
Embedded, Real-Time and Operating Systems Program

Maintaining End-system
Performance under Network

Overload

Luke Macpherson and Gernot Heiser

UNSW-CSE-TR-0412

March 2004

mailto:disy@cse.unsw.edu.au
http://www.cse.unsw.edu.au/∼disy/

Operating Systems and Distributed Systems Group
School of Computer Science and Engineering

The University of New South Wales
UNSW Sydney 2052, Australia

THE UNIVERSITY OF
NEW SOUTH WALES

Abstract

Network performance is currently outpacing the performance improve-
ments seen by host systems, leading to a significant performance gap be-
tween the throughput which may be supported by a network interface, and
the actual throughput which can be achieved by a typical end-system. Be-
cause this is the case, end-systems must be able to cope with applied loads
which exceed their capacities. In particular, system performance in terms of
latency, throughput, and jitter should not deteriorate under overload.

This paper evaluates the use of intelligent software-based control algo-
rithms adjusting the interrupt-holdoff time and the available DMA buffer
space in order to prevent receive livelock on commodity hosts and network
adaptors. We present a simple analytical model of packet latency, which al-
lows us to analyse system performance under overload.

The control algorithm has been implemented in the FreeBSD operating
system. Experiments show excellent scalability under overload, comparing
favourably with previous approaches. Furthermore, the implementation is
less intrusive on operating system design than prior approaches with similar
goals.

1 Introduction

Modern Gigabit Ethernet interfaces are easily able to cause receive livelock in cur-
rent systems if those systems are not designed carefully. Despite the large amount
of research into avoiding receive livelock and improving performance during over-
load, many systems continue to be susceptible to such performance problems.
Given the recent release of 10Gb/s PCI Ethernet cards, this situation is likely to
become even worse in the near future.

One reason why receive livelock is still seen in modern systems is that the
existing methods for avoiding livelock require considerable programming effort to
retrofit to an existing system, or require complicated network interface hardware.
What is needed is a method of controlling livelock which is effective, but does
not require significant modification to the operating system or additional hardware
features.

In this paper we will propose a system for eliminating receive livelock and
improving performance under overload conditions, which does not require custom
hardware and can be implemented with only slight modifications to the device
driver code, and TCP/IP stack.

2 Interrupt overheads and receive livelock

Gigabit Ethernet interfaces provide a significant challenge on current hardware be-
cause the packet rate, and hence interrupt rate, is potentially extremely high—on
the order of one million packets per second. Because the overhead of servicing
an individual interrupt is non-zero, there exists a maximum rate of interrupts at
which all processor time is expended servicing interrupts, leaving no time remain-
ing to process received packets. This situation is known as receive livelock, and is
characterised by a degradation in achieved throughput as the received packet rate
increases [8]. Therefore, it is necessary to reduce the overall impact of interrupt
overheads in order to provide good performance with modern high-speed networks.

3 Past approaches

3.1 Interrupt-per-packet

Although this design is rarely used by modern network interface drivers, early net-
work drivers existed in an environment where interrupt overhead was much lower
than the inter-packet arrival time. This gave rise to a driver design where, upon
receipt of an interrupt, the driver would dequeue a single packet from the network
card, before returning from that interrupt.

For later systems, where inter-packet arrival times are close to, or even less
than the overhead of an interrupt, an interrupt-per-packet design leads to excessive
interrupt overheads, and increased packet latency.

3

3.2 Interrupt batching

Interrupt batching is a widely implemented attempt at reducing the excessive inter-
rupt overheads associated with interrupt-per-packet designs [3, 8].

This technique is based on the observation that when inter-packet arrival time is
close to, or less than, the overhead of an interrupt, multiple packets will arrive dur-
ing the interrupt delivery period and be enqueued by the network card. Moreover,
additional packets may arrive while earlier packets are being dequeued. Upon re-
ceipt of a single interrupt, a system which implements interrupt batching dequeues
packets from the network interface until no packets remain to be processed.

Unfortunately, when the packet arrival rate is high, as soon as the driver clears
the network interface’s interrupt mask, a new interrupt is generated, resulting in
the driver’s interrupt handler being invoked again almost immediately. Because
interrupts execute at the highest priority level, this design causes receive livelock to
occur, as there is no time between interrupts for higher level processing of incoming
packets to occur.

3.3 Polling

The traditional solution to excessive interrupt overheads is to avoid the use of in-
terrupts entirely, in preference of a polling approach where the network interface
is serviced periodically and any waiting packets dequeued.

There are many approaches to polling, each with different advantages and dis-
advantages. One of the difficulties encountered in discussing polling-based sys-
tems is that the performance characteristics of polling implementations vary widely
depending on the frequency and regularity of individual device polls.

3.3.1 Software polling

The simplest form of software polling is the busy-wait polling scheme, where a
tight loop is used to poll for incoming packets continuously. The advantage of
busy-wait polling is that latency is minimised because interrupt delivery time and
context switch overheads are avoided.

The major drawback of busy-wait polling is that it requires that a large per-
centage of CPU time be dedicated to servicing the device. This is not practical
in systems where CPU time must be available for other tasks. As such, busy-wait
polling is typically used by dedicated routers and similar devices, rather than more
general-purpose computer systems.

Rather than using busy-wait polling, another approach to software polling is to
poll the network interface at specific points during code execution, using software
timed-intervals.

The advantage of this approach over busy-wait polling, or even using one in-
terrupt per packet, is that packets can be dropped by the network interface, when
the network interface’s supply of receive buffers has been exhausted. This means
that if the system fails to keep up with the applied load, and consequently polls

4

the device too infrequently, excess load is shed without increasing the processing
time required to handle incoming packets. This gives a well implemented polling
scheme the ability to resist receive livelock.

3.4 Hybrid interrupt and polling approaches

3.4.1 Polling watchdog

One of the potential problems with software-based polling schemes is that, in order
to provide consistent and low latencies, they require either a high rate of polling,
or a strict polling interval. Both of these requirements can be difficult to meet in
software without incurring significant overheads.

One proposal designed to combat this problem is the polling watchdog [3, 7].
This timer is a feature of the network interface card, and generates an interrupt
if the device is not polled within a specified time interval after the reception of a
packet.

This design allows software polling to be implemented with loose timing con-
straints, while still providing a guarantee that the interface will be serviced within
the specific time bounds.

3.4.2 Clocked interrupts

Another approach which avoids the difficulties of software-based polling is the use
of clocked interrupts [6,9]. This approach relies on a hardware timer that generates
interrupts at regular intervals. Upon receipt of such an interrupt the driver polls the
network interface for received packets.

Clocked interrupts provide a simple way of limiting the rate of interrupts, and
hence preventing receive livelock. Their implementation is similar to that of a
conventional driver where the work of dequeueing packets is performed in the in-
terrupt handler, however their behaviour in operation is similar to polling with a
fixed regular interval.

3.4.3 Eliminating receive livelock in an interrupt driven kernel

In a study of receive livelock in the Digital UNIX operating system [8], Mogul
and Ramakrishnan detail a scheme developed to eliminate receive livelock. They
propose two alternative methods for controlling the rate of interrupts. In the first,
all packet processing is done in the interrupt handler, interrupts are disabled until
packet processing is complete. In the second method interrupts are only used to
initiate polling — when an interrupt is received, a flag is set causing the polling
thread to service that device on it’s next iteration. Load shedding is provided by
disabling input from the network interface temporarily.

The idea behind these methods is to maximise the maximum loss-free receive
rate (MLFRR) by reducing the overhead of interrupts, and to avoid livelock by

5

either processing packets to completion, or having the hardware drop the packets
before any work has been done to process them.

3.4.4 Hybrid interrupt-polling for the network interface

Hybrid interrupt-polling (HIP) [3] reduces overheads associated with a purely interrupt-
driven design by switching to polling once a load threshold is exceeded. The strat-
egy then goes on to optimise performance by dynamically adjusting the polling
interval according to the inter-packet arrival time.

The primary advantage of this strategy is that it minimises the latency of traffic
without incurring excessive polling overheads. The disadvantage of the HIP control
algorithm is that it does not take into account the effect of overload. Under overload
the polling rate continues to increase until the minimum polling interval is reached.
This results in degraded performance and potential receive livelock.

This disadvantage could be overcome by using some of the approaches taken
later in this paper, such as controlling the input packet rate by adjusting the number
of available receive buffers.

3.4.5 FreeBSD polling

FreeBSD utilises a polling scheme which falls between (and combines some of the
advantages of) the periodic polling and clocked interrupt approaches. FreeBSD’s
polling implementation aims to minimise the impact of context switches caused
by interrupts, which can become a serious performance bottleneck under high net-
work loads. It does this by disabling device interrupts and polling those devices
whenever a timer tick occurs, a system trap is entered, or the idle loop is running.
This means that the device is only polled once the cost of entering kernel mode has
already been incurred by another event.

For network applications, with a high frequency of send and receive system
calls, the high rate of system calls results in a very high rate of polling. This allows
the FreeBSD polling system to avoid latency penalties which would normally be
incurred by polling on timer interrupts alone. It also means that the timer interval
has very little impact on performance when the system is under network load, as
system call frequency tends to be much higher than the timer frequency.

3.5 Interrupt coalescing

Many modern network interfaces have the ability to defer interrupt generation,
allowing multiple packets to arrive before an interrupt is generated [1]. This feature
goes by several names, including interrupt coalescing, interrupt suppression, and
interrupt holdoff, all of which aim to amortise the cost of the interrupt over multiple
packets.

6

3.5.1 Fixed interrupt-holdoff time

One of the simplest forms of interrupt overhead amortisation is fixed interrupt hold-
off, which involves the introduction of a fixed delay between the arrival of a packet
and the subsequent generation of an interrupt. This delay allows multiple packets
to arrive and be handled on a single interrupt.

A typical value for a fixed interrupt holdoff is 100µs, which is the default value
used by FreeBSD’s nge driver. In some environments, this holdoff time is a sig-
nificant component of the overall delivery time of the packet. For comparison, the
forwarding latency of our HP ProCurve 2708 Gigabit Ethernet Switch is less than
2.5µs for 64-byte-packets [2].

Another way to think about a fixed interrupt holdoff time is that it places an
upper bound on the number of interrupts per second that the device can generate.
In the case of a 100µs holdoff time, the upper bound on interrupt frequency is
10kHz, regardless of the behaviour of the operating system. In reality the max-
imum frequency will be lower than this, since time before the first packet is re-
ceived, interrupt delivery time and packet processing time will further increase the
time between interrupts.

The disadvantage of using a fixed interrupt holdoff time is that latency is un-
necessarily penalised under low load conditions by having an interrupt holdoff time
which is too long, while throughput is compromised under high loads by having an
interrupt holdoff time which is too short.

4 Dynamic interrupt-holdoff time

There are a number of problems with past approaches which leave scope for sig-
nificant improvement. Many of the approaches consider only the maximisation
of peak performance, without considering overload and receive livelock. Lazy re-
ceiver processing (LRP) [4] does address both performance and livelock, however
it requires specialised hardware to eliminate livelock. Eliminating receive livelock
in an interrupt-driven kernel [8] also addresses performance and livelock, however
this approach requires significant modification to the structure and operation of the
kernel, which is a barrier to its widespread adoption.

Instead of using a fixed interrupt holdoff time, it is possible to vary the holdoff
at run-time according to other system parameters. Dynamically controlling the
interrupt holdoff time avoids the tradeoffs involved in selecting a fixed interrupt
holdoff time, thereby improving performance over a wide range of throughputs
and system loads.

In addition to coalescing interrupts, interrupt holdoff can be used to cause the
network interface to drop incoming packets in a similar way to that provided by
polling at fixed intervals. This means that if more packets are received during
the interrupt holdoff period than can fit in the available DMA buffers, the excess
packets will be dropped by the network interface without incurring any further
overheads. This ability to shed load effectively should allow a dynamic interrupt

7

holdoff approach to scale well under overload, and successfully avoid receive live-
lock.

Although it is possible to carefully tune a fixed holdoff time and static number
of DMA buffers, such an approach requires the system to be tuned specifically
for each application and system on which it is used. By using an adaptive control
algorithm to vary both the holdoff and number of DMA buffers at run time, it is
possible to optimise performance for the present operating conditions.

5 Model of performance under overload

Time

� � �� � �
� �� � � �� �

� �� �� �� �
� �� � � �� �

� �� �� � �� � �
	 	 		 	 	

� �� �

� �� �

βΝα γ

P

N/a

Star
t
Que

ue
 F

ull

In
ter

ru
pt

In
ter

ru
ptR

etu
rn

Discarded Packet

Delivered Packet

Figure 1: Packet handling event time line

In this section we will present a model for the performance of a system utilising
interrupt holdoff under overload.

In the following equations,
α is the time to enter the interrupt handler
β is the time to dequeue one packet
γ is the time to return from the interrupt handler
N is the number of DMA buffers
P is the interrupt holdoff time, and
a is the applied packet rate.

8

The maximum achieved packet rate, r, is a function of P and N :

r =
N

P + α + βN
. (1)

The average packet latency, l, is a function of P , N , and a:

l = (P −

N

2a
) + α +

β

2
N . (2)

The overhead incurred by the interrupt handler, as a fraction of CPU time, c, is
also a function of P and N :

c =
α + βN + γ

P + α + βN
. (3)

Experiments show that α + βN is two orders of magnitude smaller than P ,
for useful values1 of N and P . Determining exact values for α and β based on
experimental results was not possible, as their effect is smaller than the measure-
ment error. This is a fortunate result, as α, β are system dependent2 , while N ,
P and a do not vary between systems. Neglecting the insignificant contributions
from these parameters gives us system-independent approximations of packet rate
and latency:

r ≈

N

P
, (4)

l ≈ P −

N

2a
. (5)

Figure 2 shows the approximate packet rate r, as a function of N and P for
some reasonable values of N and P . It is important to remember that r is the
maximum receive throughput of the network interface — if r exceeds the maxi-
mum throughput of the system, livelock may still occur. In effect, r controls the
maximum applied load seen by the operating system.

6 Implementation

6.1 Basic approach

Our implementation of dynamic interrupt holdoff in the FreeBSD operating sys-
tem consists primarily of modifications to the nge Gigabit Ethernet driver3. The
changes are relatively minor, and add only 91 lines to the driver code.

1Useful vales of N and P are integer values which result in a packet rate r which is less than
the maximum packet rate supported by Gigabit Ethernet, and which do not incur excessive packet
latencies.

2α, β and γ are dependent on both the system hardware being used, and on the details of the
operating system implementation, while N and P are parameters which can be freely chosen by the
system, and can be externally controlled.

3For convenience, the socket layer was also modified to increment a counter whenever a packet
is dropped — this is a one-line change, and is a simple alternative to having the kernel traverse the
socket queues.

9

f(x,y)
 1e+06
 8e+05
 6e+05
 4e+05
 2e+05

 100 150 200 250 300 350 400 450 500
Holdoff time (us) 0

 20
 40

 60
 80

 100

DMA buffers

 0
 200000
 400000
 600000
 800000
 1e+06

Max. packets / second

Figure 2: Maximum packet rate as a function of interrupt holdoff time and number of
DMA buffers

The implementation has two important, but distinct goals; the first is to max-
imise the maximum loss-free receive rate of the system (MLFRR), and the second
is to ensure that performance does not degrade once the applied load exceeds the
MLFRR.

In order to maximise the MLFRR, we need to consider the performance of the
system when it is not under overload. In this case, the system should not experience
any packet loss, and the number of DMA buffers should be large enough that the
throughput achievable by the network interface exceeds the throughput which can
be achieved by the rest of the system. When the MLFRR has not yet been reached,
average latency is proportional to interrupt holdoff time, while CPU utilisation is
inversely proportional to the interrupt holdoff time.

Our strategy, therefore, is to minimise latency at low throughputs, while limit-
ing CPU utilisation at high throughputs. We do this by using a low interrupt holdoff
time at low throughputs, which increases with load until the MLFRR is reached.

Once the MLFRR has been reached, our goal shifts to minimising any degra-
dation in performance. To this end, we control the number of DMA buffers, which
according to Eq. 4 will limit the packet rate seen by the operating system.

The pseudo-code in Figure 3 provides a simplified version of the code utilised
by the modified nge Gigabit Ethernet device driver to control the interrupt holdoff
time and number of DMA buffers.

10

nge_adjust_holdoff(){
static int backoff = 0;
int time_in, time_total;

/* calc time in and out of kernel */
t_in = ...;
t_total = ...;

/* adjust interrupt holdoff time */
offset = time_total - time_in - holdoff;
holdoff = (((100-LOAD)*time_in)/LOAD)

- offset;

/* adjust number of DMA buffers */
if(dropped_packets > 0){

decrease_available_dma_bufs();
dropped_packets = 0;
backoff = BACKOFF;

}else if(--backoff < 0){
increase_available_dma_bufs();
backoff = BACKOFF;

}
}

Figure 3: Pseudo-code describing the operation of the control algorithm

11

6.2 Holdoff control

The time in microseconds is sampled when the driver’s interrupt handler code is
invoked, and again immediately prior to the interrupt handler returning. The dif-
ference between these two measurements is taken, giving the time spent inside the
driver code servicing the network interface. This method cannot account for the
additional overheads associated with taking the interrupt, such as the time to trap
into the kernel and return from interrupt, as well as the cache miss costs resulting
from cache pollution by the driver. Hence a fixed offset was added to the time
spent in the driver code. This offset was experimentally determined to be 12µs on
our development machine, but can be expected to be highly platform dependent. It
would be possible for the system to determine the approximate size of that offset
at startup time, but we did not implement this.

Once the time between interrupts and the time spent in the interrupt handler
is known, it is possible to calculate the percentage of time spent in the interrupt
handler, and to subsequently adjust the interrupt holdoff time to correct for any
deviation from the desired value.

We do this by assuming each interrupt will take approximately the same time
to process as the previous interrupt. The interrupt holdoff time is adjusted to give
the correct ratio between time spent inside the kernel and time spent outside the
kernel.

6.3 Rate limiting

In addition to dynamically controlling the interrupt holdoff time, the driver was
modified to control the number of DMA buffers available for the receipt of incom-
ing packets. By observing when packets are dropped within the kernel, both at the
protocol stack’s input queue and at the socket layer’s input queue, it is possible to
detect the onset of interrupt livelock.

The number of DMA buffers is controlled such that the rate of incoming pack-
ets does not exceed the rate at which packets are dropped by the operating system
kernel. This approach ensures that system performance does not degrade once the
maximum packet rate has been achieved.

The main caveat applying to this control scheme is that a misbehaving applica-
tion could cause the network driver to drop packets even though the system was not
experiencing overload. For example, an application could open a UDP socket and
begin listening for packets, then cause a remote host to send packets to that socket,
and cease issuing reads to that socket. The socket’s receive queue would become
full, resulting in packet-loss which is not associated with genuine overload. This
problem could be solved in a production system by measuring the fraction of all
packets which are dropped by the system (across all open sockets), and tolerating
a certain amount of packet loss.

12

7 Evaluation

7.1 Experimental setup

Benchmarks were performed using FreeBSD 5.1-release on an Intel Xeon 2.66GHz
processor, with 1GB of RAM. The processor’s hyperthreading functionality was
disabled for all benchmarks because it was unsupported by the FreeBSD polling
implementation used. The Ethernet card used was a LinkSys EG1064, based
on the National Semiconductor DP83820 chip, and was connected via a 64-bit,
33MHz PCI bus. This network card supports interrupt holdoff to be specified with
a 100mus granularity (which is relatively course, see Section 3.5.1).

Load generation and performance measurement was achieved using seven 2GHz
Celeron-based machines, connected via a HP ProCurve 2708 unmanaged switch.
These machines were controlled using the ipbench distributed benchmarking util-
ity [5], which is able to simultaneously measure latency and CPU utilisation at
varying throughputs.

A UDP test was chosen for these benchmarks because it provides a non-responsive
flow, and hence it is possible to see the behaviour of the machine under overload
more clearly than if a responsive protocol such as TCP is used.

During this benchmark, a number of machines generate UDP packets which
are directed at the machine under test. The test machine must deliver the packets
to a user-level program which echos each packet back verbatim to the host from
which the request originated. This task requires a minimum of two system calls
per packet: a receive system call followed by a send system call. This represents
a very high rate of system calls per second, and further increases the load on the
machine being tested. It is also the scenario for which the FreeBSD polling scheme
is designed to perform well.

7.2 Results for standard platform

Figure 4 shows the relationship between achieved throughput and applied load for
a number of system configurations.

The effect of interrupt livelock when no interrupt mitigation is used is quite
pronounced. 0µs interrupt holdoff reaches only a few hundred megabits per second
before maximum performance is reached, after which performance degradation
becomes severe.

The unmodified nge driver’s use of 100µs holdoff achieves considerably better
throughput before reaching livelock, and there is a gradual performance degrada-
tion as applied load is increased; however in this benchmarking scenario the net-
work interface becomes saturated long before receive livelock becomes a problem.

FreeBSD’s hybrid interrupt/polling implementation achieves a comparatively
good maximum throughput. Under overload conditions the polling implementa-
tion’s throughput shows gradual degradation as applied load is increased. This
performance degradation can be attributed to a lack of effective load shedding by

13

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900

A
ch

ie
ve

d
th

ro
ug

hp
ut

 (
M

bp
s)

Applied load (Mbps)

0µs holdoff
100µs holdoff
200µs holdoff
FreeBSD polling
Adaptive control

Figure 4: Achieved throughput vs applied load for 1024 byte UDP packets

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900

A
ve

ra
ge

 la
te

nc
y

(µ
s)

Applied load (Mbps)

0µs holdoff
100µs holdoff
200µs holdoff

FreeBSD polling
Adaptive control

Figure 5: Average round-trip latency vs applied load for 1024 byte UDP packets

14

FreeBSD’s polling implementation—because of the high polling frequency, pack-
ets are discarded by the device driver once the network protocol stack’s input queue
becomes full, rather than being discarded by the device itself. This means that as
the applied load increases, the work which must be done by the driver in order to
discard excess packets also increases.

The adaptive control implementation achieves a peak throughput almost iden-
tical to FreeBSD’s polling implementation before overload is reached, however
there is almost no degradation of throughput under overload. This improvement is
attributed to the ability of the adaptive control algorithm to shed load by reducing
the number of DMA buffers, and reduce interrupt-related overheads by increasing
the interrupt holdoff time.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800 900

S
ta

nd
ar

d
de

vi
at

io
n

of
 la

te
nc

y
(µ

s)

Applied load (Mbps)

0µs holdoff
100µs holdoff
200µs holdoff

FreeBSD polling
Adaptive control

Figure 6: Standard deviation of round-trip latency vs applied load for 1024 byte UDP
packets

Figure 5 shows the relationship between round trip latency and applied load for
this same set of system configurations.

With low loads, 0µs holdoff results in the best case for average latency, however
at the point where overload is reached, latency increases dramatically. 100µs hold-
off gives a small increase in average round trip latency until overload is reached.
Once overload is reached, latency is roughly doubled before continuing to scale
well.

The FreeBSD polling implementation performs similarly to 100µs holdoff, but
continues with low latency to slightly higher throughput, before exhibiting slightly
lower average latency under overload.

15

Interesting to note in Figure 5 is that the average latency for the adaptive control
implementation is somewhat higher (about 20%) than that of the default driver with
100µs holdoff and the FreeBSD polling implementation. Figure 6, however, shows
that the standard-deviation of latency, which is a measure of jitter, under overload
is much lower for the adaptive control implementation than that achieved by other
implementations. Furthermore, the adaptive control could be tuned to trade latency
against throughput, but we did not explore that possibility.

This effect is not only a result of changing the number DMA buffers or con-
trolling the interrupt-holdoff time, but also due to a subtlety of the implementation
of the adaptive control algorithm. The default FreeBSD driver, like most modern
Ethernet drivers, uses interrupt batching, Furthermore, the FreeBSD polling imple-
mentation frees a DMA buffer as soon as the packet has been dequeued from that
buffer. This means that new packets can continue to be received as soon as a packet
is dequeued by the driver. While this approach results in lowered average latency,
as some packets will be dequeued almost immediately after reception, it also has
several negative effects.

Firstly, jitter is increased greatly under overload, because some packets wait
for almost all of the interrupt holdoff time to be dequeued, while others are de-
queued almost immediately. Secondly, because the number of packets received per
interrupt is not restricted, degradation of performance under overload occurs more
quickly. Given a high-enough applied load, the network driver may never return
from the interrupt handler. Instead, the network driver could spend all its time
dequeueing packets from the network card, and enqueueing them at the protocol
stack.

The adaptive control algorithm was implemented in a way that minimises this
effect. By only freeing DMA buffers immediately before returning from the in-
terrupt handler, the algorithm prevents the network card from enqueueing further
packets while servicing the interrupt.4

Figure 7 shows the relationship between CPU utilisation for the entire system,
and applied load. Once again, 0µs holdoff performs significantly worse than the
other approaches. This is due to the unregulated interrupt frequency.

Meanwhile, 100µs holdoff, polling and adaptive control all give remarkably
similar results. Interestingly, polling starts with lower utilisation than both the fixed
and variable holdoff schemes, but once overload is reached, tends to use more CPU
time.

The adaptive control implementation gives the reverse effect, with slightly
worse CPU utilisation at lower throughputs, while at higher throughputs it out-
performs other approaches. The large dip in CPU utilisation around 350Mbps ap-
plied load is caused by switching from 100µs to 200µs holdoff. Lowered CPU
utilisation at high throughputs is highly desirable, as it frees CPU time when it is
most needed. This can be seen in Fig. 8, which shows the processing overhead per

4When the system is not experiencing overload, there are enough free DMA buffers to allow the
system to continue to receive packets while the interrupt is being serviced.

16

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

C
P

U
 u

til
is

at
io

n
(%

)

Applied load (Mbps)

0µs holdoff
100µs holdoff
200µs holdoff

FreeBSD polling
Adaptive control

Figure 7: CPU utilisation vs applied load for 1024 byte UDP packets

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 100 200 300 400 500 600 700 800 900

C
P

U
 c

yc
le

s
pe

r
de

liv
er

ed
 p

ac
ke

t

Applied load (Mbps)

0µs holdoff
100µs holdoff
200µs holdoff

FreeBSD polling
Adaptive control

Figure 8: CPU cycles per delivered packet vs applied load for 1024 byte UDP packets

17

packet. The overhead of the adaptive scheme is at low loads very slightly higher
than that of the 100µs holdoff or FreeBSD polling, but under high load is low-
est and load independent, while for the other schemes the overhead increases with
applied load.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

A
ch

ie
ve

d
th

ro
ug

hp
ut

 (
M

bp
s)

Applied load (Mbps)

100µs holdoff
FreeBSD polling
Adaptive control

Figure 9: Achieved throughput vs applied load for 1024 byte UDP packets, slow machine

7.3 Simulation of faster networks

In the above experiments only the zero-holdoff case experienced receive livelock,
all other schemes avoided this extreme degradation. This can be expected to change
when faster network interfaces become available (or on embedded devices with
lower processing capabilities). In order to simulate the effect of faster network
adaptors we re-ran the benchmarks on a much slower machine, based on a 550MHz
Pentium-III processor. This machine featured a 32-bit, 33MHz PCI bus and was
equipped with a DLink DGE-500T Gigabit Ethernet card, also based on the DP83820
chipset.

Fig. 9 shows that the performance of the 100µs holdoff and polling schemes
deteriorates dramatically as soon as the applied load exceeds 100Mbps, while
the adaptive scheme improves until around 200Mbps, after which the maximum
achieved throughput is maintained. A consistent picture emerges from the graphs
of latency (Figs. 10 and 11) which both show clear degradation of the fixed holdoff
and polling schemes, while the adaptive scheme is able to deal with the overload.

18

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 100 200 300 400 500 600 700 800 900

A
ve

ra
ge

 la
te

nc
y

(µ
s)

Applied load (Mbps)

100µs holdoff
FreeBSD polling
Adaptive control

Figure 10: Average latency vs applied load for 1024 byte UDP packets, slow machine

8 Conclusions

Our study confirms that software-based schemes are able to defer or prevent receive
livelock in a system overloaded by incoming network traffic. However, we also
show that fixed schemes, such as fixed interrupt holdoff times or the hybrid polling
approach implemented in FreeBSD, cannot satisfy the conflicting requirements of
minimal latency under low load and maximisation of throughput under high load.

We have presented an adaptive scheme, which adjusts both the interrupt hold-
off time and the available DMA buffer space to the network load. We have demon-
strated that this scheme is able to maintain maximum performance under high load,
without adding significant overhead under low load. Therefore, dynamic control
of interrupt holdoff time is able to provide near-optimal performance over the full
range of system load, rather than being optimised for a specific load point.

Importantly, the adaptive scheme is simpler to implement than regular polling,
as it can be implemented almost entirely within the device driver — the kernel
infrastructure required by a polling approach is not required.

While we can conclude that the control of receive livelock is possible with
present network hardware, we can also observe that the 100µs interrupt holdoff
granularity provided by the DP83820 chipset is too coarse. Useful values seem to
range from 0µs to 1000µs, higher values would only be needed for systems with
very high interrupt delivery costs. An interrupt holdoff granularity of 10–20µs
would allow the control algorithm to adjust better particularly at low to intermedi-

19

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 100 200 300 400 500 600 700 800 900

C
P

U
 c

yc
le

s
pe

r
de

liv
er

ed
 p

ac
ke

t

Applied load (Mbps)

100µs holdoff
FreeBSD polling
Adaptive control

Figure 11: Cycles per packet vs applied load for 1024 byte UDP packets, slow machine

ate loads.

20

References

[1] Jeffrey S. Chase, Andrew J. Gallatin, and Kenneth G. Yocum. End system opti-
misations for high-speed TCP. IEEE Communications Magazine, 39(4):68–74,
2001.

[2] Hewlett-Packard Company. HP ProCurve 2700-series datasheet, October
2002.

[3] Constantinos Dovrolis, Brad Thayer, and Parmeswaran Ramanathan. HIP: Hy-
brid interrupt-polling for the network interface. ACM SIGOPS Operating Sys-
tems Review, 35(4):50–60, October 2001.

[4] Peter Druschel and Gaurav Banga. Lazy receiver processing (LRP): A network
subsystem architecture for server systems. In Operating Systems Design and
Implementation, pages 261–275, 1996.

[5] ipbench — a distributed framework for network benchmarking. http://
ipbench.sourceforge.net/.

[6] Ilhwan Kim, Jungwhan Moon, and Heon Y. Yeom. Timer-based interrupt mit-
igation for high performance packet processing. In 5th International Confer-
ence on High-Performance Computing in the Asia-Pacific Region, 2001.

[7] Olivier Maquelin, Guang R. Gao, Herbert H. J. Hum, Kevin B. Theobald, and
Xin-Min Tian. Polling watchdog: Combining polling and interrupts for ef-
ficient message handling. In The 23rd Annual International Symposium on
Computer Architecture, pages 179–188, 1996.

[8] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. ACM Transactions on Computer Systems, 15(3):217–
252, 1997.

[9] Jonathan M. Smith and C. Brendan S. Traw. Operating systems support for
end-to-end Gbps networking. IEEE Network, 7:44–52, February 1993.

21

