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Abstract

Persistence has long been difficult to integrate into operating systems. The main problem is
that pointers lose their meaning once they are taken out of their address-space. We present a
distributed system which has a single address-space encompassing all virtual memory of every
node in the system. This design has become possible (and practicable) with the advent of 64-bit
microprocessors.

In our system, every pointer retains its meaning independent of its location, even across
nodes or on secondary storage. No restrictions are imposed on the use of pointers by application
programs. Hence persistence is naturally and elegantly integrated into the system. Further
features are uniform addressing and unlimited sharing of data, and memory protection based on
password capabilities, making the system easy to use. A reliable paging protocol ensures that
the impact of node crashes on other parts of the system is minimised.



1 Introduction

Persistence has long been recognised as an effective means to make applications both simpler
and safer. This is due to the persistent system (PS) relieving the application programmer from
the burden of having to flatten data structures for permanent storage which, besides the overhead
it introduces, eliminates all the protection normally provided by types [1].

The major drawback of persistence is that it is hard to integrate into traditional operating
systems (OS). The main reason for this is the fact that persistent objects in a traditional OS
tend to change their address during their lifetime. A persistent object is initially created by
some process as a memory object within that process’ address-space. If that object is stored
on secondary memory so that it can later be accessed by another process, it will, in general, be
allocated at a different address in the second process’ address-space. Therefore the system must
be able to find all pointers in persistent objects and translate them appropriately at run-time,
or no pointers can be permitted in persistent objects. The latter solution is unacceptable, as it
would again force the application to flatten its data structures explicitly before making them
persistent, thus depriving the PS of its raison d’être. The alternative solution requires imposing
restrictions on the structure of (persistent) objects, so that the system is able to find and traverse
all inter-object references (as in Napier88 [2]).

While it is possible in such a PS to free the application program from the need to flatten file
structures before storing them on disk, the flattening still needs to be done, but now by the (run
time) system. Hence the complexity is not removed; it is only pushed from the user into the
system domain.

The reason underlying these difficulties is the existence of multiple address-spaces. A
persistent object is global in the sense that it can be accessed by many processes. For an
individual process to access it, however, the object must be mapped into the process’ address-
space (and hence in a sense become local). There is only one way to prevent these problems
from occurring: to do away with multiple address-spaces, and replace them with a single, global
address-space.

Such a single address-space OS (SAOS) has been impractical until recently, due to the
shortage of address bits. Until about two years ago, standard computer architectures were
limited to 32-bit addresses. This was hardly enough for the memory requirements of single
processes. To accommodate multiple processes, each process had to be given its own private
address-space. The recent advent of 64-bit architectures (MIPS R4000 [3], DEC Alpha [4])
has completely changed the situation. It is now quite feasible to use a single address-space
to accommodate all processes in the system; such an address-space is even big enough to
incorporate all secondary memory of a computer system, even of a distributed system consisting
of hundreds or thousands of workstations. In a SAOS it becomes possible to provide persistence
in a clean and elegant way: the requirement of flattening data structures, including the associated
overheads in code size and redundant copying, vanishes completely [5].

In this paper we present a global virtual memory system (GVMS) featuring a flat, all-
encompassing single address-space in which all objects are persistent and potentially visible to
all processes. There are no system-enforced limits to sharing, which happens simply by passing
around addresses. The system is (almost) purely a software approach, as it will run on standard
hardware, possibly augmented by some add-on components to enhance efficiency.
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The advantage of combining persistence with a single address-space was recognised a
number of years ago by the MONADS group [6, 7]. MONADS features a special architecture
designed to support a large address-space. Virtual memory in MONADS is structured to provide
hardware support for modularisation and data encapsulation. Sharing is supported by making
all modules globally visible, and system protected capabilities are used to provide protection.
However, MONADS’ dependence on specialised hardware has made it very difficult to let it
profit from the rapid advances in computer architecture, as adapting MONADS to state-of-the-art
microprocessors is an expensive and time-consuming task.

More recently, Chase et al. [8] have also recognised the advantages of a large, single
address-space. Their approach is similar to ours. However, while their publications contain
proposals for hardware support for protection, there is little or nothing on such important issues
as address-space management, memory coherence, fault tolerance, or even the software model
of protection. It is not clear how far these issues have been researched at all.

Another SAOS has been proposed by Carter et al. [9]. That project is also still in a conceptual
stage and too little detail has been published to contrast their approach from ours. However,
these projects show that the recent progress in computer architecture is leading to a new approach
in operating systems design.

The remainder of this paper outlines the basic structure of our system, and highlights the open
problems and some of the possible avenues to investigate for their solution. Section 2 contains
a general overview. Section 3 describes the proposed memory organisation, while Section 4
discusses the management of the large address space. Section 5 presents the paging protocol
proposed to maintain consistency of the address-space in spite of an unreliable communication
network. Section 6 discusses management of persistent objects. Finally, Section 7 contains our
conclusions.

2 System Overview

The GVMS is a distributed system in which all nodes share the same address-space, so that
each byte of data in the system has a unique address. Addresses are (at least) 64 bits wide.
No (explicit) system interaction is required to allow two processes to share a data object. If a
process wishes to share an object with another process, the former only has to provide the latter
with the object’s address (and access privileges), after which the second process can access the
object in the same fashion as any of its “own” objects.

It is, of course, important to provide protection of objects against access by unauthorised
processes. The protection system is based on password capabilities [10], which allows user
processes to deal with capabilities as with simple addresses. On the first attempt to use an
object, the system validates the process’ permission to access the object by comparing the
object’s password(s) against capabilities possessed by the process. Implicit presentation of
capabilities is facilitated by a system-maintained data structure containing capabilities. The
capabilities themselves are, however, not system objects and can be passed around freely.
Mechanisms for temporarily changing the protection domain (similar to UNIX set-uid) are
provided. Details of the protection system are presented in [11].

Distribution is completely transparent to user processes: a process does not know the present
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location of a memory object, nor does it need to know the location—as soon as an address is
referenced, the system will obtain the corresponding page from the network, if it is not already
local. The traditional virtual memory model is effectively extended to include the network as
well as a local secondary store.

As data can migrate transparently, so can processes. To migrate a process, all that is required
is to migrate its process control block (PCB), which includes the register image. On the remote
node the registers are reloaded and the process restarted at the appropriate address, after which
it will page fault its working set across the network.

Currently we do not plan to support heterogenous processing nodes as we do not consider
heterogeneity support as essential to demonstrate the utility of our design. However, we believe
that models of heterogeneity developed for related problems [12] can be adapted to work in the
GVMS.

Furthermore, our system is not meant to support parallel programming and hence is oriented
towards different applications than the distributed shared memory projects [13]. We instead aim
to support a workstation-like environment of laboratory to building scale (hundreds to thousands
of processing nodes). This has implications on the sharing patterns, which are expected to be
overwhelmingly read-only or read-mostly, while writable data will tend to be localised on the
workstation of their owner.

3 Memory Organisation

3.1 Pages and Objects

Objects are the basic units of memory allocation and protection. The address-space of the
GVMS is divided into pages of equal size for the purpose of virtual memory paging. Pages are
also the basic unit of migration of data around the network. Different pages of a single object
may at any given instant reside on different nodes of the distributed system. The latter is hidden
from the user as distribution is transparent.

The system’s view of an object is a contiguous segment of memory which is page aligned
and whose contents have uniform protection state; i.e., any process which is allowed to perform
a certain operation on any part of the object has permission to perform the same operation on
any other part of the same object. The kernel does not assume or support any structure within
objects; higher software layers are however free to impose such a structure.

3.2 Object Table

A single kernel-maintained data structure, the object table (OT), contains addresses, sizes,
passwords and corresponding access modes of all objects, as well as further data, such as time
stamps and accounting information. The OT resides in global virtual memory and is shared by
all kernels. The paging protocol (Section 5.1) allows read-only copies of parts of the OT to be
cached locally for efficient access.

The OT is structured as a B�-tree. The interior nodes of the tree form an index, where the
keys are the start and end addresses of the objects. The leaves of the tree contain the actual
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information about each object. Each interior node would contain a few thousand keys, and the
height of the tree it therefore expected to be small.

This data structure allows efficient translation of an arbitrary address to its corresponding
object (if it exists). Furthermore, the object entries are sorted in address order. This, combined
with the partitioning of the address space for allocation purposes, allows efficient distribution
of the leave pages of the OT (Section 4).

3.3 Page Table

If an (authorised) process attempts to access a certain memory location, then, as in a traditional
virtual memory system, a page fault will be raised if the corresponding page is not in local
(physical) memory. In the GVMS, however, there are three different kinds of page faults:

� The page is on local disk. This corresponds to a page fault in a traditional virtual memory
system and will lead to the kernel loading the page from disk, after freeing a frame of
physical memory.

� The page is not available locally, but resides on another node. This is similar to the basic
paging mechanism, except that the page is loaded from a remote node, rather than the
local disk. Paging across the network may involve a page ownership transfer as explained
in Section 5.1.

� The (virtual) page is not allocated at all, and hence does not reside on any node. The
kernel will signal a memory fault to the faulting process.

For recently accessed pages a corresponding entry in the translation lookaside buffer (TLB)
will indicate the availability (and location) of the page. For all other cases the kernel maintained
page table indicates whether the page is resident, on local disk, on a remote node, or unallocated.
A page table for a 64-bit address-space is, of course, much too big to be kept in memory.
However, the sparsity of the address space makes it possible to use sparse multi-level page
tables, whose pages are themselves being paged to local disk. A subpage of this table, whose
entries are all the same (e.g. representing unallocated memory), is left unallocated and the
corresponding entry in the higher-level table represents all the entries in the unallocated page.�

An alternative approach to page tables could be based on hashing, as in MONADS. We have
decided not to use a hardware-based inverted page table to avoid specialised hardware whenever
possible. It is still an option, though, to use hashing in conjunction with a software-loaded TLB,
as offered by current 64-bit microprocessors.

The page table entries contain, as in a traditional OS, a physical address, dirty, presence,
and access mode bits, and a small amount of further data for use by the kernel.� The presence
bits represent the six cases resident, on-disk (locally), remote, zero-on-use, unallocated,

�A consequence of the single address-space is that the address translation information is process-independent
and thus does not change on a process switch. This means that there could be a significant gain from moving parts
of the page table on-chip, for example the top level table (which might be kept small, say 16–32 entries). This
could be a good investment of chip area in future microprocessors.

�This includes a type field used to indicate a memory coherency (Section 5.1) or stability model (Section 6.2).
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and unknown. In the resident case, the physical address is the frame number of the page in
memory. For a page on-disk, the address indicates the disk block. In the case of a remote page,
the address field contains a location hint identifying the node that is likely to hold the page. In
the unknown case, the page is either held by an unknown node or is unallocated.

Zero-on-use pages are useful to support allocation of a large area of memory for growing
objects (like stacks or heaps) without wasting a lot of memory for page table pages. A newly
created object consists only of such pages. The first time such a virtual page is accessed,
a physical page is allocated to it and filled with zeroes, thus becoming a resident page. A
zero-on-use page can only exist on the node where the object it belongs to was created.

3.4 Translation vs. Protection

In the GVMS the mapping from virtual to physical addresses differs between computing nodes,
but not between processes. Hence, on a process switch, the mapping does not change at all
and no translation data need to be invalidated. On the other hand, protection data are process
dependent and thus change on a process switch.

If a conventional TLB is used for caching translation and protection data, it must be flushed
on a process switch, even though all the translation information is still valid. If the TLB entries
are tagged with process IDs the invalidation is no longer necessary. However, this implies
that for shared pages several TLB entries are required for the same page, one for each of the
processes that share the page. This is really a waste of TLB space, as these entries will differ
only by a few protection bits.

A possible improvement to this is based on realising that in the GVMS protection and
translation are orthogonal: translation is associated with pages, while protection is based on
objects. If the two concepts can be supported by different hardware mechanisms, significant
reductions in process switching costs are conceivable.

Let us assume that, as in conventional systems, a TLB is searched on each address issue for a
translation of the virtual to the physical address. In parallel, a protection lookaside buffer (PLB)
is searched to check the validity of the access to the address. The translation information in the
TLB no longer needs to be invalidated each time processes are switched. Similarly, the contents
of a virtual cache can also be retained. These changes should significantly reduce process
switching costs, which are a serious bottleneck in traditional operating systems [14, 15, 16].
Recent work on hardware support for protection in object-oriented systems [17] indicates that a
device like the PLB might be possible.

3.5 Page Location

If access to a page of unknown location is attempted, the kernel sends a broadcast message to
all nodes on the network. If the page is allocated its owner will reply to that broadcast. For an
unallocated page, there is always one node, the one on which the corresponding address-space
partition is mounted (see Section 4), which knows that the page is not allocated and will send
an appropriate reply to the kernel which tries to locate the page.

In the case of a remote page, where the page table contains a location hint, the kernel
attempts to obtain the page by sending a request message to the node indicated by that hint. If
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the hint is incorrect, the kernel of the latter node will make a broadcast request on behalf of the
original requestor, otherwise the page (or a copy) will be sent to the requester. The reliable page
transfer protocol is discussed in Section 5.1.

The node pointed to by the location hint may itself possess a (different) location hint for that
table. Instead of broadcasting the original request, that kernel could instead forward the request
to the node pointed to by its own location hint. This could reduce the number of broadcasts,
at the expense of increased latency introduced by the larger number of node-to-node messages
exchanged. Further investigations are required to determine if, and how often, a page request
should be forwarded.

Locality makes it likely that neighbouring pages are owned by the same node. Hence it
seems likely that for a page of unknown status the location hint of the previous page, if available,
may lead to the current owner of a page. Again, more research is required to determine the best
policy for using location hints of neighbouring pages.

The above scheme ensures that pages which have recently been used (and hence have a
valid location hint) can be located quickly. Incorrect location hints will result in unnecessary
messages being sent, increasing network traffic and page migration latency. For that reason it is
desirable to get rid of old hints. If a page of the page table is brought back into memory, it can
be assumed that all the location hints it contains are outdated, and therefore all remote entries
in such a page are reverted to unknown. Other timeout schemes for invalidation of old location
hints will be investigated in the future.

Note that the page table only contains information about pages which are held locally (either
in memory or on disk) and pages which had recently been held locally. The latter set is small due
to locality of reference. Hence the amount of information that must be kept in the page table of
one node in a distributed system is not much larger than for a stand-alone node with only local
(primary and secondary) memory. However, there exists the danger that the page table could
become fragmented, so that the relevant information, i.e. the entries whose location information
is not unknown, is sparse within the allocated page table. The extreme case would be that
of only one entry per page table page being different from unknown, in which case the page
table would by itself fill all local memory. Locality of reference, together with address-space
management policies, make this unlikely to happen.

4 Address Space Management

The address-space is statically partitioned; the most significant bits of an address represent its
address-space partition id (API). The number of partitions is at least as large as the maximum
number of nodes the system will support. APIs will be about 10–12 bits long.

Every partition is mounted on a single node. Mounting (and dismounting) of partitions is a
higher-level management function requiring system administrator intervention.

When a process creates an object, the kernel will allocate memory for that object from one
of the partitions mounted on the local node. The pages allocated for that object are primary
pages of the object and are owned by the creator node. Initially, all of the object’s pages will be
zero-on-use.

Page ownership is a dynamic property; the owner of a page changes as the page migrates
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around the network. At any instant in time, a page is therefore associated with two (possibly
identical) nodes: its creator node, which is the node on which the corresponding address space
partition is mounted, and an owner, which is the node on which the primary page currently
resides. The creator is a permanent attribute of a page, while the owner is transient.

For efficiency reasons, nodes other than the owner may hold copies of a page. These copies
are secondary pages. Secondary pages are always read-only and can only be obtained from
the owner of the (primary) page. If secondary pages exist, the primary page is also marked
read-only. If an attempt is made by any node to write to the page, all secondary copies are
invalidated before the update of the page is allowed to proceed. This write-invalidate protocol
is described in Section 5.1.

The creator is the only node which can deallocate the page. Hence, if a process (holding
sufficient privilege) wants to destroy an object, the local kernel forwards that request to the
object’s creator (the node on which the address-space partition containing the object is mounted).
The creator obtains ownership of all the object’s pages (which implicitly invalidates all secondary
pages, cf. Section 5.1), removes the object from the global object table (Section 3.2) and then
deallocates the pages.

There are several advantages in partitioning the address space. The major advantage is that
OT management is efficiently distributed amongst the nodes. All objects recorded in a leaf page
in the OT will belong to the same partition. The node on which this partition is mounted is
therefore likely to be the only user of that page of the OT, which reduces contention in accessing
the OT. A further advantage of partitioning is that each node can maintain separate free lists for
its partitions. This allows efficient creation and destruction of transient objects such as stacks
and heaps (Section 6.1), particularly if a separate partition is used for such objects.

No final decision has yet been made on whether memory, once deallocated, can be reused.
MONADS never reuses memory, which has the advantage that object addresses are truly unique
identifiers for all times. A 64-bit address space is large enough to make this scheme possible.
However, our password capability scheme [11] removes the need for strict uniqueness, because
new passwords are assigned each time a virtual address is reused. Furthermore, simulations
show that reusing memory leads to significantly smaller page tables [18]. These results make
reuse of deallocated memory attractive.

The simulations also show that the multi-level page table scheme is feasible. Typically, of
the order of 2% of allocated memory is used for page tables, which seems entirely reasonable.
The results show that the way address bits are mapped to page table levels is important: From
the three schemes in Figure 1, the second results in the smallest page tables while the third one
produces the largest.

It must be pointed out, however, that these simulations were based on trace-driven UNIX
BSD4.2 file data [19]. Memory usage in a SAOS can be expected to differ somewhat from file
usage in a traditional operating system. Hence one should not overestimate the predictive value
of these simulations. We do believe, though, that they can be taken as an indication that we are
on the right path.
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Figure 1: Possible allocations of address bits to page table levels. PTi is the index for the i-th
level of the page table

5 Data Migration and Fault Tolerance

5.1 Paging Protocol

As mentioned earlier, every virtual page has a primary and possibly several secondary physical
pages. The node on which the primary page resides is the owner of that page. Secondary pages
are always read-only, and if they exist, the primary page is (currently) read-only as well.

If a process on node A attempts to read from page P, and P is not resident, A will obtain
a read-only copy of P from P’s owner B. If the primary page P is writable, B will mark it
read-only before sending a copy to A.

If subsequently a process on B attempts to write to P, B will first invalidate all (secondary)
copies of P before changing P’s status back to writable and allowing the update to go ahead.

If a process on another node, C, attempts to write to the page, C must first obtain ownership
of P. To this end, C negotiates the transfer of P’s contents and ownership. Before transferring
ownership, B must again invalidate all copies of P on other nodes (with the exception of C).
Note that with this scheme double faults, generated by a read-access immediately followed by
a write, will introduce extra overhead. This is difficult to avoid with current architectures.

Location of the owner of a page requires a broadcast, unless the page table contains a correct
location hint, as explained in Section 3.5. Invalidation of secondary pages may also require a
broadcast, with every node required to send an acknowledgement message to the owner. This
not only imposes significant load on the network, it also means that invalidation of read-only
pages may not be possible if just a single node is down.

Invalidation broadcasts can be avoided if a list of the nodes holding secondary pages is
kept by the owner. This is probably impractical, as a large number of objects is likely to be
read-shared extensively, e.g. executable code. Assuming that sharing typically happens either
between only two participants (e.g. for message buffers), or between a large number (e.g.
executable programs), it may be possible to significantly reduce the number of invalidation
broadcasts if the holder of a single secondary copy is kept. Such a single node number could be
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kept in the page table. Further study is required on this issue.
Consistency of the page ownership information is essential for the operation of the system.

We therefore use a reliable protocol [20], based on two phase distributed commit [21], for transfer
of page ownership. The protocol assures that page ownership cannot be lost or duplicated if
messages are lost or duplicated due to an unreliable network or in the case of a node crash. Error
detection mechanisms in the network interface are expected to remove corrupted messages.

While the protocol prevents loss or duplication of ownership if a node crashes during the
handshake, that exchange will be stalled until both participating nodes, as well as the network
connecting them, is operational again. This will in general block at least one process on the
receiving node. However, most of the system will remain operational; in particular all processes
which only reference local data will be able to proceed unaffected.

To minimise the impact of a single node crash on the remainder of the system, the protocol
allows the receiving node to break off the exchange if its original request has not been answered
after some timeout period has elapsed. This gives the kernel the chance to signal to a process
that some of its memory is temporarily unavailable, and let the process decide whether to retry
or to give up. This is expected to be useful particularly for interactive programs.

Implementation of the protocol will require a small amount of stable store on every node.
We expect to use a non-volatile RAM (NVRAM) chip for that purpose. The same NVRAM
can be used to implement the stable memory needed for critical system data structures (see
Section 6.2).

5.2 Memory Coherency

The paging protocol just described automatically implements a strict data coherency model, as it
guarantees that (secondary) copies of a page, if they exist, always have exactly the same contents
as the (unique) primary page. This could constitute a performance bottleneck if write sharing
occurs. However, we do not expect a great amount of write sharing to take place in our system,
which is supposed to support a workstation-like environment, rather than a multiprocessor. In
a workstation network most sharing between processes is typically read-only or read-mostly;
e.g., via files which are mostly read and occasionally updated.

While our paging protocol guarantees a single writer, it does not provide object-level co-
herency. Explicit synchronisation must be used to guarantee consistency of objects which are
updated by several processes. Assuming that the processor has a test-and-set instruction, we
would be able to provide distributed single-bit semaphores for that purpose. However, without
further support this might not be very efficient, as testing the semaphore via a test-and-set in-
struction is really a write attempt which implies acquiring ownership of the appropriate memory
page. Some special kernel support for distributed semaphores is therefore likely to be required.

For some applications, our coherency model is unnecessarily strict and introduces significant
overhead. We will therefore investigate weaker consistency models based on typed objects [22].
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6 Persistent Object Management

6.1 Transient and Persistent Objects

As every memory object created in the system has a globally unique address, which is inde-
pendent of the process that created the object, every object is automatically persistent. This
introduces some management problems for objects which are by their nature not meant to be
persistent. For example, a process’ stack is an object which has no purpose after the process
has exited. The PCB will therefore contain a table of objects that are to be destroyed by the
kernel when the process exits. By default a newly created object will be recorded in this table.
A separate system call must then be performed to make the object persistent.

The nature of the SAOS will make it easy (and tempting) to create a large number of small
objects. As every object must start on a page boundary, this would result in poor memory use.
An excess of small objects will also have a negative impact on the performance of the protection
system [11]. This will produce a performance penalty for processes using many such objects,
which will hopefully discourage their use.

In particular it would be very unwise to create a separate object for each item that would
traditionally be malloced on the process’ heap. Instead we will continue to associate a heap
object with every process, from which normal malloc calls will allocate. That heap object
will, as the process’ stack object, be automatically deallocated on exit. Only objects which
are meant to be persistent or which are to be shared with other processes would be allocated
separately. Objects which are to be shared but which do not need to survive the process, like
message buffers, will be recorded in the PCB so that the kernel will destroy them when the
process exits.

Each process is hence associated with (at least) three non-persistent objects: the stack,
the heap, and the PCB. The user process has access to the former two, while the PCB is a
protected system object. The three objects need to be created each time a new process comes
into existence, and must be destroyed once the process exits. Since each object must be recorded
in the global object table, this could make processes expensive if the modification of the object
table required communication with other nodes. However, the structure of the object table and
the partitioning of the address space overcomes this problem (cf. Section 3.2).

While, from the system’s point of view, objects have a fixed size which cannot be increased
once the object has been created, it is possible to implement growing user level objects (like
stacks and heaps). To this end a large area of memory is allocated for that object, much more
than is likely to be used. This carries no serious performance penalty, as all the virtual pages
of that object are initially marked as zero-on-use and are therefore not really allocated. If the
object is big, even some of the lower level page table pages will not have to be allocated. Only
as the user-level object grows to consume more of the allocated address-space will the virtual
pages be allocated in physical memory.

6.2 Stability

Stability of information about objects’ existence, i.e. of memory allocation, is essential for the
operation of the system. If in the event of a node crash some of this information would be
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corrupted, different nodes would have differing views of the allocation state of the address-
space. Valid object references could cause memory allocation faults, a nasty situation if the
reference in question points to important system data. Hence the free list must be stable. User
and system objects all live in the same address-space and there is no real distinction between
them. Hence the existence of all objects must be consistently maintained by the system.

Other data are less critical. Losing some user objects’ contents might be painful for the
affected users, but the system as a whole would survive such a loss. Hence for a prototype there
is no immediate need to provide universal stability.� The system can ensure stability of critical
data by using an appropriate update protocol.

The main medium used for stabilising objects is, of course, a local disk. To achieve stability,
updates on disk must be made atomically. This generally introduces significant overhead, which
is not acceptable for all objects, particularly for those which are not meant to be stable in the
first place, like local data of a process.� There are two possible solutions to this:

Different classes of objects. There are at least two classes of objects: those which are perfectly
stable and those who are not. Updates of objects of the former class would immediately
be recorded on stable storage. Write access to such objects would be fairly expensive.
Objects of the latter class would only be stabilised if the user explicitly asks the system to
do so. This gives users control over the effort put into keeping the objects stable, not unlike
a traditional file system, where the stable copy of the data may only be guaranteed to be
up-to-date after the user performed an explicit close or flush operation on them. As with
coherency models (cf. Section 5.1), this object classification is again to be implemented
by typing virtual memory.

Caching updates in fast stable store. It has been pointed out in Section 5.1 that some fast
stable store, like an NVRAM, is required to record the status of pending inter-node page
transfers. This NVRAM can be used more generally as a stable cache for update operations
on stable objects. The scheme has the added benefit of improved uniformity: the paging
status information is treated just like any other stable object.

Both schemes have their advantages, and the best solution seems to be a combination of the
two.

6.3 Garbage Management

Garbage collection in the usual sense is not possible in the SAOS, due to the fact that we do not
wish to place any restrictions on the use of pointers by user processes. The system therefore
cannot distinguish pointers from other user data, and hence cannot maintain reference counts
for objects. As well, garbage collection would likely be impractical owing to the sheer size of
the address-space.

Contrary to traditional systems, the need for garbage collection arises not from the necessity
to reuse memory (cf. Section 4), but rather from the requirement to reuse the generally much more

�Even well-known commercial systems, including UNIX, do not provide stability of user files.
�Note, however, that stabilising all objects would provide the possibility to save even running processes across

system crashes, with the exception of the currently executing one, whose register contents may be lost.
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limited backing store for stable objects. Hence it makes sense to clean up backing store rather
than virtual address-space. The precise method to use is still subject to further investigation, but
will probably be based on leasing [23] or other economic models [24].

6.4 Compilation Issues

The switch to a single address-space will have several effects on the operation of language
processors. If it is not possible to generate completely position-independent code, then it will
be necessary to assemble the code in situ. The assembler allocates an object to contain the
binary module, and then all jump instructions are to absolute targets within the object. The
linking phase inserts appropriate pointers between binary modules. Execution of the program
then occurs in place.

Conventional programming languages can no longer use absolute addressing for static data
(such as C’s extern storage class). This is because in the SAOS absolute addresses are always
global and shared by all instances of a program. Private per-process data can therefore only
be provided by using relative addressing from a base register. This is not a serious restriction
for instruction sets of current architectures, which mostly don’t even offer absolute addressing
modes of data.

7 Conclusions

We have presented a distributed single address-space operating system which naturally and
elegantly integrates persistence. The system features uniform addressing and unlimited sharing
in an address-space encompassing all virtual memory of every node in the network. Memory
protection is based on password capabilities, which allows user programs to treat all object
references like normal memory addresses in a traditional operating system. A reliable paging
protocol ensures consistency of the address-space even if the underlying network is unreliable.
Proposals for address-space and garbage management and persistent object stability have been
outlined.
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