|ssues in Implementing Virtual Memory

Kevin Elphinstone
Stephen Russell
Gernot Heiser
School of Computer Science and Engineering
University of NSW 2052 Australia

E-mail: kevine@vast.unsw.edu.au

UNSW-CSE-TR-9411 — 29 SEPTEMBER 1994



Abstract

Several factorsare rapidly increasi ng the demands being placed on virtual mem-
ory implementations. Large address spaces, increasing sparseness, and novel op-
erating systems are not well supported by traditional tree-based page tables. New
approaches are needed to overcome these problems.

This paper examines the advantages and disadvantages of conventional virtual
address translation schemes. 1t then describes the performance costs caused by re-
cent changes in hardware and operating system architectures. While there is much
active research directed towards reducing these costs, it is mostly intended to pro-
vide better support for Unix style systems. Many issuesare still unresolved, partic-
ularly thoserelating to the support of thelarge, sparse address spacesused by single
address space operating systems.



1 Introduction

Virtual memory (VM) has been in usefor over thirty years[Den70] and paged VM
isnow used inamost all modern computer systems. Itspopularity iseasy toexplain
as it naturally supports concurrent processes with protected memory, reduces the
amount of physical memory required for each process, and allows processes that
reguire more memory than is physically available to be executed.

At first glance it would appear that implementation methods for VM are well
established and little room isleft for further investigation. However, many recent
changes in operating system (OS) design and hardware architectures are forcing a
reexamination of VM techniques.

TheMungi [HERV 94] project iscurrently constructing an OS based on ashared
single 64-bit address space. As part of our research, we have identified several
important problems that are not adequately addressed by traditional approaches.
Other new approaches to OS design, such as object-oriented systems [SGH™ 89,
SAK™T89], have highlighted similar problems.

Thispaper presentsareview of current trendsin VM implementati ontechniques
and identifiesthe problems of traditional tree-based translation schemes. Section 4
examines recent alternatives that have been proposed to overcome these problems.
Aswe argue in our conclusion, however, none of the existing approaches have so
far met the demands of modern OS design.

2 Background

In the late 1980's microprocessors had remarkably similar memory management
architectureg[Mil90]. They all supported 32 bit paged virtual memory management
viaatrandation lookaside buffer (TLB) and hierarchical page tables.

In conventional tree-based pagetables(PT), avirtual addressisbrokeninto sev-
eral parts. Thelow order bitsof the address are used to index pages, whilethe high-
order bits are used as a set of indicesinto a multi-level tree. Each virtual memory
accesstraversesthetreeto acquire the frame number of the page. To reduce the cost
of performing translations, a trand ation lookaside buffer caches recently used PT
entries.

Two or three level trees allow 32-bit virtual address spaces to be implemented
with low overhead. They also support sharing of portions of virtual memory be-
tween processes by sharing tree nodes, simplify checkpointing, and allow perform-
ing operations such as changing protection by modifying only higher level tree en-
tries.

Inverted PT and hashing schemes have also been used, but such approaches



Virtual Address

Physical
Address

Base pointer
Leaf Pages

Base Page

Figure 1. Hierarchical Page Table

have until recently not been very popular. They are, however, being re-examined in
light of the demands of new OS designs and will be discussed further in Section 4.

3 Recent Developments

Recent progressin microprocessor design and operating system structure has changed
the way virtual memory is used and supported. The simple structure of VM man-
agement described aboveisno longer efficient, or even adequate. Thefollowingis
a description of recent advances in system architecture and how they effect tradi-
tional VM systems.

3.1 64 hit Processors

The advent of 64 bit microprocessors[Hei93, Sit92] has an immediate effect on the
VM system. The need to translate a larger number of virtual address bits enlarges
thesiliconrequired for the TL B and affects thedata structure used to store mappings
between virtual and physical memory.

The methods used in traditional 32-bit systemsresult in afive-level PT tree for
64-bit address spaces. The additional levelsincrease the cost of performing trans-
lationsin the case of TLB misses. In order to reduce the effect of these overheads,
DEC suggest for the Alpha [Sit92] a three-level tree which is mapped in the ker-
nel virtual address space. Nodesin thistree are large virtual structuresbut are only
partially allocated.

The MIPS R4000 [Hei93] uses what isin effect a two-level tree which isalso
mapped into the kernel virtual address space as alarge virtual array.! Each region

'The array is extremely large (= 2°? entries) but extremely virtual.



of alocated virtual address space is assigned a number of physical frames to con-
tain its PT mappings. Entriesfor each of theseregionsare kept inthe TLB and are
mapped so as to appear at the correct locationsin the virtual array. A simple hard-
ware mechanismisprovided for quick indexing of thevirtual array by the TLB refill
handler.

These approacheswork well for the UNIX model inwhich thereisasmall num-
ber of segments of allocated virtual addresses (code, stack and heap). However, ad-
dress spaces are becoming sparser, for reasons that will be explained in more detail
in Section 3.3. Multi-level tree approaches suffer from severe internal fragmenta-
tionin handling sparse addresslayouts. The extreme caseisan address space layout
that requires one pagein each level inthe pagetabletree for each page of user data.
In this case, user data represents only 20% of memory used with afive-level tree.
Even the virtual array approach has difficulties because of the need to use a TLB
entry for each segment to prevent missesin therefill handler.

The approaches that have been tried by DEC and MIPS are adequate for tradi-
tional operating system models, but they are not suitable in the new environments
that are made attractive by 64-bit addresses.

3.2 LargePhysical Memories

The amount of physical memory installed in a modern workstation is increasing
rapidly. Six years ago atypical workstation was shipped with 4 MB of RAM and
was expandable to approximately 32 MB. Today’s systems ship with 32 MB of
RAM and expandto at least 128 MB, and 512 MB is not uncommon. Therate of in-
crease isunlikely to slow as DRAM size quadruplesevery three years and memory
requirements of programsincrease 1.5 to 2 times every year [PH90].

The increase in memory requirements of applications has led to larger appli-
cation working set sizes. Current TLB'’s have not kept pace with thisincrease in
memory usage. The average microprocessor TLB size was 64 entries several years
ago, witha4 KB pagesize. Thisgavea TLB coverage of 256 KB, which represents
a significant portion of the 4-32 MB of older systems.

Current generation microprocessors have approximately 80 TLB entries with
atypical page size of 8 KB. TLB coverage in thiscase is0.6 MB, which may be a
reasonabl e proportion of base memory sizesof 32 MB, butisonly 0.2% of 512 MB.

Inadequate TL B coverage causes more frequent TLB misses. Applicationsthat
spend 5-20% of their run time servicing TLB misses are now common, with ex-
tremes of 40% not unheard of [HH93].

Large physical memories aso increase the size of the per-page trand ation en-
triesin the page table. The number of bits required to index all physical framesis



now greater than the 26 or so? availablein a32 bit PT entry. Thenext logical stepis
to use 64 bit PT entries per page, which doubles the storage overhead per physical
page.

In summary, theincrease in physica memory size hasrevea ed inadequaciesin
current TLB coverage, and increased the memory required to store translations.

3.3 Sparse Memory Usage

The memory layout of a UNIX process is well-known. It consists of the program
text and data at the bottom of the available user address space. The heap used for
dynamic memory allocation sitsabove thetext and data segment and isfree to grow
upwards during program execution. The stack lies at the top of the user address
gpace and is free to grow downwards.

Thisprocess memory layout effectively dividesthe address space into two con-
tiguousregionswhich grow towards each other. Thislayout is efficiently supported
by hierchical page tables for two reasons; contiguity means that the page table is
densely populated and thus space efficient, and TL B misses on the page table itsel f
can be minimised by reserving afew entriesin the TLB to map the areas of the page
table corresponding to the known text, heap and stack layout of a process.

Thefollowing subsectionsdescribefeatures of modern operating systemswhich
result in virtual memory being used in waysthat differ significantly from the UNIX
model that the traditional VM system has supported. These features tend to con-
sume more virtual address space and populate it more sparsely.

3.3.1 Memory Mapped Files

Many operating systems provide memory-mapped files, which map portionsof files
into the virtual address space of a process. This allows I/O operations to be per-
formed as simplememory accessesrather than explicit systemcalls. Whilethisfea-
ture isconvenient to programmers, it increases virtual memory usage and resultsin
higher TLB missrates dueto inadequate TLB coverage. Memory-mapped files are
usually large and few in number, and so have relatively small impact on PT frag-
mentation. Aswell, the OS isfree to map thesefiles as it seesfit, and so they can
be mapped contiguously. Thesefactors reduce the impact of memory-mapped files
on PT size and fragmentation.

2 Page table entries may also contain modify, reference, and valid bits together with cacheability
information and operating system specific bits.



3.3.2 Persistent Systems

Persistent systems[ABC™ 83] allow arbitrary data structures, including pointers, to
be stored in a name-space that effectively replaces afile system.

Some persistent systems do not permanently allocate addresses to objects but
simply map them into a process address space at a suitable free region and then
swizzle[Wil91] the pointersto compensatefor the changed location. These systems
have similar impact on address-space management asthe memory-mapped files de-
scribed above.

Other systems, like Monads [RA85], allocate a permanent addressfor each ob-
ject. It is common in these systems to not re-use addresses to ensure unigueness
over time. Thisresultsin asparsetrail of currently allocated objectsin alarge vir-
tual address space, whereas areuse policy resultsin a much smaller virtual address
range which isdensely packed [EIp93, HERV 94]. In either case, persistent systems
lead to a large number of potentialy quite small objects within a virtual address
space. Ashas been argued earlier, current transl ation schemes cannot support such
sparse small-grain address spaces efficiently.

3.3.3 Single Address Space OS

A particular classof persistent systemsare singleaddress space operating systems[HERV 94,
CLBHL92, MWO™93]. These use permanent address allocation and thus suffer
from the virtual address space fragmentation described above.

One of the major properties of these systems is their separation of translation
and protection. A single address space mapping is used for al processes, and so
the trand ation table may have to contain mappingsfor al of the objects being ref-
erenced by the processes on a host. Thisleads to adrastic increase of the number
of objects that must be managed, and further fragments the page table.

The protection modelsin these systemsare generally based on listsof capability
that are maintained for each process[VRH93]. The capabilitiesare used at run-time
to establish mappings with the appropriate protection bits. As activity switches be-
tween processesit is necessary to quickly change the protection bitswithout affect-
ing thetranslation. Aswell, there needsto be support for quickly changing the pro-
tection domain of aprocessfor privileged operations, and to support object-oriented
programming models.

Theimplementation of thesefeatures on current 64-bit architectureswith software-
loaded TLBsisproblematic, becausethe TL B entriesareintendedfor individual ad-
dress spaces which combine trangl ation and protection information. It is therefore
necessary to modify the TLB refill handler to combine information from a global
tranglation table with the appropriate process-specific protection information. The



guestion of appropriate data structures for these two tablesis still unresolved.

34 Summary

The combination of large address spaces, large memories, and sparse memory us-
age is stretching the limits of conventional approaches to virtual address transla-
tion. In particular, we are reaching the limit of TLB performance, whileat the same
time having to manage the increasing size of trand ation tables. The traditional ap-
proach to VM also does not cope well with the separation of translation and protec-
tion needed by single address space systems.

4 Current Research

Current strategiesfor solving the problemsidentified above can be divided into two
groups. Thefirst strategy involves changes to the page table data structure to min-
imise TL B refill timeand to cope with sparse address spacesand new protectionsys-
tems. The second involves changesto the TLB to minimise the number of misses.

4.1 Page Table Structures

One approach to cope with large address spaces is to separate address translation
from backing store management. The page table changes from one that maps all
valid virtual addresses of a process to one that only needs to map those pages res-
ident in memory. Thisalowsa structure designed fo fast TLB reloads to be used,
but requires a separate data structure for finding the backing store address of non-
resident pages. An obvious approach to fast lookup is to use hashing to search a
table of resident pages. Two basic techniques have been used: inverted page tables
and directly hashed page tables.

4.1.1 Inverted Page Tables

Inverted page tables (IPT) are characteristic of large address space architectures
such as the System/38 [IBM 78], the 801 [CM88] and the HP Precision Architec-
ture [Lee89]. These architectures used short form addresses together with address
space registers to generate long form addresses of 40 to 64 bitsin length. Tranda-
tion of these long form addresses was the motivation for using hashing techniques.

AnIPT consistsof two parts (see Fig. 2). The frame table contains an entry for
each physical frame, which containsthe number of the virtual page occupying that
frame and associated protection information. A separate hash tableis used to map
page numbers to the corresponding entries in the frame table.



Virtual Address

Physical
Address
Hash
Table a
Base
Frame
Table
Base
Hash Frame
Table Table

Figure 2: Inverted Page Table

The advantage of IPTs s that their size scales linearly with physical memory
size. IPT sizeisamost independent® of virtual address space size and more impor-
tantly, independent of the distribution of occupied virtual address space.

A disadvantage of IPTs is that they are heavy weight structures compared to
hiearchical page tablesfor those processes requiring only a small amount of mem-
ory. Systems using | PTs overcome this by using one global IPT and sharing it be-
tween all processes.

A globa IPT limitsthe system to one virtual to physical tranglation per physical
pageat any instant intime. Sharing isachieved viaaglobal address, not aliasing. If
aliasingisrequired for other reasons, or sharingisrequired with different protection
levels, then IPT entries need to be changed on context switches. This makes them
less attractive for single address space operating systems becaause al entries need
to be changed to alter protection domains.

IPTs do not support sub-block TLBs, which will be described in Section 4.2.2.
For example, the R4000 uses a sub-blocking TLB which supports 8 KB page TLB
blocks containing two 4 KB page physical frame entries. Torefill thisusingan IPT
would require either alookup for each 4 KB page, or require 4 KB pages be con-
secutivein memory forming 8 KB blocks. The former method istoo slow, and the
latter effectively increases the page size to 8 KB, removing the advantages of sub-

®Inverted page tables actually scale logarithmically with virtual addresssize. Thisis relatively
insignificant compared to the linear relationship with physical memory.



blocking the TLB.

The IPT isindexed by physical frame number. Thisrequires physical memory
to be contiguous, as holes in the physical memory layout require empty entriesin
the page table in order to preserve the indexing. Thiscan be expensiveif memory
mapped /O devices cannot be packed efficiently.

4.1.2 Hashed Page Table

The hashed page table (HPT) [HH93] has been proposed to overcome some of the
limitationsof thel PT. Itisamoregeneral variant of the hardwaretechniquefor TLB
replacement in the MONADS-PC [RKA92].

InaHPT (seeFig. 3) only asingletableisused. The entries contain page num-
ber and frame number and protection information, and are indexed using hashing.
Collisionsare resolved using methods such as chaining.

Virtual Address

Physical
Address

Hash
Table a

Base

Hash
Table

Figure 3: Hashed Page Table

The HPT has the same primary advantage as the IPT; itssizeis independent of
virtual address space considerations. Likethe IPT, the HPT is also a heavy weight
data structure more suitable for global use than as a per process structure.

Aliasing is supported by a HPT. Since the hash structure contains the physi-
cal frame number, it is simple to insert extra hash entries for different virtual ad-
dresses that reference the same frame number. Alias entries consume otherwise
empty space and create multiple dirty and reference bits so global addresseswould



still be the preferred way to share data.

HPTs are suitable for sub-block TLBs. In the case of the R4000, the hash can
be performed on the 8 KB block locating an entry containing two 4 KB physical
frame numbers. No restrictionis placed on the frame numbers so the advantages of
sub-blocking remain with only one lookup required.

TheHPT isunaffected by the physical addressspace layout. The structureisnot
indexed in any way by physical frame number. Thisremoves the need for unusable
entries corresponding to holesin the physical address space.

The HPT is better suited to software implementation than the IPT. Thisisim-
portant due to the current predominance of software loaded TLBs. A software IPT
needs to hash the faulting address to get the index from the hash table into the page
table, then, assuming a match, shift the index into aform suitable for the TLB and
combineit withthe protection bitsin the pagetable. Frame numbersinthe HPT can
be stored together with protection bitsin the exact format required for TLB refill.
TLB refill smply becomes amatter of hashing the faulting addressto find the TLB
entry and loading it into the TLB.

The HPT isdemonstrably faster than the |PT [HH93]. Thisismainly duetothe
IPT requiring access to two tables with two possible cache misses. The HPT only
accesses onetablewith both the virtual addressand frame number lyingin the same
cache line. Thisreduces potential cache missesto at most one.

4.1.3 Guarded Page Tables

The main drawback of the previoustwo approachesisthat they do not support mul-
tiple page sizes, since the indexing of the table is done by applying a hash function
toafixed part of thevirtual address. Asaresult, itisrelatively expensiveto perform
operations such as modifying protection, or inserting or deleting objects, because
they need to be done frame by frame.

Anaternative approach hasbeen proposed by Liedtke[Lie94]. Itisatree-based
scheme called guarded page tables (GPT) that combines the advantages of rela-
tively fast translation table updates for variable size objects without suffering from
excessive fragmentation as a result of sparse allocation policies.

A GPT issimilar to aconventional tree-based page tabl e, except each pagetable
entry is supplemented with a variable length bit string termed aguard (Fig. 4).

Thetopmost level of the pagetableisindexed using the upper bitsof the virtual
address. The guard isthen compared with the most significant bitsremaining in the
virtual address. If these bits match, the pointer contained in the entry is followed
to the next level, where the remaining virtual address|essthe matching bitsis used
as an index to repeat the process. This continues until all virtual address bits are
exhausted, in which case the entry contains the translation information required. A



Virtual Address Guard

0 10111 101011101 n 10111

1 010111 01 0 ij\\\\$§ 010111

01 ol s

Data [ﬁéj/
Page

Figure 4: Guarded Page Table

traditional pagetabletree can be considered to be a GPT withempty guards. A more
detailed description of the trand ation process can be found in [Lie94].

It can be shown that at most 2k entriesare need to map & pages. Pagetablesize
is thus a function of the number of mapped pages, and is independent of address
space size and layout. The scheme aso has the advantage of supporting multiple
pagesizesfrom 16 bytesupwardsin powersof 2. Being atree, the pagetableretains
all the advantages of conventional page tables as described previously in section 2.

This scheme is yet to be implemented, so it is unclear whether performance
claims of being at |east equivalent to conventional treeswill eventuate. Thelookup
process is quite complex, involving variable length bit string manipulation which
may turn out too costly for software implementations. However, the increase in
TLB coverage offered by variable size pages may significantly reduce the number
of TLB refillswhich may offsett the reload costs. Further investigationis definitely
warranted as the scheme has many advantagesif performance proves satisfactory.

42 TLB usage
Changesto TL B usage aimed at improving performance can be separated into soft-

waretechniquesto managethe TLB moreeffectively, and hardware changesto min-
imise misses and increase coverage.

421 Software

TLB management improvements can be divided into optimising replacement and
placement of TLB entries, and minimising refill times. The likely improvements

10



in performance that can be achieved by replacement policy are minor [UNST 94,
CBJ92]. Hardware designers typically choose random replacement, as the cost in-
volved in implementing other policiesin hardware outweigh the performance ben-
efitsto be gained. Performance improvementsthrough software involvement in re-
placement policy are doubtful.

The costs of software misses are a tradeoff between speed and memory con-
sumption. A sparsely occupied virtual page table array provides the fastest lookup
for refill. Mapping the occupied portions of the array will have a detrimental im-
pact on TLB performance if many objects need to be mapped. Refill times using
hashed page tables are dightly higher, but this method is better suited to large or
gparse address spaces [HH93].

Software control of placement policy does have an effect on performance. Op-
erating systemsreserve TLB entriesfor either very frequently used pages, or pages
whose TLB refill costs would be excessive. The TLB is effectively divided into a
region for operating System use and therest isused for user-level mapping. There-
served entries typically map user page tables and kernel data. Changesin memory
usage described in Section 3.3, and also identified by [NUST93, UNS'94], have
increased the amount of kernel data and active page tables.

The optimal number of reserved entries is a function of application and user-
level server activity. Dynamically changing the number of reserved entriesis pro-
posed by Uhlig et al. [UNST94]. They use a simple scheme to tune the partition
boundary between reserved and user-mapping entries depending on the activity of
the machine. Their resultsindicate that dynamic partitioning performs better than
static partitioning even when the partition is statically tuned to the application.

Softwareimprovementsto TLB performance appear to belimited to data struc-
ture optimisationsfor refill and TLB placement policy optimisations. Careful con-
sideration of TLB interaction with operating system design and activity [NUS 93,
UNS*94] has shown that performance gains are possiblein this area.

422 Hardware

Currently, much research effort has been directed towards increasing TLB cover-
age, the focus being on increasing the number of TLB entries, increasing the page
size, or using multiple page sizes.

Increasing the number of TLB entriesis an obvious solution, asillustrated by
Chen[CBJ92]. However, largefully associative structuresare difficult to build. Re-
ducingthe associativitytoincreasethe number of entriesisavalid technique[UNS™ 94,
TH94]. However, it is not clear whether the number of entries could be increased
sufficiently to cover a significant proportion of larger memory sizes. For example,
to cover 10% of 512 MB would require 6,554 entries for 8 KB pages.

11



Larger page sizes appear to have the most potential to increase TLB coverage.
Unfortunately, larger page sizesal so havethe potential to dramatically increasework-
ing set sizesdueto internal fragmentation. Talluri [TKHP92] illustrated that amod-
erate increase in page size from 4 KB to 32 KB resulted in an average increase of
60% in working set size. TLB coverage using 32 KB pages still only represents a
very small proportion of alarge memory; alarge 128 entry TLB using 32 KB pages
coverslessthan 1% of 512 MB. Much larger page sizes appear unusablefor general
use.

The use of multiple page sizesto combat both TLB coverage limitationsand in-
ternal fragmentation seemsto bethebest approach. Investigationshave shown[TKHP92,
CBJ92, TH94] adramatic decreasein TLB missoverheadswith only amoderatein-
crease inworking set size. However these studies, together with others [K TNW93,
Mog93], are quick to point out that very littleresearch has been doneto investigate
the issues raised and overheads involved in managing multiple page sizes. Kagi-
masa et al. [KTM91] describe a system using multiple page sizesin a partitioned
address space, though their aim isto reduce storage costs, not TLB overheads.

Talluri [TH94] proposes two sub-block TLB designs which provide some ad-
vantages of multiple pages sizeswhilerequiring little or no operating system modi-
fications. In asub-block TLB, each TLB entry maps alarge superpage to a number
of smaller frames, not all of which need to be resident. This has the advantage of
increasing TLB coverage, because each entry maps larger virtual pages but allows
paging to occur on smaller blocks.

Talluri only considersmedium sized superpages (64 KB) anditisnot clear whether
their scheme will scaleto larger superpages required for large memory machines.

5 Discussion

The work described in the previous section is promising, but it has mostly involved
simulations of hardware performance. There has been littleinvestigation of the op-
erating system overheads involved in using the new TLB designs. For example,
the potential increase in TLB coverage provided by multiple page sizes managed
by a GPT-style page table comes at the expense of increased complexity in physi-
cal memory and backing store management. Aswell, reducing the number of TLB
entries needed to map large objects requireslarge transfers during paging.

The new TLB designs are being measured by how well they support micro-
kernel based systems such as Mach. In particular, they are considering the impact
of moving kernel data structures and servicesinto user-level servers, which effec-
tively fragments the kernel address space. More work needs to be done to evaluate
these designsfor other types of operating system architectures such as Mungi.

12



6 Conclusion

Traditional approachesto virtual memory addresstrand ationare being severely taxed
by the demands of modern operating systems. In particular, the move to 64 bit ar-
chitectures and the desire to support persistent and single address space systems
increase the size and sparsity of virtual address spaces. While there is some work
being done currently to improve TLB performance, these proposal sdo not consider
the special needs of systemssuch asMungi inwhichtranslationand protectionfunc-
tions need to be separated. Much work remains to be done to determine the best
approach to implementing sparse address space systemson currently available pro-
cessors which use software loaded TLBs.

References

[ABC*83] M. Atkinson, P. Bailey, K. Chisholm, P. Cockshott, and R. Morrison.
An approach to persistent programming. The Computer Journal, 26,
1983.

[CBJ9Z] J. Bradley Chen, Anita Borg, and Norman P. Jouppi. A simulation
based study of TLB performance. In 19th International Symposium
on Computer Architecture, May 1992.

[CLBHLO92] Jeffrey S. Chase, Henry M. Levy, Miche Baker-Harvey, and Ed-
ward D. Lazowska. How to use a64-bit virtual address space. Techni-
cal Report 92-03-02, Department of Computer Science and Engineer-
ing, University of Washington, Seattle, 1992.

[CM88] Albert Chang and Mark F. Mergen. 801 storage: Architectureand pro-
gramming. ACM Transactionson Computer Systems, 6(1), February
1988.

[Den70] Peter J. Denning. Virtual memory. Computing Surveys, 2(3), Septem-
ber 1970.

[Elp93] Kevin Elphinstone. Address space management issues in the Mungi
operating system. Technical Report 9312, School of Computer Sci-
ence and Engineering, University of New South Wales, November
1993.

[Hei93] Joe Heinrich. MIPSR4000 user’'s manual. Prentice-Hall, 1993.

13



[HERV94]

[HH93]

[IBM78]

[KTMO1]

[KTNWO3]

[Lees9]
[Lie94]

[Mil90]

[Mog93]

[MWO™*93]

[NUSt93]

Gernot Heiser, Kevin Elphinstone, Stephen Russell, and Jerry
Vochteloo. Mungi: A distributed single address-space operating
system. In 17th Annual Computer Science Conference. Australian
Computer Science Communications, January 1994.

Jerry Huck and Jim Hays. Architectural Support for Tranglation Table
Management in Large Address Space Machines. In Proceedingsof the
20th International Symposiumon Computer Architecture, May 1993.

IBM. IBM Systeny38 technical developments. Order no. G580-0237.
IBM, Atlanta, Ga., 1978.

Toyohiko Kagimasa, Kikuo Takahashi, and Toshiaki Mori. Adaptive
storage management for very large virtual/real storage systems. In
18th International Symposiumon Computer Architecture, May 1991.

Yousef A. Khaldi, Madhusudhan Talluri, Michael N. Nelson, and
Dock Williams. Virtual Memory Support for Multiple Page Sizes. In
4th Int’| Workshop on Wor kstation Oper ating Systems, Napa, Califor-
nia, October 1993. |IEEE.

Ruby B. Lee. Precision architecture. Computer, January 1989.

J. Liedtke. Addressspace sparsity and finegranularity. In 6th S GOPS
European Workshop, Schlof3Dagstuhl, Germany, September 1994.

Milan Milenkovic. Microprocessor memory management units. |EEE
Micro, 10(2), April 1990.

Jeffrey C. Mogul. Big Memories on the Desktop. In 4th Int’| Work-
shop on Workstation Operating Systems, Napa, California, October
1993. IEEE.

Kevin Murray, Tim Wilkinson, Peter Osmon, Ashley Saulsbury, Tom
Stiemerling, and Paul Kelly. Designand Implementation of an Object-
Oriented 64-hit Single Address Space Microkernel. Technical Re-
port 9, SARC, Dept. Computer Science, City University, London,
1993.

David Nagle, Richard Uhlig, Tim Stanely, Stuart Sechrest, Trevor
Mudge, and Richard Brown. Design Tradeoffs for Software-Managed
TLBs. In Proceedings of the 20th I nter national Symposium on Com-
puter Architecture, May 1993.

14



[PHOO]

[RA85]

[RKA92]

[SAK+89]

[SGH+89]

[Sit92]

[TH94]

[TKHP92]

[UNS*94]

[VRHO3]

[Wil91]

David A. Patterson and John L. Hennessy. Computer Architecture: a
guantitative approach. Morgan Kaufmann, 1990.

John Rosenberg and David Abramson. MONADS-PC - A capability-
based workstation to support software engineering. In Proc 18th
Hawaii Int’| Conf. on System Sciences, 1985.

John Rosenberg, J. L. Keedy, and D Abramson. Address mechanisms
for large virtual memories. The Computer Journal, 35(4), August
1992.

Eugene H. Spafford, James E. Allchin, Gregory Kenley, David V.
Pitts, and C. Thomas Wilkes. Anatomy of a Multicomputer: The First
Six Years of Clouds. Academic Press, Boston, MA, 1989.

M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and
C. Vaot. Sos. an object-oriented operating system - assessment and
perspectives. Computing Systems, 2(4):287-338, December 1989.

R. L. Sites, editor. Alpha Architecture Reference Manual. Digital
Equipment Corporation, Maynard, M.A., 1992

Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB perfor-
mance of superpageswith lessoperating system support. In SxthInt’|
Conf. on Architectural Supportfor Programming Languagesand Op-
erating Systems, October 1994.

Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Pat-
terson. Tradeoffsin supporting two page sizes. In 19th International
Symposium on Computer Architecture, May 1992.

Richard Uhlig, David Nagle, Tim Stanley, Trevor Mudge, Stuart
Sechrest, and Richard Brown. Design tradeoffsfor software-managed
TLBs. ACM Transactionson Computer Systems, August 1994.

J. Vochteloo, S. Russell, and G. Heiser. Capability based protection
in the Mungi operating system. In 3rd Int’'| Workshop on Object-
Orientation in Operating Systems. |[EEE, 1993.

P. R. Wilson. Pointer swizzling at page fault time: Efficiently sup-
porting huge address spaces on standard hardware. ACM S GARCH
Computer Architecture News, 19(4), June 1991.

15



