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Abstract

Single address-space operating systems offer many advantages for modern systems
design. We outline in this paper how such a system deals with the issues of memory
protection, user-level naming, resource management, and translation management
in a large, sparse address space, as well as fault tolerance and reliability. We also
explain how a POSIX compliant interface can be supported on such a system.



1 Motivation

For many years, the number of bits available for addressing memory constituted one
of the most serious restrictions imposed on programmers. While the introduction of
virtual memory made it easier for programmers to deal with the limited amount of
physical memory available, even virtual address spaces were too small to address
all of the data needed by a program.

As a result, current operating systems provide a large number of different ad-
dress spaces. In a time-shared system, each process has its own address space con-
taining the memory objects on which the program can operate directly. However,
a large amount of data on which programs need to operate are outside this address
space. This especially includes all persistent data, i.e. data whose lifetime is inde-
pendent of any particular process. Such data is generally kept in files.

A file represents an address space of its own. A data item within a file is ad-
dressed by its position relative to the beginning of the file. However, such an ad-
dress is different from a normal memory address as it cannot be used by an instruc-
tion to access the data. Hence, the system has at least two different naming mech-
anisms. Data in virtual memory can be named and accessed simply by issuing its
virtual memory address, while data in persistent memory is identified by a file name
and an offset, and complex operations are required to make the data accessible.

These non-uniform access mechanisms also significantly complicate the long-
term storage and sharing of some types of data. Imagine a program which con-
structs a dynamic data structure, such as a binary tree. The data structure is com-
posed of a large number of memory objects which have been dynamically allocated,
and the different sub-objects are connected with pointers. These pointers are virtual
memory addresses whose values are not, in general, under the control of the applic-
ation program, and depend on memory allocation calls performed previously by the
process.

Now suppose the program tries to save the whole data structure in persistent
memory (i.e. a file) so that it can be retrieved later. This presents a serious prob-
lem: the pointer values (addresses) have meaning only within their original address
space. When moved into a different address space, they become meaningless bit
patterns. If the file is read back by a later execution of the same (or a related) pro-
gram, dynamically allocated memory objects end up at different addresses, and the
pointers are invalid. Similar problems occur if programs attempt to pass data struc-
tures via an inter-process communication channel.

Two basic strategies exist for dealing with these problem. One is to convert
pointers into position independent references for storage or communication. This
process is called flattening, and must generally be done by the programmer. The
alternative is to store pointers in a portable form, then translate them automatically
when they are used, a process called pointer swizzling [Wil91]. Pointer swizzling
is only possible if the system is able to detect all pointers. This imposes significant
restrictions on pointer use, which are generally incompatible with languages like C.

Shared memory offers a partial solution to these problems. Complex data struc-
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tures can be shared, but only if the shared memory region resides at the same virtual
address for all participating processes, both currently and in the future. Reaching
agreement on the addresses to share is not always possible if more than a few pro-
cesses are involved. Further problems are that all objects in the shared address range
will have the same protection state, and it is difficult or impossible to allow sharing
of just parts of the memory.

The need to move data between multiple address spaces results in programs that
are slower, more complex, and less able to cooperate effectively. These problems
could be avoided if all data were put into the same address space. Obviously, such
an address space must be large, which is the primary reason such an approach has
not been used in the past.� The advent of 64-bit computer architectures, such as the
HP-PA, the MIPS R4000, or the DEC Alpha, has now made this approach feasible.
A 64-bit address space is big enough to allow the unification of all data, transient
as well as persistent, on all nodes of a distributed system of thousands of machines.
In such a single address space operating system (SASOS), there is a single, system
wide name for each object — its virtual memory address. Sharing in such a system
is trivial, as knowledge of the address is all that is required for accessing shared
data.

The single address space also incorporates all persistent data. In a traditional
OS, a memory object only exists in the creator process’ address space, and vanishes
with that address space when the process exits. In a SASOS, however, the address
space persists throughout the life of the system, and hence objects allocated in the
address space persist as well. As a consequence, a SASOS needs no file system,
and non-volatile (disk) store is nothing more than backing store for virtual memory
paging.

In this paper we present some of the issues relating to SASOS design, and
present possible approaches to their implementation. We use two SASOS as
case studies: the Angel system [MSS�93] developed at City University, London,
UK, and the Mungi system [HERV93], from the University of New South Wales,
Sydney, Australia. A native 32-bit prototype of Angel has been in operation for
about a year, while a native 64-bit prototype of Mungi is presently under devel-
opment. A similar system, Opal [CLFL94] from the University of Washington,
Seattle, USA, has recently been implemented on top of Mach.

2 Memory Protection

While SASOS make sharing of data easy, this must not happen at the expense of
security. In a traditional OS, memory protection is based on the fact that address
space boundaries can only be crossed with the cooperation of the OS, and so access
to objects external to a process’ address space is under full control of the system.

�An exception was the Monads system [RA85] which used custom hardware to implement a large
shared address space.
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As there are no such address space boundaries in a SASOS, this seems, at a first
glance, to weaken protection.

In fact, memory protection in SASOS is by no means weaker than in traditional
systems [CLFL94]. As far as protection is concerned, the concept of an address
space is replaced by a protection domain, which is the set of objects a process is
allowed to access. As in every virtual memory system, a process can only access
areas of virtual memory for which a mapping to physical memory has been estab-
lished, and every attempt to access unmapped memory will result in a page fault.
When the system handles that fault, it can verify whether the process has permis-
sion to access that memory region; i.e., whether it is part of the process’ protection
domain. If it is not, the system will generate a protection fault. In essence, protec-
tion in a SASOS is provided not by controlling what is in the address space, but by
controlling what parts of this can be accessed.

The handling of protection faults is system specific. In Angel protection faults
are handled by a user-level protection server which, in theory, can implement any
protection model desired. The current implementation maintains a very general
and flexible system of access control lists. Rather than using lists of (owner,
permissions) pairs, Angel allows the construction of permissions trees, one
tree per object. At the base of this tree are (object, permissions) pairs
which are combined in the tree using AND, OR and NOT operations (see Figure 1).

When a process asks to add an object to its domain by presenting the object’s
address, the object’s permission tree is interrogated with respect to the current state
of the domain. For each leaf of the tree which matches an object in the domain,
the branch is considered true (i.e. all permissions valid). These are combined and
filtered using the logical operators within the tree to produce a set of permissions
for the requesting process. The result is then compared with the permissions reques-
ted by the process and, assuming there are no conflicts, the object is placed into the
domain. Modification of permissions trees is controlled by additional permissions
bits, defining which processes can modify the trees and thus preventing security be-
ing compromised.

Mungi’s protection model [VRH93] is based on password capabilit-
ies [APW86]. Capabilities may confer read, write, execute and delete rights.
The password associated with each capability is a large random number chosen
by the object’s owner. Multiple capabilities may be created with the same rights
but different passwords, allowing selective revocation at a later time. The set of
capabilities for each object is maintained in a global distributed data structure, the
object table.

The system maintains a process’ protection domain in the form of a set of cap-
ability lists referred to by the process control block. When a protection fault occurs,
these lists are compared to the set of valid capabilities for the object, and if a match
is found, the appropriate address mapping is established.

The capability lists are user maintained data structures. Some of them are pub-
lic lists, allowing access to shared objects. Others belong to individual users and
contain their private passwords. When a user logs in, an initial protection domain
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AND

(RW-) (R--)

Filter: (R-X)

[R-X]

Object 0x6300

Object 0x1f80

Object 0x2a00

[RWX][RWX]

[RWX]

Figure 1: Example of a permissions tree for an object in Angel. In this case, a pro-
cess is granted RX access to Object 0x1f80 if it has at least RW access to Object
0x2a00 and R access to Object 0x6300.

is established, and is typically inherited by all subsequent processes. The protec-
tion domains can then be manipulated by either changing the contents of the cap-
ability lists, which affects all of the processes, or by adding or deleting lists on a
per-process basis.

Presentation of capabilities in Mungi is done implicitly when a process attempts
to access an address for the first time. Due to implicit validation, services such as
name managers do not have to store passwords, and hence can be implemented as
library procedures. As well, it is possible to construct a confined protection domain
which does not contain capabilities for some or all of its capability lists. Such pro-
tection domains allow processes to access data, but not the associated capabilities.

In order to allow user processes controlled access to privileged operations,
Mungi uses a protected procedure call mechanism called protection domain exten-
sion (PDX). PDX procedures have capabilities which are added to the caller’s pro-
tection domain on entry, and are automatically removed upon exit from the proced-
ure.
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3 User-Level Naming

A SASOS names objects by their addresses. However, 64-bit numbers are not very
convenient as user-level names. A SASOS therefore needs a symbolic naming
scheme which maps names to addresses. Neither Angel nor Mungi support a nam-
ing scheme as part of the kernel, allowing the user or application to choose a scheme
that is most appropriate.

In practice, of course, users expect the system to provide a naming service.
Both systems implement a default namespace scheme based on ideas demonstrated
by Plan 9 [PPTT91]. Essentially, each process has its own tree-structured, private
namespace which it can manipulate as it sees fit. Into this can be incorporated other
namespaces, such as those of other processes, persistent “file system” stores, in-
terfaces to servers, and so forth. At the leaves of these namespaces are the actual
objects. It is therefore easy for a process to use its namespace to map a textual path-
name to an object address or capability. This can then be presented to the kernel in
order to gain access to the required object.

4 Resource Management

A system which provides persistent objects needs to be able to deal with the inev-
itable garbage left behind by careless users and buggy software, otherwise all sec-
ondary storage would eventually fill up with unused objects.

Angel’s approach to garbage management is to build an object hierarchy. At the
base of this is the persistent root object. All other objects are created with reference
either to this object, or to another object which can itself trace a reference back to
the root. However, to avoid the rigidity and limitations of a strict tree structure,
additional references between objects can be added as required.

The result is a flexible object hierarchy graph in which an object persists as long
as it can trace a line of references between itself and the root. Unfortunately this ad-
ditional flexibility makes it impossible to use simple reference counting to determ-
ine whether an object should persist. Instead, garbage collection must be used to
identify unreferenced objects and free the address space and storage resources.

In practice, each object in Angel is first created with reference to some transi-
ent parental object, most often the process itself. Consequently, when the process
terminates and the process object is removed, this object will be removed as well.
However, if additional references have been added, the object can persist beyond
the lifetime of the process which created it; if referenced by a group of processes
acting in parallel the object would persist for the lifetime of the parallel program; if
referenced by another persistent object, the object can exist indefinitely. By main-
taining a reference graph it is always possible to locate any persistent object which
exists in the system, even if a user assigned symbolic name has been lost. How such
“anonymous” objects should be treated is up the user.

The approach taken in Mungi is to not do automatic garbage detection, but to
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hold users responsible for their persistent objects. Objects created by a process are
removed automatically by the system when the process exits, unless the process ex-
plicitly requests that they persist. In this case, the process must have supplied a bank
account which is periodically charged by a rent collector for the storage used by
the object. A paymaster periodically deposits funds in each account. An empty or
overdrawn account cannot be used to create new objects, forcing the user to clean
up. The rent collector issues an account statement to show users where their money
goes.

The advantage of this system is that the accounting is done asynchronously. Ob-
ject creation/deallocation is not slowed down by accounting, and the rent collector
and paymaster can do their job at times of low system usage. The system is also
freed from the need to keep track of pointers between objects. Furthermore, the
rent can easily be adjusted in response to high demand, forcing users to clean up.
Note that in such a situation users who have let their account balance drop low will
be the first to run out of funds, while those using storage economically will be less
affected.

5 Managing a Large, Sparse Address Space

One of the most serious problems facing a SASOS is managing the huge address
space; in particular, implementing virtual address translation efficiently. Traditional
multi-level page tables (MPT), which in a 32-bit address space typically use two
levels, would require at least 5 levels in a 64-bit address space.

In UNIX, a process’ address space typically consists of only two or three con-
tiguous segments, for text, data and stack. This model is well supported by MPTs.
In a SASOS, however, each object accessed by a process corresponds to a separate
contiguous segment of virtual address space, hence the total number of active seg-
ments is much larger. Such sparse use of address space results in inefficient space
use by MPTs. In the most extreme case of single page objects distributed uniformly
throughout the address space, more memory is used for page tables than for the ac-
tual data.

A common way to deal with a large address space is to use an inverted (hashed)
page table (IPT). The size of such a page table is only dependent on the amount of
physical memory available, and is unaffected by sparsity. The problem with IPTs
is that they do not support sharing very well. Suppose two processes share a large
data segment with different permissions; one has read-write access, while the other
has read-only access. On each context switch, all the IPT entries of that object need
to be invalidated or have their write-permission bit flipped. This basically requires
a scan of the whole IPT, an expensive operation.

Sharing is best supported by a hierarchical page table structure that can cope
with sparse address spaces, such as guarded page tables (GPTs) [Lie94]. The basic
idea of GPTs is illustrated in Fig. 2: The second and third level page tables in that
example are are completely sparse, each one contains only one single non-nil entry.
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Consequently, there is only one valid path through these two tables: if the leftmost
bits of the virtual address v are 11, the following bits must be 1011, otherwise a
page fault will occur. Guarded page tables omit these two tables and the associated

v � 11101100xxx

Q
QQs

� � �

�

� � �

Q
QQs

data page

�
���

�

�

1011 ?

Figure 2: Guarded Page Tables

translation steps. The bit string 1011 is instead recorded as a guard in the first-level
page. At each translation step, the leading bits of the remainder of the virtual ad-
dress are matched against this variable-length guard; if they match, the guard bits
are stripped off the virtual address and translation of the remaining bits continues at
the next level. By recording the size of the next level page table together with the
guard, the size of individual tables can be any power of two, which leads to signi-
ficant space savings. Note that GPTs with empty guards work like normal MPTs.

A prototype implementation for a MIPS R4600-based system shows that the
overhead of GPT lookup is reasonable as long as TLB miss rates are low. If a soft-
ware cache for TLB entries is used to decrease the number of page table lookups,
the GPT scheme performs well even with TLB miss rates of several percent [LE95].

6 Fault tolerance and reliability

Most operating systems neglect issues of fault tolerance. In UNIX systems this can
be annoying but is not fatal to the operation of the machine. Most failures can be
recovered by rebooting the relevant machine and checking the integrity of the data
on disk.

In a SASOS reliability and data integrity is more of a problem. The use of a
single persistent data store, shared across a network of machines, makes the failure
of any single machine difficult to tolerate — the failure of one will generally result
in the failure of all.

Fault tolerance in single address space systems has been studied in [Wil93].
This proposed and modeled a highly distributed fault tolerance scheme based on
the observation that, unlike multi-address space UNIX-like systems, in a SASOS
only one resource must be reliable—the address space. Other software structures
are built on top of this, and thereby “inherit” reliability. This way, processes and
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their data can be preserved in the case of faults. (Obviously, this cannot prevent
data loss due to broken peripherals such as printers.)

The fault tolerance scheme has three components. Firstly, the distributed
memory protocol must be capable of tolerating machine failures. While data may
be lost on the failed machine, the remaining protocol state must be recoverable. One
way to achieve this is to maintain the protocol information in a distributed, doubly
linked ring. Failure of a single node will not prevent access to other ring elements
or subsequent repair.

Secondly, data must be duplicated onto different machines to prevent failure of
one making some data inaccessible. The multiple writer protocol [BCZ90] used for
Angel’s distributed shared memory (DSM) already maintains local copies of pages.
Data are also written back to multiple disks to prevent disk failures causing prob-
lems.

Finally, since it is unreasonable to propagate every piece of changed data imme-
diately, a checkpoint and rollback policy is implemented whereby any uncheckpoin-
ted changes made by a process to the address space are discarded when a machine
fails. By monitoring data dependencies in normal operation (using the DSM sys-
tem), it is easy to determine which process’ checkpoints depend on which, limiting
the scope of the rollback to the few checkpoints directly effected. Short of using a
consistent checkpointing scheme, Angel limits the amount of interdependencies by
forcing checkpoints of dependent data if necessary. Failure to do this could result
in “domino rollbacks”, where the system rolls back indefinitely in the presence of
failures.

This scheme guarantees the single address space always remains causally cor-
rect, even in the presence of failing machines. After recovery, the processes that
had been executing on the failed machine can be restarted on different nodes.

7 UNIX Compatibility

A drastically new model of computer systems, such as that of a SASOS, has little
chance to gain acceptance if it does not offer a migration path for existing soft-
ware. It is therefore important to show that a traditional OS can be emulated under
a SASOS. As a typical example we therefore discuss how UNIX can be emulated,
or, more accurately, how a POSIX [POS90] compliant library can be built.

A large part of the POSIX interface deals with I/O. While no explicit file I/O
exists in a SASOS, there is no reason why a file system cannot be emulated. For
example, the open call uses the naming service to convert the user-supplied name
into a memory address, and sets up a data structure containing, among other things,
a current position pointer. Obviously, no explicit file buffering is required, avoiding
some of the overhead inherent in traditional I/O.

In a SASOS there is no guarantee that an object can be enlarged, although a
randomised memory allocation strategy makes this highly likely. However, UNIX
file system semantics do not require that each “file object” is mapped onto a single,
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contiguous SASOS object. Furthermore, allocated memory is cheap as long as it is
not being accessed (and therefore does not require backing store). It is possible to
allocate a large junk, possibly many gigabytes, of virtual memory for objects which
are likely to grow.

The largest problem is presented by the fork() system call, which explicitly du-
plicates the address space. Obviously, this is not possible in a SASOS where there
is only one address space — identical copies of objects can be generated but they
must reside at different addresses.

In practice, very few programs actually use fork. Those which execute other
processes mostly use some higher level function, e.g. popen(), which can imple-
mented in a SASOS without problems. However, no POSIX compliance can be
claimed without supporting fork.

Fortunately, a solution is possible [WMSS93]. The program’s code can be
shared between child and parent without problems. However, all addresses in a data
object are represented as offsets from the object’s base address. Consequently, the
data object can be duplicated for the child process, and its notion of the object’s base
changed. The child will then proceed to use the new copy of the data, the parent will
use the old, and neither will notice the difference. The cost of this is bearable, as
shown in Table 1.

Benchmark Slowdown
Dhrystone 3.8%
Espresso 9.3%
Spice2g6 7.3%

Table 1: Performance loss experienced by a number of applications resulting from
running them with fork() support enabled.

Some care must be taken to prevent any absolute address being used in pro-
grams which support fork. Most of these can be handled by the compiler and lib-
rary interfaces, but stack and frame pointers must be adjusted after a fork. Similarly,
direct addressing of other objects must be restricted, since this would involve more
absolute addresses.

8 Open issues

SASOS are attractive for supporting distributed computing systems, like worksta-
tion environments, as they make the network transparent to users. Even process
migration is quite easy in theory: if a process’ register set is migrated, the resumed
process will fault its working set across the network. However, the question when
a process should be migrated in order to balance the load or reduce network traffic
has not yet been resolved. Other research issues resulting from distribution are
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network security, particularly the authentication of data requests originating on re-
mote nodes, and how a SASOS could work in a network of heterogenous computing
nodes.

Computer users, includingapplication programmers, have grown used to a view
of a computer systems which has resulted from technical limitations of previous
hardware generations. Each program lived in a world of its own, and any interaction
with other worlds (programs or persistent data) were cumbersome. The design of
most contemporary programming languages reflects this view.

In many respects, a SASOS represents a much simpler and more flexible model
of computing. The question arises how this can be employed to present users with
more attractive computing environments, and what an appropriate programming
language might look like. A partial answer is given by object-oriented database
systems, like ObjectStore [LLOW91] or O� [D�91]. These systems present a very
convenient data model. While their implementation is obviously possible on a tra-
ditional OS, their use of 64-bit unique object identifiers essentially simulates basic
features of a SASOS. Consequently, the implementation of such a system is expec-
ted to be much simpler, and more efficient, in a SASOS.

9 Summary

The concept of a single address space presents an attractive and exciting new ap-
proach to operating systems. SASOS use recent advances in hardware architec-
ture to overcome restrictions which previous technology had imposed on systems
design. The result is greatly simplified data sharing due to a convenient shared
memory programming model. Orthogonal persistence relieves programmers from
the need to flatten data structures in order to make them compatible with the byte
stream model of I/O. We have shown that difficulties facing the implementation of
this system model can be overcome, and that it is possible to emulate a traditional
computing environment such as UNIX. However, the main strength of SASOS lies
in their ability to support novel environments, such as object-oriented database sys-
tems.
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