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Abstract

Single�address�space operating systems �SASOS� are an attractive model for making the
best use of the wide address space provided by the latest generations of microprocessors�
SASOS remove the address space borders which make data sharing between processes di��
cult and expensive in traditional operating systems� This o�ers the potential of signi�cant
performance advantages for applications where sharing is important� such as object�oriented
databases or persistent programming systems�

Previously published SASOS were not able to demonstrate these performance advan�
tages� We have built the Mungi system to show that these advantages can indeed be
realized� Mungi is a very �pure	 SASOS� featuring an unintrusive protection model based
on sparse capabilities� a fast protected procedure call mechanism� and uses virtual memory
as the exclusive inter�process communication mechanism� as well as for I
O� We believe this
simplicity of our model makes it easy to implement it e�ciently on conventional architec�
tures�

Our realization of Mungi for the MIPS R�� ���bit microprocessor is presented� which
is based on our implementation of the L� microkernel� Mungi is shown to outperform a well�
tuned commercial operating system in several important aspects� such as task creation and
inter�process communications� and on the OO� object�oriented database benchmark� This
demonstrates clearly that the SASOS concept is viable� and that a well�designed microkernel
is an excellent base on which to build high�performance operating systems�
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� Introduction

Single�address�space operating systems �SASOS have recently been proposed as an attractive
model for making the best use of the wide address space provided by the latest generations
of microprocessors �WSO���� CLLB��� RSE����� The basic idea of these systems is that by
removing address space boundaries� they encourage sharing of data between processes�

In a SASOS� all processes share the same address space� This address space is decoupled
from the lifetime of any process� and all objects created within it are potentially persistent�
eliminating the need for a �le system� As all data live in the shared address space� and are
seen at the same virtual address by all processes� pointers have the same meaning for each
process� Arbitrary data structures can then be shared without the need for techniques such as
marshaling or pointer swizzling�

While this simpli�ed programming model makes many programming tasks much easier�
the major application areas likely to bene�t most from this approach are those that require
e�cient support for persistence� Examples of these include object�oriented database systems
and persistent programming languages�

Besides these advantages for application programmers� there are also bene�ts on the system
level� A SASOS avoids problems with virtual caches created by address aliasing in multi�
address�space systems� as every datum is always accessed through the same address� di�erent
cache lines are guaranteed to refer to di�erent data� It has also been claimed �WM��� that
the simpli�ed model signi�cantly reduces the complexity of the operating system� and leads to
improved performance�

A number of SASOS prototypes have been implemented to date� for example� Opal �CLFL���
and Angel �WM���� These implementations were intended primarily as a proof�of�concept and
have not been able to fully demonstrate the potential advantages of a SASOS� In this paper we
present implementation details and some performance �gures for the Mungi operating system�
which we believe is the �rst native implementation of a SASOS on standard ���bit hardware�

In designing Mungi� we decided to build a SASOS which was as pure as possible� without
sacri�cing support for features that we deemed essential� such as protection� encapsulation� and
orthogonal persistence� We decided to take the memory�only model as far as possible� and
eliminated explicit support for I�O and conventional inter�process communication �IPC� Our
measurements show that this approach works� The system can outperform� by a signi�cant
margin� traditional systems if applications make full use of our model�

The paper is structured as follows� Section � presents an overview of the Mungi system�
detailing the basic abstractions of our model� For this model to be accepted as e�ective� it
is also necessary to demonstrate that these abstractions can be implemented e�ciently� Sec�
tion 
 describes how we have built the Mungi model on top of our implementation of the L�
microkernel �Lie��a� for the MIPS R���� processor� In Section � we review related work on
capability systems and other global address space approaches� as well as recent implementations
of SASOS� Benchmark results for task creation and deletion� cross�domain calls� and object�
oriented database operations� show performance signi�cantly exceeding that of a commercial
operating system� These are presented in Section �� followed by conclusions in Section �� Ap�
pendix A describes the simpli�cations we made to the OO� benchmark to suit the aims of this
paper�
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� Overview of the Mungi System

The basic abstractions provided by Mungi are� capability� object� task� thread� and protection
domain�

Objects are the basic storage abstraction� They consist of a contiguous range of pages� with
no further structure imposed by the system� Objects are protected by capabilities which are
described below�

Threads are the basic execution abstraction� A task is a set of threads which share a
protection domain� A protection domain consists of a set of capabilities� Capabilities are
presented implicitly by storing them in a special data�structure known to the system� This
reduces the need for most applications to deal with capabilities and thus makes protection
transparent�

There are no explicit system calls to support I�O in Mungi� Instead� I�O devices are mapped
into virtual memory� and user�level page fault handlers and virtual memory mapping operations
are used for dealing with these devices�

The remainder of this section describes in more detail the basic Mungi abstractions�
A full description of the API can be found under the Mungi WWW pages from URL
http���www	cse	unsw	edu	au��disy�Mungi	html�

��� Capabilities

Capabilities confer to their holders rights to perform speci�c operations on objects� When an
object is created� an owner capability to that object is returned� giving the holder full rights to
the newly created object� Note that the system considers any agent holding an owner capability
as a legitimate �owner� of the object referenced by that capability �i�e�� there may be more than
one owner�

An owner can register less powerful capabilities for an object� There are �ve di�erent rights
capabilities may grant over an object� read �R� write �W� execute �X� destroy �D� and
protection domain extension �PDX� which is explained in Sect� ���� Each valid capability
grants the holder one or more of these rights to an object�� A capability granting RWXD rights
is� by de�nition� an owner capability�

Capabilities are user objects and can be stored and passed around freely� They are imple�
mented as password capabilities �APW���� protected from forgery by sparsity� Each capability
consists essentially of two parts� the base ����bit address of the object the capability refers
to �represented as the number of the object�s �rst page� and a ����bit password� The pass�
word is chosen by the owner when the capability is registered� It is normally obtained from
a library routine� Presently� we use a DES�based encryption scheme for creating �random�
passwords� However� in the future we plan to use a hardware device producing truly random
bitstrings �Wal���� The list of valid capabilities for each object is maintained by the system in
a distributed system�wide directory� the object table �OT�

As capabilities are user objects� it is not possible to determine the tasks and users who
have access to a particular object� It is also impossible to prevent a particular user who has
been given a capability for an object� from handing this capability to other users� However�

�Note that� as we rely on the hardware to enforce protection� on many architectures we cannot guarantee that

a user cannot read an object to which they only hold an X capability�
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Figure �� Active protection domain

it is possible to revoke a capability completely by de�registering the corresponding password�
rendering all copies of the capability useless�

��� Objects

An object� once created� persists until explicitly destroyed� and may outlive its creator� To
reduce a proliferation of garbage objects� we maintain for each task a kill list of all objects
created by that task� The object may be removed from the kill list by an explicit system call�
allowing it to survive its creator�

The address space released by deleted objects can be reused for new objects� When a
new object is allocated in the place of an old one� the use of random passwords ensures �in
a statistical sense that the new object receives di�erent passwords than the old one� Hence
dangling pointers and capabilities do not present a security problem�

Address space reuse is important as otherwise even a ���bit address space could conceivably
be exhausted �KC���� With reuse� address space consumption is essentially limited by the
amount of backing store available� which ensures that a ���bit address space will su�ce until it
becomes feasible to connect billions of gigabytes of disk to a single system�

����� Object table

All information about objects� including the set of valid passwords for each object� is recorded
in the object table� The kernel �and a few �privileged� tasks hold capabilities to this table�

To date we have not built a distributed version of Mungi� However� we believe that the
following aspects of the design of the OT should allow e�cient distribution�

� The OT is based on a B��tree� which allows e�cient searching for virtual addresses� and
can be used to easily partition the virtual address space into separate subtrees which can
then be distributed�

� The address space is partitioned� and each node is assigned one or more partitions� Each
node can only create objects in its partitions of the address space� This in no way prevents
data from migrating to other nodes� but does require that requests to delete an object
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are forwarded to its creator node� The creator node plays no special role in any other
operations� This strategy ensures that all updates of a particular part of the OT index
structure are performed by a single node�

� Some of the object meta�data held in the OT changes infrequently �like the list of pass�
words� Other meta�data� such as time stamps� do not require strict coherency� and can
be updated lazily by an appropriate protocol�

� Descriptors for new objects are entered into the OT lazily� An object is not guaranteed to
be in the OT unless it has been made persistent �by performing a system call to remove it
from the kill list� This avoids any OT updates for short�lived objects such as most stacks
and heaps� The kernel can re�use objects which have never made it into the OT without
compromising security� as no other task can access an object which is not in the OT�

��� Active protection domains

The main design goal of the Mungi protection system is to be as unintrusive as possible� Appli�
cations should normally not have to explicitly deal with capabilities� Consequently� we do not
require explicit presentation of capabilities in order to access an object� Instead� the system
allows capabilities to be stored in a user�controlled data structure which is searched by the ker�
nel when validating access to an object� This data structure is called a task�s active protection
domain �APD�

The APD� as shown in Fig� �� consists of a set of capability lists �Clists� which are user�
level objects conforming to a standard format� The user provides capabilities for these Clists
to Mungi� which are then kept in a list in kernel space� In order to support user�de�ned
implementations of Clists for special purposes� the user may also provide addresses of capability
handlers�

When validating access to an object previously unreferenced by a task� the kernel �rst �nds
the object�s entry in the OT� The kernel then traverses the APD in search of a capability
matching one of the passwords in the entry� When a Clist capability is encountered� the kernel
searches the corresponding Clist� If instead it �nds a handler address� that handler is upcalled
with the object�s base address as a parameter and is expected to return a capability for the
object �or NULL� If the APD is exhausted without a matching capability having been found�
a protection fault is raised�

Mungi provides system calls to allow users to add or remove Clist capabilities or handler
pointers from the APD� When a Clist capability is added it is immediately validated before the
kernel stores it in the APD� These capabilities are revalidated periodically to detect invalidations
by the owners of the Clists �c�f� Sect� 
����� Handler addresses do not need to be validated as
the failure of upcalls is not a security issue� This is discussed in more detail in Sect� 
�����

Although the management of Clists is not the kernel�s responsibility� we envisage that users
will make Clists persistent and group them together to construct a workspace that de�nes a
user�s environment� When a user logs on� the APD of their shell will be initialized from their
workspace� The majority of tasks they create will inherit this APD and will make few� if any�
changes to it� As a result� most applications are unaware of the presence of the capability
system�
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Figure �� Page fault handling by a user�level pager� Top� A page fault occurs in page P� of
object O�� Bottom� The pager has made P� resident by mapping it to page P� of object O�

�which� in this case� is handled by the default pager� O� is hidden from application code �by
keeping its capability secret� Non�resident pages are crossed out�

��� Protected procedure calls

In a SASOS� threads normally communicate via shared memory� However� in many cases
a more controlled access to data by clients is required�essentially we want a mechanism to
support object encapsulation� This can be done if the object in question is not part of any of
the potential clients� protection domain� but a mechanism is provided for the clients to invoke
methods which operate in a protection domain which includes the object�

One way to achieve this is by having active objects� i�e� objects associated with a server
task� Encapsulation can then be achieved by providing a mechanism such as remote procedure
call �RPC� which would be used by clients to have the server perform operations on the object�
This approach has a number of drawbacks� For example� the server task needs to be running
before any client can communicate with it� and its ID must be known to potential clients� This
could be achieved by registering the server so that the system will start the server at boot time�
and have the server register its ID with some well�known naming service�

A more signi�cant problem is that the client and server often need to share some data�
while their protection domains are� in general� disjoint� The client must then explicitly pass
capabilities to the server� This con�icts with our goal of providing protection in as transparent
a fashion as possible� and incurs the additional expense of validating the capabilities in the
server�s protection domain� This additional expense could be avoided by allowing by�reference
parameters to an RPC call which the kernel would map into the server�s view of the address
space irrespective of whether or not it holds a valid capability� or by the kernel manufacturing
a new capability for the purpose of the RPC� We reject these possibilities since they circumvent
the normal protection system� and obscure the protection model� In particular� they reduce the
owners� control over their objects� as access could not be reliably revoked�
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Instead of encouraging the use of active objects and a client�server model� we are using
a protected procedure call mechanism similar to the pro�le adoption mechanism of the IBM
System�
� �Ber���� Our mechanism� called protection domain extension �PDX� allows the
caller of a PDX procedure to extend its protection domain� for the duration of the call� by the
protection domain of the callee �VERH���� Unlike System�
�� our PDX mechanism does not
require special hardware�

More speci�cally� a PDX object�s descriptor in the OT contains� for each PDX capability�
a list of entry points� and a Clist capability� When a PDX call is executed� the system �rst
veri�es that the caller possesses a valid PDX capability and is trying to access an entry point
that is valid for that capability� The system then extends the caller�s APD by adding the Clist
found in the OT� and �nally transfers control to the PDX code� When the PDX procedure
returns� the PDX Clist �and all cached validation information relating to that Clist is removed
from the caller�s APD� Note that for the duration of the PDX call� the calling thread executes
in a protection domain di�erent from other threads of the same task� i�e�� other threads have
no access to the called object �unless they also perform a PDX call to the same object�
Instead of having the PDX procedure execute in a superset of the caller�s protection domain�

the caller has the option of explicitly supplying an APD when calling the PDX procedure� In
this case� the call executes in a protection domain which is the union of the supplied APD with
the Clist registered for the PDX object� This gives the caller maximum control over which
objects the PDX procedure can access� In particular� an empty APD may be passed to the
PDX procedure� which then has no access to any of the caller�s data �other than any explicit
by�value parameters�

��� Virtual memory mapping operations

Whenever an object is allocated� the system uses a default page fault handler to manage paging
to a backing store� A user�level page fault handler may be registered for an object� As there
is no I�O model in the system� a pager cannot use I�O operations to handle a residency fault�
Instead� the pager uses another memory object as its backing store�
To support forwarding of page faults� Mungi provides mapping operations between di�erent

regions of virtual memory �ERHL���� Pages belonging to an object O� may be mapped to
another object O�� which causes O��s pager to be invoked when necessary� Page faults may be
forwarded several times until they reach the default pager�

Fig� � shows how a page fault is handled by a user�level pager� O��s pager uses O� to provide
its backing store� When a page fault occurs for a non�resident page P� within O�� the O� pager
is invoked� The pager can then map P� on a page P� from O�� to provide storage for P�� If P�
itself is non�resident� the process will repeat� As soon as P� becomes non�resident� the mapping
is lost� and P� becomes non�resident as a consequence�

Copy�on�write is supported by the default pager �and is really just a special case of a
mapping operation� Further uses of these mapping operations are outlined in Sect� ������

����� Implications of aliasing

While copy�on�write introduces aliasing on read�only objects �and is thus harmless �CMS����
mappings potentially introduce the same aliasing problems as in multi�address�space systems�
This seems to defeat some of the advantages of a SASOS� However� as a mapping can vanish at
any time �whenever the source page of a mapping becomes non�resident� mapping operations
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are only useful for page fault handlers� which e�ectively prevents �abuse by normal application
code�

No problems due to aliasing exist as long as actual data are always accessed through the
same virtual address� This is easily ensured if applications only ever get to see the �top level�
object� i�e� the �nal target virtual pages of a mapping chain� while the source �or intermediate
virtual pages remain private to the page fault handlers� This privacy can be enforced by the
pagers if the �backing objects� are kept private to the pagers �i�e� no capabilities are given
away� The system discourages any other use of aliasing by not guaranteeing any coherency
between aliases�

����� Controlling I�O

I�O in Mungi is simply implemented by mapping devices into virtual memory� where they
can be accessed by suitably privileged tasks �i�e� those holding capabilities to the appropriate
addresses�

Mappings can also be used to give appropriate applications control over physical I�O oper�
ations� To achieve this� physical memory and disk are mapped into the virtual address space�
The application may be given capabilities to portions of the mapped physical memory� As these
pages never become non�resident� the application can pin some virtual pages by mapping them
to physical memory� A write to disk can be forced by �ushing a page�

Similarly� by giving an application a capability to some region mapping part of disk storage�
the application can control placement of its data on disk� by mapping its objects to particular
pages of the disk� This allows databases� for example� to control their I�O as needed�

� Implementation of Mungi

Having presented an outline of the Mungi system in the previous section� we now need to show
that these abstractions can be build e�ciently on a conventional architecture� The details of
the implementation are given below� while performance �gures are presented in Section ��

We decided to build Mungi on top of the L� microkernel �Lie���� The main reason for this
approach was that it would make the Mungi system easier to port between di�erent hardware
architectures� We also expected that� by basing our system on a well�designed and optimized
microkernel� we would �nd it easier to produce an implementation which can demonstrate that
the SASOS approach can lead to very e�cient operating systems�

In spite of using a microkernel we still consider our implementation a �native� one� as
we implemented the whole system� including re�writing the microkernel for the MIPS R����
microprocessor� Furthermore� the microkernel is essentially just an internal interface in our
design� It does not provide any functionality which is not required by higher levels of our
implementation� so there is no redundancy �which would have existed had we based the design
on Mach or a monolithic operating system�

��� The microkernel

The main features of L� which made it suitable for our use are its small size� its very e�cient
process management and IPC� and the �exible address space model it provides�
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While the L� interface is hardware independent �except for details like the number of regis�
ters used for by�value IPC parameters� the actual implementation is not� It is mostly written
in assembler� and inherently unportable �Lie���� Furthermore� there were no ���bit implemen�
tations of L� available at all� This meant that we had to implement L� from scratch� In the
following� we highlight those features of our L� implementation that impact on Mungi�

����� Page tables

The R���� CPU features a software�loaded TLB tagged with an address space ID �ASID� The
TLB contains �� entries� each mapping two neighboring �kb virtual pages� We maintain a
two�way associative TLB cache for fast TLB miss handling�

On a cache miss� the mapping is obtained from a guarded page table �GPT �Lie�
�Lie��b��
The GPT is an e�cient data structure well suited for large� sparse address spaces�

The main advantage GPTs have over alternative data structures� such as inverted page tables
�IPTs �CM���RA���� is that they e�ciently support sharing of large areas of the address space�
In our implementation we use this for quickly mapping kernel data structures �e�g� a virtual
array of thread control blocks into the client�s view of the address space for the duration of a
system call� Using clustered page tables �THK��� would have been a possibility� However� we
are doubtful as to whether clustered page tables can handle very sparse address spaces� with
many single�page objects� as e�ciently as GPTs�

Our implementation on the MIPS R���� CPU takes ����� cycles ����s for handling a page
fault� i�e� taking the fault and establishing a mapping�

����� Tasks and threads

A task in L� is a set of threads sharing an address space� Each task also contains a special
thread ��T��� which is used for handling exceptions� including IPC events and page faults� on
behalf of the task� L� tasks and threads are very light weight� for example creating a thread
takes about ���s� Creating a task costs about ������ �s �depending on the number of cache
misses� while deletion of a task takes about ���s�

����� Inter�process communication

IPC in L� is designed to be extremely e�cient� An IPC call can pass by�value parameters
through registers� In addition� it can pass large memory regions by�reference by mapping them
into the recipient�s address space� As we will show in Sect� 
����� Mungi only uses L��s IPC and
address spaces to manage protection domains�

The cost of a null IPC is �� cycles on the R���� �compared to the cost for a null system
call of �� cycles�

��� The Mungi layer

The L� microkernel provides a high�performance base on which to build Mungi� Although
the L� interface was not originally envisaged to be used to support a SASOS� its �exibility
and simplicity has made it a e�ective platform for Mungi� The following sections describe the
implementation of Mungi�
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����� The Mungi server

The Mungi API is implemented as an L� user�level server� The main role of the server is
to maintain the Mungi attributes of tasks� threads and objects� As well� it is responsible for
enforcing the Mungi protection and addressing model�

The server contains a number of threads dedicated to speci�c events� for example� one of
these threads handles Mungi �system calls�� which are translated by library stubs into IPC to
this thread� Some of these calls� such as Mungi thread operations� which correspond closely to
L� operations� can be forwarded to L� with minimal overhead�

Mungi uses another one of its threads to act as the default pager for all user tasks� Other
threads in the server are used for purposes such as semaphore management and time keeping�

While Mungi makes use of message passing IPC for interaction between these threads� Mungi
user threads are not aware of this IPC�

����� Protection domains

Each Mungi task�s protection domain is implemented as a separate L� task and L� �address
space�� The role of these address spaces is to provide separate Mungi protection domains� and
their translations from virtual to physical addresses are always consistent with each other to
provide the single Mungi address space�

For each protection domain the Mungi server maintains a cache of access validations� con�
sisting of a list of 
address range� rights� pairs� This cache is consulted by the Mungi server when
handling a page fault� Only on a cache miss will the server perform a full validation� requiring
a search for matching capabilities of the OT as well as the APD� Hence� validations normally
only need to be performed on the �rst page fault to a previously unaccessed object�

A new Mungi task can either be explicitly given an APD by its parent or it can inherent its
parent�s APD� In the latter case� the child will also inherit the parent�s access validation cache�
Creating a task in this way carries minimal overhead�

Each Mungi task uses the L� T� thread� which is invisible to user code� to handle asyn�
chronous events� For example� L� translates exceptions into IPCs to T� of the appropriate task�
T� will typically forward the exception to the o�ending thread�

Upcalls by the Mungi pager thread to a capability handler are implemented as an IPC to T�
of the faulting task� which executes the handler code� Note that� since the Mungi thread does
not execute the handler code itself� the address of the code does not require validation when
added to the APD �c�f� Sect� ��
�

����� Protected procedure calls

A key concept in Mungi is the use of PDX to provide support for protected procedure calls�
PDX is used for device drivers� user�level pagers� and to support object�oriented languages� It
is therefore important that PDX be as low cost as possible�

When a thread performs a PDX call� the Mungi server sets up a new L� task with the
extended protection domain� If the PDX call is a proper protection domain extension� i�e� the
caller does not provide an explicit APD parameter� the validation cache of the PDX task points
to the validation cache of the caller� so the PDX inherits all of the caller�s validations�

Once the PDX �task� is set up� the PDX call is translated into an IPC to that task� Exiting
the PDX procedure results in a task switch via the Mungi server back to the caller� The PDX
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task is then cached by the Mungi server for later calls from the same protection domain� Since
the PDX task�s validation cache points to the caller�s cache� additional validations performed
by the caller between PDX calls �or by another thread of the calling task while a thread is
executing the PDX have immediate e�ect on the PDX as well� This also works for nested PDX
calls�

PDX procedures which get passed an empty APD are a special case� The L� task set up to
execute the call can be shared by all callers supplying an empty APD� no matter from which
protection domain they originate� This means that only one L� task needs to be cached for
PDX procedures which need no access to the caller�s data� This class of procedures includes
user�level pagers�

Caching also works for PDX procedures which get passed an explicit APD� These start o�
with an empty validation cache� On a repeated call� a hash of the APD is compared with that
of any cached PDX kernel tasks associated with the caller task� If a matching task is found� it
is used� otherwise a new task is created�

An alternative to setting up a new L� task to receive PDX calls would be to actually modify
the calling task�s page tables in order to extend its protection domain� This modi�cation would
need to be reversed on return from from the PDX� which would make PDX calls very expensive�
One advantage of our implementation is that repeated calls become very fast as they involve
little more than an IPC to the PDX task� a very e�cient operation in L�� A further advantage
is that other threads in the calling task can continue executing without gaining access to the
PDX�s hidden data�

PDX procedures may be multi�threaded� with several threads of the same task executing
the same PDX object concurrently �possibly using di�erent entry�points� This results in all
threads sharing the same extended domain�

����� Objects

Mungi provides operations for the creation and destruction of objects� L� itself does not actually
provide memory allocation services� Rather� it relies on Mungi to manage the address space�
which it does by making use of the L� mapping operations� Objects are solely an Mungi
abstraction� and the Mungi server maintains the free list� disk mappings� validation caches� etc�
Caching of validation data could potentially open a security hole� If an object is deleted� and

another object is immediately allocated in its place� validation caching could give the holders of
capabilities to the old object access to the new object� We avoid this problem by a combination
of two strategies� All entries in the validation cache expire after a time period �t� As objects
are deallocated� their address space is not returned immediately to the free list� Instead the
address space is entered into a stale list� from where it is moved lazily to the free list� but after
a delay of at least �t� This ensures that no validation data to the old object are still cached�
Similarly� the Clist capabilities in the APD are revalidated after at most time �t�

��� Lessons learned

As we had hoped� we found that the SASOS model is indeed easy to implement� The need for
large parts of a traditional system has been eliminated� such as the management of �le system
storage� since this job is done by the swap manager� There is no need to support a separate �le
abstraction� with its data structures� mappings from �le positions to disk storage� etc� Unlike
UNIX systems� we do not have to worry about the presence of aliases when shared memory is



�


used� There is also a potential for simpli�cations at the hardware level� as virtual caches would
not require physical tags�

The addition of virtual memory mapping operations has made it possible to incorporate
into the single�address�space model user�level pagers and I�O� and leave� for example� the
implementation of stability models to the user level �ERHL���� This allowed us to build a
�pure� SASOS� where virtual memory is the only communication medium between processes�

Since we had to implement the microkernel as well as the higher layers of the system� the
question naturally arises whether it was a good idea to base the implementation of Mungi on a
microkernel� We believe the answer to that question is a clear �yes�� for the following reasons�

� The implementation of Mungi �written almost entirely in C is easily portable between
di�erent hardware architectures �and L� implementations� As the number of L� imple�
mentations increases� so do the platforms on which Mungi is available�

� The microkernel provided a well�de�ned interface which allowed us to separate our de�
velopment e�orts� While L� was being implemented on the R���� target architecture�
development of Mungi proceeded on an L� implementation on the i���� Once L� was
running on the ���bit system� the port of Mungi succeeded within around two weeks� in
spite of both the microkernel and the Mungi layer being very unstable at the time� With
more mature systems� the port would be a matter of days�

� By basing our implementation on a well�designed microkernel� many design decisions for
the lowest levels of the implementation had already been made for us�

� We still had the option of modifying the microkernel interface should that have been
necessary� However� we found no need to do so�

� As we show in Section �� layering the system did not result in a performance penalty� as
our implementation of Mungi outperforms a commercial operating system�

One of the most encouraging lessons learned is that L� proved to be a very suitable base
for implementing a system quite di�erent from what had originally been envisaged as a typical
L� �client��

To date we have only noticed one drawback of this approach� Programmers who are aware
of the fact that Mungi is built on L� can bypass the Mungi API and call L� directly� The
only problem this is likely to cause is that it prevents con�nement� as we cannot control IPC
between user tasks� Ideally� all IPC should go through the Mungi server� L� actually provides
appropriate mechanisms to control IPC �Lie���� but at the cost of doubling the number of IPCs
required to implement Mungi system calls� Alternatively� it would be possible to modify the L�
IPC code to directly enforce the restrictions required�

� Related Work

Systems using globally valid names for accessing objects have been� in one form or another�
around for a relatively long time� The best known one is probably Multics �DD���� which used
a global name space of 
segment�name�oset� pairs to identify data� However� individual processes
executed in their own private address space� Segments were made accessible to processes by
mapping them into the address space� where they could be accessed via a segment number� In
general� di�erent processes would map a particular segment to di�erent segment numbers� and
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hence virtual addresses� so this approach could not resolve the limitations to sharing imposed
by private address spaces� In contrast� a SASOS guarantees that all processes can access a
particular memory object via the same virtual address� and hence guarantees the validity of
embedded pointers across processes�

Capabilities� as introduced by Dennis and Van Horn �DVH���� provide a true global naming
space� Capabilities provide a segmented view of memory similar to that of Multics� Unlike
Multics� pure capability systems use capabilities� together with segment o�sets� as �rst class
memory addresses� Hence� in such a system all processes agree on the address of a data item�
just as in a modern SASOS�

Making capabilities �part of the lowest level of addressing generally implies building special
hardware to interpret the capabilities� Historically� there have been a signi�cant number of
systems following this approach� from the earliest commercial capability system� the Plessey
��� �see �Lev���� via the Cambridge CAP computer �NW���� to the IBM System�
� �HSH����
the Intel iAXP �
� �HLM���� and the Monads system �RA���AK���� the last probably being the
�rst ever distributed shared memory system� System�
� and Monads in particular� share much
of the philosophy of a SASOS� such as a single�level store� orthogonal persistence� object�based
protection� and� in Monads� case� transparent distribution�

In spite of hardware support� many of these systems exhibited poor performance compared
to traditional designs� Furthermore� all of these systems su�er from the problem that their
dependence on special hardware makes it impossible to take advantage of the latest progress in
CPU design� With the rapid appearance of new CPUs� there is a clear disincentive for hardware
based solutions�

It is probably fair to say that the IBM System�
� �or AS���� is the only really successful
system of this type� partially a result of the intensive use of microcode as a means to decrease
the dependence on speci�c hardware� However� even that system is not completely hardware
independent� At the very least� it requires a tagged memory� It is unclear whether such a
system would be viable without the backing of IBM�s market share in the traditional commercial
computing sector� Furthermore� the AS���� design does not seem to lend itself very well to
distribution�

Hydra �WCC���� was a software�based capability system supporting a large� �at name
space for persistent objects� Hydra can be considered the �rst microkernel architecture� as it
implemented at user level many services which were traditionally part of the kernel� Objects
were the basic units of protection and encapsulation� However� the lack of an appropriate
hardware base made objects and operations on them too expensive �Lev���� The Xerox Cedar
system �SZBH��� features a single address space to enhance sharing� Protection is not main�
tained by the operating system� but depends on the use of a type�safe programming language
�also called Cedar� Such an approach is obviously unable to support legacy software� and
seems to be too restrictive� as it will not work with many of the most popular programming
languages� Amoeba �MT��� is a distributed system using sparse capabilities for naming and
protecting objects� Capabilities are authenticated by an object�s server� which therefore needs
to be invoked for every operation on the object�

Grasshopper �RDH���� is a system speci�cally designed to support persistence� Its ba�
sic storage abstraction is called a container� which essentially constitutes an address space�
Containers� or parts thereof� can be mapped into other containers� Grasshopper presents a
generalized model of address spaces� which can emulate a traditional model� such as UNIX� as
well as the SASOS model �LRD���� However� as the single�address�space view is not enforced
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by the system� Grasshopper cannot provide the SASOS guarantee that a speci�c data item
always appears at the same virtual address for the duration of its life time� and thus cannot
ensure that data containing embedded pointers can always be shared�

Opal �CLFL��� is a recent SASOS targeted for ���bit architectures� In Opal� memory
segments� threads� protection domains� portals �protected procedure entry points and resource
groups �used for accounting are all �rst�class objects� protected by capabilities� In contrast�
Mungi only has capabilities for memory objects�
Opal� like Mungi� uses password capabilities� which generally need to be presented explicitly�

while Mungi uses implicit presentation� A protected procedure call mechanism is supported
which has the caller enter the callee�s protection domain� As the two protection domains are�
in general� disjoint� capabilities need to be passed explicitly to facilitate sharing� Opal supports
two di�erent mechanisms for communications� shared memory and RPC� Mungi� in contrast�
provides only shared memory �plus semaphores for synchronization� We believe that this is
the most natural and clean approach for communication in a SASOS�
The prototype implementation emulates Opal on top of Mach�s UNIX server� This approach

naturally has a drastic impact on performance� as discussed in Sect� �� For this reason� the
emulated Opal prototype cannot demonstrate the inherent performance advantages of a SASOS�

Angel �WM��� has very similar goals to Opal and Mungi� Contrary to most SASOS ap�
proaches� Angel does not use capability�based protection� nor does it have any explicit protection
system built in� Instead� it relies on the ability of an object to be accessed or a service to be
named in order to protect it�protection is e�ectively left in the hands of servers� similarly to
Amoeba� Angel� like Opal� provides explicit RPC as part of the model�

While the design is aimed at ���bit architectures� the prototype was implemented on i���
hardware� It therefore is not faced� and does not address� issues resulting from a huge�
sparsely used address space� The Angel prototype is distributed� using distributed shared
memory technology� The designers of Angel have studied fault tolerance issues �Wil�
� and
have demonstrated that full POSIX support� including the di�cult fork operation� is possible
in a SASOS �WMSS�
�� Angel outperforms FreeBSD in some microbenchmarks�
Nemesis �Ros��� is another recent SASOS� It di�ers from Opal and Angel in that the address

space is not distributed� and persistence is handled at the user level� Objects in Nemesis export
multiple interfaces� which are combined with closures to provide compile�time type checking�
By contrast� object support in Mungi is seen to be largely a programming language issue� with
PDX providing the basic support required�

Hagimont et al� �HMRS��� argue that application code should not have to deal explicitly
with capabilities� Their Arias SASOS� presently under development� hides capabilities from
application code and describes all protection in an extended interface de�nition language� We
believe that our approach of implicit presentation of capabilities achieves the same goals while
doing so in a fashion more appropriate to a SASOS�

� Performance

All the performance data reported in this section were obtained on an ���MHz R���� based
SGI Indy workstation with ��Mb of RAM� The R���� TLB has �� entries� each mapping a
pair of �kb virtual pages� There are two ��kb two�way set associative caches �one each for
instructions and data with a 
��byte line size� The cache�miss penalty is rather high on the
Indy� 
� cycles ���
� �s for the �rst item in a line�
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Comparisons with SGI�s operating systems used the identical platform running Irix ����
Comparisons with Opal are based on published data �CLFL���� These timings had been ob�
tained on a DEC 
������� AXP ��

�
MHz Alpha CPU� According to the SPEC ratings� this
machine should be roughly as fast as our Indy �give or take ����� �

��� Microbenchmarks

Here we present timings obtained for basic Mungi system calls� These were obtained for re�
peated calls �presumably hot caches� although some of the �gures varied strongly between
calls� obviously resulting from cache con�icts�

The Indy�s high cache miss penalty was evident in the fact that some �gures showed an
extremely strong dependence on the exact location of user code and stacks� A repeated PDX
call� for example� requires approximately ��� cycles� or ��� �s without cache misses� Actual
timings� however� varied between �� and ���s� depending on the location of the user stack�

Where possible� we are comparing our timings with those obtained for comparable operations
on Irix� and for those reported for Opal� The data are summarized in Table �� the following
sections explain the �gures�

Operation Mungi Irix Opal

Null system call ��� �� ���
Cross�domain call ����� ��� �



Thread create �
��� N�A N�A
Thread delete �� N�A N�A
Task create ��� ����� ���
Task delete ��� ����� ��
��

Object create �� N�A 
��
Object delete ��� N�A ���
Object access �
� N�A �
�!
Page fault�map �� N�A N�A

Table �� Microbenchmark timings �in �s� See text for explanations�

Null system call

The cost of a null system call is ����s in Mungi� ���s in Irix �getpid� No �gures are available
for Opal� In spite of requiring two IPC operations plus one L� system call for obtaining the
task ID� the Mungi version of this call is more than �ve times faster than the corresponding
call in the UNIX system�

Tasks� threads and IPC

Creating a new thread in Mungi takes �
�s� which reduces to ���s if an ID can be recycled
from a thread which has already terminated� In a context where threads are created and deleted
frequently �and where consequently this cost is most important this should often be the case�
Thread deletion is the same cost as thread creation with recycling� i�e� ���s� No thread times
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are available for Opal� and Irix does not presently have a thread interface signi�cantly more
lightweight than fork�

Task creation costs around ����s in Mungi ���� �s with cold caches� the corresponding
fork�exec in Irix around ����� �s� The equivalent in Opal is creation and activation of a protec�
tion domain� which takes ��� �s� In practical terms� however� the di�erence is much larger than
is evident from these �gures� While the Mungi task normally starts o� with a hot validation
cache �inherited from the parent� the Opal protection domain� once activated� will have to
attach segments in order to perform useful work�

Task deletion in Mungi has so far only been measured with a cold cache� it takes ����s�
The corresponding Irix operation takes ����ms� while Opal requires ��
ms�
The cross�domain call mechanism in Mungi is PDX� which costs between �� and ���s� The

equivalent operation in other systems is an RPC� which costs around ����s in Irix� and �

�s
in Opal�

System lookup traversal insert total
forward reverse

Irix 
��bit ���� ���� ���
 ���� �����
Irix ���bit ���� ���� ���� ���
 �����
Mungi ���bit ���� ���� ���� ��
� �����

Table �� OO� benchmark times �in ms for the single process version�

System lookup traversal insert total
forward reverse

Irix 
��bit�message passing ����� ��� ��� ����� �����
Irix 
��bit�shared memory ����� ��� ��
 ����� �����
Mungi ���bit�PDX ���� ��� ��� ���� ���


Table 
� OO� benchmark times �in ms for the multiple process version�

Objects

Object creation �which� by itself� does not allocate any backing store costs ���s in Mungi� Less
than one microsecond of that is for the OT update �on a ��level B��tree� which is su�cient to
hold at least 
� million object descriptors �GBY���� Segment creation in Opal using a recycled
inode costs 
�� �s�

Object deletion in Mungi takes ��� �s� compared to ��� �s in Opal� Neither operation can
easily be compared to Irix� which does not seem to support a memory �le system�
Opal uses explicit attach and detach operations on segments� An attach followed by a

detach takes ��� �s �best case�� We assume that the cost of an attach is half this time �which is
most likely erring in Opal�s favor� Mungi does not feature explicit attach�detach system calls�
Objects are made available to a task by inserting their capability into a Clist �an infrequent
user�level operation� The operation equivalent to an attach is touching an object for the �rst
time� The handling of such a page fault� which includes looking up its entry in the object table�
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looking up a valid capability in the APD� validating the capability� updating the validation
cache� and mapping the page to a memory frame costs �
� �s� Mapping a further page of a
previously validated object takes only ���s�

��� OO�

As an approximation to a �real�life� application we implemented the object operations ��OO��
benchmark �CS���� OO� simulates typical operations in a simple object�oriented database
system� Client code invokes a database system to perform lookup� traverse and insert operations
on a database�

We have only implemented a subset of the OO� benchmark� as we were only interested
in comparing our use of PDX and the single address space with more traditional approaches�
Given the simpli�cations we have made� it is important not to compare the numbers presented
below with data published elsewhere� The results are only meaningful for comparing Mungi
with a system running the same code �under comparable conditions� More details on the
simpli�cations we have made to OO� can be found in Appendix A�

Table � shows the results of running single�process versions of the OO� code� i�e� the database
exists in the client�s address space and is invoked by normal procedure calls� All runs were
repeated �� times and the averages are reported in the table� The data showed standard
deviations of ��� in the Irix case and ��
����  for Mungi�

It can be seen that for ���bit code the performance of both systems is very similar� This
is to be expected� as identical code was executed� with no system calls between timer calls�
Di�erences can only occur due to code being allocated at di�erent addresses� which could lead
to di�erent patterns of cache misses�

It is evident from Table � that 
��bit code executes signi�cantly faster than ���bit code on
the chosen hardware� the di�erence is about �� � This must be kept in mind when looking
at the multi�process results� Irix ��� does not support ���bit execution on our platform� We
managed to get the single�process version of the code running in ���bit mode under Irix� but
the IPC versions of all Irix code had to be run in 
��bit mode� Hence the Mungi results below
include a ���bit penalty of around �� relative to Irix�

We ran the OO� benchmark �with minimal modi�cations necessary to enable e�cient ex�
ecution using di�erent protection domains for database and client� In the Irix version� we
used two di�erent implementations of client�database communication� the UNIX System�V
message passing interface and the SGI�speci�c and highly tuned shared memory interface �with
semaphores for synchronization� The Mungi version used PDX�

Table 
 shows the results of the performance measurements of the IPC version of OO�� The
somewhat inferior performance of the Mungi code on the traversal benchmarks �where only one
communication with the database takes place is easily explained with the penalty from running
���bit code� In the other cases� lookup ����� RPCs and insert ���� RPCs Mungi outperforms
Irix by almost a factor of ��� Comparing the values from Tables � and 
 for 
��bit Irix code� it
can be concluded that the cost of an RPC in Irix is around ����s� while the same comparison
for Mungi yields ���s� which is consistent with the �gures given in Sect ����

The observation that Irix shared memory IPC does not perform better than SysV message
passing is explained by the fact that the amount of actual data passed is very small �around two
dozen bytes� so that the cost is dominated by the system call and context switching overhead�
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��� Summary

The benchmarks show that Mungi clearly outperforms a commercial UNIX operating system
on some of the most important basic operations� as well as on an IPC�intensive benchmark
of database operations� This shows that the single�address�space approach is not intrinsically
less e�cient than traditional operating systems� and has a signi�cant edge for certain classes
of applications� The microbenchmarks also clearly outperform Opal�s published results� Ob�
viously� Opal�s performance was partly a result of the platform chosen for the implementation
of the prototype� However� we have clearly demonstrated that the PDX mechanism can be
implemented with very high performance� and is an inherit advantage of our model� compared
to the approach taken by Opal�

� Conclusions

Single�address�space operating systems present a greatly simpli�ed programming model to ap�
plications� This makes them an attractive alternative to traditional systems� particularly where
data sharing across processes is important� such as object�oriented databases and persistent
programming systems�

In this paper we have shown that such a SASOS can be e�ciently implemented on o��the�
shelf hardware� Our Mungi system� based on our own implementation of the L� microkernel on
a MIPS R���� CPU� shows performance �gures which signi�cantly outperform a commercial
UNIX system in several benchmarks�

The results not only show that SASOS can be implemented e�ciently� but also con�rm that
a well�designed microkernel provides an excellent base on which to build operating systems
without sacri�cing performance�

Availability

The source code for Mungi will in the near future be made freely available under the terms of
the GNU Public License� Check the Mungi WWW pages�
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A OO� Implementation Details

For our benchmarks we used the �small� database ������� parts de�ned in �CS���� The lookup
operation consists of searching ���� random parts in the database� the database server is invoked
once for each part� The insert operation creates ��� new parts in the database and connects
each to 
 random parts� The total number of database server invocations is ��� in this case�
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The forward and backward traverse operations start from a randomly chosen part and and
follow all parts connected to it up to a depth of seven� Due to the way the database is de�ned�
the forward lookup �nds exactly 
���� parts� while the number of parts found in the backward
traverse depends on the starting point� All timings reported in Tables � and 
 for that part of
the benchmark are normalized to the average number of parts found� The traverse operations
are entirely performed within the database server� which is invoked only once for the whole
operation�

The OO� speci�cation requires the client and database server to execute on separate nodes�
However� as we do not yet have networking implemented in our system we ran OO� on a single
node� Furthermore� OO� speci�es that caches are �ushed to disk regularly� As we are �not yet
interested in I�O performance� but wanted to measure the performance of basic system calls� as
experienced by user code� we ignored that speci�cation and instead ran everything in memory�

While running the benchmark on a single node� we nevertheless ran the client and server
codes in separate protection domains �except for the �single process� results given in Table ��
In Mungi� this means that the client code invokes the database via PDX calls� In Irix this
means that client and server are running as separate tasks communicating via IPC�

The benchmark speci�es that� during processing� the database invokes a procedure to return
data to the client or obtain further inputs� For simplicity� we did not use a cross�domain call
for this� but executed the user�procedure in the addressing context of the database�

In order to ensure a fair comparison we used our own random number generator in the
benchmark� hence the actual operations performed are exactly the same across systems� We
also had the benchmark do its own memory management to avoid unnecessary interference from
allocation strategies� All results are based on hot caches�

Our comparison is actually biased in favor of the UNIX version� as we are using virtual
memory addresses as object identi�ers� A real database in a traditional system such as UNIX
could only do this in combination with pointer swizzling or an indirection via an object table�
both of which incur additional overhead� This overhead is ignored in our benchmarks� In a
SASOS the chosen implementation strategy is possible without overhead and is the natural way
to proceed�
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