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Abstract

Several factors are rapidly increasing the demands beingplaced on virtual mem-
ory implementations. Large address spaces, increasing sparseness, and novel op-
erating systems are not well supported by traditional tree-based page tables. New
approaches are needed to overcome these problems.

This paper examines the advantages and disadvantages of conventional virtual
address translation schemes. It then describes the performance costs caused by re-
cent changes in hardware and operating system architectures. While there is much
active research directed towards reducing these costs, it is mostly intended to pro-
vide better support for Unix style systems. Many issues are still unresolved, partic-
ularly those relating to the support of the large, sparse address spaces used by single
address space operating systems.



1 Introduction

Virtual memory (VM) has been in use for over thirty years [Den70] and paged VM
is now used in almost all modern computer systems. Its popularity is easy to explain
as it naturally supports concurrent processes with protected memory, reduces the
amount of physical memory required for each process, and allows processes that
require more memory than is physically available to be executed.

At first glance it would appear that implementation methods for VM are well
established and little room is left for further investigation. However, many recent
changes in operating system (OS) design and hardware architectures are forcing a
reexamination of VM techniques.

The Mungi [HERV94] project is currently constructingan OS based on a shared
single 64-bit address space. As part of our research, we have identified several
important problems that are not adequately addressed by traditional approaches.
Other new approaches to OS design, such as object-oriented systems [SGH�89,
SAK�89], have highlighted similar problems.

Thispaper presents a review of current trends in VM implementation techniques
and identifies the problems of traditional tree-based translation schemes. Section 4
examines recent alternatives that have been proposed to overcome these problems.
As we argue in our conclusion, however, none of the existing approaches have so
far met the demands of modern OS design.

2 Background

In the late 1980’s microprocessors had remarkably similar memory management
architectures[Mil90]. They all supported 32 bit paged virtual memory management
via a translation lookaside buffer (TLB) and hierarchical page tables.

In conventional tree-based page tables (PT), a virtual address is broken into sev-
eral parts. The low order bits of the address are used to index pages, while the high-
order bits are used as a set of indices into a multi-level tree. Each virtual memory
access traverses the tree to acquire the frame number of the page. To reduce the cost
of performing translations, a translation lookaside buffer caches recently used PT
entries.

Two or three level trees allow 32-bit virtual address spaces to be implemented
with low overhead. They also support sharing of portions of virtual memory be-
tween processes by sharing tree nodes, simplify checkpointing, and allow perform-
ing operations such as changing protection by modifying only higher level tree en-
tries.

Inverted PT and hashing schemes have also been used, but such approaches
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have until recently not been very popular. They are, however, being re-examined in
light of the demands of new OS designs and will be discussed further in Section 4.

3 Recent Developments

Recent progress in microprocessordesign and operating system structure has changed
the way virtual memory is used and supported. The simple structure of VM man-
agement described above is no longer efficient, or even adequate. The following is
a description of recent advances in system architecture and how they effect tradi-
tional VM systems.

3.1 64 bit Processors

The advent of 64 bit microprocessors [Hei93, Sit92] has an immediate effect on the
VM system. The need to translate a larger number of virtual address bits enlarges
the silicon required for the TLB and affects the data structure used to store mappings
between virtual and physical memory.

The methods used in traditional 32-bit systems result in a five-level PT tree for
64-bit address spaces. The additional levels increase the cost of performing trans-
lations in the case of TLB misses. In order to reduce the effect of these overheads,
DEC suggest for the Alpha [Sit92] a three-level tree which is mapped in the ker-
nel virtual address space. Nodes in this tree are large virtual structures but are only
partially allocated.

The MIPS R4000 [Hei93] uses what is in effect a two-level tree which is also
mapped into the kernel virtual address space as a large virtual array.� Each region

�The array is extremely large (� �
�� entries) but extremely virtual.
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of allocated virtual address space is assigned a number of physical frames to con-
tain its PT mappings. Entries for each of these regions are kept in the TLB and are
mapped so as to appear at the correct locations in the virtual array. A simple hard-
ware mechanism is provided for quick indexingof the virtual array by the TLB refill
handler.

These approaches work well for the UNIX model in which there is a small num-
ber of segments of allocated virtual addresses (code, stack and heap). However, ad-
dress spaces are becoming sparser, for reasons that will be explained in more detail
in Section 3.3. Multi-level tree approaches suffer from severe internal fragmenta-
tion in handling sparse address layouts. The extreme case is an address space layout
that requires one page in each level in the page table tree for each page of user data.
In this case, user data represents only 20% of memory used with a five-level tree.
Even the virtual array approach has difficulties because of the need to use a TLB
entry for each segment to prevent misses in the refill handler.

The approaches that have been tried by DEC and MIPS are adequate for tradi-
tional operating system models, but they are not suitable in the new environments
that are made attractive by 64-bit addresses.

3.2 Large Physical Memories

The amount of physical memory installed in a modern workstation is increasing
rapidly. Six years ago a typical workstation was shipped with 4 MB of RAM and
was expandable to approximately 32 MB. Today’s systems ship with 32 MB of
RAM and expand to at least 128 MB, and 512 MB is not uncommon. The rate of in-
crease is unlikely to slow as DRAM size quadruples every three years and memory
requirements of programs increase 1.5 to 2 times every year [PH90].

The increase in memory requirements of applications has led to larger appli-
cation working set sizes. Current TLB’s have not kept pace with this increase in
memory usage. The average microprocessor TLB size was 64 entries several years
ago, with a 4 KB page size. This gave a TLB coverage of 256 KB, which represents
a significant portion of the 4–32 MB of older systems.

Current generation microprocessors have approximately 80 TLB entries with
a typical page size of 8 KB. TLB coverage in this case is 0.6 MB, which may be a
reasonable proportion of base memory sizes of 32 MB, but is only 0.2% of 512 MB.

Inadequate TLB coverage causes more frequent TLB misses. Applications that
spend 5–20% of their run time servicing TLB misses are now common, with ex-
tremes of 40% not unheard of [HH93].

Large physical memories also increase the size of the per-page translation en-
tries in the page table. The number of bits required to index all physical frames is
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now greater than the 26 or so� available in a 32 bit PT entry. The next logical step is
to use 64 bit PT entries per page, which doubles the storage overhead per physical
page.

In summary, the increase in physical memory size has revealed inadequacies in
current TLB coverage, and increased the memory required to store translations.

3.3 Sparse Memory Usage

The memory layout of a UNIX process is well-known. It consists of the program
text and data at the bottom of the available user address space. The heap used for
dynamic memory allocation sits above the text and data segment and is free to grow
upwards during program execution. The stack lies at the top of the user address
space and is free to grow downwards.

This process memory layout effectively divides the address space into two con-
tiguous regions which grow towards each other. This layout is efficiently supported
by hierchical page tables for two reasons; contiguity means that the page table is
densely populated and thus space efficient, and TLB misses on the page table itself
can be minimised by reserving a few entries in the TLB to map the areas of the page
table corresponding to the known text, heap and stack layout of a process.

The followingsubsectionsdescribe features of modern operating systems which
result in virtual memory being used in ways that differ significantly from the UNIX
model that the traditional VM system has supported. These features tend to con-
sume more virtual address space and populate it more sparsely.

3.3.1 Memory Mapped Files

Many operating systems provide memory-mapped files, which map portions of files
into the virtual address space of a process. This allows I/O operations to be per-
formed as simple memory accesses rather than explicit system calls. While this fea-
ture is convenient to programmers, it increases virtual memory usage and results in
higher TLB miss rates due to inadequate TLB coverage. Memory-mapped files are
usually large and few in number, and so have relatively small impact on PT frag-
mentation. As well, the OS is free to map these files as it sees fit, and so they can
be mapped contiguously. These factors reduce the impact of memory-mapped files
on PT size and fragmentation.

�Page table entries may also contain modify, reference, and valid bits together with cacheability
information and operating system specific bits.
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3.3.2 Persistent Systems

Persistent systems [ABC�83] allow arbitrary data structures, including pointers, to
be stored in a name-space that effectively replaces a file system.

Some persistent systems do not permanently allocate addresses to objects but
simply map them into a process’ address space at a suitable free region and then
swizzle [Wil91] the pointers to compensate for the changed location. These systems
have similar impact on address-space management as the memory-mapped files de-
scribed above.

Other systems, like Monads [RA85], allocate a permanent address for each ob-
ject. It is common in these systems to not re-use addresses to ensure uniqueness
over time. This results in a sparse trail of currently allocated objects in a large vir-
tual address space, whereas a reuse policy results in a much smaller virtual address
range which is densely packed [Elp93, HERV94]. In either case, persistent systems
lead to a large number of potentially quite small objects within a virtual address
space. As has been argued earlier, current translation schemes cannot support such
sparse small-grain address spaces efficiently.

3.3.3 Single Address Space OS

A particular class of persistent systemsare single address space operating systems [HERV94,
CLBHL92, MWO�93]. These use permanent address allocation and thus suffer
from the virtual address space fragmentation described above.

One of the major properties of these systems is their separation of translation
and protection. A single address space mapping is used for all processes, and so
the translation table may have to contain mappings for all of the objects being ref-
erenced by the processes on a host. This leads to a drastic increase of the number
of objects that must be managed, and further fragments the page table.

The protection models in these systems are generally based on lists of capability
that are maintained for each process [VRH93]. The capabilities are used at run-time
to establish mappings with the appropriate protection bits. As activity switches be-
tween processes it is necessary to quickly change the protection bits without affect-
ing the translation. As well, there needs to be support for quickly changing the pro-
tection domain of a process for privilegedoperations, and to support object-oriented
programming models.

The implementationof these features on current 64-bit architectures with software-
loaded TLBs is problematic, because the TLB entries are intended for individual ad-
dress spaces which combine translation and protection information. It is therefore
necessary to modify the TLB refill handler to combine information from a global
translation table with the appropriate process-specific protection information. The
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question of appropriate data structures for these two tables is still unresolved.

3.4 Summary

The combination of large address spaces, large memories, and sparse memory us-
age is stretching the limits of conventional approaches to virtual address transla-
tion. In particular, we are reaching the limit of TLB performance, while at the same
time having to manage the increasing size of translation tables. The traditional ap-
proach to VM also does not cope well with the separation of translation and protec-
tion needed by single address space systems.

4 Current Research

Current strategies for solving the problems identified above can be divided into two
groups. The first strategy involves changes to the page table data structure to min-
imise TLB refill time and to cope with sparse address spaces and new protection sys-
tems. The second involves changes to the TLB to minimise the number of misses.

4.1 Page Table Structures

One approach to cope with large address spaces is to separate address translation
from backing store management. The page table changes from one that maps all
valid virtual addresses of a process to one that only needs to map those pages res-
ident in memory. This allows a structure designed fo fast TLB reloads to be used,
but requires a separate data structure for finding the backing store address of non-
resident pages. An obvious approach to fast lookup is to use hashing to search a
table of resident pages. Two basic techniques have been used: inverted page tables
and directly hashed page tables.

4.1.1 Inverted Page Tables

Inverted page tables (IPT) are characteristic of large address space architectures
such as the System/38 [IBM78], the 801 [CM88] and the HP Precision Architec-
ture [Lee89]. These architectures used short form addresses together with address
space registers to generate long form addresses of 40 to 64 bits in length. Transla-
tion of these long form addresses was the motivation for using hashing techniques.

An IPT consists of two parts (see Fig. 2). The frame table contains an entry for
each physical frame, which contains the number of the virtual page occupying that
frame and associated protection information. A separate hash table is used to map
page numbers to the corresponding entries in the frame table.
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Figure 2: Inverted Page Table

The advantage of IPTs is that their size scales linearly with physical memory
size. IPT size is almost independent� of virtual address space size and more impor-
tantly, independent of the distribution of occupied virtual address space.

A disadvantage of IPTs is that they are heavy weight structures compared to
hiearchical page tables for those processes requiring only a small amount of mem-
ory. Systems using IPTs overcome this by using one global IPT and sharing it be-
tween all processes.

A global IPT limits the system to one virtual to physical translation per physical
page at any instant in time. Sharing is achieved via a global address, not aliasing. If
aliasing is required for other reasons, or sharing is required with different protection
levels, then IPT entries need to be changed on context switches. This makes them
less attractive for single address space operating systems becaause all entries need
to be changed to alter protection domains.

IPTs do not support sub-block TLBs, which will be described in Section 4.2.2.
For example, the R4000 uses a sub-blocking TLB which supports 8 KB page TLB
blocks containing two 4 KB page physical frame entries. To refill this using an IPT
would require either a lookup for each 4 KB page, or require 4 KB pages be con-
secutive in memory forming 8 KB blocks. The former method is too slow, and the
latter effectively increases the page size to 8 KB, removing the advantages of sub-

�Inverted page tables actually scale logarithmically with virtual address size. This is relatively
insignificant compared to the linear relationship with physical memory.
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blocking the TLB.
The IPT is indexed by physical frame number. This requires physical memory

to be contiguous, as holes in the physical memory layout require empty entries in
the page table in order to preserve the indexing. This can be expensive if memory
mapped I/O devices cannot be packed efficiently.

4.1.2 Hashed Page Table

The hashed page table (HPT) [HH93] has been proposed to overcome some of the
limitationsof the IPT. It is a more general variant of the hardware technique for TLB
replacement in the MONADS-PC [RKA92].

In a HPT (see Fig. 3) only a single table is used. The entries contain page num-
ber and frame number and protection information, and are indexed using hashing.
Collisions are resolved using methods such as chaining.

+

Virtual Address

+
Hash

Hash
Table
Base

Hash
Table

Physical
Address

Figure 3: Hashed Page Table

The HPT has the same primary advantage as the IPT; its size is independent of
virtual address space considerations. Like the IPT, the HPT is also a heavy weight
data structure more suitable for global use than as a per process structure.

Aliasing is supported by a HPT. Since the hash structure contains the physi-
cal frame number, it is simple to insert extra hash entries for different virtual ad-
dresses that reference the same frame number. Alias entries consume otherwise
empty space and create multiple dirty and reference bits so global addresses would
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still be the preferred way to share data.
HPTs are suitable for sub-block TLBs. In the case of the R4000, the hash can

be performed on the 8 KB block locating an entry containing two 4 KB physical
frame numbers. No restriction is placed on the frame numbers so the advantages of
sub-blocking remain with only one lookup required.

The HPT is unaffected by the physical address space layout. The structure is not
indexed in any way by physical frame number. This removes the need for unusable
entries corresponding to holes in the physical address space.

The HPT is better suited to software implementation than the IPT. This is im-
portant due to the current predominance of software loaded TLBs. A software IPT
needs to hash the faulting address to get the index from the hash table into the page
table, then, assuming a match, shift the index into a form suitable for the TLB and
combine it with the protection bits in the page table. Frame numbers in the HPT can
be stored together with protection bits in the exact format required for TLB refill.
TLB refill simply becomes a matter of hashing the faulting address to find the TLB
entry and loading it into the TLB.

The HPT is demonstrably faster than the IPT [HH93]. This is mainly due to the
IPT requiring access to two tables with two possible cache misses. The HPT only
accesses one table with both the virtual address and frame number lying in the same
cache line. This reduces potential cache misses to at most one.

4.1.3 Guarded Page Tables

The main drawback of the previous two approaches is that they do not support mul-
tiple page sizes, since the indexing of the table is done by applying a hash function
to a fixed part of the virtual address. As a result, it is relatively expensive to perform
operations such as modifying protection, or inserting or deleting objects, because
they need to be done frame by frame.

An alternative approach has been proposed by Liedtke [Lie94]. It is a tree-based
scheme called guarded page tables (GPT) that combines the advantages of rela-
tively fast translation table updates for variable size objects without suffering from
excessive fragmentation as a result of sparse allocation policies.

A GPT is similar to a conventional tree-based page table, except each page table
entry is supplemented with a variable length bit string termed a guard (Fig. 4).

The topmost level of the page table is indexed using the upper bits of the virtual
address. The guard is then compared with the most significant bits remaining in the
virtual address. If these bits match, the pointer contained in the entry is followed
to the next level, where the remaining virtual address less the matching bits is used
as an index to repeat the process. This continues until all virtual address bits are
exhausted, in which case the entry contains the translation information required. A
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traditional page table tree can be considered to be a GPT withempty guards. A more
detailed description of the translation process can be found in [Lie94].

It can be shown that at most �k entries are need to map k pages. Page table size
is thus a function of the number of mapped pages, and is independent of address
space size and layout. The scheme also has the advantage of supporting multiple
page sizes from 16 bytes upwards in powers of 2. Being a tree, the page table retains
all the advantages of conventional page tables as described previously in section 2.

This scheme is yet to be implemented, so it is unclear whether performance
claims of being at least equivalent to conventional trees will eventuate. The lookup
process is quite complex, involving variable length bit string manipulation which
may turn out too costly for software implementations. However, the increase in
TLB coverage offered by variable size pages may significantly reduce the number
of TLB refills which may offsett the reload costs. Further investigation is definitely
warranted as the scheme has many advantages if performance proves satisfactory.

4.2 TLB usage

Changes to TLB usage aimed at improving performance can be separated into soft-
ware techniques to manage the TLB more effectively, and hardware changes to min-
imise misses and increase coverage.

4.2.1 Software

TLB management improvements can be divided into optimising replacement and
placement of TLB entries, and minimising refill times. The likely improvements
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in performance that can be achieved by replacement policy are minor [UNS�94,
CBJ92]. Hardware designers typically choose random replacement, as the cost in-
volved in implementing other policies in hardware outweigh the performance ben-
efits to be gained. Performance improvements through software involvement in re-
placement policy are doubtful.

The costs of software misses are a tradeoff between speed and memory con-
sumption. A sparsely occupied virtual page table array provides the fastest lookup
for refill. Mapping the occupied portions of the array will have a detrimental im-
pact on TLB performance if many objects need to be mapped. Refill times using
hashed page tables are slightly higher, but this method is better suited to large or
sparse address spaces [HH93].

Software control of placement policy does have an effect on performance. Op-
erating systems reserve TLB entries for either very frequently used pages, or pages
whose TLB refill costs would be excessive. The TLB is effectively divided into a
region for operating system use and the rest is used for user-level mapping. The re-
served entries typically map user page tables and kernel data. Changes in memory
usage described in Section 3.3, and also identified by [NUS�93, UNS�94], have
increased the amount of kernel data and active page tables.

The optimal number of reserved entries is a function of application and user-
level server activity. Dynamically changing the number of reserved entries is pro-
posed by Uhlig et al. [UNS�94]. They use a simple scheme to tune the partition
boundary between reserved and user-mapping entries depending on the activity of
the machine. Their results indicate that dynamic partitioning performs better than
static partitioning even when the partition is statically tuned to the application.

Software improvements to TLB performance appear to be limited to data struc-
ture optimisations for refill and TLB placement policy optimisations. Careful con-
sideration of TLB interaction with operating system design and activity [NUS�93,
UNS�94] has shown that performance gains are possible in this area.

4.2.2 Hardware

Currently, much research effort has been directed towards increasing TLB cover-
age, the focus being on increasing the number of TLB entries, increasing the page
size, or using multiple page sizes.

Increasing the number of TLB entries is an obvious solution, as illustrated by
Chen [CBJ92]. However, large fully associative structures are difficult to build. Re-
ducing the associativityto increase the number of entries is a valid technique [UNS�94,
TH94]. However, it is not clear whether the number of entries could be increased
sufficiently to cover a significant proportion of larger memory sizes. For example,
to cover 10% of 512 MB would require 6,554 entries for 8 KB pages.
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Larger page sizes appear to have the most potential to increase TLB coverage.
Unfortunately, larger page sizes also have the potential to dramatically increase work-
ing set sizes due to internal fragmentation. Talluri [TKHP92] illustrated that a mod-
erate increase in page size from 4 KB to 32 KB resulted in an average increase of
60% in working set size. TLB coverage using 32 KB pages still only represents a
very small proportion of a large memory; a large 128 entry TLB using 32 KB pages
covers less than 1% of 512 MB. Much larger page sizes appear unusable for general
use.

The use of multiple page sizes to combat both TLB coverage limitations and in-
ternal fragmentation seems tobe the best approach. Investigationshave shown[TKHP92,
CBJ92, TH94] a dramatic decrease in TLB miss overheads with only a moderate in-
crease in working set size. However these studies, together with others [KTNW93,
Mog93], are quick to point out that very little research has been done to investigate
the issues raised and overheads involved in managing multiple page sizes. Kagi-
masa et al. [KTM91] describe a system using multiple page sizes in a partitioned
address space, though their aim is to reduce storage costs, not TLB overheads.

Talluri [TH94] proposes two sub-block TLB designs which provide some ad-
vantages of multiple pages sizes while requiring little or no operating system modi-
fications. In a sub-block TLB, each TLB entry maps a large superpage to a number
of smaller frames, not all of which need to be resident. This has the advantage of
increasing TLB coverage, because each entry maps larger virtual pages but allows
paging to occur on smaller blocks.

Talluri onlyconsiders medium sized superpages (64 KB) and it is not clear whether
their scheme will scale to larger superpages required for large memory machines.

5 Discussion

The work described in the previous section is promising, but it has mostly involved
simulations of hardware performance. There has been little investigation of the op-
erating system overheads involved in using the new TLB designs. For example,
the potential increase in TLB coverage provided by multiple page sizes managed
by a GPT-style page table comes at the expense of increased complexity in physi-
cal memory and backing store management. As well, reducing the number of TLB
entries needed to map large objects requires large transfers during paging.

The new TLB designs are being measured by how well they support micro-
kernel based systems such as Mach. In particular, they are considering the impact
of moving kernel data structures and services into user-level servers, which effec-
tively fragments the kernel address space. More work needs to be done to evaluate
these designs for other types of operating system architectures such as Mungi.
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6 Conclusion

Traditional approaches to virtualmemory address translationare being severely taxed
by the demands of modern operating systems. In particular, the move to 64 bit ar-
chitectures and the desire to support persistent and single address space systems
increase the size and sparsity of virtual address spaces. While there is some work
being done currently to improve TLB performance, these proposals do not consider
the special needs of systems such as Mungi in which translationand protection func-
tions need to be separated. Much work remains to be done to determine the best
approach to implementing sparse address space systems on currently available pro-
cessors which use software loaded TLBs.
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