
Implementation and Performance of the

Mungi Single�Address�Space Operating System

Gernot Heiser Kevin Elphinstone Jerry Vochteloo Stephen Russell

Department of Computer Systems

School of Computer Science and Engineering

The University of New South Wales� Sydney ����� Australia

E�mail� fgernot�kevine�jerry�smrg�cse�unsw�edu�au

WWW� http���www�cse�unsw�edu�au�	disy

Jochen Liedtke

IBM T� J� Watson Research Center

� Saw Mill River Road� Hawthorne� NY ���
�� USA

E�mail� jochen�watson�ibm�com

UNSW�CSE�TR����� � June ����

School of Computer Science and Engineering

The University of New South Wales

Sydney ����� Australia

�

Abstract

Single�address�space operating systems �SASOS� are an attractive model for making the
best use of the wide address space provided by the latest generations of microprocessors�
SASOS remove the address space borders which make data sharing between processes di��
cult and expensive in traditional operating systems� This o�ers the potential of signi�cant
performance advantages for applications where sharing is important� such as object�oriented
databases or persistent programming systems�

Previously published SASOS were not able to demonstrate these performance advan�
tages� We have built the Mungi system to show that these advantages can indeed be
realized� Mungi is a very �pure	 SASOS� featuring an unintrusive protection model based
on sparse capabilities� a fast protected procedure call mechanism� and uses virtual memory
as the exclusive inter�process communication mechanism� as well as for I
O� We believe this
simplicity of our model makes it easy to implement it e�ciently on conventional architec�
tures�

Our realization of Mungi for the MIPS R�� ���bit microprocessor is presented� which
is based on our implementation of the L� microkernel� Mungi is shown to outperform a well�
tuned commercial operating system in several important aspects� such as task creation and
inter�process communications� and on the OO� object�oriented database benchmark� This
demonstrates clearly that the SASOS concept is viable� and that a well�designed microkernel
is an excellent base on which to build high�performance operating systems�

Permission to make digital
hard copy of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for pro�t or commercial advantage� the

copyright notice� the title of the publication and its date appear� and notice is given that copying is by

permission of the authors� To copy otherwise� to republish� to post on servers� or to redistribute to lists

requires prior speci�c permission and
or a fee�

Copyright c����� by Gernot Heiser� The University of New South Wales�

� Introduction

Single�address�space operating systems �SASOS have recently been proposed as an attractive
model for making the best use of the wide address space provided by the latest generations
of microprocessors �WSO���� CLLB��� RSE����� The basic idea of these systems is that by
removing address space boundaries� they encourage sharing of data between processes�

In a SASOS� all processes share the same address space� This address space is decoupled
from the lifetime of any process� and all objects created within it are potentially persistent�
eliminating the need for a �le system� As all data live in the shared address space� and are
seen at the same virtual address by all processes� pointers have the same meaning for each
process� Arbitrary data structures can then be shared without the need for techniques such as
marshaling or pointer swizzling�

While this simpli�ed programming model makes many programming tasks much easier�
the major application areas likely to bene�t most from this approach are those that require
e�cient support for persistence� Examples of these include object�oriented database systems
and persistent programming languages�

Besides these advantages for application programmers� there are also bene�ts on the system
level� A SASOS avoids problems with virtual caches created by address aliasing in multi�
address�space systems� as every datum is always accessed through the same address� di�erent
cache lines are guaranteed to refer to di�erent data� It has also been claimed �WM��� that
the simpli�ed model signi�cantly reduces the complexity of the operating system� and leads to
improved performance�

A number of SASOS prototypes have been implemented to date� for example� Opal �CLFL���
and Angel �WM���� These implementations were intended primarily as a proof�of�concept and
have not been able to fully demonstrate the potential advantages of a SASOS� In this paper we
present implementation details and some performance �gures for the Mungi operating system�
which we believe is the �rst native implementation of a SASOS on standard ���bit hardware�

In designing Mungi� we decided to build a SASOS which was as pure as possible� without
sacri�cing support for features that we deemed essential� such as protection� encapsulation� and
orthogonal persistence� We decided to take the memory�only model as far as possible� and
eliminated explicit support for I�O and conventional inter�process communication �IPC� Our
measurements show that this approach works� The system can outperform� by a signi�cant
margin� traditional systems if applications make full use of our model�

The paper is structured as follows� Section � presents an overview of the Mungi system�
detailing the basic abstractions of our model� For this model to be accepted as e�ective� it
is also necessary to demonstrate that these abstractions can be implemented e�ciently� Sec�
tion
 describes how we have built the Mungi model on top of our implementation of the L�
microkernel �Lie��a� for the MIPS R���� processor� In Section � we review related work on
capability systems and other global address space approaches� as well as recent implementations
of SASOS� Benchmark results for task creation and deletion� cross�domain calls� and object�
oriented database operations� show performance signi�cantly exceeding that of a commercial
operating system� These are presented in Section �� followed by conclusions in Section �� Ap�
pendix A describes the simpli�cations we made to the OO� benchmark to suit the aims of this
paper�

� � OVERVIEW OF THE MUNGI SYSTEM

� Overview of the Mungi System

The basic abstractions provided by Mungi are� capability� object� task� thread� and protection
domain�

Objects are the basic storage abstraction� They consist of a contiguous range of pages� with
no further structure imposed by the system� Objects are protected by capabilities which are
described below�

Threads are the basic execution abstraction� A task is a set of threads which share a
protection domain� A protection domain consists of a set of capabilities� Capabilities are
presented implicitly by storing them in a special data�structure known to the system� This
reduces the need for most applications to deal with capabilities and thus makes protection
transparent�

There are no explicit system calls to support I�O in Mungi� Instead� I�O devices are mapped
into virtual memory� and user�level page fault handlers and virtual memory mapping operations
are used for dealing with these devices�

The remainder of this section describes in more detail the basic Mungi abstractions�
A full description of the API can be found under the Mungi WWW pages from URL
http���www	cse	unsw	edu	au��disy�Mungi	html�

��� Capabilities

Capabilities confer to their holders rights to perform speci�c operations on objects� When an
object is created� an owner capability to that object is returned� giving the holder full rights to
the newly created object� Note that the system considers any agent holding an owner capability
as a legitimate �owner� of the object referenced by that capability �i�e�� there may be more than
one owner�

An owner can register less powerful capabilities for an object� There are �ve di�erent rights
capabilities may grant over an object� read �R� write �W� execute �X� destroy �D� and
protection domain extension �PDX� which is explained in Sect� ���� Each valid capability
grants the holder one or more of these rights to an object�� A capability granting RWXD rights
is� by de�nition� an owner capability�

Capabilities are user objects and can be stored and passed around freely� They are imple�
mented as password capabilities �APW���� protected from forgery by sparsity� Each capability
consists essentially of two parts� the base ����bit address of the object the capability refers
to �represented as the number of the object�s �rst page� and a ����bit password� The pass�
word is chosen by the owner when the capability is registered� It is normally obtained from
a library routine� Presently� we use a DES�based encryption scheme for creating �random�
passwords� However� in the future we plan to use a hardware device producing truly random
bitstrings �Wal���� The list of valid capabilities for each object is maintained by the system in
a distributed system�wide directory� the object table �OT�

As capabilities are user objects� it is not possible to determine the tasks and users who
have access to a particular object� It is also impossible to prevent a particular user who has
been given a capability for an object� from handing this capability to other users� However�

�Note that� as we rely on the hardware to enforce protection� on many architectures we cannot guarantee that

a user cannot read an object to which they only hold an X capability�

��� Objects �

 ...
while (...) {

}

 ...
while (...) {

}

Capability lists

HandlersKernel data User data

Figure �� Active protection domain

it is possible to revoke a capability completely by de�registering the corresponding password�
rendering all copies of the capability useless�

��� Objects

An object� once created� persists until explicitly destroyed� and may outlive its creator� To
reduce a proliferation of garbage objects� we maintain for each task a kill list of all objects
created by that task� The object may be removed from the kill list by an explicit system call�
allowing it to survive its creator�

The address space released by deleted objects can be reused for new objects� When a
new object is allocated in the place of an old one� the use of random passwords ensures �in
a statistical sense that the new object receives di�erent passwords than the old one� Hence
dangling pointers and capabilities do not present a security problem�

Address space reuse is important as otherwise even a ���bit address space could conceivably
be exhausted �KC���� With reuse� address space consumption is essentially limited by the
amount of backing store available� which ensures that a ���bit address space will su�ce until it
becomes feasible to connect billions of gigabytes of disk to a single system�

����� Object table

All information about objects� including the set of valid passwords for each object� is recorded
in the object table� The kernel �and a few �privileged� tasks hold capabilities to this table�

To date we have not built a distributed version of Mungi� However� we believe that the
following aspects of the design of the OT should allow e�cient distribution�

� The OT is based on a B��tree� which allows e�cient searching for virtual addresses� and
can be used to easily partition the virtual address space into separate subtrees which can
then be distributed�

� The address space is partitioned� and each node is assigned one or more partitions� Each
node can only create objects in its partitions of the address space� This in no way prevents
data from migrating to other nodes� but does require that requests to delete an object

� � OVERVIEW OF THE MUNGI SYSTEM

are forwarded to its creator node� The creator node plays no special role in any other
operations� This strategy ensures that all updates of a particular part of the OT index
structure are performed by a single node�

� Some of the object meta�data held in the OT changes infrequently �like the list of pass�
words� Other meta�data� such as time stamps� do not require strict coherency� and can
be updated lazily by an appropriate protocol�

� Descriptors for new objects are entered into the OT lazily� An object is not guaranteed to
be in the OT unless it has been made persistent �by performing a system call to remove it
from the kill list� This avoids any OT updates for short�lived objects such as most stacks
and heaps� The kernel can re�use objects which have never made it into the OT without
compromising security� as no other task can access an object which is not in the OT�

��� Active protection domains

The main design goal of the Mungi protection system is to be as unintrusive as possible� Appli�
cations should normally not have to explicitly deal with capabilities� Consequently� we do not
require explicit presentation of capabilities in order to access an object� Instead� the system
allows capabilities to be stored in a user�controlled data structure which is searched by the ker�
nel when validating access to an object� This data structure is called a task�s active protection
domain �APD�

The APD� as shown in Fig� �� consists of a set of capability lists �Clists� which are user�
level objects conforming to a standard format� The user provides capabilities for these Clists
to Mungi� which are then kept in a list in kernel space� In order to support user�de�ned
implementations of Clists for special purposes� the user may also provide addresses of capability
handlers�

When validating access to an object previously unreferenced by a task� the kernel �rst �nds
the object�s entry in the OT� The kernel then traverses the APD in search of a capability
matching one of the passwords in the entry� When a Clist capability is encountered� the kernel
searches the corresponding Clist� If instead it �nds a handler address� that handler is upcalled
with the object�s base address as a parameter and is expected to return a capability for the
object �or NULL� If the APD is exhausted without a matching capability having been found�
a protection fault is raised�

Mungi provides system calls to allow users to add or remove Clist capabilities or handler
pointers from the APD� When a Clist capability is added it is immediately validated before the
kernel stores it in the APD� These capabilities are revalidated periodically to detect invalidations
by the owners of the Clists �c�f� Sect�
����� Handler addresses do not need to be validated as
the failure of upcalls is not a security issue� This is discussed in more detail in Sect�
�����

Although the management of Clists is not the kernel�s responsibility� we envisage that users
will make Clists persistent and group them together to construct a workspace that de�nes a
user�s environment� When a user logs on� the APD of their shell will be initialized from their
workspace� The majority of tasks they create will inherit this APD and will make few� if any�
changes to it� As a result� most applications are unaware of the presence of the capability
system�

��� Protected procedure calls �

O2

page
fault
handler

page fault

O1 O2

O1

P 1 P 2

P 2P 1

Figure �� Page fault handling by a user�level pager� Top� A page fault occurs in page P� of
object O�� Bottom� The pager has made P� resident by mapping it to page P� of object O�

�which� in this case� is handled by the default pager� O� is hidden from application code �by
keeping its capability secret� Non�resident pages are crossed out�

��� Protected procedure calls

In a SASOS� threads normally communicate via shared memory� However� in many cases
a more controlled access to data by clients is required�essentially we want a mechanism to
support object encapsulation� This can be done if the object in question is not part of any of
the potential clients� protection domain� but a mechanism is provided for the clients to invoke
methods which operate in a protection domain which includes the object�

One way to achieve this is by having active objects� i�e� objects associated with a server
task� Encapsulation can then be achieved by providing a mechanism such as remote procedure
call �RPC� which would be used by clients to have the server perform operations on the object�
This approach has a number of drawbacks� For example� the server task needs to be running
before any client can communicate with it� and its ID must be known to potential clients� This
could be achieved by registering the server so that the system will start the server at boot time�
and have the server register its ID with some well�known naming service�

A more signi�cant problem is that the client and server often need to share some data�
while their protection domains are� in general� disjoint� The client must then explicitly pass
capabilities to the server� This con�icts with our goal of providing protection in as transparent
a fashion as possible� and incurs the additional expense of validating the capabilities in the
server�s protection domain� This additional expense could be avoided by allowing by�reference
parameters to an RPC call which the kernel would map into the server�s view of the address
space irrespective of whether or not it holds a valid capability� or by the kernel manufacturing
a new capability for the purpose of the RPC� We reject these possibilities since they circumvent
the normal protection system� and obscure the protection model� In particular� they reduce the
owners� control over their objects� as access could not be reliably revoked�

� � OVERVIEW OF THE MUNGI SYSTEM

Instead of encouraging the use of active objects and a client�server model� we are using
a protected procedure call mechanism similar to the pro�le adoption mechanism of the IBM
System�
� �Ber���� Our mechanism� called protection domain extension �PDX� allows the
caller of a PDX procedure to extend its protection domain� for the duration of the call� by the
protection domain of the callee �VERH���� Unlike System�
�� our PDX mechanism does not
require special hardware�

More speci�cally� a PDX object�s descriptor in the OT contains� for each PDX capability�
a list of entry points� and a Clist capability� When a PDX call is executed� the system �rst
veri�es that the caller possesses a valid PDX capability and is trying to access an entry point
that is valid for that capability� The system then extends the caller�s APD by adding the Clist
found in the OT� and �nally transfers control to the PDX code� When the PDX procedure
returns� the PDX Clist �and all cached validation information relating to that Clist is removed
from the caller�s APD� Note that for the duration of the PDX call� the calling thread executes
in a protection domain di�erent from other threads of the same task� i�e�� other threads have
no access to the called object �unless they also perform a PDX call to the same object�
Instead of having the PDX procedure execute in a superset of the caller�s protection domain�

the caller has the option of explicitly supplying an APD when calling the PDX procedure� In
this case� the call executes in a protection domain which is the union of the supplied APD with
the Clist registered for the PDX object� This gives the caller maximum control over which
objects the PDX procedure can access� In particular� an empty APD may be passed to the
PDX procedure� which then has no access to any of the caller�s data �other than any explicit
by�value parameters�

��� Virtual memory mapping operations

Whenever an object is allocated� the system uses a default page fault handler to manage paging
to a backing store� A user�level page fault handler may be registered for an object� As there
is no I�O model in the system� a pager cannot use I�O operations to handle a residency fault�
Instead� the pager uses another memory object as its backing store�
To support forwarding of page faults� Mungi provides mapping operations between di�erent

regions of virtual memory �ERHL���� Pages belonging to an object O� may be mapped to
another object O�� which causes O��s pager to be invoked when necessary� Page faults may be
forwarded several times until they reach the default pager�

Fig� � shows how a page fault is handled by a user�level pager� O��s pager uses O� to provide
its backing store� When a page fault occurs for a non�resident page P� within O�� the O� pager
is invoked� The pager can then map P� on a page P� from O�� to provide storage for P�� If P�
itself is non�resident� the process will repeat� As soon as P� becomes non�resident� the mapping
is lost� and P� becomes non�resident as a consequence�

Copy�on�write is supported by the default pager �and is really just a special case of a
mapping operation� Further uses of these mapping operations are outlined in Sect� ������

����� Implications of aliasing

While copy�on�write introduces aliasing on read�only objects �and is thus harmless �CMS����
mappings potentially introduce the same aliasing problems as in multi�address�space systems�
This seems to defeat some of the advantages of a SASOS� However� as a mapping can vanish at
any time �whenever the source page of a mapping becomes non�resident� mapping operations

�

are only useful for page fault handlers� which e�ectively prevents �abuse by normal application
code�

No problems due to aliasing exist as long as actual data are always accessed through the
same virtual address� This is easily ensured if applications only ever get to see the �top level�
object� i�e� the �nal target virtual pages of a mapping chain� while the source �or intermediate
virtual pages remain private to the page fault handlers� This privacy can be enforced by the
pagers if the �backing objects� are kept private to the pagers �i�e� no capabilities are given
away� The system discourages any other use of aliasing by not guaranteeing any coherency
between aliases�

����� Controlling I�O

I�O in Mungi is simply implemented by mapping devices into virtual memory� where they
can be accessed by suitably privileged tasks �i�e� those holding capabilities to the appropriate
addresses�

Mappings can also be used to give appropriate applications control over physical I�O oper�
ations� To achieve this� physical memory and disk are mapped into the virtual address space�
The application may be given capabilities to portions of the mapped physical memory� As these
pages never become non�resident� the application can pin some virtual pages by mapping them
to physical memory� A write to disk can be forced by �ushing a page�

Similarly� by giving an application a capability to some region mapping part of disk storage�
the application can control placement of its data on disk� by mapping its objects to particular
pages of the disk� This allows databases� for example� to control their I�O as needed�

� Implementation of Mungi

Having presented an outline of the Mungi system in the previous section� we now need to show
that these abstractions can be build e�ciently on a conventional architecture� The details of
the implementation are given below� while performance �gures are presented in Section ��

We decided to build Mungi on top of the L� microkernel �Lie���� The main reason for this
approach was that it would make the Mungi system easier to port between di�erent hardware
architectures� We also expected that� by basing our system on a well�designed and optimized
microkernel� we would �nd it easier to produce an implementation which can demonstrate that
the SASOS approach can lead to very e�cient operating systems�

In spite of using a microkernel we still consider our implementation a �native� one� as
we implemented the whole system� including re�writing the microkernel for the MIPS R����
microprocessor� Furthermore� the microkernel is essentially just an internal interface in our
design� It does not provide any functionality which is not required by higher levels of our
implementation� so there is no redundancy �which would have existed had we based the design
on Mach or a monolithic operating system�

��� The microkernel

The main features of L� which made it suitable for our use are its small size� its very e�cient
process management and IPC� and the �exible address space model it provides�

�� � IMPLEMENTATION OF MUNGI

While the L� interface is hardware independent �except for details like the number of regis�
ters used for by�value IPC parameters� the actual implementation is not� It is mostly written
in assembler� and inherently unportable �Lie���� Furthermore� there were no ���bit implemen�
tations of L� available at all� This meant that we had to implement L� from scratch� In the
following� we highlight those features of our L� implementation that impact on Mungi�

����� Page tables

The R���� CPU features a software�loaded TLB tagged with an address space ID �ASID� The
TLB contains �� entries� each mapping two neighboring �kb virtual pages� We maintain a
two�way associative TLB cache for fast TLB miss handling�

On a cache miss� the mapping is obtained from a guarded page table �GPT �Lie�
�Lie��b��
The GPT is an e�cient data structure well suited for large� sparse address spaces�

The main advantage GPTs have over alternative data structures� such as inverted page tables
�IPTs �CM���RA���� is that they e�ciently support sharing of large areas of the address space�
In our implementation we use this for quickly mapping kernel data structures �e�g� a virtual
array of thread control blocks into the client�s view of the address space for the duration of a
system call� Using clustered page tables �THK��� would have been a possibility� However� we
are doubtful as to whether clustered page tables can handle very sparse address spaces� with
many single�page objects� as e�ciently as GPTs�

Our implementation on the MIPS R���� CPU takes ����� cycles ����s for handling a page
fault� i�e� taking the fault and establishing a mapping�

����� Tasks and threads

A task in L� is a set of threads sharing an address space� Each task also contains a special
thread ��T��� which is used for handling exceptions� including IPC events and page faults� on
behalf of the task� L� tasks and threads are very light weight� for example creating a thread
takes about ���s� Creating a task costs about ������ �s �depending on the number of cache
misses� while deletion of a task takes about ���s�

����� Inter�process communication

IPC in L� is designed to be extremely e�cient� An IPC call can pass by�value parameters
through registers� In addition� it can pass large memory regions by�reference by mapping them
into the recipient�s address space� As we will show in Sect�
����� Mungi only uses L��s IPC and
address spaces to manage protection domains�

The cost of a null IPC is �� cycles on the R���� �compared to the cost for a null system
call of �� cycles�

��� The Mungi layer

The L� microkernel provides a high�performance base on which to build Mungi� Although
the L� interface was not originally envisaged to be used to support a SASOS� its �exibility
and simplicity has made it a e�ective platform for Mungi� The following sections describe the
implementation of Mungi�

��� The Mungi layer ��

����� The Mungi server

The Mungi API is implemented as an L� user�level server� The main role of the server is
to maintain the Mungi attributes of tasks� threads and objects� As well� it is responsible for
enforcing the Mungi protection and addressing model�

The server contains a number of threads dedicated to speci�c events� for example� one of
these threads handles Mungi �system calls�� which are translated by library stubs into IPC to
this thread� Some of these calls� such as Mungi thread operations� which correspond closely to
L� operations� can be forwarded to L� with minimal overhead�

Mungi uses another one of its threads to act as the default pager for all user tasks� Other
threads in the server are used for purposes such as semaphore management and time keeping�

While Mungi makes use of message passing IPC for interaction between these threads� Mungi
user threads are not aware of this IPC�

����� Protection domains

Each Mungi task�s protection domain is implemented as a separate L� task and L� �address
space�� The role of these address spaces is to provide separate Mungi protection domains� and
their translations from virtual to physical addresses are always consistent with each other to
provide the single Mungi address space�

For each protection domain the Mungi server maintains a cache of access validations� con�
sisting of a list of
address range� rights� pairs� This cache is consulted by the Mungi server when
handling a page fault� Only on a cache miss will the server perform a full validation� requiring
a search for matching capabilities of the OT as well as the APD� Hence� validations normally
only need to be performed on the �rst page fault to a previously unaccessed object�

A new Mungi task can either be explicitly given an APD by its parent or it can inherent its
parent�s APD� In the latter case� the child will also inherit the parent�s access validation cache�
Creating a task in this way carries minimal overhead�

Each Mungi task uses the L� T� thread� which is invisible to user code� to handle asyn�
chronous events� For example� L� translates exceptions into IPCs to T� of the appropriate task�
T� will typically forward the exception to the o�ending thread�

Upcalls by the Mungi pager thread to a capability handler are implemented as an IPC to T�
of the faulting task� which executes the handler code� Note that� since the Mungi thread does
not execute the handler code itself� the address of the code does not require validation when
added to the APD �c�f� Sect� ��
�

����� Protected procedure calls

A key concept in Mungi is the use of PDX to provide support for protected procedure calls�
PDX is used for device drivers� user�level pagers� and to support object�oriented languages� It
is therefore important that PDX be as low cost as possible�

When a thread performs a PDX call� the Mungi server sets up a new L� task with the
extended protection domain� If the PDX call is a proper protection domain extension� i�e� the
caller does not provide an explicit APD parameter� the validation cache of the PDX task points
to the validation cache of the caller� so the PDX inherits all of the caller�s validations�

Once the PDX �task� is set up� the PDX call is translated into an IPC to that task� Exiting
the PDX procedure results in a task switch via the Mungi server back to the caller� The PDX

�� � IMPLEMENTATION OF MUNGI

task is then cached by the Mungi server for later calls from the same protection domain� Since
the PDX task�s validation cache points to the caller�s cache� additional validations performed
by the caller between PDX calls �or by another thread of the calling task while a thread is
executing the PDX have immediate e�ect on the PDX as well� This also works for nested PDX
calls�

PDX procedures which get passed an empty APD are a special case� The L� task set up to
execute the call can be shared by all callers supplying an empty APD� no matter from which
protection domain they originate� This means that only one L� task needs to be cached for
PDX procedures which need no access to the caller�s data� This class of procedures includes
user�level pagers�

Caching also works for PDX procedures which get passed an explicit APD� These start o�
with an empty validation cache� On a repeated call� a hash of the APD is compared with that
of any cached PDX kernel tasks associated with the caller task� If a matching task is found� it
is used� otherwise a new task is created�

An alternative to setting up a new L� task to receive PDX calls would be to actually modify
the calling task�s page tables in order to extend its protection domain� This modi�cation would
need to be reversed on return from from the PDX� which would make PDX calls very expensive�
One advantage of our implementation is that repeated calls become very fast as they involve
little more than an IPC to the PDX task� a very e�cient operation in L�� A further advantage
is that other threads in the calling task can continue executing without gaining access to the
PDX�s hidden data�

PDX procedures may be multi�threaded� with several threads of the same task executing
the same PDX object concurrently �possibly using di�erent entry�points� This results in all
threads sharing the same extended domain�

����� Objects

Mungi provides operations for the creation and destruction of objects� L� itself does not actually
provide memory allocation services� Rather� it relies on Mungi to manage the address space�
which it does by making use of the L� mapping operations� Objects are solely an Mungi
abstraction� and the Mungi server maintains the free list� disk mappings� validation caches� etc�
Caching of validation data could potentially open a security hole� If an object is deleted� and

another object is immediately allocated in its place� validation caching could give the holders of
capabilities to the old object access to the new object� We avoid this problem by a combination
of two strategies� All entries in the validation cache expire after a time period �t� As objects
are deallocated� their address space is not returned immediately to the free list� Instead the
address space is entered into a stale list� from where it is moved lazily to the free list� but after
a delay of at least �t� This ensures that no validation data to the old object are still cached�
Similarly� the Clist capabilities in the APD are revalidated after at most time �t�

��� Lessons learned

As we had hoped� we found that the SASOS model is indeed easy to implement� The need for
large parts of a traditional system has been eliminated� such as the management of �le system
storage� since this job is done by the swap manager� There is no need to support a separate �le
abstraction� with its data structures� mappings from �le positions to disk storage� etc� Unlike
UNIX systems� we do not have to worry about the presence of aliases when shared memory is

�

used� There is also a potential for simpli�cations at the hardware level� as virtual caches would
not require physical tags�

The addition of virtual memory mapping operations has made it possible to incorporate
into the single�address�space model user�level pagers and I�O� and leave� for example� the
implementation of stability models to the user level �ERHL���� This allowed us to build a
�pure� SASOS� where virtual memory is the only communication medium between processes�

Since we had to implement the microkernel as well as the higher layers of the system� the
question naturally arises whether it was a good idea to base the implementation of Mungi on a
microkernel� We believe the answer to that question is a clear �yes�� for the following reasons�

� The implementation of Mungi �written almost entirely in C is easily portable between
di�erent hardware architectures �and L� implementations� As the number of L� imple�
mentations increases� so do the platforms on which Mungi is available�

� The microkernel provided a well�de�ned interface which allowed us to separate our de�
velopment e�orts� While L� was being implemented on the R���� target architecture�
development of Mungi proceeded on an L� implementation on the i���� Once L� was
running on the ���bit system� the port of Mungi succeeded within around two weeks� in
spite of both the microkernel and the Mungi layer being very unstable at the time� With
more mature systems� the port would be a matter of days�

� By basing our implementation on a well�designed microkernel� many design decisions for
the lowest levels of the implementation had already been made for us�

� We still had the option of modifying the microkernel interface should that have been
necessary� However� we found no need to do so�

� As we show in Section �� layering the system did not result in a performance penalty� as
our implementation of Mungi outperforms a commercial operating system�

One of the most encouraging lessons learned is that L� proved to be a very suitable base
for implementing a system quite di�erent from what had originally been envisaged as a typical
L� �client��

To date we have only noticed one drawback of this approach� Programmers who are aware
of the fact that Mungi is built on L� can bypass the Mungi API and call L� directly� The
only problem this is likely to cause is that it prevents con�nement� as we cannot control IPC
between user tasks� Ideally� all IPC should go through the Mungi server� L� actually provides
appropriate mechanisms to control IPC �Lie���� but at the cost of doubling the number of IPCs
required to implement Mungi system calls� Alternatively� it would be possible to modify the L�
IPC code to directly enforce the restrictions required�

� Related Work

Systems using globally valid names for accessing objects have been� in one form or another�
around for a relatively long time� The best known one is probably Multics �DD���� which used
a global name space of
segment�name�oset� pairs to identify data� However� individual processes
executed in their own private address space� Segments were made accessible to processes by
mapping them into the address space� where they could be accessed via a segment number� In
general� di�erent processes would map a particular segment to di�erent segment numbers� and

�� � RELATED WORK

hence virtual addresses� so this approach could not resolve the limitations to sharing imposed
by private address spaces� In contrast� a SASOS guarantees that all processes can access a
particular memory object via the same virtual address� and hence guarantees the validity of
embedded pointers across processes�

Capabilities� as introduced by Dennis and Van Horn �DVH���� provide a true global naming
space� Capabilities provide a segmented view of memory similar to that of Multics� Unlike
Multics� pure capability systems use capabilities� together with segment o�sets� as �rst class
memory addresses� Hence� in such a system all processes agree on the address of a data item�
just as in a modern SASOS�

Making capabilities �part of the lowest level of addressing generally implies building special
hardware to interpret the capabilities� Historically� there have been a signi�cant number of
systems following this approach� from the earliest commercial capability system� the Plessey
��� �see �Lev���� via the Cambridge CAP computer �NW���� to the IBM System�
� �HSH����
the Intel iAXP �
� �HLM���� and the Monads system �RA���AK���� the last probably being the
�rst ever distributed shared memory system� System�
� and Monads in particular� share much
of the philosophy of a SASOS� such as a single�level store� orthogonal persistence� object�based
protection� and� in Monads� case� transparent distribution�

In spite of hardware support� many of these systems exhibited poor performance compared
to traditional designs� Furthermore� all of these systems su�er from the problem that their
dependence on special hardware makes it impossible to take advantage of the latest progress in
CPU design� With the rapid appearance of new CPUs� there is a clear disincentive for hardware
based solutions�

It is probably fair to say that the IBM System�
� �or AS���� is the only really successful
system of this type� partially a result of the intensive use of microcode as a means to decrease
the dependence on speci�c hardware� However� even that system is not completely hardware
independent� At the very least� it requires a tagged memory� It is unclear whether such a
system would be viable without the backing of IBM�s market share in the traditional commercial
computing sector� Furthermore� the AS���� design does not seem to lend itself very well to
distribution�

Hydra �WCC���� was a software�based capability system supporting a large� �at name
space for persistent objects� Hydra can be considered the �rst microkernel architecture� as it
implemented at user level many services which were traditionally part of the kernel� Objects
were the basic units of protection and encapsulation� However� the lack of an appropriate
hardware base made objects and operations on them too expensive �Lev���� The Xerox Cedar
system �SZBH��� features a single address space to enhance sharing� Protection is not main�
tained by the operating system� but depends on the use of a type�safe programming language
�also called Cedar� Such an approach is obviously unable to support legacy software� and
seems to be too restrictive� as it will not work with many of the most popular programming
languages� Amoeba �MT��� is a distributed system using sparse capabilities for naming and
protecting objects� Capabilities are authenticated by an object�s server� which therefore needs
to be invoked for every operation on the object�

Grasshopper �RDH���� is a system speci�cally designed to support persistence� Its ba�
sic storage abstraction is called a container� which essentially constitutes an address space�
Containers� or parts thereof� can be mapped into other containers� Grasshopper presents a
generalized model of address spaces� which can emulate a traditional model� such as UNIX� as
well as the SASOS model �LRD���� However� as the single�address�space view is not enforced

��

by the system� Grasshopper cannot provide the SASOS guarantee that a speci�c data item
always appears at the same virtual address for the duration of its life time� and thus cannot
ensure that data containing embedded pointers can always be shared�

Opal �CLFL��� is a recent SASOS targeted for ���bit architectures� In Opal� memory
segments� threads� protection domains� portals �protected procedure entry points and resource
groups �used for accounting are all �rst�class objects� protected by capabilities� In contrast�
Mungi only has capabilities for memory objects�
Opal� like Mungi� uses password capabilities� which generally need to be presented explicitly�

while Mungi uses implicit presentation� A protected procedure call mechanism is supported
which has the caller enter the callee�s protection domain� As the two protection domains are�
in general� disjoint� capabilities need to be passed explicitly to facilitate sharing� Opal supports
two di�erent mechanisms for communications� shared memory and RPC� Mungi� in contrast�
provides only shared memory �plus semaphores for synchronization� We believe that this is
the most natural and clean approach for communication in a SASOS�
The prototype implementation emulates Opal on top of Mach�s UNIX server� This approach

naturally has a drastic impact on performance� as discussed in Sect� �� For this reason� the
emulated Opal prototype cannot demonstrate the inherent performance advantages of a SASOS�

Angel �WM��� has very similar goals to Opal and Mungi� Contrary to most SASOS ap�
proaches� Angel does not use capability�based protection� nor does it have any explicit protection
system built in� Instead� it relies on the ability of an object to be accessed or a service to be
named in order to protect it�protection is e�ectively left in the hands of servers� similarly to
Amoeba� Angel� like Opal� provides explicit RPC as part of the model�

While the design is aimed at ���bit architectures� the prototype was implemented on i���
hardware� It therefore is not faced� and does not address� issues resulting from a huge�
sparsely used address space� The Angel prototype is distributed� using distributed shared
memory technology� The designers of Angel have studied fault tolerance issues �Wil�
� and
have demonstrated that full POSIX support� including the di�cult fork operation� is possible
in a SASOS �WMSS�
�� Angel outperforms FreeBSD in some microbenchmarks�
Nemesis �Ros��� is another recent SASOS� It di�ers from Opal and Angel in that the address

space is not distributed� and persistence is handled at the user level� Objects in Nemesis export
multiple interfaces� which are combined with closures to provide compile�time type checking�
By contrast� object support in Mungi is seen to be largely a programming language issue� with
PDX providing the basic support required�

Hagimont et al� �HMRS��� argue that application code should not have to deal explicitly
with capabilities� Their Arias SASOS� presently under development� hides capabilities from
application code and describes all protection in an extended interface de�nition language� We
believe that our approach of implicit presentation of capabilities achieves the same goals while
doing so in a fashion more appropriate to a SASOS�

� Performance

All the performance data reported in this section were obtained on an ���MHz R���� based
SGI Indy workstation with ��Mb of RAM� The R���� TLB has �� entries� each mapping a
pair of �kb virtual pages� There are two ��kb two�way set associative caches �one each for
instructions and data with a
��byte line size� The cache�miss penalty is rather high on the
Indy�
� cycles ���
� �s for the �rst item in a line�

�� � PERFORMANCE

Comparisons with SGI�s operating systems used the identical platform running Irix ����
Comparisons with Opal are based on published data �CLFL���� These timings had been ob�
tained on a DEC
������� AXP ��

�
MHz Alpha CPU� According to the SPEC ratings� this
machine should be roughly as fast as our Indy �give or take ����� �

��� Microbenchmarks

Here we present timings obtained for basic Mungi system calls� These were obtained for re�
peated calls �presumably hot caches� although some of the �gures varied strongly between
calls� obviously resulting from cache con�icts�

The Indy�s high cache miss penalty was evident in the fact that some �gures showed an
extremely strong dependence on the exact location of user code and stacks� A repeated PDX
call� for example� requires approximately ��� cycles� or ��� �s without cache misses� Actual
timings� however� varied between �� and ���s� depending on the location of the user stack�

Where possible� we are comparing our timings with those obtained for comparable operations
on Irix� and for those reported for Opal� The data are summarized in Table �� the following
sections explain the �gures�

Operation Mungi Irix Opal

Null system call ��� �� ���
Cross�domain call ����� ��� �

Thread create �
��� N�A N�A
Thread delete �� N�A N�A
Task create ��� ����� ���
Task delete ��� ����� ��
��

Object create �� N�A
��
Object delete ��� N�A ���
Object access �
� N�A �
�!
Page fault�map �� N�A N�A

Table �� Microbenchmark timings �in �s� See text for explanations�

Null system call

The cost of a null system call is ����s in Mungi� ���s in Irix �getpid� No �gures are available
for Opal� In spite of requiring two IPC operations plus one L� system call for obtaining the
task ID� the Mungi version of this call is more than �ve times faster than the corresponding
call in the UNIX system�

Tasks� threads and IPC

Creating a new thread in Mungi takes �
�s� which reduces to ���s if an ID can be recycled
from a thread which has already terminated� In a context where threads are created and deleted
frequently �and where consequently this cost is most important this should often be the case�
Thread deletion is the same cost as thread creation with recycling� i�e� ���s� No thread times

��� Microbenchmarks ��

are available for Opal� and Irix does not presently have a thread interface signi�cantly more
lightweight than fork�

Task creation costs around ����s in Mungi ���� �s with cold caches� the corresponding
fork�exec in Irix around ����� �s� The equivalent in Opal is creation and activation of a protec�
tion domain� which takes ��� �s� In practical terms� however� the di�erence is much larger than
is evident from these �gures� While the Mungi task normally starts o� with a hot validation
cache �inherited from the parent� the Opal protection domain� once activated� will have to
attach segments in order to perform useful work�

Task deletion in Mungi has so far only been measured with a cold cache� it takes ����s�
The corresponding Irix operation takes ����ms� while Opal requires ��
ms�
The cross�domain call mechanism in Mungi is PDX� which costs between �� and ���s� The

equivalent operation in other systems is an RPC� which costs around ����s in Irix� and �

�s
in Opal�

System lookup traversal insert total
forward reverse

Irix
��bit ���� ���� ���
 ���� �����
Irix ���bit ���� ���� ���� ���
 �����
Mungi ���bit ���� ���� ���� ��
� �����

Table �� OO� benchmark times �in ms for the single process version�

System lookup traversal insert total
forward reverse

Irix
��bit�message passing ����� ��� ��� ����� �����
Irix
��bit�shared memory ����� ��� ��
 ����� �����
Mungi ���bit�PDX ���� ��� ��� ���� ���

Table
� OO� benchmark times �in ms for the multiple process version�

Objects

Object creation �which� by itself� does not allocate any backing store costs ���s in Mungi� Less
than one microsecond of that is for the OT update �on a ��level B��tree� which is su�cient to
hold at least
� million object descriptors �GBY���� Segment creation in Opal using a recycled
inode costs
�� �s�

Object deletion in Mungi takes ��� �s� compared to ��� �s in Opal� Neither operation can
easily be compared to Irix� which does not seem to support a memory �le system�
Opal uses explicit attach and detach operations on segments� An attach followed by a

detach takes ��� �s �best case�� We assume that the cost of an attach is half this time �which is
most likely erring in Opal�s favor� Mungi does not feature explicit attach�detach system calls�
Objects are made available to a task by inserting their capability into a Clist �an infrequent
user�level operation� The operation equivalent to an attach is touching an object for the �rst
time� The handling of such a page fault� which includes looking up its entry in the object table�

�� � PERFORMANCE

looking up a valid capability in the APD� validating the capability� updating the validation
cache� and mapping the page to a memory frame costs �
� �s� Mapping a further page of a
previously validated object takes only ���s�

��� OO�

As an approximation to a �real�life� application we implemented the object operations ��OO��
benchmark �CS���� OO� simulates typical operations in a simple object�oriented database
system� Client code invokes a database system to perform lookup� traverse and insert operations
on a database�

We have only implemented a subset of the OO� benchmark� as we were only interested
in comparing our use of PDX and the single address space with more traditional approaches�
Given the simpli�cations we have made� it is important not to compare the numbers presented
below with data published elsewhere� The results are only meaningful for comparing Mungi
with a system running the same code �under comparable conditions� More details on the
simpli�cations we have made to OO� can be found in Appendix A�

Table � shows the results of running single�process versions of the OO� code� i�e� the database
exists in the client�s address space and is invoked by normal procedure calls� All runs were
repeated �� times and the averages are reported in the table� The data showed standard
deviations of ��� in the Irix case and ��
���� for Mungi�

It can be seen that for ���bit code the performance of both systems is very similar� This
is to be expected� as identical code was executed� with no system calls between timer calls�
Di�erences can only occur due to code being allocated at di�erent addresses� which could lead
to di�erent patterns of cache misses�

It is evident from Table � that
��bit code executes signi�cantly faster than ���bit code on
the chosen hardware� the di�erence is about �� � This must be kept in mind when looking
at the multi�process results� Irix ��� does not support ���bit execution on our platform� We
managed to get the single�process version of the code running in ���bit mode under Irix� but
the IPC versions of all Irix code had to be run in
��bit mode� Hence the Mungi results below
include a ���bit penalty of around �� relative to Irix�

We ran the OO� benchmark �with minimal modi�cations necessary to enable e�cient ex�
ecution using di�erent protection domains for database and client� In the Irix version� we
used two di�erent implementations of client�database communication� the UNIX System�V
message passing interface and the SGI�speci�c and highly tuned shared memory interface �with
semaphores for synchronization� The Mungi version used PDX�

Table
 shows the results of the performance measurements of the IPC version of OO�� The
somewhat inferior performance of the Mungi code on the traversal benchmarks �where only one
communication with the database takes place is easily explained with the penalty from running
���bit code� In the other cases� lookup ����� RPCs and insert ���� RPCs Mungi outperforms
Irix by almost a factor of ��� Comparing the values from Tables � and
 for
��bit Irix code� it
can be concluded that the cost of an RPC in Irix is around ����s� while the same comparison
for Mungi yields ���s� which is consistent with the �gures given in Sect ����

The observation that Irix shared memory IPC does not perform better than SysV message
passing is explained by the fact that the amount of actual data passed is very small �around two
dozen bytes� so that the cost is dominated by the system call and context switching overhead�

��� Summary ��

��� Summary

The benchmarks show that Mungi clearly outperforms a commercial UNIX operating system
on some of the most important basic operations� as well as on an IPC�intensive benchmark
of database operations� This shows that the single�address�space approach is not intrinsically
less e�cient than traditional operating systems� and has a signi�cant edge for certain classes
of applications� The microbenchmarks also clearly outperform Opal�s published results� Ob�
viously� Opal�s performance was partly a result of the platform chosen for the implementation
of the prototype� However� we have clearly demonstrated that the PDX mechanism can be
implemented with very high performance� and is an inherit advantage of our model� compared
to the approach taken by Opal�

� Conclusions

Single�address�space operating systems present a greatly simpli�ed programming model to ap�
plications� This makes them an attractive alternative to traditional systems� particularly where
data sharing across processes is important� such as object�oriented databases and persistent
programming systems�

In this paper we have shown that such a SASOS can be e�ciently implemented on o��the�
shelf hardware� Our Mungi system� based on our own implementation of the L� microkernel on
a MIPS R���� CPU� shows performance �gures which signi�cantly outperform a commercial
UNIX system in several benchmarks�

The results not only show that SASOS can be implemented e�ciently� but also con�rm that
a well�designed microkernel provides an excellent base on which to build operating systems
without sacri�cing performance�

Availability

The source code for Mungi will in the near future be made freely available under the terms of
the GNU Public License� Check the Mungi WWW pages�

Acknowledgments

The authors would like to thank Jing Pang for performing the benchmark runs under Irix�
Ruth Kurniawati for implementing the index structure of the OT� and Paul Ashton from the
University of Canterbury for valuable discussions� Chris Amies� Dave Goodall� Fondy Lam�
Lester Gock�Young� and Weibin Yuan� all former students at UNSW� contributed to the the
project in its eariler stages� The project was supported by grant no ��� under the Australian
Research Council�s Large Grants scheme�

A OO� Implementation Details

For our benchmarks we used the �small� database ������� parts de�ned in �CS���� The lookup
operation consists of searching ���� random parts in the database� the database server is invoked
once for each part� The insert operation creates ��� new parts in the database and connects
each to
 random parts� The total number of database server invocations is ��� in this case�

�� REFERENCES

The forward and backward traverse operations start from a randomly chosen part and and
follow all parts connected to it up to a depth of seven� Due to the way the database is de�ned�
the forward lookup �nds exactly
���� parts� while the number of parts found in the backward
traverse depends on the starting point� All timings reported in Tables � and
 for that part of
the benchmark are normalized to the average number of parts found� The traverse operations
are entirely performed within the database server� which is invoked only once for the whole
operation�

The OO� speci�cation requires the client and database server to execute on separate nodes�
However� as we do not yet have networking implemented in our system we ran OO� on a single
node� Furthermore� OO� speci�es that caches are �ushed to disk regularly� As we are �not yet
interested in I�O performance� but wanted to measure the performance of basic system calls� as
experienced by user code� we ignored that speci�cation and instead ran everything in memory�

While running the benchmark on a single node� we nevertheless ran the client and server
codes in separate protection domains �except for the �single process� results given in Table ��
In Mungi� this means that the client code invokes the database via PDX calls� In Irix this
means that client and server are running as separate tasks communicating via IPC�

The benchmark speci�es that� during processing� the database invokes a procedure to return
data to the client or obtain further inputs� For simplicity� we did not use a cross�domain call
for this� but executed the user�procedure in the addressing context of the database�

In order to ensure a fair comparison we used our own random number generator in the
benchmark� hence the actual operations performed are exactly the same across systems� We
also had the benchmark do its own memory management to avoid unnecessary interference from
allocation strategies� All results are based on hot caches�

Our comparison is actually biased in favor of the UNIX version� as we are using virtual
memory addresses as object identi�ers� A real database in a traditional system such as UNIX
could only do this in combination with pointer swizzling or an indirection via an object table�
both of which incur additional overhead� This overhead is ignored in our benchmarks� In a
SASOS the chosen implementation strategy is possible without overhead and is the natural way
to proceed�

References

�AK��� D� A� Abramson and J� L� Keedy� Implementing a large virtual memory in a dis�
tributed computing system� In Proceedings of the ��th Hawaii International Con�
ference on System Sciences� volume �� pages �������� �����

�APW��� M� Anderson� R� Pose� and C� S� Wallace� A password�capability system� The
Computer Journal� ������� �����

�Ber��� V� Berstis� Security and protection in the IBM System�
�� In Proceedings of the
�th Symposium on Computer Architecture� pages �������� ACM�IEEE� May �����

�CLFL��� J� S� Chase� H� M� Levy� M� J� Feeley� and E� D� Lazowska� Sharing and protection in
a single address space operating system� ACM Transactions on Computer Systems�
�������
��� November �����

REFERENCES ��

�CLLB��� J� S� Chase� H� M� Levy� E� D� Lazowska� and M� Baker�Harvey� Lightweight shared
objects in a ���bit operating system� In Conference on Object�Oriented Program�
ming Systems� Languages� and Applications� �����

�CM��� A� Chang and M� F� Mergen� ��� storage� Architecture and programming� ACM
Transactions on Computer Systems� �������� �����

�CMS��� C� Chao� M� Mackey� and B� Sears� Mach on a virtually addressed cache architecture�
In USENIX Mach Workshop� pages
����� �����

�CS��� R� G� G� Cattell and J� Skeen� Object operations benchmark� ACM Transactions
on Database Systems� �����
�� �����

�DD��� R� Daley and J� Dennis� Virtual memory� processes� and sharing in Multics� Com�
munications of the ACM� �����
���
��� May �����

�DVH��� J� Dennis and E� Van Horn� Programming semantics for multiprogrammed com�
puters� Communications of the ACM� ����
���� �����

�ERHL��� K� Elphinstone� S� Russell� G� Heiser� and J� Liedtke� Supporting persistent object
systems in a single address space� In Proceedings of the �th International Workshop
on Persistent Object Systems� pages �������� Cape May� NJ� USA� May �����
Morgan Kaufmann�

�GBY��� G� Gonnet and R� Baeza�Yates� Handbook of Algorithms and Data Structures�
Addison�Wesley� �nd edition� �����

�HLM���� P� M� Hansen� M� A� Linton� R� N� Mayo� M� Murphy� and D� A� Patterson� A perfor�
mance evaluation of the Intel iAPX �
�� Computer Architecture News� �����������
June �����

�HMRS��� D� Hagimont� J� Mossi"ere� X� Rousset de Pina� and F� Saunier� Hidden software
capabilities� In Proceedings of the ��th International Conference on Distributed
Computing Systems� pages �������� Hong Kong� May ����� IEEE�

�HSH��� M� E� Houdek� F� G� Soltis� and R� L� Ho�man� IBM System�
� support for
capability�based addressing� In Proceedings of the �th Symposium on Computer
Architecture� pages
���
��� ACM�IEEE� May �����

�KC��� D� Kotz and P� Crow� The expected lifetime of �single�address�space� operating
systems� In SIGMETRICS Conference on Measurement and Modeling of Computer
Systems� pages ������� Santa Clara� CA� USA� ����� ACM�

�Lev��� H� M� Levy� Capability�Based Computer Systems� Digital Press� �����

�Lie��� J� Liedtke� Clans # chiefs� In �	� GI
ITG�Fachtagung Architektur von Rechensys�
temen� pages ����
��� Kiel� ����� Springer Verlag�

�Lie�
� J� Liedtke� A basis for huge �ne�grained address spaces and user level mapping�
In Proceedings of the �th European Conference on Object Oriented Programming
�ECOOP� Workshop on Granularity of Objects in Distributed Systems �GODS����
Kaiserslautern� Germany� July ���
�

�� REFERENCES

�Lie��� J� Liedtke� On ��kernel construction� In Proceedings of the ��th ACM Symposium
on OS Principles� pages �
������ Copper Mountain� CO� USA� December �����

�Lie��a� J� Liedtke� L� Reference Manual� GMD�IBM� September ����� Available from
URL http���www�inf�tu�dresden�de� mh��l
��

�Lie��b� J� Liedtke� On the Realization Of Huge Sparsely�Occupied and Fine�Grained Address
Spaces� Oldenbourg� Munich� Germany� �����

�LRD��� A� Lindstr$om� J� Rosenberg� and A� Dearle� The grand uni�ed theory of address
spaces� In Proceedings of the �th Workshop on Hot Topics in Operating Systems
�HotOS�� pages ������ Orcas Island� WA� USA� May ����� IEEE�

�MT��� S� J� Mullender and A� S� Tanenbaum� The design of a capability�based distributed
operating system� The Computer Journal� ���������� �����

�NW��� R� Needham and R� Walker� The Cambridge CAP computer and its protection
system� In Proceedings of the �th ACM Symposium on OS Principles� pages �����
ACM� November �����

�RA��� J� Rosenberg and D� Abramson� MONADS�PC�a capability�based workstation
to support software engineering� In Proceedings of the ��th Hawaii International
Conference on System Sciences� volume �� pages ����
�� IEEE� �����

�RDH���� J� Rosenberg� A� Dearle� D� Hulse� A� Lindstr$om� and S� Norris� Operating system
support for persistent and recoverable computations� Communications of the ACM�

���������� September �����

�Ros��� T� Roscoe� Linkage in the Nemesis single address space operating system� Operating
Systems Review� ����������� �����

�RSE���� S� Russell� A� Skea� K� Elphinstone� G� Heiser� K� Burston� I� Gorton� and
G� Hellestrand� Distribution % persistence & global virtual memory� In Proceedings
of the 	nd International Workshop on Object Orientation in Operating Systems�
pages ������ Dourdan� France� September ����� IEEE�

�SZBH��� D� C� Swinehart� P� T� Zellweger� R� J� Beach� and R� B� Hagmann� A structural
view of the Cedar programming environment� ACM Transactions on Programming
Languages and Systems� ���������� �����

�THK��� M� Talluri� M� D� Hill� and Y� A� Khalid� A new page table for ���bit address
spaces� In Proceedings of the ��th ACM Symposium on OS Principles� pages ����
���� Copper Mountain Resort� Co� USA� December ����� ACM�

�VERH��� J� Vochteloo� K� Elphinstone� S� Russell� and G� Heiser� Protection domain exten�
sions in Mungi� In Proceedings of the �th International Workshop on Object Ori�
entation in Operating Systems� pages �������� Seattle� WA� USA� October �����
IEEE�

�Wal��� C� S� Wallace� Physically random generator� Computer Systems Science � Engi�
neering� �������� �����

REFERENCES �

�WCC���� W� Wulf� E� Cohen� W� Corwin� A� Jones� R� Levin� C� Pierson� and F� Pollack�
HYDRA� The kernel of a multiprocessor operating system� Communications of the
ACM� ���

��
��� �����

�Wil�
� T� Wilkinson� Implementing Fault Tolerance in a ���Bit Distributed Operating Sys�
tem� PhD thesis� Systems Architecture Research Centre� City University� London�
UK� July ���
�

�WM��� T� Wilkinson and K� Murray� Evaluation of a distributed single address space op�
erating system� In Proceedings of the ��th International Conference on Distributed
Computing Systems� pages �������� Hong Kong� May ����� IEEE�

�WMSS�
� T� Wilkinson� K� Murray� A� Saulsbury� and T� Stiemerling� Compiling for a ���bit
single address space architecture� Technical report TCU�SARC����
��� Systems
Architecture Research Centre� City University� London� UK� March ���
�

�WSO���� T� Wilkinson� T� Stiemerling� P� E� Osmon� A� Saulsbury� and P� Kelly� Angel�
A proposed multiprocessor operating system kernel� In European Workshop on
Parallel Computing� pages
���
��� Barcelona� Spain� �����

