
Checkpointing and Recovery for Distributed Shared

Memory Applications

Jinsong Ouyang and Gernot Heiser

School of Computer Science and Engineering

University of New South Wales

Sydney ����� Australia

jinsong�gernot�cse�unsw�edu�au

UNSW�CSE�TR����� � June� ����



Abstract

This paper proposes an approach for adding fault tolerance� based on consistent checkpointing� to dis�

tributed shared memory applications� Two di�erent mechanisms are presented to e�ciently address the

issue of message losses due to either site failures or unreliable non�FIFO channels� Both guarantee a

correct and e�cient recovery from a consistent distributed system state following a failure� A variant of

the two�phase commit protocol is employed such that the communication overhead required to take a

consistent checkpoint is the same as that of systems using a one�phase commit protocol� while our pro�

tocol utilises stable storage more e�ciently� A consistent checkpoint is committed when the �rst phase

of the protocol �nishes�



� Introduction

Checkpointing and rollback recovery are well known mechanismswhich can be used to provide fault
tolerance in distributed systems� and one of the key issues is to provide an e�cient and light�weight
mechanism which collects checkpoints of individual processes in the distributed environment to
form a consistent distributed system state� a system state reachable through some correct execution
of the distributed processes�
In this paper� we present a novel approach to provide fault tolerance for distributed shared

memory applications� Compared to previous systems� our approach particularly focusses on the
following issues�

� reducing the communication overhead required to construct a consistent distributed system
state� which is particularly important for software�based systems�

� e�ciently addressing the problem of message losses due to either site failures or unreliable
non�FIFO channels� to guarantee a correct and e�cient recovery following a failure �two
di�erent mechanisms are provided��

This paper is organised as follows� In Section 	� we describe the concept of consistency and the
two types of mechanisms for constructing a consistent distributed system state� In Section 
�
we describe our system model� In Sections � and �� we describe our checkpointing and rollback
recovery algorithms� We present the conclusion in Section 
�

� Background

The key issue of supporting fault tolerance in distributed systems using checkpointing and rollback
recovery is how to obtain a consistent state of a distributed system� Chandy and Lamport ���
formally de�ned the concept of a consistent distributed system state� and introduced an algorithm
by which a process in a distributed system determines a global state of the system during a
computation�
Brie�y� a set of process states forms a consistent distributed system state if it satis�es the

following condition� For each message among the processes� if it is recorded in the state of the
receiving process� it must also be recorded in the state of the sending process� Informally� we can use
a time diagram to describe a system�s execution� where horizontal lines are time axes of executing
processes� and messages are represented by arrows� For example� in Figure �� P�� P�� P�� and P�

are four processes� and a� b� and c are cuts �sets of process states� each of which forms a distributed
system state�
According to the de�nition� cuts b and c are consistent cuts� while cut a is an inconsistent cut�

as process P� recorded its state after it received the message while process P� recorded its state
before it sent the message� If the system restarts from system state a� process P� restarts from
a point where it already received the message from P�� but P� restarts from a point where it
has not sent the message to P�� so process P� will actually receive the message from P� twice�
This incorrect execution results from the inconsistency of cut a� Another important fact is that
although cut b is a consistent distributed system state� the messages to processes P�� P�� and P�

must be recorded in some way� otherwise message losses will occur if the system restarts from state

�



fs�dia
�� � �� mm

P2

P1

P3

P4

a b c

Figure �� Consistent and inconsistent system states

b� For example� when checkpointing state b in Figure �� the mechanism proposed below ensures
that the messages in transit at the time of the checkpoint are logged� ensuring that a consistent
distributed system state can be recovered from that checkpoint�
There have been many approaches using checkpointing and�or message logging mechanisms

to provide fault tolerance in distributed systems� and their emphasis was generally on how to
construct a consistent state from which the system can restart if a failure occurs later� According
to when and how a consistent state of a distributed system is built� the existing systems can be
divided into two classes as follows�

�� Independent checkpointing and message logging� In this type of system ��� 	�� 	��� the main
idea is that processes do not need to synchronise with one another during the checkpointing
and message logging phases� which means that individual processes perform their message
logging and checkpointing independently� reducing communication overhead in this phase�
With message logging� every process can detect its dependency on the states of other pro�
cesses with which it communicates� and the dependency control information enables a recon�
struction of a consistent distributed system state following a failure� using process rollback
and message replay� So� this type of approach focusses on reducing communication overhead
during the checkpointing and message logging phases� and puts most work into the recovery
phase� It is assumed in these systems that failures are infrequent�

	� Consistent checkpointing� This type of system ��� ��� �	� ��� ��� 		� attempts to construct a
consistent distributed system state in a checkpointing phase� Checkpointing of processes is
synchronised in such a way that the resulting set of checkpoints forms a consistent distributed
system state� consequently� this makes rollback recovery less expensive�

Compared to consistent checkpointing� independent checkpointing and message logging has a
signi�cant message logging overhead and potentially signi�cantly increased memory requirements�
This overhead may outweigh the gains through avoiding the synchronisation overhead during the
checkpointing phases� Moreover� independent checkpointing and message logging makes recovery
expensive�
Our approach is therefore based on consistent checkpointing� Compared to previous systems� it

has the following features�

	



� Two di�erent mechanisms are provided to address the issue of message losses due to site
failures or unreliable non�FIFO channels� Both ensure that a checkpoint of a consistent state
can only be committed if no messages are in transit or lost� This guarantees a correct and
e�cient recovery from a consistent distributed system state following a failure�

� Consistent checkpoints are taken e�ciently� Unlike other systems using a two�phase com�
mit protocol� our approach implements the second phase of consistent checkpointing in a
lazy way which does not require any extra message exchange in the system� and does not
delay committing a consistent checkpoint until the second phase of consistent checkpointing
terminates� While the communication overhead required to take a consistent checkpoint is
the same as that of systems using a one�phase commit protocol� our approach utilises sta�
ble storage more e�ciently� We �rst take tentative checkpoints� which are made permanent
after the �rst phase of the two�phase protocol� at which time the previous checkpoints can
be discarded� resulting in more e�cient use of stable storage� Systems using a one�phase
commit protocol must always keep the two most recent checkpoints for each process�

� System model

��� Assumption

Our work is partially motivated by the systems ���� ��� ���� and focusses on the above issues
which were not addressed in the previous systems� We make the following assumptions about the
distributed environment on which our model is built�

�� nodes fail by stopping� The failed processes can be relocated to some other working node�
and the process states can be recovered with the checkpoints stored on stable storage�

	� the network channels are unreliable non�FIFO channels which may lose or reorder messages�
and may be temporarily broken� A reliable message delivery can be realized by retransmit�
ting a message a number of times until an acknowledgement is received from the destination
process� If no acknowledgement is received within a timeout interval� an error due to either
a node failure or a temporarily partitioned channel is assumed to have occurred�


� all the processes involved in a consistent checkpoint or a rollback recovery belong to a single
distributed application� checkpointing or recovery of di�erent distributed applications does
not interfere with each other�

�� for each distributed application� there is one fault tolerance support manager �FTSM� on
each node responsible for checkpointing and recovery of processes within this application�
In our implementation� the FTSM will be a component of the DSM runtime system�

�� processes communicate with each other through distributed shared memory��

�Our model can be built on either message�passing systems or distributed shared memory systems�






��� Distributed shared memory model

In this section� we brie�y describe one of the typical distributed shared memory models ��� �� 
�
�� ��� �
� on which our system is built�release consistency ��� ���
In the release consistency model� not only is each shared memory access classi�ed either as a

synchronisation access or an ordinary access� but synchronisation accesses must be classi�ed as
acquire and release accesses� Formally� a system is release consistent if ����

�� before any ordinary access is allowed to perform with respect to any other processor� all
previous acquires must be performed�

	� before a release is allowed to perform with respect to any other processor� all previous
ordinary accesses must be performed�


� synchronisation accesses must be sequentially consistent with each other�

Release consistency is a consistency model which� compared to stricter consistency models� re�
duces the number of messages required to maintain consistency in a DSM� Informally� consistency
is guaranteed only at speci�c synchronisation points at which ordinary accesses are pipelined or
bu�ered between synchronisation accesses� this relaxed consistency model results in higher e��
ciency�

� Distributed checkpointing

��� E�cient consistent checkpointing

This section describes in principle how the consistent checkpointing algorithm e�ciently con�
structs a consistent distributed system state� We �rst describe the techniques used for consistent
checkpointing�

� For each distributed application� there is one distinguished FTSM on a node which acts as
the coordinator of checkpointing and recovery�

� Like some other systems ��� ��� ���� each consistent checkpoint is uniquely identi�ed by an
increasing checkpointing sequence number �CSN�� and each normal message delivered in the
system is tagged with the current CSN of the sender� Besides� each normal message is also
tagged with the status bit of the sender� This bit is � if the current checkpoint of the sender
is tentative� otherwise the current checkpoint is permanent�

� A variant of a two�phase commit protocol is employed� This protocol has the communi�
cation overhead of a one�phase commit protocol without delaying committing a consistent
checkpoint� Furthermore� after the current checkpoint becomes permanent� the previous
checkpoint can be deleted to save stable storage space� �Systems using a one�phase commit
protocol must always keep the last two checkpoints for each process�� The second phase of
checkpointing is implemented in a lazy fashion in that the decision of the coordinator will
be delivered to other processes by the status bit �see above� piggybacked on each normal
message delivered in the system� If� after the coordinator makes the current checkpoint

�



permanent� there are no more messages sent from the coordinator node to any of the other
nodes� each process on the other nodes needs to keep its last two checkpoints� as it does not
know the decision of the coordinator� In this worst case scenario� the checkpoints do not
become permanent until the next consistent checkpoint is initiated� and the storage overhead
is equal to that of a system based on one phase commit�

In principle� when the coordinator initiates a new consistent checkpoint� it takes tentative
checkpoints of all local processes belonging to the application� and informs other FTSMs to take
tentative checkpoints of their local processes� This is done through marker messages containing
the current CSN� When a node receives any message whose CSN is bigger than the local one�
the local FTSM takes tentative checkpoints of the local processes� increments its local CSN� and
replies to the coordinator� The coordinator will set its status bit once it is informed that all
the processes within the application have been checkpointed and there are neither messages in
transit nor message losses� �Techniques for achieving this will be described in the next subsection��
Afterwards� if a node receives a message whose status bit is set while the local status bit is ��
the local checkpoints are made permanent� the status bit is set� and the previous checkpoints are
discarded�
With the underlying distributed shared memory model� release consistency� we can make the

following optimisation to further reduce the consistent checkpointing overhead� A new consistent
checkpoint can be triggered by such events as the expiry of a time interval� a certain number
of release accesses performed� or an output to the outside world ����� For example� when the
processor on which the coordinator resides is about to perform a release� and the number of releases
performed exceeds a prede�ned number� the coordinator may start a new consistent checkpoint
at this time� The coordinator �rst checkpoints the local processes� and tags any update messages
with its CSN so that the nodes to which the update messages will be delivered do not need the
extra marker messages� By this optimisation� the marker messages will only be sent to nodes
which are not sent any update messages� and the number of messages is further reduced�
Using these mechanisms� our approach can e�ciently construct a consistent state of a distributed

application with minimum communication overhead and stable storage requirements�

��� Dealing with message losses

We have not yet addressed the important issue of message losses due to either site failures or
unreliable non�FIFO channels� Message losses due to site failures can occur as follows� a message
was sent before the sender takes its checkpoint� whereas it has not been received by the receiver
when the receiver fails after taking its checkpoint and replying to the coordinator� Even with
a reliable transport protocol �e�g� TCP�� a message can be lost during delivery �e�g� due to a
temporarily broken channel�� If message losses cannot be solved properly� a correct recovery from
a consistent distributed system state cannot be guaranteed�
Figure 	 is an example in which message losses occur� P�� P�� and P� are three processes

of a distributed application on three di�erent nodes� Process P� is the coordinator of consistent
checkpointing and recovery� It starts the ith consistent checkpoint at some point� and sends marker
messages to P� and P�� P� takes a tentative checkpoint when receiving the marker message from
P�� Before receiving the marker message� P� receives a message from P� which is sent after P�

takes its checkpoint� and P� takes its tentative checkpoint before changing its local state� The

�



fsloss
�� � �� mm

P1

P2

P3

P2 chk 

P3 chk

p1 chk

M

j

Figure 	� Message losses due to a site failure

fsloss�
�� � �� mm

P1

P2

P3

P2 chk 

P3 chk

p1 chk

M

j

Figure 
� Message losses due to a channel failure

coordinator P� receives the replies from both P� and P� at point j� and makes its checkpoint
permanent by setting its status bit� Now� we assume that P� fails for some reason� During
recovery� it informs all processes to roll back to their ith checkpoints� and restart execution from
there� However� this will cause an incorrect recovery because message M from P� to P� will be
lost� P� sent M before its ith checkpoint while P� received M after its ith checkpoint� and M is
not recorded by P��
Another error could occur if message M is lost during delivery� see Figure 
� If the channel is

temporarily broken� and message M is lost in transit� process P� will never obtain that message�
In order to guarantee a correct recovery following a failure� the coordinator must not commit a

consistent checkpoint unless it is informed not only that all the tentative checkpoints have been
taken� but also that there are no messages in transit� or lost� The key issue here is how to
implement this e�ciently� In the following sections we propose two mechanisms to deal with this
issue�

�A message is in transit if it is sent before the sender takes the current checkpoint� and is received after the

receiver takes the current checkpoint�






����� Mechanism �

This mechanism is derived from the approach by Mattern����� It di�ers from Mattern�s system
in two respects� �� Mattern assumes that no messages are lost during delivery� whereas our
mechanism tolerates message losses during delivery using a timeout technique� 	� while Mattern
uses a one�phase commit protocol to take a consistent checkpoint� we employ a variant of two�
phase commit without increasing communication overhead while making more e�cient use of
stable storage �see the previous section��
The mechanism is based on the following three techniques�

�� Like Mattern� we use a message transit vector �MTV� to determine the number of messages
in transit and detect message losses� Within a distributed shared memory application�
processes communicate with each other through the DSM runtime system� instead of each
process having its own MTV� the FTSM on each node keeps its MTV� The MTV is a vector
of length n� the number of nodes in the distributed system� When node i sends a message to
node j� it increments the jth component of the localMTV � MTVi�j� � MTVi�j���� Node i
decrements the ith component of its localMTV �MTVi�i� � MTVi�i���� whenever a message
arrives from another node� In our approach� each FTSM has two MTVs � Pre MTV and
Cur MTV � If a node sends a message before taking tentative checkpoints� it will modify its
Pre MTV � Similarly� the receiver will modify its Pre MTV whenever it receives a message�
Otherwise� if a message is sent after a tentative checkpoint has been initiated� the sender
and receiver will modify their Cur MTV � After the tentative checkpoints on a node become
permanent� the value of the Cur MTV is copied to the Pre MTV and the Cur MTV is
cleared� In detail� the message transit vector works as follows�

� the sender of a message will modify its Pre MTV if the status bit is set� otherwise the
Cur MTV �

� if a message is received and its CSN agrees with the local CSN� the Cur MTV is mod�
i�ed if both� the message and the local status bit are unset� otherwise the Pre MTV

is modi�ed�

� if a message is received with a CSN less than the local one� the message is logged and
the Pre MTV is updated�

� if a message is received with a CSN greater than the local one and the local status bit
is not set� the current tentative checkpoints are made permanent� Irrespective of the
status bits� the local FTSM is then noti�ed to take new tentative checkpoints� which
results in the CSN being incremented� The Cur MTV is then updated�

� when a node receives a checkpointing request �explicitly or implicitly�� the FTSM
checkpoints the local processes and replies to the coordinator with a message tagged
with its local Pre MTV �

� Once the coordinator is informed that all the processes have been checkpointed and
there are no messages in transit� it commits the current consistent checkpoint by setting
the status bit and making the local tentative checkpoints permanent� There are no

�



messages in transit if

Sum V ��
nX

i��

Pre MTVi

is a vector of all zeros�

If all processes have been checkpointed and Sum V is not zero� there must be outstanding
messages� There are two options for the coordinator to proceed�

� a pessimistic strategy is based on the assumption that there are usually some messages
in transit� If Sum V is not zero� the coordinator sends a message to each node i

�except itself� where Sum V �i� �� �� This message is tagged with Sum V �i�� which is
the number of outstanding messages to node i� When node i receives this message� it
will await arrival of all outstanding messages indicated by Sum V �i�� and then send
the updated local Pre MTV to the coordinator� The pessimistic strategy is suitable
for distributed parallel applications in which processes communicate with each other
frequently�

� an optimistic strategy assumes that messages in transit are rare� Therefore� the co�
ordinator does not send extra messages to other nodes� Whenever a node receives a
message in transit� it modi�es the local Pre MTV and sends the vector to the coor�
dinator� Assume� for example� that after the FTSM on a node checkpoints the local
processes and replies to the coordinator� there are still two messages which were sent
before the current checkpoint and have not arrived at this node� Two extra messages
containing the updated local Pre MTV will have to be sent to the coordinator when
the messages in transit �nally arrive�

Since this method requires one extra message for each message in transit� it is unsuitable
for cases where there are usually a large number of such messages� If� however� there is
relatively little communication between the processes of a distributed application� this
strategy will result in fewer messages than the pessimistic one�

	� Minimum message logging� As described above� a received messages needs to be logged if
and only if its CSN is less than the local one� This logging is done by the FTSM as part of the
current checkpoints� With the pessimistic strategy� the FTSM will reply to the coordinator
with the updated local Pre MTV after all the messages in transit as indicated by Sum V �i�
are received� with the optimistic strategy� the FTSM will reply to the coordinator with the
updated local Pre MTV every time a message in transit arrives�


� Timeout mechanism� If a message is lost during delivery� or if a node fails after it takes
the tentative checkpoints and replies to the coordinator while some messages in transit have
not arrived at this node� Sum V will never become zero� In these cases� the checkpointing
algorithm cannot terminate �either commit or abort�� We thus use a timeout mechanism to
address these problems� The coordinator keeps checking the replies from other nodes and
the value of Sum V � If� within the timeout interval� if all the replies are �yes� and Sum V

becomes zero� the coordinator commits the current consistent checkpoint� otherwise� site
failures or message losses are assumed to have occured� and the coordinator aborts the
current consistent checkpoint and starts a rollback recovery�

�



urtp

��� � 	� mm

sender receiver

UDP UDP

IP IP

URTP

UDP

protocols

IP

protocols

protocols
newthread() newthread()

process1 process2

physical

connection
hardware
interface 

hardware
interface

Figure �� The con�guration of the URTP protocols

There are several disadvantages to this mechanism�

�� the method used to catch messages in transit causes another round of communication over�
head� Moreover� especially when the processes of an application run on many machines �n
is large�� the MTVs piggybacked on the reply messages can be long�

	� message losses due to channels failures may occur even with a reliable transport protocol� If
acknowledgements are not picked up at user�level� message losses cannot be detected until
the next consistent checkpoint times out� This may result in a long rollback�

If acknowledgements are picked up at user�level� another method can be used which avoids both
of these drawbacks �see next section��

����� Mechanism �

In this section� we propose another method to ensure the consistency of the checkpoints in the
presence of failures without the problems of mechanism �� This approach combines the higher
level checkpointing algorithms with the underlying transmission protocols� The method consists
of two components which work together�
�� A user�level reliable transmission protocol �URTP� tailored to our checkpointing algorithms

is used� It handles not only data transmission but also message logging �when needed�� this
allows the higher level algorithms to use a single round of communication for taking a consistent
checkpoint �no extra communication overhead is needed for catching messages in transit�� Figure �
shows the con�guration of this protocol� Its features are�

� threads are used to provide non�blocking communication�

� if� on receiving a data packet of a message� the CSN of the data packet is less than the local
one� the receiver logs the packet and sends an acknowledgement to the sender� If the CSN
of the received package is greater than the local one� the receiver informs the local FTSM

�



to take local checkpoints before sending the acknowledgement� As long as the CSNs agree�
acknowledgements are sent immediately�

� on sending a data packet of a message� the sender increments the value of a local acknowl�
edgement counter� On receiving an acknowledgement� the sender decrements the value of
the corresponding acknowledgement counter� If the acknowledgement has not arrived after
a certain number of retransmissions� a site failure or a channel failure is assumed to have
occurred and the sender sends a rollback recovery request to the coordinator�

�� The acknowledgement counter �AC� is used to record the number of message packets not
yet acknowledged which were sent from local node to other nodes between two checkpoints� On
each node� the FTSM maintains two ACs� previous AC �PAC� and current AC �CAC�� If a node
sends a packet before taking the current checkpoint� the PAC is modi�ed� otherwise the CAC�
After the tentative checkpoints on a node become permanent� the value of PAC is set to that of
CAC� and the value of CAC is set to zero� As described above� the value of an AC is incremented
when a packet is sent and is decremented when the packet is acknowledged� Notice that ACs just
contain local control information and do not need to be transferred among the nodes� With ACs�
our checkpointing algorithms work as follows�

� After a FTSM takes its local checkpoints� it will not reply to the coordinator until its local
PAC becomes zero� at which time it is certain that all the message packets sent from this
node to any other nodes between the last two checkpoints have arrived at their destinations
and have been logged if necessary�

� If the coordinator receives the replies from all other nodes within the timeout interval� it
knows not only that all the processes within the application have been checkpointed� but
also that there are no messages in transit� It can therefore commit the current consistent
checkpoint� otherwise� a failure is assumed to have occurred�

Compared to the �rst method� the detection of a message loss will not be delayed until the
next consistent checkpoint while this method only needs one round of communication to take a
consistent checkpoint� and does not involve the overhead produced by the message transit vector�
Like the �rst method� this method also needs to use message logging and timeout techniques�

����� Checkpointing algorithms

Here we present our checkpointing algorithms corresponding to the mechanisms described above�
�� The coordinator�

Begin the checkpointing operation�

CSN���

Checkpoint�local processes of application��

Multicast�chkp req��

�� waits for the replies from other FTSMs ��

if ��timeout �� all FTSMs replied �y	� then


ifdef MECHANISM �

if �Sum V �� 
� then

��




ifdef PESSIMISTIC

for i � � to n

if �Sum V�i� �� 
� then

send�i�Sum V�i���


endif �� PESSIMISTIC ��

while ��timeout �� Sum V��
�

wait�

if �Sum V �� 
� then abort�


endif �� MECHANISM � ��

commit�

else �� assume failures ��

abort�

�� The other working nodes�

if �checkpoint request� then

CSN���

modify local control information�

Checkpoint�local processes of application��


if MECHANISM �

while �PAC��
�

wait�

send�coordinator� �y	��


endif �� MECHANISM � ��


if MECHANISM �

send�coordinator��y	�Pre MTV��


endif �� MECHANISM � ��

� Rollback recovery

When failures are detected� failed processes can be relocated to a working node� their states can
be recovered from their checkpoints stored on stable storage�
In order to avoid livelocks and maximise the parallelism during a rollback recovery� like check�

points� each rollback recovery is uniquely identi�ed by an increasing recovery sequence number
�RSN�� Each normal message is tagged not only with the CSN� but also the RSN of the sender�
In principle� after determining that the ith checkpoints form the latest consistent state of the

application� the coordinator broadcasts marker messages�rollback recovery requests�containing
the current RSN to all other nodes� and makes the processes on the local node restart from their
ith checkpoints� When a node receives such a marker message� or any message whose RSN is
greater than the local one� the FTSM on the node makes the local processes restart from their ith
checkpoints� and sends an acknowledgement to the coordinator� When the RSN of an incoming
message is less than the local one� this message must be discarded because it was sent before the
current rollback recovery started� With this one�phase commit protocol� our approach implements
rollback recovery e�ciently�
According to the above description� the coordinator works as follows�

��



Begin the rollback recovery operation�

if �local status bit �� �� then

rollbackto � CSN

else

rollbackto � CSN ���

RSN���

Multicast�RSN� rollbackto��

restart �rollbackto��

if ��timeout �� all FTSMs replied �y	� then

commit

else

abort� �� assume failure ��

Other working nodes work as follows when they are informed �explicitly or implicitly� to start
a rollback�

if �rollback recovery request� then

RSN � request�RSN�

CSN � request�rollbackto�

Rollback�CSN��

send �coordinator������

� Conclusion

This paper proposes an approach for adding fault tolerance� based on consistent checkpointing�
to distributed shared memory applications� Compared to other systems� our approach has the
following features� �� two di�erent mechanisms are provided to e�ciently address the issue of
message losses due to either site failures or unreliable Non�FIFO channels� 	� a variant of two�
phase commit protocol is employed keeping the communication overhead the same as that of
systems using a one�phase commit protocol while utilising stable storage more e�ciently�

Acknowledgements

We would like to thank Anne Ngu� Jayasooriah� Toong Shoon Chan and the anonymous IWOOOS
referees for their helpful comments on an earlier version of this paper�

References

��� S� Adve and M� Hill� Weak ordering � A new de�nition� In Proceedings of the ��th Annual
International Symposium on Computer Architecture� pages 	���� May �����

�	� M� Ahuja� Flush primitives for asynchronous distributed systems� Information Processing
Letters 
�� pages ���	� �����

�	



�
� P�A� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency control and recovery in
database systems� Addison�Wesley� �����

��� J�B� Carter� E�cient distributed shared memory based on multi�protocol release consistency�
Ph�D thesis� Rice University� September ���
�

��� K� Chandy and L� Lamport� Distributed snapshots� Determining global states of distributed
systems� ACM Trans� Comput� Systems� vol� 
� no� �� pages 

���� February �����

�
� M� Dubois and C� Scheurich� Memory access dependencies in shared�memory multiprocessor�
IEEE Trans� Software Engineering� �
�
��

��
�
� June �����

��� E�N� Elnozahy� D�B� Johnson� and W� Zwaenepoel� The performance of consistent check�
pointing� In Proceedings of the ��th Symposium on Reliable Distributed Systems� pages 
�����
October� ���	�

��� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� Hennessy� Memory
consistency and event ordering in scalable shared memory multiprocessors� In Proceedings
of the ��th Annual International Symposium on Computer Architecture� pages ���	
� May
�����

��� D�B� Johnson and W� Zwaenepoel� Recovery in distributed systems using optimistic message
Logging and checkpointing� Journal of Algorithms� vol� ��� pages �
	����� �����

���� D�B� Johnson� E�cient transparent optimistic rollback recovery for distributed application
programs� In Proceedings of the ��th Symposium on Reliable Distributed Systems� pages �
�
��� October ���
�

���� P� Keleher� A�L� Cox� and W� Zwaenepoel� Lazy release consistency for software distributed
shared memory� In Proceedings of the ��th Annual International Symposium on Computer
Architecture� pages �
�	�� May ���	�

��	� R� Koo and S� Toueg� Checkpointing and rollback�recovery for distributed systems� IEEE
Trans� Software Eng� vol� �
� no� �� pages 	
�
�� January �����

��
� L� Lamport� How to make a multiprocessor computer that correctly executes multiprocess
programs� IEEE Trans� Computers� C�	�����	���	��� September �����

���� T�H� Lai and T�H� Yang� On distributed snapshots� Information Processing Letters� 	�� pages
��
����� May �����

���� K� Li� J�F� Naughton� and J�S� Plank� Real�time� concurrent checkpoint for parallel programs�
In Proceedings of the ���� Conference on the Principles and Practice of Parallel Programming�
pages ������ March �����

��
� K� Li� J�F� Naughton� and J�S� Plank� Low�latency� concurrent checkpointing for parallel
programs� IEEE Trans� Parallel and Distributed Systems� vol� �� no� �� pages �������� August
�����

�




���� K� Li� J�F� Naughton� and J�S� Plank� Checkpointing multicomputer applications� In Pro�
ceedings of the ��th Symposium on Reliable Distributed Systems� pages 

���� September
�����

���� F� Mattern� E�cient algorithms for distributed snapshots and global virtual time approxi�
mation� Journal of Parallel and Distributed Computing� vol� ��� pages �	
��
�� August ���
�

���� L�M� Silva and J�G� Silva� Global checkpointing for distributed programs� In Proceedings of
the ��th Symposium on Reliable Distributed Systems� pages �����
	� October ���	�

�	�� R� Strom and S� Yemini� Optimistic recovery in distributed systems� ACM Trans� Comput�
Systems� vol� 
� no� 
� pages 	���		
� �����

�	�� A�P� Sistla and J�L�Welch� E�cient distributed recovery using message logging� In Proceedings
of the 	th Annual ACM Symposium on Principles of Distributed Computing� August� �����

�		� T�J� Wilkinson� Implementing fault tolerance in a 
��bit distributed operating system� Ph�D
thesis� City Univ�� London� July ���
�

��


