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Abstract

When aggregating preferences of multiple agents,
strategyproofness is a fundamental requirement.
For randomized voting rules, so-called social de-
cision schemes (SDSs), strategyproofness is usu-
ally formalized with the help of utility functions.
In a central result, Gibbard [1977] characterizes
the set of SDSs that are strategyproof with respect
to all utility functions and shows that these SDSs
are either indecisive or unfair. For finding more
insights into the trade-off between strategyproof-
ness and decisiveness, we propose the notion of U -
strategyproofness which requires that only voters
with a utility function in the set U cannot manipu-
late. In particular, we show that if the utility func-
tions inU value the best alternative much more than
other alternatives, there are U -strategyproof SDSs
that choose an alternative with probability 1 when-
ever all but k voters rank it first. We also prove for
rank-based SDSs that this large gap in the utilities
is required to be strategyproof and that the gap must
increase in k. On the negative side, we show thatU -
strategyproofness is incompatible with Condorcet-
consistency if U satisfies minimal symmetry con-
ditions and there are at least four alternatives. For
three alternatives, the Condorcet rule can be char-
acterized based on U -strategyproofness for the set
U containing all equi-distant utility functions.

1 Introduction
When a group of agents wants to find a joint decision in a
structured way, they can choose from a multitude of differ-
ent voting rules. However, it is not clear which rule is the
best one as each one has its benefits. This problem lies at
the core of social choice theory which draws increased atten-
tion by computer scientists because it can be used to reason
about computational multi-agent systems (see, e.g., [Cheva-
leyre et al., 2007; Brandt et al., 2013; Brandt et al., 2016b;
Endriss, 2017]). A fundamental requirement for voting rules
is strategyproofness, i.e., agents should not be able to benefit
by lying about their preferences. In a seminal result, Gib-
bard [1973] and Satterthwaite [1975] have shown that every

deterministic strategyproof voting rule is dictatorial if there
are at least three different outcomes possible.

Randomization allows to escape this impossibility the-
orem, and we analyze therefore social decision schemes
(SDSs). These functions aggregate the preferences of agents
to lotteries over alternatives which determine for every alter-
native its winning chances. The final winner is then decided
by chance according to these probabilities. While this model
allows to circumvent many impossibilities, it is not straight-
forward how to define strategyproofness because the voters’
preferences over lotteries are unclear. Maybe the most promi-
nent approach is to assume that voters use cardinal utility
functions on the alternatives to compare lotteries with respect
to their expected utilities. However, voters still report ordi-
nal preference relations to the SDS and hence, strategyproof-
ness is defined by quantifying over utility functions: an SDS
is strategyproof if voting honestly maximizes the expected
utility for every voter and every utility function that is con-
sistent with his true preferences. This strategyproofness no-
tion, often called SD-strategyproofness, has been analyzed
by Gibbard [1977] and Barberà [1979] who prove that all
SD-strategyproof SDSs are indecisive because they almost
always randomize over multiple alternatives. Even more,
Benoı̂t [2002] has shown that SD-strategyproofness is in-
compatible with the basic democratic idea that an alternative
should be the winner of an election if an absolute majority of
the voters report it as their best alternative.

While it is unfortunate that SD-strategyproofness does not
allow for decisive SDSs, this strategyproofness notion seems
also too demanding for because in many applications not all
utility functions are plausible. For instance, when a repre-
sentative body votes about budget proposals, it seems rea-
sonable that similar proposals have similar utilities. Thus,
we might neglect utility functions with a large gap between
such options when discussing strategyproofness. This obser-
vation leads to the new notion of U -strategyproofness which
requires that truth telling only maximizes the expected utility
of a voter if his utility function is in the set U . Note that U -
strategyproofness does not forbid utility functions u 6∈ U , but
voters with such utility functions might be able to manipulate.
U -strategyproofness allows for a more detailed analy-

sis than SD-strategyproofness because we can analyze the
exact set of utility functions U for which an SDS is U -
strategyproof. Conversely, we can also formulate strong im-



possibility results based on U -strategyproofness for severely
restricted sets U and thus, we can pinpoint the source of ma-
nipulability far more detailed than with other strategyproof-
ness notions. Hence, U -strategyproofness offers both the pos-
sibility of positive results by finding U -strategyproof SDSs
for large sets U , and of strong impossibility results by using
only a small number of utility functions. Furthermore, in-
formation about U -strategyproofness can also be valuable in
practice: if the social planner can roughly guess the utility
functions of the voters, he might be able to choose an SDS
preventing manipulations. Even if the social planner does
not have such insights, he might opt for an SDS that is U -
strategyproof for a large set U as such an SDS is immune to
manipulations from most voters.

Other than introducing U -strategyproofness, we use this
new notion to investigate the trade-off between strategyproof-
ness and decisiveness. On the positive side, we show that
there are U -strategyproof SDSs that assign an alternative
probability 1 whenever all but k > 0 voters agree that it is the
best option if the utility functions in U value the best alter-
native much more than the other alternatives. Moreover, we
prove for rank-based SDSs that this gap in the utility func-
tions is required to be strategyproof and that it must increase
in k. On the other hand, we show that Condorcet-consistency
is incompatible with U -strategyproofness if the set U satis-
fies minimal symmetry conditions between preference rela-
tions and there are m ≥ 4 alternatives. If there are only three
alternatives and an odd number of voters, the Condorcet rule
is characterized by U -strategyproofness for the set U of all
equi-distant utility functions and Condorcet-consistency. The
proofs of these theorems and of all propositions are omitted
because of space limitations.

2 Related Work
To our knowledge, we are the first authors who explicitly in-
vestigate U -strategyproofness. Nevertheless, ideas similar to
U -strategyproofness have been used before. For instance,
Sen [2011] and Mennle and Seuken [2021] define strate-
gyproofness by considering restricted sets of utility functions
and thus, their works can be interpreted as first results on
U -strategyproofness. Moreover, in set-valued social choice
(where the outcome of an election is a non-empty set of al-
ternatives instead of a lottery) preferences over sets of alter-
natives are often derived from utility functions. For instance,
Duggan and Schwartz [2000] and Benoı̂t [2002] employ this
approach to motivate their strategyproofness notions. The re-
lationship between these results and U -strategyproofness is
discussed in more detail in Section 4.

There are also various results on other strategyproofness
notions in randomized social choice (see, e.g., [Gibbard,
1977; Hoang, 2017; Aziz et al., 2018; Brandl et al., 2018]),
many of which are surveyed by Brandt [2017]. These re-
sults either prove the incompatibility of strategyproofness
with other axioms or characterize specific SDSs. Our results
differ from previous ones as we investigate a different ques-
tion: instead of asking whether an SDS is strategyproof ac-
cording to some definition, we ask for which utility functions
it is strategyproof.

Moreover, strategyproofness is often considered for re-
stricted domains of preference profiles (see, e.g., [Ehlers et
al., 2002; Bogomolnaia et al., 2005; Elkind et al., 2017;
Chatterji and Zeng, 2018]). For instance, Bogomolnaia et
al. [2005] discuss an attractive SD-strategyproof SDS for di-
chotomous preferences. U -strategyproofness can be inter-
preted similarly, but we focus on utility functions instead
of preference profiles: U -strategyproof SDSs are immune to
manipulations if we only allow utility functions in U .

Another field related to U -strategyproofness is cardinal so-
cial choice, where the input of social decision schemes con-
sists of the utility functions of the voters. If we allow all
utility functions as input, every strategyproof cardinal SDS
is, under mild additional assumptions, a variant of a random
dictatorship (see, e.g., [Hylland, 1980; Dutta et al., 2007;
Nandeibam, 2013]). As noted by Dutta et al. [2007], these
negative results break down if the domain of cardinal SDSs
is restricted, but this setting is not well understood. Our
results provide insights in this problem because every U -
strategyproof SDS can be interpreted as a cardinal SDS that
is strategyproof on the domain U .

Finally, note that our model assumptions are quite similar
to those used in the analysis of the distortion of SDSs (see,
e.g., [Procaccia and Rosenschein, 2006; Gross et al., 2017;
Abramowitz et al., 2019]). Just as these authors, we assume
that voters only report ordinal preferences but use utility func-
tions to evaluate the quality of a lottery. Whereas distortion
focuses on the welfare of SDSs, we investigate their resis-
tance to strategic behavior of voters.

3 Preliminaries
Let N = {1, . . . , n} be a finite set of voters and let A be a set
containing m alternatives. A preference relation is an anti-
symmetric, transitive, complete, and reflexive binary relation
on A and Ri denotes the preference relation of voter i. We
compactly represent preference relations as comma-separated
lists. LetR denote the set of all preference relations on A. A
preference profile R is an n-tuple containing the preference
of every voter i ∈ N , i.e., R ∈ Rn. When writing preference
profiles, we indicate the corresponding voter directly before
the preference relation to clarify which voter submits which
preference relation. For example, 1 : a, b, c indicates that
voter 1 reports that he prefers a to b to c.

In this paper, we discuss social decision schemes (SDSs),
which are functions that map preference profiles to lotteries
on A. A lottery p is a function from the set of alternatives
A to the interval [0, 1] such that

∑
x∈A p(x) = 1. Let ∆(A)

denote the set of all lotteries onA. Formally, a social decision
scheme is a function f : Rn → ∆(A) and we denote with
f(R, x) the probability assigned to x by the lottery f(R).

The definition of SDSs allows for a huge variety of func-
tions, some of which seem not desirable. Therefore, we in-
troduce axioms to narrow down the set of SDSs. Two basic
fairness axioms are anonymity and neutrality, which require
that voter and alternatives, respectively, are treated equally.
More formally, an SDS f is anonymous if f(R) = f(π(R))
for all profiles R and permutations π : N → N , and neu-
tral if f(R, x) = f(τ(R), τ(x)) for all alternatives x ∈ A,



profiles R, and permutations τ : A → A. Another nat-
ural axiom is unanimity, which requires of an SDS f that
f(R, x) = 1 for all preference profiles R in which all voters
agree that x is the best choice. While this axiom is so weak
that is often considered indisputable, it is also irrelevant in
practice as ballots are usually not unanimous. Therefore, we
introduce the stronger notion of k-unanimity: an SDS f is
k-unanimous if f(R, x) = 1 whenever n − k or more vot-
ers report x as the best alternative. By definition, unanim-
ity is equal to 0-unanimity and note that k-unanimity is only
well-defined if k < n

2 . A well-known strengthening of k-
unanimity is Condorcet-consistency. For defining this axiom,
let nxy(R) = |{i ∈ N : xRiy}| − |{i ∈ N : yRix}| denote
the majority margin between two alternatives x, y ∈ A in
the preference profile R. An alternative x is the Condorcet
winner in a preference profile R if nxy(R) > 0 for all other
alternatives y ∈ A\{x}. Less formally, an alternative x is the
Condorcet winner if it is preferred to every other alternative
by a majority of the voters. Finally, an SDS f is Condorcet-
consistent if f(R, x) = 1 for all profiles R and alternatives
x ∈ A such that x is the Condorcet winner in R.

An important class of SDSs are rank-based SDSs. The ba-
sic idea of these schemes is that voters assign ranks to the
alternatives and that an SDS should only rely on these ranks,
but not on which voter assigns which rank to an alternative.
For formalizing this concept, we denote with r(Ri, x) =
|{y ∈ A : yRix}| the rank of alternative x in voter i’s prefer-
ence relation. Moreover, we define the rank vector r∗(R, x)
as the vector that contains the rank of x with respect to every
voter in increasing order, i.e., r∗(R, x)i ≤ r∗(R, x)i+1 for all
i ∈ {1, . . . , n − 1}, and the rank matrix r∗(R) as the matrix
that contains the rank vectors of all alternative as rows. Fi-
nally, we call an SDS f rank-based if it only depends on the
rank matrix, i.e., f(R) = f(R′) for all preference profiles R,
R′ with r∗(R) = r∗(R′). The set of rank-based SDSs con-
tains many prominent functions such as point scoring rules
and anonymous SDSs that only depend on the first-ranked al-
ternatives of the voters.

4 U -Strategyproofness
A central problem in social choice is that of manipulability:
voters may lie about their preferences to achieve a better out-
come. While the definition of a manipulation is easy if an
SDS never randomizes between multiple alternatives, it is not
clear how to compare non-degenerate lotteries. A classical
approach for this problem is to assume that voters are en-
dowed with utility functions ui : A → R. We impose the
constraint that no voter assigns the same utility to two alter-
natives, i.e., ui(x) 6= ui(y) for all voters i ∈ N and alterna-
tives x, y ∈ A, to ensure that the ordinal preference relation
induced by a utility function is anti-symmetric. We denote
with U the set of all such utility functions and say that a util-
ity function u ∈ U is consistent with a preference relation R
if u(x) ≥ u(y) iff xRy for all alternatives x, y ∈ A. Finally,
each voter i uses his utility function ui to compare lotteries by
their expected utilities E[p]ui =

∑
x∈A p(x)ui(x), i.e., voter

i prefers lottery p weakly to lottery q if E[p]ui ≥ E[q]ui .
Even though we assume the existence of utility functions,

voters only report ordinal preferences. Consequently, strate-
gyproofness is often defined by quantifying over utility func-
tions. In particular, Gibbard [1977] employs this approach to
define SD-strategyproofness: an SDS f is SD-strategyproof
if E[f(R)]ui ≥ E[f(R′)]ui for all voters i ∈ N , preference
profiles R, R′, and utility functions ui ∈ U such that ui is
consistent with Ri and Rj = R′j for all j ∈ N \ {i}. While
SD-strategyproofness allows for strong negative results (see,
e.g. [Gibbard, 1977; Barberà, 1979]), it lacks relevance for
many practical applications as not all utility functions are
plausible. Also, SD-strategyproofness provides often only
shallow theoretical insights as it is not possible to pinpoint
the source of manipulability.

In order to address these problems, we introduce a new
strategyproofness notion by restricting the set of feasible util-
ity functions U beforehand: an SDS f is U -strategyproof if
E[f(R)]ui ≥ E[f(R′)]ui for all voters i ∈ N , preference pro-
filesR,R′, and utility functions ui ∈ U such that ui is consis-
tent with Ri and Rj = R′j for all j ∈ N \ {i}. Less formally,
U -strategyproofness only requires that voters with a utility
function in U cannot increase their expected utility by mis-
representing their preferences. Hence, U-strategyproofness
is equal to SD-strategyproofness and smaller sets of utility
functions result in less demanding strategyproofness notions.
Note that U -strategyproofness solves both problems of SD-
strategyproofness: we can investigate whether an SDS is ma-
nipulable in practice by dismissing implausible utility func-
tions, and we can find the core of impossibility results by
determining the minimally required set of utility functions.
Next, we discuss an example to illustrate the difference be-
tween U -strategyproofness and SD-strategyproofness.

Example 1. Consider the profiles R1 and R2 shown be-
low and let f denote an SDS such that f(R1, x) = 1

3 for
x ∈ {a, b, c} and f(R2, b) = 1. Moreover, consider the util-
ity functions u1, u2, and u3 with u1(a) = 2, u1(b) = 1,
u1(c) = 0, u2(a) = 3, u2(b) = 1, u2(c) = 0, u3(a) = 3,
u3(b) = 2, and u3(c) = 0. These utility functions are only
consistent with voter 1’s preference relation in R1, and thus,
we can check whether this voter can benefit by deviating to
R2. A quick calculation shows that E[f(R1)]u1

= 1 =
E[f(R2)]u1

, E[f(R1)]u2
= 4

3 > 1 = E[f(R2)]u2
, and

E[f(R1)]u3 = 5
3 < 2 = E[f(R2)]u3 . Hence, voter 1 can

increase his expected utility if his utility function is u3 and
thus, f is SD-manipulable. In contrast, voter 1 does not ben-
efit from deviating to R2 if his utility function is u1 or u2.
Since the preferences of the other voters are not consistent
with u1, u2, and u3, it follows that f is {u1, u2}-strategyproof
on these two profiles.
R1: 1: a, b, c 2: b, c, a 3: c, a, b
R2: 1: b, a, c 2: b, c, a 3: c, a, b

In our results, we always consider U -strategyproofness for
symmetric sets U , i.e., we assume that u ∈ U implies that
uπ = u ◦ π ∈ U for every permutation π on A. This
formalizes the natural condition that all preference relations
should be treated equally. Moreover, the symmetry condition
is rather weak since every neutral SDS is U ′-strategyproof for
a symmetric set U ′ if it is U -strategyproof for a set U 6= ∅.



Proposition 1. If a neutral SDS is U -strategyproof for a set
U 6= ∅, it is U ′-strategyproof for a symmetric set U ′ with
U ⊆ U ′.

A special case of our symmetry assumption is that U con-
sists of a single utility function u and its renamings, i.e., that
U = {u ◦ π : π ∈ Π}, where Π denotes the set of all permu-
tations on A. In this case, we write uΠ-strategyproofness in-
stead ofU -strategyproofness. Note that uΠ-strategyproofness
associates every preference relation with exactly one utility
function, whereas {u}-strategyproofness, i.e., strategyproof-
ness for a single utility function u, only affects a single pref-
erence relation. Since the utility of an alternative only de-
pends on its rank for uΠ-strategyproofness, we often write
u(k) to denote the utility of the k-th best alternative of a
voter. As the next proposition shows, it suffices to consider
uΠ-strategyproofness or even {u}-strategyproofness because
for every SDS f and every preference relation Ri, the set of
utility functions u that are consistent with Ri and for which
f is strategyproof is convex.

Proposition 2. For every SDS f and preference relation Ri,
the set URi = {u ∈ U : u is consistent with Ri and f is
{u}-strategyproof} is convex.

We can use this proposition to show that an SDS is U -
strategyproof for a large set U by proving that it is uΠ

i -
strategyproof for a few utility functions ui ∈ {u1, . . . , ul}.
Assuming that u1, . . . , ul are all consistent with a preference
relationRi, it follows then from Proposition 2 that the SDS is
ûΠ-strategyproof for every utility function û that can be rep-
resented as a convex mixture of u1, . . . , ul, which means that
it is U -strategyproof for a large set U .

Next, note that U -strategyproofness inherits many attrac-
tive properties from SD-strategyproofness: for instance, the
convex combination of U -strategyproof SDSs is itself U -
strategyproof, i.e., the set of U -strategyproof SDSs is con-
vex for every set U . As a consequence of this observation, it
is often possible to construct an anonymous U -strategyproof
SDS based on a non-anonymous U -strategyproof SDS.
Another similarity between U -strategyproofness and SD-
strategyproofness is that both axioms disincentivize even ma-
nipulations from groups of voters with the same preferences.

Finally, observe that U -strategyproofness can be used to
transfer results from set-valued social choice to the proba-
bilistic setting. We explain this relation using the impossibil-
ity result of Benoı̂t [2002] as example. This theorem states
that strategyproofness is incompatible with 1-unanimity for
set-valued social choice functions if voters prefer every sub-
set of their best two alternatives to every other set and other in
our model negligible conditions are satisfied. For formulating
this result for SDSs, we have to compare lotteries only based
on their support supp(p) = {x ∈ A : p(x) > 0}. Hence,
let εf = minx∈A,R∈Rn:f(R,x)>0 f(R, x) denote the smallest
non-zero probability assigned to an alternative by the SDS f
and note that εf is well-defined since SDSs are defined for
a fixed set of alternatives and voters. Given this probabil-
ity, we derive that every voter whose utility function u sat-
isfies u(2) > (1 − εf )u(1) + εfu(3) prefers every lottery
that randomizes only over his best two alternatives to every
other lottery. After rearranging this equation, we can formu-

late Benoı̂t’s impossibility as follows.
Proposition 3. No SDS f satisfies both uΠ-strategyproofness
and 1-unanimity if u(1)−u(2) <

εf
1−εf (u(2)−u(3)),m ≥ 3,

and n ≥ 3.
Note that Proposition 3 highlights the central requirement

of Benoı̂t’s impossibility theorem: voters must be close to
indifferent between their best two alternatives. This refines
Benoı̂t’s reasoning who justifies his strategyproofness notion
with voters who ”like his or her two favorite alternatives
”much more” than the rest of the alternatives”.1 Based on
this approach, we can also formalize other impossibility re-
sults from set-valued social choice with U -strategyproofness.

5 Results
In the sequel, we employ U -strategyproofness to analyze
the trade-off between strategyproofness and decisiveness.
In particular, we investigate two decisiveness axioms: k-
unanimity and Condorcet-consistency. The first axiom al-
lows for positive results if suitable utility functions are con-
sidered, whereas Condorcet-consistency is incompatible with
uΠ-strategyproofness for every utility function u ∈ U .

5.1 k-unanimity
A central result of Gibbard [1977], who attributes it to Hugo
Sonnenschein, is that the SDS called random dictatorship
(henceforth RD) is the only SD-strategyproof SDS that sat-
isfies unanimity and anonymity. This SDS assigns an al-
ternative x in a profile R the probability PL(R,x)

n , where
PL(R, x) = |{i ∈ N : ∀y ∈ A : xRiy}| denotes the plu-
rality score of alternative x. A common method for executing
RD is to choose a voter uniformly at random and to return
his most preferred alternative as winner. While RD is one
of the most attractive SD-strategyproof SDSs, it violates k-
unanimity for k > 0. Even more, Benoı̂t [2002] has shown
that every SD-strategyproof SDS fails k-unanimity for k > 0.

However, we can define a variant of RD that satisfies both
k-unanimity for an arbitrary k ∈ {0, . . . , bn−1

2 c} and U -
strategyproofness for a large set of utility functionsU . Hence,
consider the following SDS, which we call k-random dicta-
torship (abbreviated by RDk): if at least n − k voters agree
that alternative x is the best choice, assign alternative x a
probability of 1; otherwise, return the outcome of RD . As
we show in Theorem 1, RDk satisfies U -strategyproofness
for U = {u ∈ U : u(1) − u(2) ≥ k(u(2) − u(m))}, i.e., if
voters have a strong preference for the first alternative, RDk

is strategyproof. Unfortunately, the definition of U depends
on k, i.e., for large values of k, there must be an extremely
large gap between u(1) and u(2). Another variant of RD ,
which we refer to as OMNI ∗, solves this problem. This
SDS assigns probability 1 to an alternative x if more than
half of the voters report x as their best alternative, and oth-
erwise randomizes uniformly among all alternatives that are

1Benoı̂t [2002] also discusses a variant for SDSs in which he uses
the minimal non-zero probability assigned to an alternative. How-
ever, Benoı̂t only gives an example showing that there is a suitable
utility function such that the required preferences over sets extend to
preferences over lotteries.



at least once top-ranked. This SDS is U -strategyproof for
U = {u ∈ U : u(1) − u(2) ≥

∑m
i=3 u(2) − u(i)}. While

OMNI ∗ satisfies bn−1
2 c-unanimity for all numbers of voters

and alternatives, the condition on U seems only realistic if
there are few alternatives.

Theorem 1. For every k ∈ {1, . . . , bn−1
2 c}, RDk satis-

fies U -strategyproofness for U = {u ∈ U : u(1) − u(2) ≥
k(u(2) − u(m))} and violates {u}-strategyproofness for ev-
ery utility function u 6∈ U . Moreover, OMNI ∗ satisfies
U -strategyproofness for U = {u ∈ U : u(1) − u(2) ≥∑m
i=3 u(2)−u(i)} and violates {u}-strategyproofness for ev-

ery utility function u 6∈ U .

The constraint on the set U for RDk arises naturally by
considering the preference profile in which n − k − 1 voters
top-rank the second best alternative of voter i and the remain-
ing k voters top-rank voter i’s least preferred alternative. In
this situation, voter i can ensure that his second best alterna-
tive is chosen with probability 1 by reporting it as his best
one. Solving the corresponding inequality required by U -
strategyproofness leads to the bound on U . A similar worst-
case analysis can be applied for OMNI ∗.

While it is positive that k-unanimity and U -strategy-
proofness can be simultaneously satisfied at all, the bounds
on the sets U in Theorem 1 become increasingly worse with
large k and m. This raises the question for less demanding
bounds on the utility functions. As our next theorem shows,
the approach used for defining RDk and OMNI ∗ has not
much space for improvement as both SDSs are rank-based.

Theorem 2. There is no rank-based SDS that satisfies uΠ-
strategyproofness and k-unanimity for 0 < k < n

2 if m ≥ 3,
n ≥ 3, and u(1)− u(2) <

∑m
i=max(3,m−k+1) u(2)− u(i).

The proof of Theorem 2 works by contradiction: we as-
sume that there is a k-unanimous rank-based SDS f that
satisfies uΠ-strategyproofness for a utility function u with
u(1) − u(2) <

∑m
i=max(3,m−k+1) u(2) − u(i). Moreover,

let k∗ = min(k,m − 2). Our analysis then starts at a pro-
file R where n − k∗ voters favor a the most, which implies
that f(R, a) = 1 due to k-unanimity. The central argument
is a rather involved construction that shows that a voter can
weaken alternative a from the first rank to the second one
without affecting the outcome. By repeatedly applying this
construction, we eventually arrive at a profile R′ where only
k∗ voters top-rank a and the remaining voters top-rank b,
but f(R′, a) = 1. This is in conflict with k-unanimity as
n−k∗ ≥ n−k voters report b as best choice but f(R′, b) 6= 1.
Remark 1. A computer-aided approach has shown that there
are rather technical SDSs that satisfy k-unanimity and uΠ-
strategyproofness for utility functions u with u(1) − u(2) <∑m
i=max(3,m−k+1) u(2)− u(i) if we dismiss rank-basedness

and m ≤ 4. Hence, rank-basedness is required for The-
orem 2. Moreover, most bounds of the theorem are tight:
if m = 2, OMNI ∗ and RDk are even SD-strategyproof,
and if n = 2, k-unanimity is not well-defined for k > 0.
Furthermore, the condition on the utility functions is almost
tight: RD1 shows that the bound is tight for 1-unanimity,
and OMNI ∗ shows that the bound is tight if k ≥ m − 2.
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Figure 1: Illustration of Theorem 1 and Theorem 2. We assume
that there are 5 alternatives and consider a utility function u with
u(2) = 3, u(3) = 2, u(4) = 1, and u(5) = 0. The figure
shows for which values of u(1) the SDSs RD (blue area), RD1

(green area), RD2 (magenta area), and OMNI ∗ (orange area) are
uΠ-strategyproof on the vertical axis. The horizontal axis illustrates
the values of k for which these SDSs are k-unanimous. The red area
displays the impossibility of Theorem 2 and the gray area marks the
values of u(1) with u(1) < u(2).

Finally, RDk shows that no constraint of the type u(1) −
u(2) ≤

∑m
i=m−k+1 u(2) − u(i) + ε with ε > 0 can re-

sult in an impossibility because we can always find a util-
ity function u such that

∑m
i=m−k+1 u(2) − u(i) + ε ≥

u(1)−u(2) ≥ k(u(2)−u(m)) by making the difference be-
tween u(i) and u(m) for i ≥ 3 sufficiently small. Neverthe-
less, it remains open to find rank-based SDSs that satisfy U -
strategyproofness and k-unanimity for U = {u ∈ U : u(1)−
u(2) =

∑m
i=m−k+1 u(2)− u(i)} and 2 ≤ k ≤ m− 3.

Remark 2. Theorem 1 and Theorem 2 have an intuitive in-
terpretation: if voters strongly prefer their best alternative, it
becomes possible to achieve strategyproofness and decisive-
ness. This follows as strategyproofness is compatible with k-
unanimity if there is a sufficiently large gap between u(1) and
u(2). In contrast, it is impossible that an SDS satisfies both
axioms if voters are close to indifferent between their best
two alternatives. For the class of general SDSs, this is shown
by Benoı̂t [2002], and for the class of rank-based SDSs, The-
orem 2 significantly weakens the requirements on the utility
functions.

Remark 3. Figure 1 illustrates the results of this section. For
this figure, we assume that there are 5 alternatives and a large
number of voters n ≥ 11, and we fix all utilities but u(1).
Hence, we can compute the values of u(1) for all SDSs of
Theorem 1 such that the considered SDS is uΠ-strategyproof.
The figure shows that for RDk, the required value of u(1)
increases in k and the bound of OMNI ∗ is independent of k.
Moreover, the required values of u(1) are quite large com-
pared to u(2) for all SDSs but RD . However, the red area
shows the values of u(1) for which Theorem 2 applies and
hence, these large values are indeed required. The white area
shows that there is a small gap between the positive results in
Theorem 1 and the impossibilty in Theorem 2.



5.2 Condorcet-consistency
As there are even rank-based SDS that are k-unanimous and
U -strategyproof for large sets U , the question arises whether
stronger decisiveness notions can be achieved by dismissing
rank-basedness. Unfortunately, we find a negative answer to
this question by considering Condorcet-consistency.
Theorem 3. There is no Condorcet-consistent SDS that sat-
isfies uΠ-strategyproofness regardless of the utility function u
if m ≥ 4, n ≥ 5 and n 6= 6, n 6= 8.

The proof of this result works by contradiction and relies
on a case distinction on the utility function u. If u(1)−u(2) <
u(2)−u(m), the utility of the second best alternative is larger
than the average utility, which means that a voter can manipu-
late by making his second best alternative into the Condorcet
winner. If u(1) − u(m − 1) > u(m − 1) − u(m), voters
value their second worst alternative less than the uniform lot-
tery. As a consequence, there is a voter who can manipu-
late by weakening his second worst alternative such that it
is no longer the Condorcet winner. Finally, note that these
two cases are exhaustive: the strictness of the utility func-
tion u entails that u(m − 1) − u(m) < u(1) − u(m − 1) if
u(1)− u(2) ≥ u(2)− u(m) and m ≥ 4.

A close inspection of the proof shows that the impossibil-
ity also holds if m = 3 unless U only contains equi-distant
utility functions, i.e., utility functions with u(1) − u(2) =
u(2) − u(3). This raises the question whether there is a
U -strategyproof SDS that satisfies Condorcet-consistency in
this special case. Indeed, the Condorcet rule (abbreviated by
COND), which assigns probability 1 to the Condorcet win-
ner whenever it exists and returns the uniform lottery over all
alternatives otherwise, satisfies U -strategyproofness for this
set. Even more, the Condorcet rule is uniquely characterized
by these axioms if n is odd.
Theorem 4. COND is the only Condorcet-consistent SDS
that satisfies U -strategyproofness for U = {u ∈ U : u(1) −
u(2) = u(2)− u(3)} if m = 3 and n is odd.

It is easy to show that the Condorcet-rule is U -
strategyproof for U = {u ∈ U : u(1)− u(2) = u(2)− u(3)}
if m = 3 because the uniform lottery on all three alternatives
has for every voter the expected utility of u(2). Hence, the
proof mainly focuses on why no other Condorcet-consistent
SDS f satisfies U -strategyproofness for this set U . For this,
we show that there is a profile R and a voter i such that voter
i’s expected utility E[f(R)]u is less than u(2). Moreover, this
voter can either make his second best alternative into the Con-
dorcet winner or revert to a preference profile in which each
alternative is chosen with a probability of 1

3 . As both cases
yield an expected utility of u(2) for voter i, we have found a
contradiction to U -strategyproofness.
Remark 4. The Condorcet rule is also U -strategyproof for
the set of equi-distant utility functions ifm = 3 and n is even.
However, other SDSs satisfy Condorcet-consistency and U -
strategyproofness for even n, too. For instance, the SDS that
assigns the Condorcet winner probability 1 whenever it exists
and uniformly randomizes among the top-ranked alternatives
otherwise satisfies also all required axioms. The proof for this
claim relies on the insight that every voter has a utility of at
least u(2) in the absence of a Condorcet winner.

Remark 5. A well-known class of SDSs are tournament so-
lutions which only depend on the majority relation RM =
{(x, y) ∈ A2 : nxy(R) ≥ nyx(R)} of the input profile R to
compute the outcome. For these SDSs, unanimity and uΠ-
strategyproofness entail Condorcet-consistency. Thus, there
are no unanimous and uΠ-strategyproof tournament solu-
tions, regardless of the utility function u, if m ≥ 4. This is
in harsh contrast to results for set-valued social choice, where
attractive tournament solutions satisfy various strategyproof-
ness notions (see, e.g., [Brandt et al., 2016a]).

Remark 6. The proof of Theorem 3 also reveals more
insights about the compatibility of k-unanimity and uΠ-
strategyproofness for general SDSs. In particular, the
first case shows that no dn3 e-unanimous SDS can be uΠ-
strategyproof for a utility function u with u(1) − u(2) <
u(2)− u(m) if m ≥ 4 and n ≥ 3.

6 Conclusion and Discussion
We study a new strategyproofness notion called U -
strategyproofness. Whereas the common notion of SD-
strategyproofness is derived by quantifying over all utility
functions, U -strategyproofness is derived by quantifying only
over the utility functions in a specified set U . This new strate-
gyproofness notion arises from practical observations as often
not all utility functions are plausible, and also has theoretical
advantages because it allows for a much finer analysis than
SD-strategyproofness. Furthermore, we analyze the compat-
ibility of U -strategyproofness and decisiveness axioms such
as k-unanimity and Condorcet-consistency. In particular, we
discuss SDSs that satisfy k-unanimity for any k with 0 < k <
n/2 and U -strategyproofness if the set U only contains utility
functions u for which u(1)−u(2) is sufficiently large. More-
over, we show for rank-based SDSs that the large gap between
u(1) and u(2) is required to be strategyproof and has to in-
crease in k. We also prove that U -strategyproofness is incom-
patible with Condorcet-consistency if the set U is symmetric
and m ≥ 4. This impossibility also holds if m = 3 unless
the utility functions in U are equi-distant. In this special case
and if n is odd, the Condorcet rule can be characterized by
U -strategyproofness and Condorcet-consistency.

Our results have a very intuitive interpretation: strate-
gyproofness is only compatible with decisiveness if each
voter has a clear best alternative. Even more, the more de-
cisiveness is required, the stronger voters have to favor their
best alternative. This conclusion is highlighted by Theo-
rems 1 and 2 as well as the impossibility of Benoı̂t [2002].
Moreover, it coincides with the informal argument that it is
easier to manipulate for a voter who deems many alternatives
acceptable as he can just report another acceptable alternative
as his best one. Hence, our results show that the main source
of manipulability are voters who are close to indifferent be-
tween some alternatives.
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Appendix: Omitted Proofs
In this appendix, we provide the proofs omitted in the main
body. Note that we use additional notation here for presenting
preference profiles. In particular, we use the ∗-symbol to rep-
resent all missing alternatives. For instance, the preference
relation a, ∗, b means that a is preferred to every other alter-
native, b is the least preferred alternative, and the remaining
alternatives can be ordered arbitrarily.

We start by proving the propositions in Section 4.

Proposition 1. If a neutral SDS is U -strategyproof for a set
U 6= ∅, it is U ′-strategyproof for a symmetric set U ′ with
U ⊆ U ′.

Proof. Let f denote a neutral SDS that is U -strategyproof for
a non-empty set U and let U ′ = {u ◦ π : u ∈ U, π ∈ Π}
denote the smallest symmetric set that contains U . We sup-
pose in the sequel that U 6= U ′ as otherwise, there is nothing
to show. Moreover, assume for contradiction that f is not
U ′-strategyproof. This means that there are two preference
profiles R and R′, a voter i, a utility function u ∈ U , and
a permutation π : A → A such that Rj = R′j for all j ∈
N \ {i}, uπ = u ◦π is consistent with Ri, and E[f(R′)]uπ >
E[f(R)]uπ . Note that uπ 6∈ U as otherwise, this assumption
is in direct conflict with the U -strategyproofness of f .

Next, let R̄ = π(R), i.e., xRjy if and only if π(x)R̄jπ(y)
for all x, y ∈ A and j ∈ N , and R̄′ = π(R′), i.e., xR′jy
if and only if π(x)R̄′jπ(y) for all x, y ∈ A and j ∈ N ,
denote the profiles derived by permuting R and R′ with π.
Moreover, let π−1 denote the inverse permutation of π, i.e.,
π−1(π(x)) = x for all x ∈ A. Note that u is consis-
tent with R̄i because xR̄iy ⇐⇒ π−1(x)Riπ

−1(y) ⇐⇒
uπ(π−1(x)) ≥ uπ(π−1(y)) ⇐⇒ u(x) ≥ u(y) for
all x, y ∈ A. Furthermore, it follows from neutrality that
f(R̄, π(x)) = f(R, x) and f(R̄′, π(x)) = f(R′, x) for all
x ∈ A. Hence, we can calculate that

E[f(R̄)]u =
∑
x∈A

f(R̄, x)u(x)

=
∑
x∈A

f(R̄, π(x))u(π(x)) =
∑
x∈A

f(R, x)uπ(x)

<
∑
x∈A

f(R′, x)uπ(x) =
∑
x∈A

f(R̄′, π(x))u(π(x))

=
∑
x∈A

f(R̄′, x)u(x) = E[f(R̄′)]u.

However, this contradicts that f is U -strategyproof as there
is a utility function u ∈ U with which a voter can manipulate.
Hence, the assumption that f violates U ′-strategyproofness is
wrong.

Proposition 2. For every SDS f and preference relation Ri,
the set URi = {u ∈ U : u is consistent with Ri and f is
{u}-strategyproof} is convex.

Proof. Let f denote an SDS and consider an arbitrary pref-
erence relation Ri. We need to show that the set URi =
{u ∈ U : u is consistent with Ri and f is {u}-strategyproof}

is convex. First, note that if |URi | ≤ 1, the set is trivially con-
vex. Hence, assume that |URi | ≥ 2 and consider two arbitrary
utility functions u, u′ ∈ URi with u 6= u′. We need to show
that u′′ = λu + (1 − λ)u′ ∈ URi for every λ ∈ (0, 1). First
note that u′′ is consistent with Ri as xRiy entails for all al-
ternatives x, y ∈ A that u(x) ≥ u(y) and u′(x) ≥ u′(y).
As a consequence, u′′(x) = λu(x) + (1 − λ)u′(x) ≥
λu(y) + (1− λ)u′(y) = u′′(y).

Next, we need to show that f is also {u′′}-strategyproof.
Assume for contradiction that this is not the case. Then, there
are two preference profiles R and R′ and a voter i ∈ N
such that Rj = R′j for all j ∈ N \ {i}, Ri is consistent
with u′′, and E[f(R′)]u′′ > E[f(R)]u′′ . By the definition
of u′′, this means that λE[f(R′)]u + (1 − λ)E[f(R′)]u′ >
λE[f(R)]u + (1 − λ)E[f(R)]u′ . This inequality is only
true if E[f(R′)]u > E[f(R)]u or E[f(R′)]u′ > E[f(R)]u′ .
However, as u and u′ are also both consistent with Ri,
this implies that f violates either {u}-strategyproofness or
{u′}-strategyproofness. Hence, {u, u′} 6⊆ URi which con-
tradicts our initial assumption, and thus, f must be {u′′}-
strategyproof. This means that u′′ ∈ URi and that URi is
indeed convex.

Proposition 3. No SDS f satisfies both uΠ-strategyproofness
and 1-unanimity if u(1)−u(2) <

εf
1−εf (u(2)−u(3)),m ≥ 3,

and n ≥ 3.

Proof. As explained in the main body, this proposition is a
variant of Benoı̂t’s impossibility [Benoı̂t, 2002]. Formally,
this impossibility theorem states that 1-unanimity is incom-
patible with strategyproofness for set-valued voting rules if
voters have the following preferences over sets of alternatives
(ai denotes the i-th best alternative of a voter):

1. The singleton set {a1} is preferred to every other out-
come.

2. The set {a1, a2} is preferred to every other outcome but
{a1}.

3. The singleton set {a2} is preferred to every other out-
come but {a1} and {a1, a2}.

4. Every other set is preferred to the singleton set {am}.
The central idea for proving our proposition is to com-

pare lotteries only with respect to their support supp(p) =
{x ∈ A : p(x) > 0}. In particular, we want to find utility
functions such that the voters’ preferences on lotteries agree
with Benoı̂t’s preferences over sets of alternatives if we only
consider the support of the lotteries. Then, the impossibil-
ity of Benoı̂t also applies in our randomized setting. Note
therefore that the first and fourth condition on the preferences
over sets are trivially true in our model as we assume that
u(1) > · · · > u(m). Moreover, the third condition entails
the second one because u(2) < λu(1) + (1− λ)u(2) < u(1)
for every λ ∈ (0, 1). Hence, we only need to ensure that
voters strictly prefer the lottery that chooses their second best
alternative with probability 1 to every lottery that assigns a
positive probability to a worse alternative.

For this, define εf = minx∈A,R∈Rn:f(R,x)>0 f(R, x) as
the minimum non-zero probability that an SDS f assigns to



an alternative. Note that εf is well-defined since SDSs are de-
fined for fixed numbers of alternatives and voters. It follows
from this definition that E[f(R)]u ≤ (1 − εf )u(1) + εfu(3)
for all SDSs f , voters i with utility function u, and all prefer-
ence profiles R such that supp(f(R)) is not a subset of voter
i’s best two alternatives. This means that voter i prefers the
lottery that assigns probability 1 to his second best alternative
to every outcome of f that assigns probability to a worse al-
ternative if u(2) > (1− εf )u(1) + εfu(3). This inequality is
equivalent to u(1)− u(2) <

εf
1−εf (u(2)− u(3)).

If the utility function of every voter satisfies this condi-
tion, the voters’ preferences over lotteries are consistent with
the preferences over sets of alternatives required by Benoı̂t’s
impossibility if we only consider the supports of the lotter-
ies. Therefore, Benoı̂t’s impossibility applies also in the ran-
domized setting and shows that 1-unanimity is incompatible
with uΠ-strategyproofness if u(1) − u(2) <

εf
1−εf (u(2) −

u(3)).

Finally, we prove the claim of the main body that
U -strategyproofness also disincentivizes manipulations of
groups of voters with the same preferences. For formaliz-
ing this observation, we introduce U -group-manipulability
and U -group-strategyproofness. We say that an SDS f is U -
group-manipulable if there is a subset of the voters I ⊆ N ,
two preference profiles R, R′, and a utility function ui ∈ U
for every voter i ∈ I such that Rj = R′j for all j ∈ N \ I ,
Ri = Rj for all i, j ∈ I , ui is consistent with Ri for every
voter i ∈ I , E[f(R′)]ui ≥ E[f(R)]ui for all i ∈ I , and the
last inequality is strict for at least one voter i∗ ∈ I . Less
formally, this means that a group of voters with the same
preferences can deviate such that each voter is weakly bet-
ter of and at least one voter strictly increases his expected
utility. Inversely, we call an SDS U -group-strategyproof if
it cannot be U -group-manipulated by any subset of the vot-
ers I ⊆ N . Using this terminology, our observation states
that U -strategyproofness and U -group-strategyproofness are
equivalent.
Proposition 4. An SDS is U -strategyproof if and only if it is
U -group-strategyproof.

Proof. Let f denote an arbitrary SDS. It follows immediately
that f is U -strategyproof if it is U -group-strategyproof be-
cause U -group-strategyproofness is also defined for single-
ton sets of voters. Hence, we focus on the direction from left
to right and assume that f is U -strategyproof for some set
U . Moreover, assume for contradiction that f is U -group-
manipulable, i.e., that there are two preference profiles R,
R′, a set of voters I ⊆ N , and a utility function ui for ev-
ery voter i ∈ I such that Rj = R′j for all j ∈ N \ I ,
Ri = Rj for all i, j ∈ I , ui is consistent with Ri for all
i ∈ I , E[f(R′)]ui ≥ E[f(R)]ui for all i ∈ I , and the last
inequality is strict for some voter i∗ ∈ I . The last assumption
means that there is a utility function u∗ ∈ U such that u∗ is
consistent with Ri and E[f(R′)]u∗ > E[f(R)]u∗ .

Next, consider the preference profiles R0, . . . , R|I| such
that R0 = R, R|I| = R′, and Rk+1 differs from Rk for
all k ∈ {0, . . . , |I| − 1} by replacing the preference rela-
tion Ri of a voter in I with his preference relation in R′.

U -strategyproofness entails for each k that E[f(Rk)]u∗ ≥
E[f(Rk+1)]u∗ as these profiles only differ in the preference
of a single voter and u∗ ∈ U is consistent with Ri for all
i ∈ I . It follows from this observation that E[f(R)]u∗ ≥
E[f(R′)]u∗ contradicting our assumption that E[f(R)]u∗ <
E[f(R′)]u∗ . This means that the initial assumption is wrong
and f is U -group-strategyproof.

Next, we prove the theorems in Section 5.

Theorem 1. For every k ∈ {1, . . . , bn−1
2 c}, RDk satis-

fies U -strategyproofness for U = {u ∈ U : u(1) − u(2) ≥
k(u(2) − u(m))} and violates {u}-strategyproofness for ev-
ery utility function u 6∈ U . Moreover, OMNI ∗ satisfies
U -strategyproofness for U = {u ∈ U : u(1) − u(2) ≥∑m
i=3 u(2)−u(i)} and violates {u}-strategyproofness for ev-

ery utility function u 6∈ U .

Proof. First, we show that RDk, k ∈ {1, . . . , n−1
2 }, is U -

strategyproof for U = {u ∈ U : u(1) − u(2) ≥ k(u(2) −
u(m))}. Assume for contradiction that it is not the case,
i.e., that there are a utility function u with u(1) − u(2) ≥
k(u(2) − u(m)), profiles R and R′, and a voter i ∈ N
such that Rj = R′j for all j ∈ N \ {i}, u is consistent
with Ri, and E[RDk(R′)]u =

∑
x∈A u(x)RDk(R′, x) >∑

x∈A u(x)RDk(R, x) = E[RDk(R)]u. If neither R nor R′
contain n − k voters who agree on a most preferred alterna-
tive, RDk is equal to RD for both profiles. As RD is even
SD-strategyproof, it follows that it is also {u}-strategyproof
and hence, voter i cannot manipulate RDk in this case. More-
over, RDk can also not be manipulated if n− k voters agree
on a most preferred alternative in R: if voter i is one of those
voters he obtains already his maximal utility and if voter i
prefers another alternative the most, he cannot affect the out-
come.

The only remaining case is that n− k− 1 voters agree that
an alternative a is the best choice inR, voter i prefers another
alternative b the most, and the remaining k voters prefer some
other alternatives the most. Then, voter i might try to manip-
ulate by submitting a as his best alternative inR′. We assume
in the sequel that the last k voters top-rank voter i’s worst al-
ternative c in R as this minimizes voter i’s expected utility.
Based on these insights, we derive the following inequality
for voter i’s expected utility in R.

E[RDk(R)]u ≥
n− k − 1

n
u(a) +

1

n
u(b) +

k

n
u(c)

=
n− k − 1

n
u(a) +

1

n
u(1) +

k

n
u(m)

Moreover, RDk assigns a probability of 1 to a in R′

because n − k voters report a as their best alternative.
Hence, it follows directly that voter i’s expected utility is
E[RDk(R′)]u = u(a). Finally, we compare the expected
utilities of voter i in R and R′.

n− k − 1

n
u(a) +

1

n
u(1) +

k

n
u(m) ≥ u(a)

⇐⇒ 1

n
(u(1)− u(a)) ≥ k

n
(u(a)− u(m))



The second line is derived by reformulating the equation in
the first line. Note that the left side of the simplified inequality
is minimized and the right side is maximized if u(a) = u(2).
Hence, the assumption that u(1) − u(2) ≥ k(u(2) − u(m))

entails that E[RDk(R)]u ≥ E[RDk(R′)]u and no manipula-
tion is possible. Consequently, RDk is {u}-strategyproof for
every u ∈ U = {u ∈ U : u(1) − u(2) ≥ k(u(2) − u(m))}
and therefore also U -strategyproof.

Also note that the last inequality as well as and
Proposition 1 immediately entail that RDk violates {u}-
strategyproofness for every utility function u 6∈ U as these
these utility functions satisfy u(1)−u(2) < k(u(2)−u(m)).
The reason for this is that n−k−1

n u(2) + 1
nu(1) + k

nu(m) <
u(2) is then true and voter i can manipulate if n− k − 1 vot-
ers top-rank his second best alternative and the remaining k
voters top-rank his worst alternative.

Next, we show that OMNI ∗ is U -strategyproof for U =
{u ∈ U : u(1)−u(2) ≥

∑m
i=3(u(2)−u(i))}. Assume again

for contradiction that this is not true, i.e, that there are a utility
function uwith u(1)−u(2) ≥

∑m
i=3(u(2)−u(i)), preference

profiles R and R′, and a voter i such that Rj = R′j for all
j ∈ N \{i}, u is consistent with Ri, and E[OMNI ∗(R′)]u >
E[OMNI ∗(R)]u. We proceed with a case distinction on the
outcomes of R and R′. First, assume that OMNI ∗(R, a) = 1
for some alternative a ∈ A. This means that a majority of
the voters reports a as their best alternative and consequently,
these voters receive the best possible outcome. Moreover,
the remaining voters cannot influence the outcome and hence,
OMNI ∗ is U -strategyproof in this case.

Next, consider the case that the supports of both
OMNI ∗(R) and OMNI ∗(R′) consist of at least two alter-
natives, i.e., OMNI ∗ returns for both R and R′ the uniform
lottery over the top-ranked alternatives of the respective pro-
files. Let S = {x ∈ A : OMNI ∗(R, x) > 0} denote the
set of alternatives with positive winning chance in R, let a
denote the most preferred alternative of voter i in R, and let
b denote his most preferred alternative in R′. If voter i is
the only voter who top-ranks alternative a in R, he cannot
manipulate because alternative a receives no probability any-
more if he misreports another alternative as his top choice.
As a consequence, either OMNI ∗(R, a) = OMNI ∗(R′, b)
and OMNI ∗(R, x) = OMNI ∗(R′, x) for all x ∈ A \ {a, b}
if b has not been top-ranked in R, or OMNI ∗(R′, x) =
|S|
|S|−1OMNI ∗(R, x) for all x ∈ A \ {a} otherwise. Both
cases are no manipulation as only the probability assigned to
a has been redistributed, but voter i assigns the most utility to
alternative a.

If another voter top-ranks voter i’s best alternative a, voter
i can only change the outcome by top-ranking an alter-
native that no voter reports as his best one. Hence, the
difference between OMNI ∗(R) and OMNI ∗(R′) is that
OMNI ∗(R′, b) = 1

|S|+1 instead of OMNI ∗(R, b) = 0 and
OMNI ∗(R, x) = 1

|S|+1 instead of OMNI ∗(R, x) = 1
|S| for

all x ∈ S. As OMNI ∗ returns the uniform lottery on the
top-ranked alternatives, a voter’s expected utility is his aver-
age utility of the top-ranked alternatives. Hence, reporting b
as best alternative is only a {u}-manipulation for voter i if

u(b) >
∑
x∈S u(x)

|S| ; otherwise, the average utility does not in-
crease. However, this is not possible due to our condition on
u, which is equivalent to u(2) ≤ 1

m

∑m
k=1 u(k). This means

that u(2) has at most as much utility as the uniform lottery
over all alternatives. As a consequence, the average utility
of a set X that contains voter i’s best alternative is at least
1
m

∑m
k=1 u(k) because

1

m

m∑
k=1

u(k) =
|X|
m

∑
x∈X

u(x)

|X|
+
|A \X|
m

∑
x∈A\X

u(x)

|A \X|
.

Since the last sum only contains alternatives with a utility
of at most u(2), it follows that

∑
x∈A\X

u(x)
|A\X| ≤ u(2) ≤

1
m

∑m
i=1 u(i). This entails that

∑
x∈X

u(x)
|X| ≥

1
m

∑m
i=1 u(i)

as the above equation cannot be true otherwise. Since
OMNI ∗(R) puts positive probability on voter i’s best alter-
native, we derive that E[OMNI ∗(R)]u ≥ 1

m

∑m
k=1 u(i) ≥

u(2). Finally, as u(2) ≥ u(b), it follows that voter i cannot
{u}-manipulate in this case.

As last case, assume that OMNI ∗ randomizes for R over
at least two alternatives and for R′ only over a single alterna-
tive. This is only possible if voter i misreports an alternative
b as his best choice inR′ and OMNI ∗(R′, b) = 1. Hence, the
expected utility of voter i for R′ is at most u(2). However, by
the same line of argumentation as in the previous paragraph,
we derive that E[OMNI ∗(R)]u ≥ 1

m

∑m
i=1 u(i) ≥ u(2).

Consequently, voter i cannot manipulate in this case either,
which means that OMNI ∗ is U -strategyproof for U = {u ∈
U : u(1)− u(2) ≥

∑m
i=3 u(2)− u(i)}.

Finally, note that OMNI ∗ violates {u}-strategyproofness
for every utility function u 6∈ U , i.e, for every utility func-
tion u with u(1) − u(2) <

∑m
i=3 u(2) − u(i). Note for this

that the condition on u is equivalent to u(2) >
∑m
k=1 u(k)

m ,
and consider a preference profile in which every alternative
is top-ranked and voter i’s second ranked alternative is top-
ranked by bn2 c voters. Note that we can assume without loss
of generality that u is consistent with voter i’s preference as
OMNI ∗ is neutral. In this situation, each alternative has a
winning chance of 1

m and thus, voter i’s expected utility is∑m
k=1 u(k)

m . On the other side, voter i can report his second
best alternative as best one, which results in the fact that it is
chosen with probability 1 as it is now top-ranked by an ab-
solute majority of the voters. As u(2) >

∑m
k=1 u(k)

m , this is a
successful {u}-manipulation for voter i.

Theorem 2. There is no rank-based SDS that satisfies uΠ-
strategyproofness and k-unanimity for 0 < k < n

2 if m ≥ 3,
n ≥ 3, and u(1)− u(2) <

∑m
i=max(3,m−k+1) u(2)− u(i).

Proof. Consider fixed values of n ≥ 3, m ≥ 3, and
0 < k < n

2 , and let k∗ = min(k,m − 2). Observe that
the last definition entails that

∑m
i=m−k∗+1 u(2) − u(i) =∑m

i=max(3,m−k+1) u(2) − u(i) and we use from now on the
left hand side of the equation to avoid the maximum. We
assume for contradiction that there is a rank-based SDS f
for m alternatives and n voters that satisfies k-unanimity
and uΠ-strategyproofness for some utility function u with



u(1) − u(2) <
∑m
i=m−k∗+1 u(2) − u(i). For deriving a

conflict, we proceed in two steps: first, we discuss a gen-
eral construction that allows to weaken an alternative a that
is currently assigned probability 1 from first place to second
place without affecting the outcome if sufficiently many vot-
ers top-rank a. Secondly, we use this construction repeat-
edly to derive a profile R∗ in which a gets probability 1 even
though only k∗ voters report it as their best choice. More-
over, we can ensure that the remaining n−k∗ ≥ n−k voters
agree that another alternative b is the best outcome, and thus,
f(R∗, a) = 1 contradicts k-unanimity because this axiom re-
quires that f(R∗, b) = 1.

Step 1: Let {x0, . . . , xk∗} denote a set of k∗ + 1 al-
ternatives and let x̂i = xi mod k∗+1 to simplify notation.
In this step, our goal is to find profiles R0, . . . , Rk

∗
such

that (i) r∗(Ri) = r∗(Rj) for all i, j ∈ {0, . . . , k∗}, and
(ii) in every profile Ri, there is a voter j∗ with prefer-
ence x̂i, a, ∗, x̂i+1, x̂i+2, . . . , x̂i+k∗ . Given these profiles,
we show that f(Ri, a) = 1 if f(R̂i, a) = 1 for all i ∈
{0, . . . , k∗}, where R̂i denotes the profile derived from Ri

by letting voter j∗ swap his best alternative x̂i with a. For
the sake of simplicity, we focus in this step on the case that
there are n = 2k∗ + 1 voters. If there are more voters, we
can just pick a suitable subset of 2k∗+1 voters and apply our
construction to these voters while keeping the preferences of
the other voters constant.

Next, we explain how to construct the profiles
R0, . . . , Rk

∗
. In the profile Ri, the voters j with

1 ≤ j ≤ k∗ + 1 and j mod k∗ + 1 6= i have the
preference a, x̂j , ∗, x̂j+1, . . . , x̂j+k∗−1. Moreover, voter j∗
with j∗ ≤ k∗+ 1 and i = j∗ mod k∗+ 1 has the preference
x̂j∗ , a, ∗, x̂j∗+1, . . . , x̂j∗+k∗ . Note that the construction of
the preference of voter j∗ differs from the previous prefer-
ences only in the swap of his best two alternatives. Moreover,
if we restrict the preferences of these voters to the alternatives
in {x0, . . . , xk∗}, these voters submit a cyclone. Next, the
voters j with k∗+2 ≤ j ≤ 2k∗+1 and j 6= k∗+1+i have the
preference x̂j , x̂0, ∗, x̂1, . . . , x̂j−1, x̂j+1, . . . , x̂j+k∗ , a and
voter j = k∗ + 1 + i only swaps x̂j with x0, i.e., his prefer-
ence relation is x̂0, x̂j , ∗, x̂1, . . . , x̂j−1, x̂j+1, . . . , x̂j+k∗ , a.
It should be mentioned that in R0, alternative x0 = x̂0 is
the second ranked by all voters j with j ≥ k∗ + 2 because
j = k∗ + 1 is always wrong in this case. Finally, we assume
for simplicity that all voters have the same preferences
on the alternatives in Y = A \ {a, x0, . . . , xk∗} (these
alternatives were abbreviated by the ∗-symbol in all previous
preferences).

Note that all profilesRi have the same rank matrix because
r∗(Ri, x) = r∗(Rj , x) for all x ∈ A and i, j ∈ {0, . . . , k∗}.
For the alternatives in Y , this claim holds since the prefer-
ences involving these alternatives are always the same during
the construction. For the alternatives inA\Y , this follows be-
cause because the profile R0 differs from every other profile
Ri only in the preferences of voters i, k∗+ 1, and k∗+ i+ 1.
Moreover, the preferences of these voters also only differ in
swaps between a, x0, and xi. In more detail, Rii is derived
from R0

i by reinforcing xi against a, Rik∗+1 is derived from

R0
k∗+1 by reinforcing a against x0, and Rik∗+i+1 is derived

from R0
k∗+i+1 by reinforcing x0 against xi. As all these

swaps happen between first and second ranked alternatives,
the rank vectors of the alternatives in A \ Y are equal in the
profiles R0 and Ri. Thus, it holds that r∗(R0) = r∗(Ri) for
all profiles Ri, and therefore also that r∗(Ri) = r∗(Rj) for
all i, j ∈ {0, . . . , k∗}. Consequently, rank-basedness implies
that f(Ri) = f(Rj) for all i, j ∈ {0, . . . , k∗}.

Finally, it remains to show that f(Ri, a) = 1 for all i ∈
{0, . . . , k∗}. We suppose therefore that f(R̂i, a) = 1 for all
i ∈ {0, . . . , k∗}, where R̂i denotes the profiles derived from
Ri by reinforcing a against x̂i in the preference of voter j∗
(j∗ = i if i > 0 or j∗ = k∗+1 else). As a consequence, voter
j∗ can ensure that his expected utility is u(2) if he deviates
from Ri to R̂i. Hence, uΠ-strategyproofness entails that the
expected utility of voter j∗ in Ri must be at least u(2), which
means that the following inequality must be true.

u(2) ≤f(Ri, x̂i)u(1) + f(Ri, a)u(2)

+
∑
y∈Y

f(Ri, y)u(y)

+

k∗∑
j=1

f(Ri, x̂i+j)u(x̂i+j)

We reformulate this inequality to highlight the similarity to
our condition on the utility function u.

f(Ri, x̂i)(u(1)− u(2)) ≥
∑
y∈Y

f(Ri, y)(u(2)− u(y))

+

k∗∑
j=1

f(Ri, x̂i+j)(u(2)− u(x̂i+j))

Furthermore, note that we get for every profile Rj a sym-
metric inequality to the one shown above. Also recall that
f(Ri) = f(Rj) for all i, j ∈ {0, . . . , k∗} because of rank-
basedness and thus, we can substitute f(Rj , x) in all inequal-
ities and for all alternatives x ∈ A with f(Ri, x). Moreover,
for every i ∈ {1, . . . , k∗ + 1}, alternative x̂i is top-ranked by
the manipulator inRi, and for every r ∈ {m−k∗+1, . . . ,m},
there is a single profile Rj such that the manipulator ranks x̂i
at position r because of the symmetry of the considered pro-
files. Hence, we derive the following inequality by summing
up over all constraints on f(Ri).

k∗∑
j=0

f(Ri, xj)(u(1)− u(2)) ≥

(k∗ + 1)
∑
y∈Y

f(Ri, y)(u(2)− u(y))

+

k∗∑
j=0

f(Ri, xj)

m∑
l=m−k∗+1

(u(2)− u(l))

However, note that this inequality can only be true if
f(Ri, a) = 1 because u(1) − u(2) <

∑m
j=m−k∗+1(u(2) −

u(j)) by assumption and u(2) ≥ u(y) for all y ∈ Y implies



that
∑
y∈Y f(Ri, y)(u(2) − u(y)) ≥ 0. Hence, voter j∗ can

swap his best and second best alternatives in R̂i without af-
fecting the outcome.

Step 2: Our next goal is to use the construction in the last
step to derive a profile R in which a is top-ranked by only
k∗ voters but assigned probability 1. We therefore start at the
profile R̄0 in which the first n− k∗ voters prefer alternative a
the most and the remaining voters prefer a uniquely the least.
It follows from k-unanimity that f(R̄0, a) = 1 as k∗ ≤ k.
Moreover, uΠ-strategyproofness entails that all voters can re-
order the alternatives in A \ {a} arbitrarily without affecting
the outcome. If a voter who prefers a the most reorders the re-
maining alternatives and a does not obtain probability 1 any-
more, he can uΠ-manipulate by reverting back, and if a voter
who prefers a the least reorders his alternatives and a does not
obtain probability 1 anymore, he uΠ-manipulates by applying
this modification. In particular, we can pick a subset I of the
voters who prefer a the most with |I| = k∗ + 1 and the k∗
voters who prefer a the least and assign them the preferences
R̂i for every i ∈ {0, . . . , k∗} without affecting the outcome.
Consequently, we can use the results of the last step and de-
rive a profile R̄1 such that f(R̄1, a) = 1, the first n− k∗ − 1
voters prefer a the most, voter n − k∗’s preference relation
is x0, a, ∗, x1, . . . , xk∗ , and the remaining voters prefer a the
least. Moreover, it is easy to see that we can repeat this step
as long as at least k∗+1 voters top-rank a as the construction
in step 1 is independent of the voters that are not used. Hence,
by repeatedly applying this construction, we derive a profile
R̄ such that f(R̄, a) = 1, k∗ voters prefer a the most, n−2k∗

voters report x0, a, ∗, x1, . . . , xk∗ , and k∗ voters report a as
their least preferred outcome.

Finally, recall that the voters who prefer a the least can re-
order the alternatives in A \ {a} arbitrarily without affecting
the outcome. Thus, these voters can also ensure that x0 is
their best alternative without changing the resulting lottery.
However, this leads to a profile R∗ in which n − k∗ voters
report x0 as their best alternative and therefore k-unanimity
requires that f(R∗, x0) = 1. This is in conflict with the ob-
servation that f(R∗, a) = f(R̄, a) = 1 and therefore, we
have derived a contradiction.

Next, we present an example for the constructions in the
proof of Theorem 2. Therefore, assume that f is a rank-based
SDS for m = 4 alternatives and n = 5 voters that satisfies
2-unanimity and uΠ-strategyproofness for a utility function
u with u(1) − u(2) < u(2) − u(3) + u(2) − u(4). By 2-
unanimity, we know that f(R1, a) = f(R2, a) = f(R3, a) =
1 for the profiles shown in the sequel.

R1: 1: a, x1, x2, x0 2: a, x2, x0, x1 3: a, x0, x1, x2

4: x0, x1, x2, a 5: x2, x0, x1, a

R2: 1: a, x1, x2, x0 2: a, x2, x0, x1 3: a, x0, x1, x2

4: x1, x0, x2, a 5: x0, x2, x1, a

R3: 1: a, x1, x2, x0 2: a, x2, x0, x1 3: a, x0, x1, x2

4: x1, x0, x2, a 5: x2, x0, x1, a

Next, consider the profiles R4, R5, and R6, which corre-
spond to the profiles R1, R2, and R0 discussed in step 1 of
the proof, respectively.

R4: 1: x1, a, x2, x0 2: a, x2, x0, x1 3: a, x0, x1, x2

4: x0, x1, x2, a 5: x2, x0, x1, a

R5: 1: a, x1, x2, x0 2: x2, a, x0, x1 3: a, x0, x1, x2

4: x1, x0, x2, a 5: x0, x2, x1, a

R6: 1: a, x1, x2, x0 2: a, x2, x0, x1 3: x0, a, x1, x2

4: x1, x0, x2, a 5: x2, x0, x1, a

Note that R1 differs only in the preference of voter 1
from R4, R2 differs only in the preference of voter 2 from
R5, and R3 only differs in the preference of voter 3 from
R6. Hence, we derive the following inequalities from uΠ-
strategyproofness.

u(2) ≤f(R4, x1)u(1) + f(R4, a)u(2)

+ f(R4, x2)u(3) + f(R4, x0)u(4)

u(2) ≤f(R5, x2)u(1) + f(R5, a)u(2)

+ f(R5, x0)u(3) + f(R5, x1)u(4)

u(2) ≤f(R6, x0)u(1) + f(R5, a)u(2)

+ f(R6, x1)u(3) + f(R6, x2)u(4)

Moreover, all of these profiles have the same rank matrix
and thus, f(R4) = f(R5) = f(R6). This means that we can
substitute f(R5, x) and f(R6, x) with f(R4, x) for all x ∈ A
in the second and third inequality. We derive the following
equation by using this observation and summing up all three
inequalities.

3u(2) ≤
∑

x∈{x0,x1,x2}

f(R4, x)
(
u(1) + u(3) + u(4)

)
+ 3f(R4, a)u(2)

Finally, we can reformulate this expression as shown in the
proof of Theorem 2 to derive from our assumption on u and
rank-basedness that f(R4, a) = f(R5, a) = f(R6, a) = 1.

As last step, observe that voters 4 and 5 can change their
preferences without affecting the outcome in R6 as any other
lottery is a manipulation for them. Hence, it holds for the pro-
file R7 that f(R7, a) = 1 because of uΠ-strategyproofness.
However, this is in conflict with 2-unanimity because 3 voters
report x0 as their best alternative.

R7: 1: a, x1, x2, x0 2: a, x2, x0, x1 3: x0, a, x1, x2

4: x0, x1, x2, a 5: x0, x1, x2, a

Theorem 3. There is no Condorcet-consistent SDS that sat-
isfies uΠ-strategyproofness regardless of the utility function u
if m ≥ 4, n ≥ 5 and n 6= 6, n 6= 8.



Proof. Assume for contradiction that there is a Condorcet-
consistent SDS f for m ≥ 4 alternatives and n ≥ 5 vot-
ers (and n 6= 6. n 6= 8) that satisfies uΠ-strategyproofness
for some utility function u. The proof works by a case
distinction: first we show that there is no uΠ-strategyproof
SDS that is Condorcet-consistent if m ≥ 4, n = 3, and
u(1)− u(2) < u(2)− u(m). Next, we show that there is no
uΠ-strategyproof SDS that satisfies Condorcet-consistency if
m ≥ 4, n = 5, and u(1) − u(m − 1) > u(m − 1) − u(m).
These two cases are exhaustive with respect to the util-
ity functions, i.e., every utility function on at least 4 al-
ternatives either satisfies u(1) − u(2) < u(2) − u(m) or
u(1)−u(m−1) > u(m−1)−u(m): the strictness of the util-
ity function entails that u(1)−u(m−1) > u(m−1)−u(m) if
u(1)−u(2) ≥ u(2)−u(m). Note that both cases are proven
for a fixed value of n. Hence, we provide as last step argu-
ments for generalizing the impossibility from a fixed number
of voters to larger numbers of voters. Just as in the proof of
Theorem 2, we assume in the sequel that all voters have the
same preferences on the alternatives that are abbreviated by
the ∗-symbol.

Case 1: u(1)− u(2) < u(2)− u(m)
As first case, we assume that f is defined for n = 3 vot-

ers and satisfies uΠ-strategyproofness for a utility function u
with u(1) − u(2) < u(2) − u(m). Consider in this case the
following preference profiles and note that b is the Condorcet
winner inR2, a inR3, and c inR4. Consequently, Condorcet-
consistency entails that f(R2, b) = f(R3, a) = f(R4, c) =
1.
R1: 1: a, b, ∗, c 2: c, a, ∗, b 3: b, c, ∗, a
R2: 1: b, a, ∗, c 2: c, a, ∗, b 3: b, c, ∗, a
R3: 1: a, b, ∗, c 2: a, c, ∗, b 3: b, c, ∗, a
R4: 1: a, b, ∗, c 2: c, a, ∗, b 3: c, b, ∗, a

Moreover, R1 differs from R2 only in the preference of
the first voter, from R3 in the preference of the second voter,
and from R4 in the preference of the third voter. Hence, we
can use uΠ-strategyproofness to derive constraints on f(R1).
In particular, we derive the following inequality from uΠ-
strategyproofness between R1 and R2.

u(2) ≤f(R1, a)u(1) + f(R1, b)u(2) + f(R1, c)u(m)

+
∑

x∈A\{a,b,c}

f(R1, x)u(x)

We reformulate this inequality such that it becomes more
similar to our assumption on u. Moreover, we derive sym-
metric conditions from uΠ-strategyproofness betweenR1 and
R3, and betweenR1 andR4. Hence, we deduce the following
three inequalities.
f(R1, a)(u(1)− u(2)) ≥ f(R1, c)(u(2)− u(m))

+
∑

x∈A\{a,b,c}

f(R1, x)(u(2)− u(x))

f(R1, c)(u(1)− u(2)) ≥ f(R1, b)(u(2)− u(m))

+
∑

x∈A\{a,b,c}

f(R1, x)(u(2)− u(x))

f(R1, b)(u(1)− u(2)) ≥ f(R1, a)(u(2)− u(m))

+
∑

x∈A\{a,b,c}

f(R1, x)(u(2)− u(x))

By summing up these inequalities, we derive the following
equation.∑

x∈{a,b,c}

f(R1, x)(u(1)− u(2)) ≥

∑
x∈{a,b,c}

f(R1, x)(u(2)− u(m))

+3
∑

x∈A\{a,b,c}

f(R1, x)(u(2)− u(x))

Recall that we assume that u(1) − u(2) < u(2) − u(m),
and note that every alternative x ∈ A \ {a, b, c} is at most
the third best alternative of a voter. Hence, our assumption
on u and the above inequality are in conflict. Therefore, no
uΠ-strategyproof SDS can satisfy Condorcet-consistency if
n = 3, m ≥ 4, and u(1)− u(2) < u(2)− u(m).

Case 2: u(1)− u(m− 1) > u(m− 1)− u(m)
Next, assume that f denotes a Condorcet-consistent and

uΠ-strategyproof SDS for n = 5 voters and a utility function
u with u(1) − u(m − 1) > u(m − 1) − u(m). Consider
for this case the following profiles and note that c is the Con-
dorcet winner inR2, b inR3, and a inR4. Hence, Condorcet-
consistency entails that f(R2, c) = f(R3, b) = f(R4, a) =
1.

R1: 1: a, ∗, b, c 2: c, ∗, a, b 3: b, ∗, c, a
4: a, b, c, ∗ 5: c, b, a, ∗

R2: 1: a, ∗, c, b 2: c, ∗, a, b 3: b, ∗, c, a
4: a, b, c, ∗ 5: c, b, a, ∗

R3: 1: a, ∗, b, c 2: c, ∗, b, a 3: b, ∗, c, a
4: a, b, c, ∗ 5: c, b, a, ∗

R4: 1: a, ∗, b, c 2: c, ∗, a, b 3: b, ∗, a, c
4: a, b, c, ∗ 5: c, b, a, ∗

Just as in the last case, the profile R1 differs from the pro-
file R2 only in the preference of the first voter, from the
profile R3 only in the preference of the second voter, and
from the profile R4 only in the preference of the third voter.
Hence, we can use uΠ-strategyproofness to derive conditions
on f(R1). In particular, uΠ-strategyproofness between R1

and R2 entails the following inequality. The left hand side of
this inequality is voter 1’s expected utility in R2 and the right
hand side is his expected utility if he reports his preference
dishonestly as R1

1.

u(m− 1) ≥f(R1, a)u(1) + f(R1, c)u(m− 1)

+ f(R1, b)u(m) +
∑

x∈A\{a,b,c}

f(R1, x)u(x)

Next, we reformulate again the inequality such that our as-
sumption on u can be used in the end. Moreover, we derive



symmetric conditions from R3 and R4 resulting in the fol-
lowing inequalities.

f(R1, b)(u(m− 1)− u(m)) ≥
f(R1, a)(u(1)− u(m− 1))

+
∑

x∈A\{a,b,c}

f(R1, x)(u(x)− u(m− 1))

f(R1, a)(u(m− 1)− u(m)) ≥
f(R1, c)(u(1)− u(m− 1))

+
∑

x∈A\{a,b,c}

f(R1, x)(u(x)− u(m− 1))

f(R1, c)(u(m− 1)− u(m)) ≥
f(R1, b)(u(1)− u(m− 1))

+
∑

x∈A\{a,b,c}

f(R1, x)(u(x)− u(m− 1))

By summing up the last three inequalities, we derive the
following equation.∑
x∈{a,b,c}

f(R1, x)(u(m− 1)− u(m)) ≥

∑
x∈{a,b,c}

f(R1, x)(u(1)− u(m− 1))

+3
∑

x∈A\{a,b,c}

f(R1, x)(u(x)− u(m− 1))

Every alternative x ∈ A \ {a, b, c} is preferred to at least
two other alternatives, and thus, u(x)− u(m− 1) > 0. As a
consequence, this inequality and our assumption that u(1) −
u(m−1) > u(m−1)−u(m) cannot be simultaneously true.
Thus, no SDS satisfies both Condorcet-consistency and uΠ-
strategyproofness if n = 5, m ≥ 4, and u(1) − u(m − 1) >
u(m− 1)− u(m).

Case 3: Generalizing the impossibility
Finally, we explain why the impossibility also applies for

larger values of n. For the case that n is odd, this is simple:
we can just add pairs of voters with inverse preferences to the
construction of the required case. These voters do not affect
the Condorcet winner as they cancel each other out with re-
spect to the majority margins and the remaining analysis only
depends on uΠ-strategyproofness and therefore only on spe-
cific voters. Hence, no Condorcet-consistent SDS can satisfy
uΠ-strategyproofness, regardless of the utility function u, if
m ≥ 4, n ≥ 5, and n is odd.

For even n, we use Proposition 4: uΠ-strategyproofness
entails uΠ-group-strategyproofness. This observation means
that we can just duplicate each voter in the profiles used to
reason about odd n, and the analysis stays intact. Hence, the
impossibility also generalizes to even n once n ≥ 10.

Theorem 4. COND is the only Condorcet-consistent SDS
that satisfies U -strategyproofness for U = {u ∈ U : u(1) −
u(2) = u(2)− u(3)} if m = 3 and n is odd.

Proof. First note that COND is by definition Condorcet-
consistent, independently of the numbers of voters or alterna-
tives. Next, we show that it also satisfies U -strategyproofness
for U = {u ∈ U : u(1) − u(2) = u(2) − u(3)} if m = 3.
Assume for contradiction that this is not true, i.e., that there
are preference profiles R and R′, a voter i, and a utility func-
tion u ∈ U such that u is consistent with Ri, Rj = R′j for
all j ∈ N \ {i}, and E[COND(R′)]u > E[COND(R)]u.
We employ a case distinction with respect to the existence of
a Condorcet winner. First, assume that there is a Condorcet
winner a in R, i.e., COND(R, a) = 1. If another alterna-
tive b is the Condorcet winner in R′, voter i prefers a to b
because he cannot make b into the Condorcet winner other-
wise. As COND(R′, b) = 1 in this case, this is no manipu-
lation as u(a) > u(b). Hence, assume that there is no Con-
dorcet winner in R′. Then, we have that COND(R′, a) =
COND(R′, b) = COND(R′, c) = 1

3 , which means that
voter i’s expected utility is u(2) since u(1) = 2u(2) − u(3).
This is only a manipulation if the Condorcet winner a is voter
i’s least preferred alternative, i.e., if u(a) = u(3). However,
then voter i cannot change that a is the Condorcet winner,
and therefore no manipulation is possible in this case. Fi-
nally, assume that there is no Condorcet winner in R. Hence,
voter i’s expected utility of COND(R) is again u(2), which
means that he can only manipulate by making his best alter-
native into the Condorcet winner. This is again not possible
and consequently, COND is U -strategyproof for U = {u ∈
U : u(1)− u(2) = u(2)− u(3)}.

Next, we show that no other Condorcet-consistent SDS is
U -strategyproof for U = {u ∈ U : u(1) − u(2) = u(2) −
u(3)} if m = 3 and n is odd. Note that we assume in the
sequel that n ≥ 3 as the claim is trivial if n = 1 due to
Condorcet-consistency. Assume for contradiction that there
is another SDS f that satisfies these axioms and note that f
coincides with COND on profiles with a Condorcet winner
because of Condorcet-consistency. Since n is odd, f differs
from COND in a profile R with a majority cycle, i.e., the
alternatives in R can be relabeled such that nxy(R) > 0,
nyz(R) > 0, and nzx(R) > 0.

First, we show that there must be voters with specific
preferences in R. In particular, for each of R1 = x, y, z,
R2 = y, z, x, andR3 = z, x, y, there is at least one voter who
reports the preference relation. Assume for contradiction that
this is not true, i.e., we have nxy(R) > 0, nyz(R) > 0, and
nzx(R) > 0 and one of the above preferences is not reported
by any voter. Let n1, n2, and n3 denote variables that corre-
spond to the numbers of voters in R who submit preference
R1, R2, and R3, respectively. Moreover, let n4, n5, and n6

denote variables with the same meaning for the preferences
R4 = x, z, y, R5 = y, x, z, and R6 = z, y, x. Our contradic-
tion assumption entails that one of n1, n2, or n3 is zero, and
due to symmetry, we suppose without loss of generality that
n1 = 0. Since we need the majority cycle in the preference
of the voters, we derive the following inequalities.

nxy(R) = n3 + n4 − n2 − n5 − n6 > 0

nyz(R) = n2 + n5 − n3 − n4 − n6 > 0

nzx(R) = n2 + n3 + n6 − n4 − n5 > 0

Summing up the first two inequalities results in nxy(R) +



nyz(R) = −2n6 > 0, which cannot be true since n6 ≥ 0 by
definition. Hence, the assumption that n1 = 0 is wrong and
by applying symmetric arguments, it follows that n1 > 0,
n2 > 0, and n3 > 0.

We use this observation to prove that f(R, x) = f(R, y) =
f(R, z) = 1

3 for all profiles R that induce a majority cycle,
i.e, that have nxy(R) > 0, nyz(R) > 0, and nzx(R) > 0.
We therefore introduce the cycle weight c(R) = nxy(R) +
nyz(R) + nzx(R) = 3 + 2k for some k ≥ 0 and let R
denote a profile with f(R) 6= COND(R) that minimizes
c(R). As f(R) 6= COND(R), one of the following inequal-
ities is true: either f(R, x) > f(R, y), f(R, y) > f(R, z),
or f(R, z) > f(R, x); otherwise, we have that f(R, x) ≤
f(R, y) ≤ f(R, z) ≤ f(R, x), which implies that all alter-
natives receive probability 1

3 . We focus in the sequel on the
case that f(R, x) > f(R, y) as the remaining cases are sym-
metric. By our previous observation, there is a voter i with

preference y, z, x in R. Moreover, let u ∈ U denote an ar-
bitrary utility function that is consistent with Ri. Since u is
equi-distant and f(R, x) > f(R, y), it follows that the ex-
pected utility of this voter is less than u(2). Next, consider
the profile R′ in which voter i reports his preference non-
truthfully as z, y, x. This manipulation either results in the
fact that z is the Condorcet winner, or it results in a profile R′
with c(R′) = c(R)− 2. In both cases, the expected utility of
voter i is u(2) because f(R′, z) = 1 if z is the Condorcet
winner and f(R′, x) = f(R′, y) = f(R′, z) = 1

3 other-
wise. The latter observation is true as R minimizes the circle
weights among all profiles in which f differs from COND
and c(R′) < c(R). Hence, voter i can {u}-manipulate,
contradicting the U -strategyproofness of f . This means that
COND is indeed the only Condorcet-consistent SDS that sat-
isfies U -strategyproofness for U = {u ∈ U : u(1) − u(2) =
u(2)− u(3)} if m = 3 and n is odd.
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