
Itanium Page Tables and TLB

Matthew Chapman, Ian Wienand, Gernot Heiser

UNSW-CSE-TR-0307

May 2003

disy@cse.unsw.edu.au
http://www.cse.unsw.edu.au/∼disy/

Operating Systems and Distributed Systems Group
School of Computer Science and Engineering

The University of New South Wales
UNSW Sydney 2052, Australia

THE UNIVERSITY OF
NEW SOUTH WALES

mailto:disy@cse.unsw.edu.au
http://www.cse.unsw.edu.au/~disy/

Abstract

The Itanium architecture offers considerable flexibility in managing the
TLB. Besides features found in many architectures, such as TLB tags and
superpages, it supports two quite unusual features. One is the choice of two
hardware-walked page table formats, a linear array and a hashed page table.
The other is an unusual TLB tagging scheme which, among others, allows a
single TLB entry to map a page to several address spaces, thus reducing the
consumption of TLB entries in the presence of sharing.

Only one page table format, the linear array, is presently supported in
Linux. However, this format neither supports the use of arbitrarily mixed
page sizes nor the sharing of TLB entries. We have implemented the hashed
page table format in Linux and found that this change has negligible perfor-
mance impact, which should pave the way for exploring an implementation
of superpage support. We have also implemented sharing of TLB entries, and
found that in normal Linux workloads the effect is somewhere between negli-
gible and a moderate performance increase. We could, however, demonstrate
that there are scenarios where TLB sharing can produce significant perfor-
mance gains.

1 Introduction

The Itanium architecture [Int00] provides an enormous amount of flexibility to the
operating system (OS), by supporting a variety of optional or alternative mecha-
nisms for controlling basic system functionality.

In this report we focus on Itanium mechanisms for controlling the memory
management unit (MMU). Here, Itanium supports three different mechanisms for
handling misses in the translation lookaside buffer (TLB): hardware reload from
one of two architecture-defined page table formats, or software reload (from an
arbitrary OS-defined format). The two hardware-defined formats are called the
short- and long-format virtual hashed page table (VHPT) formats respectively.

In addition, the Itanium TLB contains a feature not commonly found in other
architectures (although it is based on the scheme used in the PA-RISC [WS92]
and is similar but far more general to what is used in the ARM [Jag95]): each
TLB entry is tagged with a protection key (PK), which can be used to modify
the access rights specified by the TLB entry. In particular, PKs support sharing
of pages between processes with different access rights via shared TLB entries.
This has the potential of reducing the consumption of TLB entries (or increase
TLB coverage) in scenarios where sharing of pages is significant. TLB coverage
has been identified as a potential bottleneck in system performance, with TLB
miss handling overheads of 20–40% reported even on single-tasked benchmarks
[CBJ92, HH93, Tal95, KS02] (although generally with software-loaded TLBs).

Linux presently only supports the short-format VHPT. This means it cannot
support sharing of TLB entries, which is supported by the architecture only with
the long VHPT format. The long format is also required to support mixing page
sizes (so-called superpages), which has been shown to improve performance sig-
nificantly [NIDC02]. However, these features would be of little use if their benefit
was compensated by a performance degradation resulting from the use of the long
format page table.

The purpose of this report is to investigate the cost of using the long VHPT
format. We present an implementation of the long-format page table in the Linux
2.5.67 kernel, as well as performance measurements to asses their impact. We
have also implemented sharing of TLB entries and have investigated the potential
performance benefits.

2 Itanium MMU and Page Tables

2.1 Address translation

Figure 1 shows how address translation works on Itanium. The top three bits of
the virtual address, the virtual region number (VRN), are used to index into an
array of eight region registers (RRs), yielding a region ID (RID). The remaining
bits, minus the page offset, form the virtual page number (VPN). The architecture
supports eleven different page sizes ranging from 4KB to 4GB.

3

Region ID Key Virtual Page # (VPN) Rights Physical Page # (PPN)

Translation Lookaside Buffer (TLB)

Region ID

Region Registers

Key Rights Protection
Key Registers

Virtual Address

Physical Page # (PPN)

Physical Address

Offset

Search Search

Search

Index Virtual
Page # (VPN)Virtual Region # (VRN)

Figure 1: Itanium address translation

The VPN together with the RID is used as the key for an associative lookup
of the TLB. If there is a match, the TLB entry will contain the correct address
translation in the form of a physical page number (PPN), plus the access rights.
If there is no match for the RID-VPN pair in the TLB, a TLB miss occurs, which
results in a TLB reload by a hardware page table walker, if it is enabled. Otherwise
an exception is taken (which would presumably result in a software TLB reload).
An exception is also taken if the attempted access is not allowed by the rights field
in the TLB entry.

The TLB entry contains a further tag, the protection key. The use of protection
keys can be disabled, in which case this field is ignored. If protection keys are
enabled, the protection key of the TLB entry containing the address translation is
used in an associative lookup of an array of protection key registers (PKRs). If
there is a match, then the PKR contains a further rights field. The memory access
is only allowed to go ahead if it is permitted by the rights fields in both, the TLB
entry and the PKR. The architecture specifies that at least 2

18 different protection
keys are supported.

2.2 Sharing TLB entries

2.2.1 Regions

Itanium is, at first glance, a segmented architecture: The VRN comparable to a
segment number in a segmented architecture, like the PowerPC [MSSW94]. As
such it supports sharing of TLB entries on a region basis: If a certain memory

4

object (e.g. a memory-mapped file) is to be shared between processes, it can be
allocated in a region of its own, and the kernel can associate a unique RID with
the shared object. In order to share TLB entries (and not just pages) all processes
sharing that object must agree on its address, including its RID.

The number of regions available to a process (eight) is too small to support a
proper segmented view of the address space, where each object (file) is mapped
into its own segment. One region needs to be reserved for program text, one for
private data, at least one for kernel use, leaving at most five for libraries or other
shared memory. Instead, it makes more sense to view the RIDs as a generalised
address-space ID (ASID), as it is used to associate TLB entries with their processes
on the MIPS [Hei93] or Alpha [Dig92]. The difference to normal ASIDs is that
each process can use up to eight different tags. The present Linux kernel uses RIDs
like ASIDs, by assigning a unique set of RIDs to each process.

In this approach it is straightforward to share TLB entries between processes
executing the same program: one region is reserved for the text segment, and the
kernel can associate a unique RID with each presently active executable. Process-
private data is allocated in a separate region, and associated with a per-process
RID.

The present Linux kernel does not share RIDs between processes.

2.2.2 Protection keys

Protection keys support sharing of TLB entries between processes, even if their
access rights to a page differ. The rights field in the TLB entry gives the maximum
rights any user has on the page (e.g. X/O for a code page, R/O for a data page
subject to copy-on-write, R/W for other data pages). The PKRs can then be used
to further restrict access on a per-process basis, according to each process’s access
rights. In order to use this feature, one or more regions are dedicated to potentially
sharable pages. Every object that is mmap()-ed (including shared library code),
unless it is mapped privately, is allocated in one of those regions. The kernel then
needs to allocate a unique PK to each such object. When a process accesses the
object for the first time, a PK fault will be triggered. The kernel handles these faults
by loading the PK and the appropriate permissions into one of the PKRs.

As the PKRs are now part of the process context, they need to be flushed or
reloaded on a context switch. Their number is small, 16 in the present Itanium
processors, so this adds little overhead.1

The present Linux kernel does not enable protection keys.

2.3 Page tables

As indicated earlier, the Itanium architecture supports two different hardware-
walked page table formats, the short-format VHPT and the long-format VHPT.

1An interesting issue arising from this is whether 16 PKRs is enough to make a reasonable object
working set accessible.

5

2.3.1 Short VHPT

A short-format VHPT is, name notwithstanding, a linear virtual array page table
[LL82,CE85] that maps a single region, hence up to eight are required per process.
Each page table entry (PTE) is 8 bytes (one word) long. It contains a physical
page number, access rights, caching attributes and software-maintained present,
accessed and dirty bits, plus some more bits of information not relevant here. A
RID need not be specified in the short VHPT, as it is common to all pages in the
region for the presently executing process.

The page size is also not specified in the PTE, instead it is taken from the pre-
ferred page size field contained in the region register. This implies that when using
the short VHPT, the page size is fixed for each region of each process (although
different processes can use different page sizes, and a process can use different
page sizes in different regions).

The PTE also contains no protection key, instead the architecture specifies that
the protection key is taken from the corresponding region register (and is therefore
the same as the RID, except that the two might be of different length). This makes
it impossible to specify different protection keys in a region if the short VHPT is
used. Hence, sharing TLB entries of selected (shared) pages within a region is not
possible with this page table format.

2.3.2 Long VHPT

A long VHPT is a proper hashed page table. Its entries are 32 bytes (4 words)
long and contain all the information of the short VHPT entries, plus a page size
specification, a protection key, and a tag. Hence, the long VHPT supports a per-
page specification of page size and protection key. The tag field is used to check
for a match on a hashed access and must be generated by specific instructions.

2.3.3 Comparison

The advantage of the short VHPT is that its entries are compact and highly lo-
calised. Since the Itanium’s L1 cache line size is 64 bytes, a cache line can hold 8
short entries, and as they form a linear array, the mappings for neighbouring pages
have a high probability of lying in the same cache line. Hence, locality in the page
working set translates into very high locality in the PTEs, and the number of data
cache lines required for PTEs is small.

In contrast, a long VHPT entry is four times as big, and only two fit in a cache
line. The probability of two PTEs sharing a cache line is. Hence, the long VHPT
format is much less cache-friendly than the short format.

The situation is the opposite as far as the TLB is concerned. On the one hand,
at least three TLB entries are generally required to map the page table working
set of each process, one for code and data, one for shared libraries and one for

6

the stack.2 On the other hand, one large superpage mapping is enough to map the
(much smaller) long VHPT of a process. Hence, the long-format VHPT is more
TLB-friendly than the short-format VHPT.

This tradeoff is likely to favour the short-format VHPT in cases where TLB
pressure is low, i.e. where the total page working set is smaller than the TLB ca-
pacity. This is typically the case where processes have mostly small working sets
and context switching rates are low to moderate. Many systems are likely to oper-
ate in that regime, which is probably the reason why present Linux only supports
the short VHPT format.

The most important aspect of the two page table formats is that the short for-
mat does not support many of the Itanium’s MMU features, in particular TLB entry
sharing and mixed page sizes (superpages). The latter have been shown to lead to
significant performance improvements [NIDC02], and they ought to be utilised by
operating systems running on Itanium. Before embarking on a superpage imple-
mentation, however, it makes sense to assess the potential performance degradation
resulting from the long VHPT format.

3 Approach

In the following we describe our implementation of the long-format VHPT in the
Linux 2.5.67 kernel. We also present the implementation of both forms of TLB-
entry sharing discussed in Section 2.2: region-based sharing of TLB entries for
text segments of executable programs, and protection-key-based sharing of TLB
entries for mmap()-ed regions, including shared library code.

3.1 Long-format VHPT

The present Linux implementation simply maps the leaves of its multi-level
pagetable into the virtual address space accessed by the hardware walker.
This approach has the advantage that it is completely compatible with Linux’s
architecture-independent page table.

Replacing the native Linux pagetable with the long format VHPT would re-
quire extensive changes, since the multi-level pagetable paradigm is deeply en-
trenched. Instead we use the long format VHPT as a pagetable cache, or essentially
another (software-managed) level of TLB [BKW94]. On a TLB reload miss, the
software handler inserts the entry into both the long format VHPT and the TLB.
A later TLB miss on the same entry is handled by the hardware walker reloading
from the VHPT without invoking software. This approach has inherently more
overheads, which could be eliminated by total re-implementation of the page table
management in Linux. As such, the performance of our kernel will set a lower
limit for what is achievable with long-format VHPTs.

2In fact, the present Linux implementation uses six regions for user code, and thus will require at
least that many entries for mapping a single process’ page tables.

7

In an SMP system the VHPT could either be global or per-CPU. A global
VHPT has the advantage of allowing entries to be shared if the same address space
runs on more than one CPU, but requires complicated locking on insertions. A
per-CPU VHPT is more efficient for insertions but less efficient for purges, since
more than one VHPT may need to be purged. Since insertions are more common
than purges, we have initially decided to implement a per-CPU VHPT. To avoid
touching all of the VHPTs on a purge, we keep track of which CPUs an address
space has run on, and only purge the corresponding VHPTs.

An additional complication results from the hash function used by the long
format VHPT implementation in Itanium CPUs, which is essentially the exclusive-
OR of the RID and the VPN. Linux allocates context IDs sequentially, with a lin-
ear mapping from context ID to RID. There are frequently processes with close
together RIDs and similar address space layout (e.g. after a fork()), which results
in frequent hash collisions. As a quick and effective workaround, we switch the
last two bytes of the context ID when constructing a region ID. This results in a
wider distribution in the RIDs without wasting valuable RID space and without a
complicated allocation scheme.

3.2 Region-based sharing of program text

Itanium Linux uses five regions, each with a different RID, for user processes (the
remaining three are reserved for the kernel). One of these (VRN=2) is reserved for
the text segment. We changed the RID allocation so that the RID for VRN 2 is no
longer process-specific but program-specific. This is enough to ensure sharing of
TLB entries for executable text segments.

In order to ensure that all processes running the same executable use the same
RID, we store this RID value in the in-memory copy of the inode of the executable.

3.3 Protection-key-based sharing

To support sharing of TLB entries for mmap()-ed objects, we reserve one re-
gion (VRN=1) for shared mappings. Normally, all mmap()-ed memory (without
MAP FIXED) is allocated there, so we moved private mappings into region 4. Re-
gion 1 becomes essentially a single-address-space region: if two processes have
access to the same address within that region, they will see the same data at that
address. This region uses a fixed, global RID.

Memory management in the shared region is, at present, very simple: the re-
gion is filled from the bottom, and an address range, once allocated, is not freed
(until reboot). While Itanium processors support 61-bit region offsets, we are
presently limited to 40 bits because of Linux’s three-level page tables.3 This still
supports 1TB of shared mappings, not a serious limitation (particularly as we could
always fall back to the default way of handling mmap()). The protection keys are
presently stored in virtual-memory-address data structures pointed to by the inode.

3This assumes a 16KB base page size, the default for Itanium Linux.

8

4 Evaluation

4.1 Test framework

In order to evaluate the performance of the two page table formats we used the
standard lmbench [MS96] suite as well as Suite IX of the aim benchmark [SCO].

These standard benchmarks do not exhibit a significant amount of sharing
(which is reasonable as far as the primary purpose of these benchmarks is con-
cerned, as sharing is not prevalent in typical Unix environments). We therefore
developed a benchmark which is specifically designed to evaluate the best-case
performance benefits of sharing TLB entries. We call this benchmark “extreme”,
as it attempts to combine maximum sharing of text or data pages between processes
with maximum stress on the TLB.

The extreme benchmark forks n child processes all running the same exe-
cutable. Each child mmap()-s the same p pages. The child then executes a loop
where it reads or executes a byte from each page and then performs a yield().
The benchmark can be configured to stress the instruction TLB (ITLB), data TLB
(DTLB), or both.

With TLB sharing disabled, the extreme benchmark will thrash the TLBs as
much as possible. With TLB sharing enabled it will share as many TLB entries as
possible (up to the lesser of p and the TLB capacity).

All tests were run on a HP rx2600 server, which features dual 900MHz
Itanium-2 CPUs. The processors have three levels of physically-addressed on-chip
cache. The L1 is a split instruction and data cache, each 16KB, 4-way associa-
tive with a line size of 64 bytes and a one-cycle hit latency. The L2 is a unified
256KB 8-way associative cache with 128B lines and a 5 cycle hit latency. The L3
is 1.5MB large, 6-way associative, with a 128B line size and 12 cycles hit latency.
The memory latency with the HP zx1 chipset is around 100 cycles.

The processors have separate fully associative data and instruction TLBs, each
structured as two-level caches with 32 L1 and 128 L2 entries.

The per-CPU long-format VHPT was sized at 4MB.

4.2 Lmbench results

Table 1 shows the performance results for the process and file benchmarks of lm-
bench. There is very little performance difference between the kernels with short
and long format VHPTs. In most cases the differences are statistically insignif-
icant. In average, there might be at most about a 1% performance penalty from
using the long format, which seems irrelevant.

The only significant performance impact (other than the one-off uniprocessor
results for fstat() and open()/close()) is for the mmap() latency benchmarks.
This is probably a result of how this particular benchmark operates, and the fact that
in our implementation the long-format VHPT is not the page table proper, but only
a cache of the Linux page table, plus the reduced cache locality of VHPT entries.

9

Processor, Processes
Null null stat fstat open signal process

Kernel call I/O close install handle fork execve
Uni 1.00(0) 1.01(1) 1.00(0) 1.06(1) 0.93(1) 1.00(2) 1.02(1) 0.97(0) 0.98(2)
Smp 1.00(3) 1.01(1) 1.00(1) 1.04(2) 0.98(1) 1.01(2) 0.97(4) 0.97(0) 0.98(4)
Sharing 1.01(1) 0.99(1) 1.01(0) 1.03(2) 0.97(2) 1.01(1) 1.01(1) 1.02(0) 1.07(6)

File select
Kernel 10 fd 100 fd 250 fd 500 fd 10 tcp 100 tcp 250 tcp 500 tcp
Uni 1.03(1) 1.01(0) 1.00(0) 1.00(0) 1.01(0) 1.00(0) 1.00(0) 1.00(0)
Smp 0.99(1) 1.01(0) 1.00(1) 1.01(1) 0.99(1) 1.00(1) 1.00(0) 1.00(0)
Sharing 1.03(0) 1.00(0) 1.00(0) 1.00(0) 1.00(1) 1.00(0) 1.00(0) 1.00(0)

File create/delete and VM system Latencies
0K 1K 4K 10K

Kernel Create Delete Create Delete Create Delete Create Delete
Uni 1.00(0) 1.00(1) 1.00(8) 1.00(0) 1.02(5) 1.00(1) 1.02(10) 1.01(1)
Smp 1.00(0) 0.99(1) 1.00(2) 1.00(1) 0.99(4) 0.99(1) 0.99(9) 0.99(1)
Sharing 0.99(0) 1.00(1) 0.99(26) 1.00(0) 0.99(25) 1.00(0) 1.01(16) 1.00(1)

Mmap Prot Page
Kernel Latency Fault Fault
Uni 0.89(1) 0.88(30) 0.91(20)
Smp 0.90(1) 1.05(42) 0.93(16)
Share 0.92(1) 0.73(16) 1.00(0)

Table 1: Lmbench process and file operation benchmarks. Numbers indicate per-
formance relative to the vanilla kernel: a figure > 1.0 indicates better, < 1.0

worse performance than the vanilla kernel. “Uni” is the performance of the long
format VHPT relative to the short format VHPT in a uniprocessor kernel, “Smp”
is the same for a multiprocessor kernel (on a two-CPU system). “Share” is the
same as “uni”, except with TLB entry sharing enabled. The results are averages
over five lmbench runs. Numbers in parentheses indicate the standard deviation
in units of the last quoted digit. (E.g. “1.00(1)” means 1.00 with a standard de-
viation of 0.01, while “1.00(11)” means 1.00 with a standard deviation of 0.11.
Background colours are used to highlight significantly improved or deteriorated
performance.

The benchmark maps a number of pages, accesses them sequentially, unmaps, and
repeats. It is therefore dominated by page table operations and TLB refills which
mostly result in software reloads.

The protection-fault benchmark is not particularly meaningful for this inves-
tigation, as it attempts to measure small timing differences (in the order of 300
cycles) which is very unreliable (as indicated by the large standard deviations).

Sharing (unsurprisingly) also makes little difference in most cases, however
there is a tendency toward improved performance, in average more than compen-
sating for the (small) performance penalty of the long format VHPT.

The situation is similar with the local communication performance runs shown

10

Local Communication latencies
AF/ RPC/ TCP RPC/ TCP-

Kernel Pipe Unix UDP UDP TCP TCP conn
Uni 1.01(4) 1.00(2) 1.00(1) 1.00(2) 0.99(1) 1.01(1) 1.01(1)
Smp 0.99(1) 1.00(4) 0.75(52) 0.96(0) 1.11(35) 0.98(1) 1.12(33)
Sharing 1.00(1) 0.97(2) 1.00(1) 0.99(2) 0.96(1) 0.98(1) 0.99(0)

Local Communication bandwidths
AF/ File Mmap Bcopy Memory

Kernel Pipe Unix TCP reread reread (libc) (hand) read write
Uni 1.07(16) 1.00(2) 1.00(7) 1.00(0) 1.00(0) 1.00(1) 1.00(0) 1.00(0) 1.00(0)
Smp 0.99(1) 0.99(2) 1.42(111) 1.00(0) 1.00(0) 1.00(1) 1.00(0) 1.00(0) 1.00(0)
Sharing 1.13(15) 0.99(2) 0.98(5) 1.00(0) 1.00(0) 1.00(0) 1.00(0) 1.00(1) 1.00(1)

More Local Communication bandwidths
File Mmap Aligned Partial Partial Partial Partial

open open Bcopy Bcopy Mmap Mmap Mmap Bzero
Kernel close close (libc) (hand) read write rd/wrt copy HTTP
Uni 1.00(0) 0.99(0) 1.00(1) 0.99(0) 1.00(0) 1.00(1) 1.00(0) 1.00(0) 0.99(0)
Smp 1.00(0) 0.99(0) 1.00(1) 1.00(1) 1.00(0) 0.99(2) 1.00(0) 0.99(0) 0.98(2)
Sharing 1.00(0) 1.00(0) 1.00(0) 1.00(1) 1.00(0) 0.98(3) 1.00(0) 0.99(1) 1.00(2)

Table 2: Lmbench local communication performance. See Table 1 for explana-
tion.

in Table 2, except there is even less of a performance difference.

The lmbench context switching performance results in Table 3 show again lit-
tle effect from the page table format. Here, however, we find a significant effect
from TLB entry sharing, with context switching performance improved by around
10–20% for large process numbers. This effect vanishes again as the process work-
ing sets get large, as then execution times are dominated by memory access times,
which are independent of page tables and TLB sharing. The runs with sharing en-
abled are still faster in absolute terms (by about the same amount as in the smaller
cases) but the relative time difference becomes too small to be relevant.

4.3 aim results

Table 4 shows the performance data for the aim benchmark. The picture is essen-
tially the same as for lmbench: there is very little effect from either the page table
format or TLB entry sharing.

The one exception is the fork test, which performs slightly worse with long
page table format, and much worse with TLB entry sharing enabled. This is some-
what puzzling, as there seems to be no reason for this behavior, and it is inconsistent
with the corresponding lmbench results. In fact, we took the corresponding code
out of aim and ran it separately, with the following result:

11

Context switching with 0K
Kernel 2proc 4proc 8proc 16proc 32proc 64proc 96proc
Uni 0.98(9) 1.00(4) 0.95(5) 0.88(7) 0.98(26) 1.44(6) 1.34(1)
Smp 0.94(17) 0.96(6) 0.95(6) 0.96(4) 1.23(22) 1.30(6) 1.27(4)
Sharing 0.99(9) 1.02(5) 1.02(5) 0.99(4) 1.01(21) 1.38(6) 1.34(2)

Context switching with 4K
Kernel 2proc 4proc 8proc 16proc 32proc 64proc 96proc
Uni 0.97(10) 0.99(5) 0.97(5) 0.95(20) 1.17(17) 1.20(11) 1.09(4)
Smp 0.95(8) 0.61(82) 0.78(46) 0.87(28) 1.11(26) 1.13(6) 1.09(3)
Sharing 0.94(5) 0.96(5) 0.98(2) 0.87(9) 1.11(12) 1.13(7) 1.14(4)

Context switching with 8K
Kernel 2proc 4proc 8proc 16proc 32proc 64proc 96proc
Uni 0.99(3) 0.98(7) 0.96(6) 0.97(15) 1.31(23) 1.17(15) 1.08(4)
Smp 0.95(3) 0.91(7) 0.96(6) 1.00(18) 1.29(25) 1.15(16) 1.06(6)
Sharing 0.97(5) 0.94(5) 0.96(4) 0.82(12) 0.91(50) 1.11(11) 1.12(7)

Context switching with 16K
Kernel 2proc 4proc 8proc 16prc 32prc 64prc 96prc
Uni 0.99(3) 0.98(7) 0.96(6) 0.97(15) 1.31(23) 1.17(15) 1.08(4)
Smp 0.95(3) 0.91(7) 0.96(6) 1.00(18) 1.29(25) 1.15(16) 1.06(6)
Sharing 0.97(5) 0.94(5) 0.96(4) 0.82(12) 0.91(50) 1.11(11) 1.12(7)

Context switching with 32K
Kernel 2proc 4proc 8proc 16prc 32prc 64prc 96prc
Uni 0.98(3) 0.99(4) 1.04(25) 1.30(69) 1.04(39) 1.03(4) 1.00(2)
Smp 0.94(3) 0.96(6) 1.00(10) 1.01(28) 0.87(44) 1.00(4) 1.00(1)
Sharing 0.96(2) 1.01(3) 1.01(3) 1.17(15) 1.04(18) 1.05(5) 1.02(2)

Context switching with 64K
Kernel 2proc 4proc 8proc 16prc 32prc 64prc 96prc
Uni 1.00(4) 0.98(2) 0.94(8) 0.94(38) 1.00(8) 1.00(0) 1.00(0)
Smp 0.97(3) 0.98(1) 1.06(25) 1.22(57) 0.94(10) 0.99(2) 0.98(2)
Sharing 0.99(3) 1.00(2) 0.95(8) 1.69(56) 0.98(11) 1.00(1) 1.00(0)

Table 3: Lmbench context switching performance. See Table 1 for explanation.

Test Uni Smp Share
fork test 0.97(1) 0.95(1) 1.15(1)

This is much more in line with expectations. TLB entry sharing helps with
fork(), as the shared mappings are not flushed from the TLB. We suspect that the
fork results in the vanilla aim suite suffer from some unlucky cache conflicts.

4.4 Extreme results

Figure 2 shows results of the extreme benchmark, set up to stress the data TLB.
The long-format VHPT brings some small performance improvement. This is a

12

Test Uni Smp Share
add double 1.00(0) 1.00(0) 1.00(0)
add float 1.00(0) 1.00(0) 1.00(0)
add long 1.00(0) 1.00(0) 1.00(0)
add int 1.00(0) 1.00(0) 1.00(0)
add short 1.00(0) 1.00(0) 1.00(0)
creat-clo 1.00(1) 0.99(1) 1.00(0)
page test 0.98(0) 0.98(1) 0.98(0)
brk test 0.99(0) 1.00(1) 0.99(1)
jmp test 1.00(0) 1.00(0) 1.00(0)
signal test 1.00(1) 0.99(0) 1.02(1)
exec test 0.97(1) 0.98(0) 1.02(1)
fork test 0.98(2) 0.95(1) 0.88(3)
link test 1.00(0) 0.99(0) 1.01(1)
disk rr 1.02(3) 1.00(2) 0.99(4)
disk rw 1.01(1) 1.01(3) 0.99(2)
disk rd 1.04(0) 1.02(1) 1.02(1)
disk wrt 1.02(2) 1.00(2) 1.01(2)
disk cp 1.01(1) 1.00(3) 1.00(2)
disk src 1.00(0) 0.99(1) 1.00(1)
div double 1.00(0) 1.00(0) 1.00(0)
div float 1.00(0) 1.00(0) 1.00(0)
div long 1.00(0) 1.00(0) 1.00(0)
div int 1.00(0) 1.00(0) 1.00(0)
div short 1.00(0) 1.00(0) 1.00(0)
fun cal 1.00(0) 1.00(0) 1.00(0)
fun cal1 1.00(0) 1.00(0) 1.00(0)
fun cal2 1.00(0) 1.00(0) 1.00(0)

Test Uni Smp Share
fun cal15 1.00(0) 1.00(0) 1.00(0)
sieve 0.99(4) 0.98(24) 1.10(9)
mul double 1.00(0) 1.00(0) 1.00(0)
mul float 1.00(0) 1.00(0) 1.00(0)
mul long 1.00(0) 1.00(0) 1.00(0)
mul int 1.00(0) 1.00(0) 1.00(0)
mul short 1.00(0) 1.00(0) 1.00(0)
num rtns 1 1.00(1) 1.00(0) 0.99(1)
new raph 1.00(0) 1.00(0) 1.00(0)
trig rtns 1.00(1) 1.01(0) 1.00(0)
matrix rtns 1.00(0) 1.01(0) 1.02(0)
array rtns 1.00(0) 1.00(0) 1.00(0)
string rtns 1.00(0) 1.00(0) 1.00(0)
mem rtns 1 1.00(0) 1.00(0) 1.01(6)
mem rtns 2 1.00(0) 1.00(0) 1.00(0)
sort rtns 1 1.00(0) 1.00(0) 1.00(0)
misc rtns 1 0.99(2) 1.00(1) 1.01(1)
dir rtns 1 0.99(0) 1.00(0) 1.00(1)
series 1 1.02(1) 0.99(1) 1.00(1)
shared memory 1.01(0) 0.99(0) 0.98(5)
tcp test 1.00(0) 0.99(1) 0.99(0)
udp test 1.01(1) 0.99(1) 0.99(0)
fifo test 1.04(0) 1.00(1) 1.05(1)
stream pipe 1.01(4) 0.97(4) 0.99(1)
dgram pipe 1.01(2) 0.99(4) 1.01(1)
pipe cpy 1.10(0) 1.03(1) 1.09(1)
ram copy 1.00(0) 1.00(0) 1.00(0)

Table 4: aim benchmark performance. See Table 1 for explanation.

result of the long format being more TLB friendly, and therefore compete less
for TLB entries with the program data. TLB entry sharing reduces the overall
execution time by about a factor of two, until the working set outgrows the TLB,
when the benefit reduces sharply by about half and then continues degrading more
gracefully. Other runs show that the total benefit is only very weakly dependent
on the number of processes. This benchmark shows that the effect of TLB entry
sharing can be significant, albeit in very special circumstances.

5 Related Work

Itanium is, to our knowledge, the first architecture supporting two different
hardware-walked page table formats. Our study seems to be the first compar-
ing the performance of the two formats. Past studies have compared the per-
formance of different page tables on architectures with software-loaded TLBs
[UNS+94,EHL99,DMY99], or used trace-driven analysis of changing the page ta-
ble format in an otherwise unmodified architecture [HH93,THK95,KJW94,KT95].

We believe that our evaluation of TLB entry sharing, together with a similar

13

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120 140 160

PLAIN
LVHPT(4MB)

LVHPT(4MB)+SHARING

Figure 2: Execution time for the extreme DTLB benchmark for 10 processes.
“Plain” refers to the standard kernel (short VHPT), “LVHPT(4MB)” uses the long-
format VHPT (without shared text), and “LVHPT(4MB)+SHARING” enables full
sharing (with long VHPT).

study we performed on the StrongARM [WWTH03], is the first if its kind. While
there have been systems which share TLB entries, we could not find any publica-
tion quantifying its effects.

Sharing of TLB entries is rare in present operating systems and mostly re-
stricted to the few using a segmented memory model. Windows CE [Mur98] on
the StrongARM allocates dynamic libraries at fixed addresses and thereby shares
their TLB entries across processes. CE, however, is aimed at embedded systems
and so does not provide protection between processes, making this approach un-
suitable for general-purpose operating systems. Even in embedded systems, where
all programs can be considered “trusted”, address-space-based protection is valu-
able, as it eases debugging. Furthermore, CE works by only supporting a limited
number of processes (32), which is unacceptable for a general-purpose system.
Hence, what can be learned from the CE approach is quite limited.

A number of alternate hardware approaches have been proposed. Koldinger
et al. [KCE92] proposed a protection lookaside buffer (PLB) as a means to sep-
arate protection and translation, and thus better utilise the valuable TLB real
estate. Their proposal was specifically aimed at single-address-space systems
[CLFL94, HEV+98], which are characterised by a process-independent address

14

mapping. However, Wilkes and Sears compared the PLB proposal with the MMU
features of the PA-RISC and found that the latter provided a more effective solu-
tion [WS92]. They went on to propose a number of extensions to the PA-RISC
scheme, some of which are implemented in Itanium. Recently, the PLB proposal
was further developed into a model called Mondrian memory protection [WCA02].
This is an interesting approach that has the potential to improve MMU and cache
design of future processors, but has yet to be implemented in actual hardware.

Khalidi and Talluri proposed a different hardware solution, where the normal
address-space ID (ASID) tag in the TLB is supplemented with a mask selecting one
of several shared regions [KT95]. TLB lookups can match on either ASID or re-
gion. The scheme is specifically targeted at sharing mappings for a relatively small
number of heavily shared regions, especially shared library code. Their simulation-
based study shows reductions of TLB miss rates by between zero and 64% from
running multiple copies of the same program, but they do not present data on how
this translates into actual performance. Their proposal is less general than the Ita-
nium approach which supports both a huge number of potentially shared regions
and sharing with different access rights.

Many architectures, such as the MIPS [KH92], support a global bit in a TLB
entry, which makes a page accessible in all address spaces. This is too crude to
be of much use other than for kernel pages, which on the MIPS can be put into
an address space region that is inaccessible from user mode, and thus can be made
visible independent of the address space as soon as the processor enters kernel
mode.

Liedtke proposed a scheme that supported efficient handling of shared pages,
even with different virtual page numbers [Lie93].

Several architectures with hardware-loaded TLBs, while providing support for
sharing page tables [SPA91, Int01], do not support sharing of TLB entries.

6 Conclusions

The primary purpose of this report was to assess the performance impact of moving
from the short to the long VHPT format on Itanium. While our implementation in
Linux was minimal in the sense that it avoided a massive rewrite of page table han-
dling, at the expense increased run-time overheads, we found that the performance
differences between the two page table implementations were minimal, generally
below 2%, and mostly within the noise margin. We can conclude from this that
there is no performance argument against using the long format page table.

There are, however, strong arguments in favour of the long format, as it is
required to support superpages and TLB entry sharing. We did not implement
superpages, however, they have been shown to be very effective in improving per-
formance under certain circumstances [NIDC02]. That work was performed on an
Alpha processor with a software-loaded TLB and TLB miss penalties in the order
of 100 cycles. The Itanium’s hardware page table walker is much faster (25 cycles

15

best case), hence we expect a reduced benefit from superpages on this architecture.
Nevertheless, superpages are the best defence against overheads resulting from in-
sufficient TLB coverage, and the promising performance of the long page table
format will make it worthwhile to implement superpage support on the Itanium.

The results for TLB-entry sharing are less convincing. While we were able to
show that TLB-entry sharing could result in a twofold performance increase, this
was in an extreme situation constructed specifically to maximise the benefits. The
lmbench and aim results showed much more moderate gains, between zero and
44%, with improvements quite small in most cases. This is more indicative of what
can be expected in typical Linux workloads, which neither tend to exhibit a large
degree of sharing nor particularly high context-switching rates. However, in sce-
narios where sharing is more significant and context-switching more frequent, as
might be the case in database or other transaction-processing environments, more
of the potential benefits of sharing TLB entries might be realised. We are making
our code available in the hope that it might be tested in some such scenarios.

There are, however, several developments which have the potential to increase
the importance of TLB-entry sharing. Virtual machines are increasingly used
to run several copies of the same operating system on the same physical hard-
ware [Wal02]. Furthermore, there is renewed interest in isolating buggy and poten-
tial malicious OS code (particularly device drivers) into separate protection con-
texts [SMLE02, WSG02]. These approaches have in common an increase in both
sharing and switching between different contexts. Our results show that under
such circumstances, significant performance benefits might be possible from TLB
sharing.

The main advantage of TLB sharing is that it can be implemented totally trans-
parently in the OS, with no cost other than a very modest degree of added kernel
complexity.

Availability

Kernel patches for long VHPT format and TLB entry sharing are being made avail-
able at http://gelato.unsw.edu.au.

Acknowledgements

This work would not have been possible without the equipment donations by In-
tel and Hewlett Packard under the Itanium Processor Family University Grants
Program. We also gratefully acknowledge the financial support by HP, the Gelato
Federation and the Australian Research Council under its Linkage Program.

References

[BKW94] Kavita Bala, M. Frans Kaashoek, and William E. Weihl. Software prefetch-
ing and caching for translation lookaside buffers. In Proceedings of the

16

http://gelato.unsw.edu.au

1st USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 243–253, Monterey, CA, USA, 1994. USENIX/ACM/IEEE.
7

[CBJ92] J. Bradley Chen, Anita Borg, and Norman P. Jouppi. A simulation based
study of TLB performance. In Proceedings of the 19th International Sympo-
sium on Computer Architecture (ISCA). ACM, 1992. 3

[CE85] Douglas W. Clark and Joel S. Emer. Performance of the VAX-11/780 trans-
lation buffer: Simulation and measurement. ACM Transactions on Computer
Systems, 3:31–62, 1985. 6

[CLFL94] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. La-
zowska. Sharing and protection in a single-address-space operating system.
ACM Transactions on Computer Systems, 12:271–307, 1994. 14

[Dig92] Digital Equipment Corp., Maynard, MA, USA. Alpha Architecture Hand-
book, 1992. 5

[DMY99] Cort Dougan, Paul Mackerras, and Victor Yodaiken. Optimizing the idle task
and other MMU tricks. In osdi99, pages 229–237, New Orleans, LA, USA,
February 1999. USENIX. 13

[EHL99] Kevin Elphinstone, Gernot Heiser, and Jochen Liedtke. Page tables
for 64-bit computer systems. In Proceedings of the 4th Australasian
Computer Architecture Conference (ACAC), pages 211–226, Auckland,
New Zealand, January 1999. Springer Verlag. Available from URL
http://www.cse.unsw.edu.au/∼disy/papers/. 13

[Hei93] Joseph Heinrich. MIPS R4000 User’s Manual. Prentice Hall, 1993. 5

[HEV+98] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and
Jochen Liedtke. The Mungi single-address-space operating system. Soft-
ware: Practice and Experience, 28(9):901–928, July 1998. 14

[HH93] Jerry Huck and Jim Hays. Architectural support for translation table man-
agement in large address space machines. In Proceedings of the 20th Inter-
national Symposium on Computer Architecture (ISCA), pages 39–50. ACM,
1993. 3, 13

[Int00] Intel Corp. Itanium Architecture Software Developer’s Manual, February
2000. URL http://developer.intel.com/design/itanium/family. 3

[Int01] Intel Corp. IA-32 Architecture Software Developer’s Man-
ual Volume 3: System Programming Guide, 2001. URL
ftp://download.intel.com/design/Pentium4/manuals/245472.htm. 15

[Jag95] Dave Jagger, editor. Advanced RISC Machines Architecture Reference Man-
ual. Prentice Hall, July 1995. 3

[KCE92] Eric J. Koldinger, Jeffrey S. Chase, and Susan J. Eggers. Architectural sup-
port for single-address-space operating systems. In Proceedings of the 5th
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 175–86, 1992. 14

[KH92] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.
15

17

http://www.cse.unsw.edu.au/~disy/papers/
http://developer.intel.com/design/itanium/family
ftp://download.intel.com/design/Pentium4/manuals/245472.htm

[KJW94] Yousef A. Khalidi, Vikram P. Joshi, and Dock Williams. A study of the
structure and performance of MMU handling software. Technical Report
SMLI TR-94-28, Sun Microsystems Labs, Mountainview, CA, USA, June
1994. 13

[KS02] Gokul B. Kandiraju and Anand Sivasubramaniam. Going the distance for
TLB prefetching: An application-driven study. In Proceedings of the 29th In-
ternational Symposium on Computer Architecture (ISCA), Anchorage, USA,
May 2002. 3

[KT95] Yousef A. Khalidi and Madhusudhan Talluri. Improving the address transla-
tion performance of widely shared pages. Technical Report TR-95-38, Sun
Microsystems Laboratories, Mountain View CA, February 1995. 13, 15

[Lie93] Jochen Liedtke. A high resolution MMU for the realization of huge fine-
grained address spaces and user level mapping. Arbeitspapiere der GMD
No. 791, German National Research Center for Computer Science (GMD),
Sankt Augustin, Germany, 1993. 15

[LL82] Henk M. Levy and P. H. Lipman. Virtual memory management in the
VAX/VMS operating system. IEEE Computer, 15(3):35–41, March 1982.
6

[MS96] Layy McVoy and Carl Staelin. lmbench: Portable tools for performance
analysis. In Proceedings of the 1996 USENIX Technical Conference, San
Diego, CA, USA, January 2996. 9

[MSSW94] Cathy May, Ed Silha, Rick Simpson, and Hank Warren, editors. The Pow-
erPC Architecture: A Specification for a New Family of RISC Processors.
Morgan Kaufmann, 1994. 4

[Mur98] John Murray. Inside Microsoft Windows CE. Microsoft Press, 1998. 14

[NIDC02] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox. Practical, trans-
parent operating system support for superpages. In Proceedings of the
5th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Boston, MA, USA, December 2002. 3, 7, 15

[SCO] SCO Inc. Aim benchmarks. http://www.caldera.com/developers/-
community/contrib/aim.html. 9

[SMLE02] Michael M. Swift, Steven Marting, Henry M. Levy, and Susan G. Eggers.
Nooks: An architecture for reliable device drivers. In Proceedings of the 10th
SIGOPS European Workshop, pages 101–107, St Emilion, France, Septem-
ber 2002. 16

[SPA91] SPARC International Inc., Menlo Park, CA, USA. The SPARC Architecture
Manual, Version 8, 1991. http://www.sparc.org/standards.html. 15

[Tal95] Madhusudhan Talluri. Use of Superpages and Subblocking in the Address
Translation Hierarchy. Phd thesis, University of Wisconsin-Madison Com-
puter Sciences, 1995. Technical Report #1277. 3

[THK95] Madhusudha Talluri, Mark D. Hill, and Yousef A. Khalid. A new page table
for 64-bit address spaces. In Proceedings of the 15th ACM Symposium on
OS Principles (SOSP), pages 184–200, Copper Mountain Resort, Co, USA,
December 1995. 13

18

http://www.caldera.com/developers/community/contrib/aim.html
http://www.caldera.com/developers/community/contrib/aim.html
http://www.sparc.org/standards.html

[UNS+94] Richard Uhlig, David Nagle, Tim Stanley, Trevor Mudge, Stuart Sechrest,
and Richard Brown. Design tradeoffs for software-managed TLBs. ACM
Transactions on Computer Systems, pages 175–205, 1994. 13

[Wal02] Carl A. Waldspurger. Memory resource management in VMware ESX server.
In Proceedings of the 5th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Boston, MA, USA, 2002. 16

[WCA02] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian memory protec-
tion. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Oc-
tober 2002. 15

[WS92] John Wilkes and Bart Sears. A comparison of protection lookaside buffers
and the PA-RISC protection architecture. Technical Report HPL-92-55, HP
Labs, Palo Alto, CA, USA, March 1992. 3, 15

[WSG02] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and perfor-
mance in the denali isolation kernel. In Proceedings of the 5th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI), Boston,
MA, USA, December 2002. 16

[WWTH03] Adam Wiggins, Simon Winwood, Harvey Tuch, and Gernot Heiser. Legba:
Fast hardware support for fine-grained protection. In 8th Asia-Pacific Com-
puter Systems Architecture Conference (ACSAC), April 2003. Submitted. 14

19

	Introduction
	Itanium MMU and Page Tables
	Address translation
	Sharing TLB entries
	Regions
	Protection keys

	Page tables
	Short VHPT
	Long VHPT
	Comparison

	Approach
	Long-format VHPT
	Region-based sharing of program text
	Protection-key-based sharing

	Evaluation
	Test framework
	Lmbench results
	aim results
	Extreme results

	Related Work
	Conclusions

