] M. Anderson, Ronald Pose, and Chris S. Wallace. A password-capability system. The Computer
Journal, 29:1–8, 1986.

[3] Sape J. Mullender and Andrew S. Tanenbaum. The design of a capability-based distributed oper-
ating system. The Computer Journal, 29:289–299, 1986.

[4] B. Clifford Neumann. Proxy-based authorisation and accounting for distributed systems. In Pro-
ceedings of the 13th International Conference on Distributed Computing Systems, pages 283–291,
Pittsburgh, Penn, USA, May 1993. IEEE.

[5] K. Eric Drexler and Mark S. Miller. Incentive engineering for computational resource management.
In Bernardo A. Huberman, editor, The Ecology of Computation, pages 231–266. North-Holland,
Amsterdam, 1988.

[6] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska. Sharing and
protection in a single-address-space operating system. ACM Transactions on Computer Systems,
12:271–307, November 1994.

[7] Carl A. Waldspurger and William E. Weihl. An object-oriented framework for modular resource
management. In Proceedings of the 5th International Workshop on Object Orientation in Operat-
ing Systems, pages 138–143, Seattle, WA, USA, October 1996. IEEE.

[8] Fondy F.Y. Lam. Resource accounting in Mungi. BE thesis, School of Computer Science and
Engineering, University of NSW, Sydney 2052, Australia, 1995.

[9] Jerry Vochteloo, Kevin Elphinstone, Stephen Russell, and Gernot Heiser. Protection domain ex-
tensions in Mungi. In Proceedings of the 5th International Workshop on Object Orientation in
Operating Systems, pages 161–165, Seattle, WA, USA, October 1996. IEEE.

[10] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and Jochen Liedtke. Im-
plementation and performance of the Mungi single-address-space operating system. School of
Computer Science and Engineering Report 9704, University of NSW, University of NSW, Sydney
2052, Australia, June 1997.

[11] Dave Presotto, Rob Pike, Ken Thompson, and Howard Trickey. Plan 9, a distributed system.
In European Symposium on Architectural Support for Programming Languages and Operating
Systems, pages 43–50, Tromsø, Norway, May 1991.


