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Abstract

In approval-based committee (ABC) elections, the goal is to se-
lect a fixed size subset of the candidates, a so-called committee,
based on the voters’ approval ballots over the candidates. One
of the most popular classes of ABC voting rules are ABC scor-
ing rules, which have recently been characterized by Lackner
and Skowron (2021b). However, this characterization relies on
a model where the output is a ranking of committees instead
of a set of winning committees and no full characterization
of ABC scoring rules exists in the latter standard setting. We
address this issue by characterizing two important subclasses
of ABC scoring rules in the standard ABC election model,
thereby both extending the result of Lackner and Skowron
(2021b) to the standard setting and refining it to subclasses. In
more detail, by relying on a consistency axiom for variable
electorates, we characterize (i) the prominent class of Thiele
rules and (ii) a new class of ABC voting rules called ballot size
weighted approval voting. Based on these theorems, we also
infer characterizations of three well-known ABC voting rules,
namely multi-winner approval voting, proportional approval
voting, and satisfaction approval voting.

1 Introduction

An important problem for multi-agent systems is collective
decision making: given the voters’ preferences over a set
of alternatives, a common decision has to be made. This
problem has traditionally been studied by economists for set-
tings where a single candidate is elected (Arrow, Sen, and
Suzumura 2002), but there is also a multitude of applica-
tions where a fixed number of the candidates needs to be
elected. The archetypal example for this is the election of a
city council, but there are also technical applications such
as recommender systems (Skowron, Faliszewski, and Lang
2016; Gawron and Faliszewski 2022). In social choice theory,
this type of elections is typically called approval-based com-
mittee (ABC) elections and has recently attracted significant
attention (e.g., Aziz et al. 2017; Faliszewski et al. 2017; Lack-
ner and Skowron 2023). In more detail, the research on these
elections focuses on ABC voting rules, which are functions
that choose a set of winning committees (i.e., fixed-size sub-
sets of the candidates) based on the voters’ approval ballots
(i.e., the sets of candidates that the voters approve).
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One of the most important classes of ABC voting rules are
ABC scoring rules (see, e.g., Lackner and Skowron 2021b).
These rules generalize the idea of single-winner scoring rules
to ABC elections: each voter assigns points to each com-
mittee according to some scoring function and the winning
committees are those with the maximal total score. There are
many well-known examples of ABC scoring rules, such as
multi-winner approval voting (AV), satisfaction approval vot-
ing (SAV), Chamberlin-Courant approval voting (CCAV), and
proportional approval voting (PAV). Moreover, ABC scoring
rules are a superset of the prominent class of Thiele rules.

In a recent breakthrough result, Lackner and Skowron
(2021b) have formalized the relation between ABC scoring
rules and single-winner scoring rules by characterizing ABC
scoring rules with almost the same axioms as Young (1975)
uses for his influential characterization of single-winner scor-
ing rules. In more detail, Lackner and Skowron (2021b) show
that ABC scoring rules are the only ABC ranking rules that
satisfy the axioms of anonymity, neutrality, continuity, weak
efficiency, and consistency. However, this result discusses
ABC ranking rules, which return transitive rankings of com-
mittees, whereas the literature on ABC elections typically
focuses on sets of winning committees as output. Hence, this
theorem does not allow for characterizations of ABC scoring
rules in the standard ABC voting setting.

While Lackner and Skowron (2021a) also present a result
for the standard ABC election setting, the proof of this result
is incomplete.! Moreover, even when the proof could be fixed,
this result is not a full characterization of ABC scoring rules
as it needs a technical axiom called 2-non-imposition. This
axiom is, e.g., violated by AV and SAV. Hence, characteri-
zations of important ABC voting rules—and more generally
tools to easily infer such results—are still missing. Lackner
and Skowron (2021a, p. 16) also acknowledge this shortcom-
ing by writing that “a full characterization of ABC scoring
rules within the class of ABC choice rules remains as impor-
tant future work”.

"Roughly, the proof of Lackner and Skowron (2021a) works by
constructing an ABC ranking rule g based on an ABC voting rule f
that satisfies the given axioms. Then, Lackner and Skowron (2021a)
show that g is an ABC scoring rule, which implies that f is an ABC
scoring rule in the choice setting. However, the authors never show
that g returns transitive rankings, which is required by definition of
ABC ranking rules. Closing this gap seems surprisingly difficult.



Our contribution. We address this problem by presenting
full axiomatic characterizations of two important subclasses
of ABC scoring rules, namely Thiele rules and ballot size
weighted approval voting (BSAV) rules, in the standard ABC
election setting. Hence, our results refine the result of Lack-
ner and Skowron (2021b) to subclasses and extend it to the
standard ABC voting setting. Thiele rules are ABC scoring
rules that do not depend on the ballot size and have attracted
significant attention (e.g., Aziz et al. 2017; Skowron, Fal-
iszewski, and Lang 2016; Brill, Laslier, and Skowron 2018).
On the other hand, BSAV rules generalize multi-winner ap-
proval voting by weighting voters depending on the size of
their ballots. So far, the class of BSAV rules has only been
studied for single-winner elections (Alcalde-Unzu and Vor-
satz 2009) but not for ABC elections. For example, PAV and
CCAV are Thiele rules, SAV is a BSAV rule, and AV is in
both classes. Moreover, every ABC scoring rule that has been
studied in the literature is in one of our two classes.

For our results, we mainly rely on the axioms of Lackner
and Skowron (2021b): anonymity, neutrality, continuity, weak
efficiency, and consistency. The first four of these axioms
are mild standard conditions that are satisfied by every rea-
sonable ABC voting rule. By contrast, consistency is central
for our proofs. This axiom requires that if some committees
are chosen for two disjoint elections, then precisely these
committees should win in a joint election, and it features in
several prominent results in social choice theory (e.g., Young
1975; Young and Levenglick 1978; Fishburn 1978).

To characterize Thiele rules, we need one more axiom
called independence of losers. This condition requires that a
winning committee IV stays winning if some voters change
their ballot by disapproving “losing” candidates outside of
W as, intuitively, the quality of W should only depend on
its members. Similar conditions are well-known for single-
winner elections (e.g., Brandl and Peters 2022) and this ax-
iom has recently been adapted to ABC voting by Dong and
Lederer (2023a). We then show that an ABC voting rule is a
Thiele rule if and only if it satisfies anonymity, neutrality, con-
sistency, continuity, and independence of losers (Theorem 1).

For our characterization of BSAV rules, we introduce a new
axiom called choice set convexity. This condition requires
that if two committees are chosen, then all committees “in
between” those committees are chosen, too: if W and W' are
chosen, then all committees W with WNW' C W"” C WU
W' are also chosen. We believe that this axiom is reasonable
for excellence-based elections (where only the individual
quality of the candidates matters) as a tie between committees
indicates that they are equally good and the candidates in
W\ W' and W’ \ W are thus exchangeable. We then prove
that an ABC voting rule is a BSAV rule if and only if it satisfies
anonymity, neutrality, consistency, continuity, weak efficiency,
and choice set convexity (Theorem 2).

While our theorems are intuitively related to the results of
Lackner and Skowron (2021a,b), they are logically indepen-
dent. In particular, in contrast to their results, our theorems
allow for simple characterizations of all Thiele rules and
BSAV rules in the standard ABC voting model. We also
demonstrate this point in Section 3.3 by axiomatizing AV,
SAV, and PAV. In more detail, we obtain full characteriza-
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Figure 1: Overview of our results. An arrow from X to Y
means that Y is a subset or an element of X. The axioms
written on an arrow from X to Y characterize the rule Y
within the class X. The axioms written below Thiele rules
and BSAV rules characterize these classes of ABC voting
rules.

tions of these rules by analyzing axioms for party-list profiles
(where candidates are partitioned into parties and each voter
approves all candidates of a single party) that formalize when
all candidates of a party are chosen. To the best of our knowl-
edge, the result for SAV is the first full characterization of
this rule. An overview of our results is given in Figure 1.

Related work. The lack of axiomatic characterizations is
one of the major open problems in the field of ABC voting
(see, e.g., Lackner and Skowron 2023, Q1), and there are thus
only few closely related papers. Maybe the most important
one is due to Lackner and Skowron (2021b) who characterize
ABC scoring rules in the context of ABC ranking rules; how-
ever, this result does not allow for characterizations of ABC
scoring rules in the standard setting. The follow-up paper by
Lackner and Skowron (2021a) tries to fix this issue, but its
proof is incomplete and the main result requires a technical
auxiliary condition that rules out important rules such as AV
and SAV. Moreover, Dong and Lederer (2023a) characterize
committee monotone ABC voting rules, which can be seen as
greedy approximations of ABC scoring rules. Finally, com-
mittee scoring rules have also been analyzed for the case that
voters report ranked ballots, but the results for this setting
are also restricted to characterizations of committee rank-
ing rules (Skowron, Faliszewski, and Slinko 2019) or partial
characterizations within the class of committee scoring rules
(Elkind et al. 2017; Faliszewski et al. 2019).

Furthermore, a large amount of papers studies axiomatic
properties of ABC scoring rules (e.g., Lackner and Skowron
2018; Aziz et al. 2017; Sanchez-Fernandez and Fisteus 2019;
Brill, Laslier, and Skowron 2018; Lackner and Skowron
2020). For instance, Aziz et al. (2017) investigate Thiele
rules with respect to how fair they represent groups of vot-
ers with similar preferences, and Sanchez-Fernandez and
Fisteus (2019) study monotonicity conditions for several
ABC scoring rules. Another important aspect of these rules
is their computational complexity. In particular, it is known
that all Thiele rules but AV are NP-hard to compute on the
full domain (Aziz et al. 2015; Skowron, Faliszewski, and



Lang 2016). There is thus significant work on how to com-
pute these rules by, e.g., restricting the domain of preference
profiles (Elkind and Lackner 2015; Peters 2018), studying
approximation algorithms (Dudycz et al. 2020; Barman et al.
2022), or designing FPT algorithms (Bredereck et al. 2020).
For a more detailed overview on ABC scoring rules, we refer
to the survey by Lackner and Skowron (2023).

Finally, in the broader realm of social choice, there are
numerous conceptually related results as consistency features
in many prominent theorems: for instance, Young (1975) has
characterized scoring rules for single-winner elections based
on this axiom (see also Smith 1973; Myerson 1995; Pivato
2013), numerous characterizations of single-winner approval
voting rely on consistency (Fishburn 1978; Brandl and Peters
2022), Young and Levenglick (1978) have characterized Ke-
meny’s rule with the help of this axiom, and Brandl, Brandt,
and Seedig (2016) characterize a randomized voting rule
called maximal lotteries based on this condition.

2 Preliminaries

Let N = {1,2,...} denote an infinite set of voters and
let C = {c1,...,¢n} denote a set of m > 2 candi-
dates. Intuitively, we interpret N as the set of all pos-
sible voters and a concrete electorate N is a finite and
non-empty subset of N. We thus define F(N) = {N C
N: N is non-empty and finite} as the set of all possible elec-
torates. Given an electorate N € F(N), we assume that each
voter 7+ € N reports her preferences over the candidates as
approval ballot A, i.e., as a non-empty subset of C. A is
the set of all possible approval ballots. An (approval) profile
A is a mapping from N to A, i.e., it assigns an approval
ballot to every voter in the given electorate. Next, we define
A* =Unerm AN as the set of all approval profiles. For ev-

ery profile A € A*, N4 denotes the set of voters that submit
a ballot in A. Finally, two approval profiles A, A’ are called
disjoint if No N N4 = () and for disjoint profiles A, A’,
we define the profile A” = A+ A’ by Nyv = Ny U Ng/,
Al = A;fori € Ny, and A = A} fori € Na.

Given an approval profile, our aim is to elect a committee,
i.e., a subset of the candidates of predefined size. We denote
the target committee size by & € {1,...,m — 1} and the
set of all size-k committees by Wy, = {W C C: |W| =
k}. For determining the winning committees for a given
preference profile, we use approval-based committee (ABC)
voting rules which are mappings from A* to 2"+ \ {}}. Note
that we define ABC voting rules for a fixed committee size
and may return multiple committees. The first condition is
for notational convenience and the second one is necessary
to satisfy basic fairness conditions.

2.1 ABC Voting Rules

We focus in this paper on two classes of ABC voting rules,
namely Thiele rules and BSAV rules, which are both refine-
ments of the class of ABC scoring rules.

ABC scoring rules. ABC scoring rules rely on a scoring
function according to which voters assign points to commit-
tees and choose the committees with maximal total score.
Formally, a scoring function s(x,y) is a mapping from

{0,...,k} x {1,...,m} to R such that s(z,y) > s(a’,y)
for all x,2' € {max(0,k +y — m),...,min(k,y)} with
x > z’. We define the score of a committee W in a pro-
file Aas 3(A,W) = >, s(|Ai N W] |A;]). Then, an
ABC voting rule f is an ABC scoring rule if there is a
scoring function s such that f(A) = {W € Wy: VW' €
Wi (A, W) > 8(A,W')} for all profiles A € A*. The
set {max(0,k+y—m),...,min(k, y)} contains all “active”
intersection sizes: a committee of size k£ and a ballot of size
y intersect at least in max(0, k + y — m) candidates and at
most in min(k, y) candidates.

Thiele rules. Arguably the most prominent subclass of
ABC scoring rules are Thiele rules. These rules, which have
first been suggested by their namesake Thiele (1895), are
ABC scoring rules that ignore the ballot size. Hence, Thiele
rules are defined by a non-decreasing Thiele scoring func-
tion s : {0,...,k} — R with s(0) = 0, and choose
the committees that maximize the total score. Formally,
an ABC voting rule f is a Thiele rule if there is a Thiele
scoring function s such that f(A) = {W € Wy: VW' €
Wi $(A, W) > §(A,W')} for all profiles A € A*, where
5(A, W) = > icn, s(|AiNW]). There are numerous impor-
tant Thiele rules such as multi-winner approval voting (AV;
defined by say(x) = x), proportional approval voting (PAV;
defined by spay(z) = Y.._; < for z > 0), and Chamberlin-
Courant approval voting (CCAV; defined by sccav(z) = 1
for x > 0).

BSAYV rules. Ballot size weighted approval voting rules
form a new subclass of ABC scoring rules which general-
ize AV by weighting voters based on their ballot size. For-
mally, a ballot size weighted approval voting (BSAV) rule
f is defined by a weight vector o € RZ,, and chooses for
every profile A the committees TV that maximize §(A4, W) =
> ien, @Al Ai 0 W] The score of a committee W for a
BSAV rule can be represented as the sum of the scores of
individual candidates ¢ € W since ),y 4, |[Ai N W] =
D oceW DoieNa: cea, O|4,|- Clearly, AV is the BSAV rule de-
finedby o, = 1forallz € {1,...,m}. Another well-known
BSAV rule is satisfaction approval voting (SAV) defined by
oy = = forz € {1,...,m}. This rule has been popular-
ized by Brams and Kilgour (2014) for ABC elections, but it
has been studied before by, e.g., Alcalde-Unzu and Vorsatz
(2009) and Kilgour and Marshall (2012).

We note that Thiele rules and BSAV rules are diametrically
opposing subclasses of ABC scoring rules: Thiele rules do
not depend on the ballot size at all, whereas BSAV rules
only depend on this aspect. Consequently, if £ < m — 1,
the sets of BSAV rules and Thiele rules only intersect in AV
and the trivial rule TRIV (which always chooses all size k
committees). So, AV is the only non-trivial ABC voting rule
that is in both classes; non-triviality means here that there
is a profile A such that f(A) # TRIV(A). Moreover, both
classes are proper subsets of the set of ABC scoring rules
if 1 < k < m — 1. By contrast, the set of BSAV rules is
equivalent to the set of ABC scoring rules if k£ € {1,m — 1}.



2.2 Basic Axioms

Next, we introduce the axioms used for our characterizations.

Anonymity. Anonymity is one of the most basic fairness
properties and requires that all voters should be treated
equally. Formally, we say an ABC voting rule f is anonymous
if f(A) = f(n(A)) for all profiles A € A* and permutations
7 : N — N. Here, we denote by A’ = 7(A) the profile with
Nya ={m(i): i € Na} andA;(Z.) = A, foralli € Ny.

Neutrality. Similar to anonymity, neutrality is a fairness
property for the candidates. This axiom requires of an ABC
voting rule f that f(7(A4)) = {r(W): W € f(A)} for
all profiles A € A* and permutations 7 : C — C. This
time, A’ = 7(A) denotes the profile with N4 = N4 and
Al =7(4;) forall i € Ny.

Weak Efficiency. Weak efficiency requires that unani-
mously unapproved candidates can never be “better” than
approved ones. Formally, we say an ABC voting rule f is
weakly efficient if W € f(A) for a committee W € W, with
c € W\ (Uen, Ai) implies that (W U {c'}) \ {c} € f(A)
for all candidates ¢’ € C\ W.

Continuity. The intuition behind continuity is that a large
group of voters should be able to enforce that some of its
desired outcomes are chosen. Hence, an ABC voting rule f
is continuous if for all profiles A, A" € A*, thereis A € N
such that f(AA + A’) C f(A). Here, AA denotes the profile
consisting of A copies of A; the names of the voters in Ny 4
will not matter as we will focus on anonymous rules.

Consistency. The central axiom for our results is consis-
tency. This condition states that if some committees are cho-
sen for two disjoint profiles, then precisely those committees
are chosen in the joint profile. Formally, an ABC voting rule
f is consistent if f(A+ A") = f(A) N f(A) for all disjoint
profiles A, A’ € A* with f(A)Nf(A’) # (. Consistency and
the previous four axioms have been introduced by Lackner
and Skowron (2021a) for ABC elections. Moreover, except
consistency, all these axioms are very mild and satisfied by
almost all commonly considered ABC voting rules.

Independence of Losers. Independence of losers has been
adapted to ABC elections by Dong and Lederer (2023a) and
requires of an ABC voting rule f that a winning committee
W should still be a winning committee if voters disapprove
candidates outside of . Or, put differently, whether a com-
mittee W wins should not depend on the voters’ approvals of
“losing” candidates not in W. We hence say an ABC voting
rule f is independent of losers if W € f(A) implies that
W € f(A’) for all profiles A, A’ € A* and committees
W € Wy, suchthat Ng = Ny and W N A; = WnN A} and
Al C A, for all voters ¢ € N 4. The motivation for this axiom
is that the quality of W should only depend on the candidates
in W. So, if some voters disapprove candidates x ¢ W, the
quality of this committee is not affected and, when W is cho-
sen initially, it should remain chosen. All commonly studied
ABC voting rules that are independent of the ballot size (e.g.,
Thiele rules, Phragmén’s rule, and sequential Thiele rules)
satisfy this axiom, whereas all BSAV rules except AV fail it.

Choice Set Convexity. Finally, we introduce a new con-
dition called choice set convexity: an ABC voting rule f is
choice set convex if W, W' € f(A) implies that W' € f(A)
for all committees W, W/, W" € Wj, and profiles A € A*
such that W NW' C W” C W U W’. More informally, this
axiom states that if a rule chooses two committees VW and W,
then all committees “between” W and W' are also chosen.
We believe that choice set convexity is reasonable in elections
in which only the individual quality of the elected candidates
matters. For example, if we want to hire 3 applicants for
independent jobs based on the interviewers’ preferences, it
seems unreasonable that the sets {c1, ca, c3} and {c1, cq,c5}
are good enough to be hired but {c;, ca,c4} is not. More
generally, we can interpret the membership of a candidate
in a chosen committee as certificate for its quality and all
candidates ¢ € (W \ W)U (W' \ W) are then equally good.
Many commonly considered voting rules fail this axiom, but
one can always compute the “convex hull” of a choice set.

3 Results

We are now ready to state our results. In particular, we dis-
cuss the characterizations of Thiele rules and BSAV rules
in Sections 3.1 and 3.2, respectively. Moreover, we present
characterizations of AV, PAV, and SAV in Section 3.3. Due
to space constraints, we defer most proofs to the full version
(Dong and Lederer 2023b) and give proof sketches instead.

3.1 Characterization of Thiele Rules

We now turn to our first characterization: Thiele rules are the
only ABC voting rules that are anonymous, neutral, consis-
tent, continuous, and independent of losers. We thus turn the
result of Lackner and Skowron (2021b) into a characteriza-
tion of Thiele rules in the standard ABC voting model by
replacing weak efficiency with independence of losers.

Theorem 1. An ABC voting rule is a Thiele rule if and only
if it satisfies anonymity, neutrality, consistency, continuity,
and independence of losers.

Proof Sketch. First, suppose that f is a Thiele rule and let
s(x) denote its Thiele scoring function. Clearly, f is anony-
mous, neutral, consistent, and continuous as all ABC scoring
rules satisfy these axioms. So, we will only show that f is
independent of losers. For this, consider two profiles A, A’ €
A* and a committee W € f(A) such that Ny = N4 and
A, CAjand WN A, =WnA, foralli € Na. It holds
that §(A’, W) = §(A, W) since W N A, = W N A, for all
i € N. Moreover, §(A, W) > §(A, W’) for all W' € Wy,
because W € f(A). Finally, §(A,W') > §(A’,W') for
all W’ € Wj, as s(z) is non-decreasing and A, C A, for
all © € N 4. By chaining the inequalities, we conclude that
S(A, W) > §(A', W) for all committees W’/ € W, so
W e f(A’) and f satisfies independence of losers.

For the other direction, we suppose that f is an ABC voting
rule that satisfies all axioms of the theorem and aim to show
that f is a Thiele rule. For this, we will use the separating
hyperplane theorem for convex sets similar to the works of,
e.g., Young (1975) and Skowron, Faliszewski, and Slinko
(2019). For this, we note first that, if f is trivial, it is the



Thiele rule defined by s(x) = 0 for all z. So, we suppose that
f is non-trivial and show that for every committee W € W,
there is a profile A € A* such that f(A) = {W}. To apply
the separating hyperplane theorem for convex sets, we next
extend f to a function § of the type QI — 2Vx \ {(}
while keeping all its properties intact. We then define the sets
Rl = {v e QAI: Wi e g(v)} for all Wi € Wj, and let
Rf denote the closure of sz with respect to R4l Tt follows

from the properties of g that the sets Rf are convex and
have disjoint interiors. The separating hyperplane theorem for
convex sets thus shows that there are non-zero vectors 4/ €
Rl such that v > 0if v € R; and va™I < 0if v € R;.
Moreover, we will show that le = {v e RAL. YW ¢
Wi \ {W}: vi® > 0}, so we study the vectors 4% next.
For this, we first infer from neutrality and independence
of losers that there is a function s'(z,y) such that 4,7 =
sL(Wi N Al [WJ N Ag|) for all ballots A, and commit-
tees Wo WJ with [Wi\ WJ| = 1.If k € {1,m — 1},
this insight is already enough for the proof. By contrast, if
k€ {2,...,m — 2}, we need to analyze the vectors 4"/ for
committees W, W7 with [W*\ W/| =t > 1. To this end,
we construct a sequence of committees W70, ... Wit by
replacing the candidates in W* \ W7 one after another with
those in W7 \ W, By studying the linear (in)dependence
of the vectors 4%/ and @/=-1J= for xz € {1,...,t}, we
then show that 4/ = §3.° _| @/=—17+ for some § > 0.
Based on this insight, we can now define the score func-
tion s of f: 5(0) = 0 and s(z) = s(z — 1) + s'(x,z — 1)
for x > 1. By our previous observations, it follows that
a7 = §(s(|Win Ag) — s(IW7 N Ag)),so R = {v e
RMI: YIVI € Wyt 5(v, W?) > §(v, W7)}. From this, we
infer that g(v) C {W! € Wy:v € R{} = {W' €
Wi VWI € Wi \ {W?}: 3(v, W¥) > 3(v, W7)} for all
v € QA Thus, f(A) C {W? € Wp: VW7 € Wi \
{Wi}: 3(A,W?) > 3(A, W)} and, as the last step, con-
tinuity shows that f is the Thiele rule induced by s. O

Remark 1. All axioms are required for Theorem 1. If we
omit independence of losers, SAV satisfies all remaining
axioms. If we omit continuity, we can refine Thiele rules
by applying a second Thiele rule as tie-breaker in case of
multiple chosen committees. If we only omit consistency,
sequential Thiele rules satisfy all given axioms. These rules
compute the winning committees iteratively by always adding
the candidate to a winning committee which increases the
score the most. If we omit neutrality or anonymity, biased
Thiele rules that double the points of every committee that
contains a specific candidate or the points assigned by specific
voters to the committees satisfy all other axioms.

3.2 Characterization of BSAV Rules

Next, we discuss the characterization of BSAV rules: these
are the only ABC voting rules that satisfy anonymity, neutral-
ity, consistency, continuity, choice set convexity, and weak
efficiency. The central axiom for this characterization (aside
of consistency) is choice set convexity as it enforces that
candidates can be exchanged between chosen committees.

Theorem 2. An ABC voting rule is a BSAV rule if and only
if it satisfies anonymity, neutrality, consistency, continuity,
choice set convexity, and weak efficiency.

Proof Sketch. First, we assume that f is a BSAV rule and
let « = (ai,...,qn,) denote its weight vector. It is sim-
ple to verify that f is neutral, anonymous, continuous, and
consistent. Moreover, f is weakly efficient as the weights
«; are all non-negative. Finally, we show that f is choice
set convex. For this, we consider a profile A and two dis-
tinct committees W, W’ € f(A). Next, we choose two can-
didates a €¢ W\ W and b € W/ \ W and let W =
(W \ {a}) U {b}. The central observation is now that BSAV
scores are additive, i.e., 3(A, W) = > _y 8(A,z) for
5(A, ) = Dicna: wea, @A, Since W€ f(A), 0 <
$(A, W) — 8(A, W) = 3(A,a) — 3(A,b). By applying
this argument also to W’ and W' = (W’ \ {b}) U {a},
we obtain 0 < §(A,b) — §(4,a),s0 §(A,a) = §(A4,b) and
5(A, W) = 5(A,W"). This proves that W" € f(A) and by
repeating the argument, we infer that W € f(A) for all W
withWnW' CW CWuw’.

For the converse direction, we give again only a rough
proof sketch and note that the outline of this proof is very
similar to the one of Theorem 1 as mainly the technical
details differ. In more detail, we first extend f to a function
g on QM and then use the same hyperplane argument as
for Theorem 1. Hence, we will again analyze the sets R'f =
{v e QM. W’ € g(v)} and the vectors &7 with vi*7 > 0
ifv € sz and v < 0ifv € R; . In particular, based
on choice set convexity, we show for every ballot size r €
{1,...,m} that there is a constant c, > 0 such that 4,7 =
a,- for all ballots A, € A with |Ay| = r and committees
Wi Wi € Wy with [W; N Ag| = |[W; N Ag| + 1. Based
on this insight, it is simple to complete the proof if k¥ €
{1,m — 1}. On the other hand, if & € {2,...,m — 2}, we
again consider committees W, W7 such that [W*\ W7| =
t > 1. Just as for Theorem 1, we consider a sequence of
committees W70, ... WJt such that Wi = W?, Wi =
W, and [Wie=1 \ Wi=| = 1 forx € {1,...,t}, and show
that @) = § Y _, G9==1J= for some § > 0. This implies
that 4,7 = a,.([W* N Ag| — [W79 N Ag|) for all committees
W W7 € Wy and ballots A, € A with |A,| = r. Finally,
we can now prove that f is the BSAV rule defined by the
score function s(|W N Agl, |Ag]) = aja,||[W N Agl. O

Remark 2. All axioms are required for Theorem 2. For
anonymity, neutrality, and continuity, we can define examples
similar to the ones given for Thiele rules. When omitting
consistency, the “convex hull” of Phragmén’s rule satisfies all
remaining axioms and is no BSAV rule. The rule that elects
the k£ candidates with minimal approval scores satisfies all
given axioms but weak efficiency. Finally, every Thiele rule
other than AV only fails choice set convexity.

Remark 3. AV is the only non-trivial ABC voting rule that
is both a BSAV rule and a Thiele rule if & < m — 2. Theo-
rems 1 and 2 thus characterize AV as the only non-trivial ABC
voting rule that is anonymous, neutral, continuous, consistent,
independent of losers, and choice set convex if £k < m — 2.



Remark 4. We define ABC voting rules for a fixed com-
mittee size k, but in the literature k is often part of the in-
put. For such rules, Theorems 1 and 2 imply that for every
ke {l,...,m — 1}, f(A,k) is a Thiele rule or a BSAV
rule, respectively, if it satisfies the required axioms. However,
our conditions do not enforce consistency with respect to
the committee size, so we can, e.g., use AV for k = 2 and
PAV for k = 3. It is not difficult to exclude such rules. For
instance, the well-known axiom of committee monotonicity
(Elkind et al. 2017) entails for every BSAV rule that it must
use the same weight vector for every committee size k. Simi-
lar, committee separability, an axiom introduced by Dong and
Lederer (2023a), can be used to enforce that non-imposing
Thiele rules use the same Thiele scoring function for every
committee size. Thus, our results can be easily extended to
the setting where the committee size is part of the input.

3.3 Characterizations of AV, PAV, and SAV

Finally, we demonstrate in this section how Theorems 1 and 2
can be used to characterize specific ABC voting rules. To this
end, we first note that there are numerous characterizations
of ABC voting rules within the class of Thiele rules in the
literature, and Theorem 1 can typically be used to extend
these results to full characterizations. For instance, Lackner
and Skowron (2018) characterize AV among the class of
Thiele rules based on a strategyproofness notion and it is
easy to extend this result to a full characterization of AV
based on Theorem 1. Similar claims are true for, e.g., the
characterization of AV based on committee monotonicity
(Janson 2016), the characterization of PAV based on D’Hondt
proportionality (e.g., Brill, Laslier, and Skowron 2018), or
characterizations of CCAV (e.g., Delemazure et al. 2023).
In this paper, we will, however, give characterizations of
three ABC scoring rules (namely AV, PAV, and SAV) that
are largely independent of the literature. The reason for this
is that our technique seems rather universal and may thus
also be used to characterize further Thiele rules or BSAV
rules. Finally, we will state our results only within the class
of Thiele rules and BSAV rules, respectively; Theorems 1
and 2 then generalize these results to full characterizations.
In more detail, for all three results in this subsection, we
study axioms defined for special profiles. To this end, we say
a profile A € A* is a party-list profile if there is a partition
Pa ={P1,..., P} of the candidates such that every voter
approves all candidates in one set P;, i.e., for every voter
i € Ny, there is a set P; € P4 such that A; = P;. Less
formally, in a party-list profile, the candidates are grouped
into disjoint parties and every voter supports a single party by
approving all of its members. We denote by n; the number
of voters who support party P; in a party-list profile A. For
these profiles, we will investigate the question when a voting
rule elects all members of a party. The reason for this design
choice is twofold: firstly, this will lead to rather mild axioms
which makes our characterizations only stronger. Secondly,
on party-list profiles, BSAV rules typically elect one party
after another by first electing all members of the first party,
then electing all members of the second party, and so on.
Hence, axioms describing when all candidates of a party are
elected are well-suited for characterizing these rules.

Clearly, any justification for when all members of a party
should be chosen needs to consider the purpose of the elec-
tion. For instance, if the goal of an election is to find the best
k candidates only based on their individual quality (a set-
ting known as excellence-based elections), the main criterion
for deciding whether to choose a candidate is the number
of voters supporting it. Hence, if a party P; is approved by
more voters than another party P;, then every candidate in
P; seems better than every candidate in P;. Thus, if all can-
didates of party P; are chosen, all candidates of party F;
should also be chosen. We formalize this idea as follows: An
ABC voting rule f satisfies the excellence criterion if for
all party-list profiles A, committees W € f(A), and parties
P;, P; € P4 with n; < nj, it holds that P; C W implies
that P; C W. As we show next, this condition characterizes
AV among Thiele rules.

Proposition 1. AV is the only Thiele rule that satisfies the
excellence criterion.

Proof. Clearly, AV satisfies the excellence criterion and we
thus focus on the converse direction. For this, let f denote
a Thiele rule that satisfies the excellence criterion and let s
denote its Thiele scoring function. Our first goal is to show
that s(1) > 0 and we consider for this the party-list profile A
in which 2 voters approve P; = {c1} and 1 voter approves
Py ={ca,...,cpt1} Now, if s(1) = 0, then P, € f(A) as
s is non-decreasing. This, however, violates the excellence
criterion as there is a winning committee that contains all
members of P, but none of P;, even though n; > no. Hence,
s(1) > 0 and we subsequently suppose that s(1) = 1 as
Thiele rules are invariant under scaling the scoring function.

Next, we assume for contradiction that there is an index
¢e{2,...,k}suchthat s(¢) # ¢ and s(z) = z forall x < £.
Moreover, we define A = |s(¢) — £| # 0 and let t € N such
that ¢ > 2 and tA > k. We now use a case distinction with
respect to s(¢) and first suppose that s(¢) = ¢ + A. In this
case, consider the party-list profile A where ¢ voters approve
P, = {ec1,...,c¢} and each other candidate ¢ € C \ P is
uniquely approved by ¢ + 1 voters. It is easy to verify that
every committee W with P; C W has a score of §(A, W) =
ts(O) +(k—=0)(t+1) =tA+tl+(k—0)(t+1) > k+tk.
By contrast, every committee W’ with ¢/ = |Py N W'| < £
has a score of $(A, W') =ts(¢')+ (k=0 )(t+1) =t +
(k—=0)(t+1) <tk+ k. Thus, f(A) ={W e Wi: P, C
W'}. However, this contradicts the excellence criterion since
P, C W forevery W € f(A) and there is a party P; = {c}
withc € W and n; > n;.

For the second case, we suppose that s(¢) = ¢ — A and
consider the profile A in which ¢ voters approve the party
P, ={c1,...,ce} and each candidate ¢ € C \ P is uniquely
approved by ¢ — 1 voters. We compute again the scores of
committees W € Wj,: if P, C W, then §(A, W) = ts(¢) +
(k=0O@t—-1)=tl—tA+ (k-0 —1) <tk—k, and
if W/ NP =¢—1,then §(A,W') =ts({ — 1)+ (k —
+1)t-1)=tl—-1)+(k—L+1)(t—1) > kt — k.
Hence, P, ¢ W for all W € f(A). However, this violates
the excellence criterion since for every W € f(A), there is a
party P; = {c} with P; C W and n; < n;. We thus have a
contradiction in both cases, so s(¢) = £ and f is AV. O



Another frequent goal in committee elections is propor-
tional representation: the chosen committee should propor-
tionally represent the voters’ preferences. To this end, we note
that if a party P; with n; votes gets x; seats in the chosen com-
mittee, then each of the elected candidates in P; represents
on average "i/z; voters. Hence, if 7i/z; < ni/z;+1, then reas-
signing one seat from party F; to party P; intuitively results
in a more representative outcome. We will formalize this intu-
ition with a new proportionality notion since we aim to show
that SAV is more proportional than AV, but SAV violates all
commonly considered proportionality axioms. In more detail,
we say that an ABC voting rule f is party-proportional if for
all party-list profiles A, committees W € f(A), and parties
P;, P; € P4 with ni/|p;| < ni/|p;|, it holds that P, C W
implies P; C W. Intuitively, this axiom states that we can
only choose all members of a party if there is no party that
represents on average more voters and is not fully chosen
yet. Hence, this axiom combines the idea of proportionality
with the native behavior of BSAV rules. Even though party-
proportionality is a rather weak axiom as it is, e.g., implied
by D’Hondt proportionality (Lackner and Skowron 2021b),
we show next that this condition characterizes PAV within the
class of Thiele rules. This demonstrates that our new axiom
is indeed a reasonable and non-trivial proportionality notion.

Proposition 2. PAV is the only Thiele rule that satisfies
party-proportionality.

Proof Sketch. First, we show that PAV is party-proportio-
nal. To this end, let A denote a party-list profile, consider
two parties P;, Pj € Pa with (35 < \%I’ and suppose for
contradiction that there is a committee W € PAV(A) such
that P, C W, P; ¢ W. In this case, exchanging a candidate
x € WNP; with a candidate y € P;\ W leads to a committee
W' with higher PAV-score than W, which contradicts that
W € pAV(A). Thus, PAV is party-proportional. For the other
direction, we proceed similarly to the proof of Proposition 1
and let f denote a Thiele rule that is party-proportional and
s its Thiele scoring function. First, we show that s(1) > 0
by the same construction as in the proof of Proposition 1 and
rescale s such that s(1) = 1. Then, we construct two profiles
showing that f fails party-proportionality if s(¢) # Zﬁ,zl e
forsome £ € {2,...,k}. So, f is indeed PAV. O

It is easy to see that SAV satisfies—in contrast to AV—
party-proportionality, so SAV is more proportional than AV.
Even more, party-proportionality characterizes SAV within
the class of BSAV rules when only allowing voters to approve
at most k candidates. However, if there is a party P; with
|P;| > k, this is no longer true as not all member of such
parties can be elected. We thus introduce another axiom to
characterize SAV: an ABC voting rule f satisfies aversion to
single-party committees if for all party-list profiles A and par-
ties P; € P4, itholds that W C P, forall W € f(A) implies
that 3 > n; for all other parties P; € P4 with [P;| = 1.
Intuitively, this axiom is a mild diversity criterion which re-
quires that a single party can only get all seats in the chosen
committee if it is approved by a sufficient number of voters
when compared to singleton parties. We next characterize
SAV based on this this axiom and party-proportionality.

Proposition 3. SAVis the only BSAV rule that satisfies party-
proportionality and aversion to single-party committees.

Proof Sketch. First, it follows immediately from the defini-
tion of SAV that it satisfies party-proportionality and aversion
to single-party committees. For the other direction, we con-
sider a BSAV rule f that satisfies the given axioms and let
a € RT, denote its weight vector. From here on, the proof
proceeds again just as the one of Proposition 1: we first show
that ar; > 0, rescale such that vy = 1, and then use a similar
construction to infer that o,y = % forall¢ € {1,...,m}. O

Remark 5. We note that PAV fails aversion to single-party
committees as the ratio is chosen too restrictive: there are
party-list profiles A with a party P; such that W C P; for all
W € PAV(A) even though n; > ni/|p;| for a singleton party
P;. However, for all such profiles, it holds that ni/k > n;. In
the context of proportional representation, this bound seems
more reasonable as it states that each elected member of
P; represents more voters than the single member of P;.
Interestingly, party-proportionality together with a variant
of this condition (for all party-list profiles A and parties
P, it holds that W C P, for all W € f(A) if and only if
n; < ni/k for all singleton parties P;) characterize the BSAV
rule defined by the weight vector ooy = max(1/¢, 1/x) for all
£. This rule is known as modified satisfaction approval voting
(Kilgour and Marshall 2012) and this observation shows that
it might be more desirable than SAV.

4 Conclusion

In this paper, we axiomatically characterize two important
classes of approval-based committee (ABC) voting rules,
namely Thiele rules and BSAV rules. Thiele rules choose
the committees that maximize the total score according to
a score function that only depends on the intersection size
of the considered committee and the ballots of the voters.
On the other hand, BSAV rules are a new generalization of
multi-winner approval voting which weight voters depending
on the size of their ballot. For both of our characterizations,
the central axiom is consistency which has famously been
used by Young (1975) for a characterization of single-winner
scoring rules or by Lackner and Skowron (2021b) for a char-
acterization of ABC scoring rules in the context of committee
ranking rules. In particular, our results allow for simple char-
acterizations of all important ABC scoring rules as all such
rules belong to one of our classes. We also demonstrate this
point by characterizing the well-known ABC voting rules AV,
SAV, and PAV. In particular, the result for SAV is, to the best
of our knowledge, the first full characterization of this rule.
Figure 1 shows a more detailed overview of our results.

Our paper offers several directions for future work. Firstly,
our main results allow, of course, to characterize further ABC
scoring rules. Secondly, characterizations of many important
ABC voting rules (e.g., Phragmén’s rule and the method of
equal shares) are still missing and some of our ideas might be
helpful to derive such results. Finally, even though all relevant
ABC scoring rules belong to one of our classes, we would
still find a full characterization of the set of ABC scoring
rules interesting.
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A Omitted Proofs from Section 3

In this appendix, we will prove Theorems 1 and 2. Since
the proofs of these theorems are rather involved, we orga-
nize them in subsections: first, we discuss the hyperplane
argument for both theorems jointly in Appendix A.1, then
consider the (sligthly simpler) proof of Theorem 2 in Ap-
pendix A.2, and finally present the proof of Theorem 1 in
Appendix A.3.

Moreover, for our proofs, we use additional notation.
In particular, we suppose that there is a bijection B
{1,...,|A|} — A that enumerates all our ballots. This func-
tion allows us to represent profiles A by vectors v such that
the ¢-th entry of v states how often the ballot B(¥¢) is re-
ported in A. When specifying the vector of a specific profile
A, we typically write v(A), but we also consider arbitrary
vectors v € Rl which usually have the same interpreta-
tion. Finally, we define the permutation of vectors as follows:
7(v)e, = vy, for all permutations 7 : C — C, vectors v, and
indices ¢1,¢2 € {1,...,|A|} such that B(¢1) = 7(B({2)).
Put differently, if there are vy ballots of type B(¢3) in v, then
there are 7(v),, = vy, ballots of type B(¢1) = 7(B(¢2)) in
7(v).

A.1 The Hyperplane Argument

In this subsection, we will show the hyperplane argument
sketched in the proof of Theorem 1 and additionally inves-
tigate some of its consequences. Note that our subsequent
arguments do not rely on independence of losers, weak ef-
ficiency, or choice set convexity and thus form the basis of
the proofs of both Theorems 1 and 2. However, we will focus
in this section on non-imposing ABC voting rules, which
requires that for every committee W € WF, there is a profile
A € A* such that f(A) = {W}.

Now, let f denote an anonymous, neutral, consistent, and
non-imposing ABC voting rule. As first step, we aim to ex-
tend the domain of f from approval profiles to QM. To this
end, we recall that, since f is anonymous, there is a function
g : NI — Wy such that f(A) = g(v(A)) for all profiles
A € A*. We show next how to extend this function to Q!
while preserving its desirable properties.

Lemma 1. Let f denote a non-imposing ABC voting rule
that satisfies anonymity, neutrality, and consistency. There
is a function § : QA — 2Wk \ {0} that satisfies neutrality,
consistency, and §(v(A)) = f(A) forall A € A*.

Proof. Let f denote a non-imposing ABC voting rule satis-
fying anonymity, neutrality, and consistency. Moreover, let
g : NIl — W, denote a neutral and consistent function such
that g(v(A4)) = f(A) for all A € A*; f uniquely defines
such a function since it is anonymous. We will subsequently
extend the domain of g. For doing so, we will heavily rely
on the profile A* in which every ballot is reported once.
Moreover, let v* = v(A*) and observe that v; = 1 for all
¢ e{1,...,]A|}. Clearly, anonymity and neutrality require
that f(A*) = g(v*) = W as all committees are symmetric
to each other in A*.

Step 1: Extension to Z/4I

First, we define a function g : ZIAl W, that extends
g to negative numbers: j(v — fv*) = g(v) for all v € NIAI
and ¢ € Nj. First, note that g is well-defined: for every
two integers £, ¢’ € Ny and vectors v,v’ € NI such that
v — fv* = v — {'v*, it holds that v = v + (¢ — £)v* and
v =0 + (¢ — ¢)v*. Assuming that £ > ¢', we thus infer
from consistency that g(v) = g(v") N g((¢ — £)v*) = g(v')
as g(v*) = g((£ — ¢')v*) = Wy. Because g(v) = g(v'), we
have by definition that g(v — fv*) = g(v' — £'v*). Moreover,
g is defined for all v € Z since we can always find v/ €
Nl and £ € Ny with v = v’ — fv*. Finally, note that
g(v(A)) = g(v(A) — 0v") = g(v(4)) = f(v(A4)) for all
profiles A € A*.

Next, it is easy to verify that g inherits neutrality and
consistency from g. For showing the neutrality of g, consider
a vector v € Zl and let W € g(v). By the definition of g,
there are v/ € NIl and ¢ € Ny such that v = v/ — fv* and
g(v) = g(v + fv*) = g(v'). Since 7(v*) = v*, it is easy to
see that 7(v) + fv* = 7(v’) for all permutations 7 : C — C.
Hence, 7(W) € g(7(v)) = g(7(v) + tv*) = g(7(v")) due
to the neutrality of g.

Finally, for proving that g is consistent, consider two vec-
tors v', v? € ZIl. By definition of g, there are ', 7> € NIAI
and 41, 4> € Ny such that v = o1 — {1v*, v? = 02 — lov¥,
9(01) = (v +07) = g(0), and g(v2) = g(v? +a0") =
g(9?). Clearly, this implies that g(v! +v?) = g(v! + 02 +
vt + lov* ) = g(v* + 9?2). Hence, if g(v') N g(v?) =
g(vt) N g(v )#cheng(’u +v):g(171+172):
g(v') N g(v?) = g(v!) N g(v?) because g is consistent.

Step 2: Extension to QI

As second step, we extend g to the rational numbers. For
doing so, we define §(%) = g(v) for all v € Z!"l and ¢ € N.
Clearly, g is defined for all v € Q4. Next, the consistency
of § shows that § is well-defined: if there are v, v’ € ZIA! and
¢,¢" € N such that § = %, then ¢/v = fv’. By consistency
of g, we hence infer that g(v) = g(¢'v) = g(¢') = g(v'),
which proves that g is well-defined. Moreover, observe that
a(v(A)) = §(*52) = g(v(4)) = f(A) forall A € A",

Next, it is simple to show that ¢ is neutral and consistent.
For proving neutrality, let v € Q| be an arbitrary vector
and W € §(W). By definition, there are v/ € ZM!I and
¢ € Nsuch that v = % and §(v) = g(v'). It holds for
every permutation 7 that 7(v) = %?') and thus, we have that
T(W) € g(r(v)) = g(7(v")) because g is neutral.

Similarly, for showing that g is consistent, consider two
vectors v, v? € QI such that g(v') N G(v?) # 0. By
definition of §, there are ', 9% € ZI! and ¢;,¢5 € N such
thatv! = £, 02 = £ g(v') = g(0'), and §(v?) = §(v?).
Moreover, it holds by definition of § that g(v! + v?) =
A(%) = g(lad' + ¢19?). Since g is consistent, we
thus infer that §(v! + v?) = g(lad! + Elv ) = g(lad') N
g(019%) = g(v') N g(9?) = g(v*) N G(v?). This proves that
g is consistent. O

Since ¢ fully describes f, we will next investigate this



function. To this end, we introduce some additional notation.
In particular, we suppose that the committees in W, are
arranged in an arbitrary order W1, ... W+l and define
R = {v e QAL W; € §(v)} as the set of vectors for
which ¢ chooses W. First, we note that the sets Rf are
symmetric: if a permutation 7 : C — C maps W; to W; (i.e.,
W; = 7(W;)), thenv € sz ifand only if 7(v) € R;c because
W; € g(v) if and only if 7(W;) € g(7(v)). Moreover, since
g is consistent, all R are Q-convex (i.e., if v,v' € Rf then
AW+ (1= e Rf for all A € Q N [0, 1]). Consequently,
the closure of Rf with respect to RIMI, Rf is a convex cone.
Furthermore, we observe that g(v) = {W’ € Wr:v €
RIY C {Wi e Wy:ve Rl forall v € QA Hence, we
will subsequently analyze the sets R‘if and show next that
these sets can be separated by hyperplanes. In the subsequent
lemma, we use vu for the standard scalar product between
two vectors v, u € RIAl.

Lemma 2. Let f denote a non-imposing ABC voting rule that
satisfies anonymity, neutrality, and consistency. Furthermore,

consider two distinct committees W, W3 € Wy. There is
a non-zero vector ut7 € RN such that vu™ > 0 for all

v GRf and vu®’ <Of0rallv€Rf

Proof. Let f denote a non-imposing ABC voting rule satisfy-
ing anonymity, neutrality, and consistency. Furthermore, let §
denote the extension of f to Q4! as defined in Lemma 1. Fi-
nally, we consider two arbitrary committees W, W7 € W,.

We will first show that the interiors of the sets R/ and R/
are disjoint, i.e., int R{ N int R; = (). Assume for contra-
diction tllat this is_not the case, which means that tPere is
v € int R nint R} N Q4. By the definition of R/ and
R; this means that W' € g(v), W7 € G(v). On the other
hand, f is non-imposing, so there is a profile A such that
f(A) = {W"}. By the definition of g, §(v(A)) = {W*}.
Finally, since v is in the interior of Rf N Q'A‘, there must
be A € (0,1) N Q such that (1 — Av) + Av(A) € R; How-
ever, by consistency, we have that §((1 — A\)v + Av(4)) =
g(v) N g(v(A)) = {W*}. This is a contradiction and thus,
the interiors of sz and ]:2; must be disjoint.

Next, we observe that the interiors of R/ and R; are non-
empty. This follows from the observation that the sets sz ,and
thus also their closures Rif , are symmetric and that RIMI =
U, wily R{. Since there is only a finite number of
committees, this entails that the sets sz have full dimension
and thus have indeed non-empty interiors. Finally, we can
now use the separating hyperplane theorem for convex sets to

derive that there is a non-zero vector v/ € R that satisfies
the conditions of the lemma. O

For an easy notation, we say that a non-zero vector u
separates R{ from R; ifou > 0 forallv € le and vu <0

forall v € R; . In particular, the vectors derived in Lemma 2
are such separating vectors. Moreover, if a vector u separates

R/ from R/, then —u separates R/ from R/. We show next
that the sets R{ are fully described by every set of separating
vectors.

Lemma 3. Let f denote a non-imposing ABC voting rule
that satisfies anonymity, neutrality, and consistency. For all
distinct i,j € {1,..., Wi}, let u' € Rl denote a non-
zero vector such that u™J separates Rf from Rf It holds for
alli e {1,.. |Wk|}thatRf =Sl ={ze RIAI, gy >
0forall j € {1,....[Wil} \ {i}}.

Proof. Let f denote a non-imposing ABC voting rule that
satisfies all given axioms, let the vectors u*’ be defined as in
the lemma, and fix anindex i € {1,...,|Wy/|}. By definition,
it holds that vu®J > 0 forall j € {1,...,|[Wi|} \ {i} if
v e le, SO v € Sif. This proves that le - Sif. For the
other direction, note that the sets R{ are fully dimensional
since they are symmetric and RH = (J. .

Since Rf - Sf we thus also have that int Sif # (). Now,
let v € int S , which means that vu® > 0 for all j €
{1,..., W[}, j # i. In turn, this implies that v ¢ R/ for
all j € {1,...,Wk|} \ {i} because v € ij entails that
vutd < 0. Since RMI = U,y 1,y R and all R are
closed and convex, we now infer that v € int le . Hence,
int S C int R/, so we deduce that S} C R/. O

As a consequence Qf Lemma 3, it suffices to understand the

separating vectors u"7 for characterizing §. Hence, we now
aim to derive such vectors that are additionally symmetric.
For this, we start with the simple but helpful observation that
the symmetry of the sets le entails some symmetry for the
hyperplanes.
Lemma 4. Let [ denote a non-imposing ABC voting rule
that satisfies anonymity, neutrality, and consistency. More-
over, consider committees W, Wi W% Wi € W, and a
permutation T : C — C such that W' # W, we # wi',
Winwi| = Wi nwi'|, 7(WinWi) = Wi n w7,
T(WI\WI) = WI\WY, and 7(WI\ W) = W7\ W
If a vector u separates Rif from R;-c , then T(u) separates sz,
from Rf/.

Proof. Let f denote an ABC voting rule satisfying all given
axioms, and consider committees W*, W7, W* WJ € W,
as defined in the lemma. Moreover, let © denote a vector that

separates le from R], andlet7: C — Cbe a permutation
that satisfies the conditions of the lemma. Now, consider a

vector v’ € R By the neutrality of g, there is a vector
v € R/ such that 7(v) = v/ because 7(W*) = W*'. Since u
separates Rf and Rf we have vu > 0. Now, it is straightfor-

ward that v'7(u) = T(v)T(u) = vu > 0 because the scalar
product does not change if we permute both vectors. Hence,

it holds that v'7(u) > 0 for all v’ € le, An analogous argu-
ment also works for vectors v’ € R{, and 7(u) thus separates

le, from Rf /- O



Based on Lemmas 2 to 4, we show next that thf:re are
highly symmetric vectors that fully specify the sets sz .
Lemma 5. Let f denote a non-imposing ABC voting rule
that satisfies anonymity, neutrality, and consistency. There
are non-zero vectors U"’ that satisfy the following conditions
Sforall W* W7 € Wy:

I Rl = {veRM v e{1,...,
0}.

2. 4% = —ad,

3. 4" = 7(a"7) for all permutations T : C — C with
(W) =W and 7(W7) = W',

Wily \ {i}: @0 >

Proof. Let f denote a non-imposing ABC voting rule that
satisfies all given axioms. By Lemma 2, there are non-zero
vectors u*J that separate R/ from R/ for all pairs of com-
mittees W, W7 € W, and suppose that u®J = —uf?,
Our main goal is to make these vectors symmetric and we
will heavily rely on Lemma 4 for this. To this end, we de-
fine 2 = max |W?\ WJ| as the maximal distance
Wi WIieWy

between two committees. Moreover, we fix z + 1 com-
mittees W, ... W% such that [W% \ Wi | = z for all
ze{l,...,z}.

Next, we will derive the symmetric separating vectors
@%J. For this, consider an arbitrary index x € {1,...,2}
and let u'= be the vector that separates R{O from Rf:
Moreover, we define the sets X%\iz = TJio \ [},
XioNie = Wi n Wie, XieVo = Wi \ W%, and
T = {7 € C°: 7(XNix) XioNia r(Xio\iz) —
XNtz r(X%\io) = X \io} In particular, it holds for ev-
ery 7 € T that 7(W) = W and 7(W%) = W . Con-
sequently, Lemma 4 shows that 7(u%*=) also separates szo
from R{I and the same follows for a/0%= =7 7 (u'").
This also means that the vector @i'=% = —gi% sepa-
rates R} from R} . Next, let 7* denote a permutation
such that 7%(X M=) = XN 7*(Xio\ie) = Yia\io,
(X% \0) = X'\ and 7*(7*(c)) = c for all candi-
dates ¢ € C. It is easy to verify that 7% (W) = W% and
7*(Wi=) = W' and Lemma 4 thus shows that 7* (&%)
separates Rf from Rf Finally, we define the vector %%
by @forts = u“)’“ +7 ( i2:40) and note that this vector sepa-
rates leo from lez. Moreover, we generalize these vectors to
arbitrary committees W, W7 € W as follows: we first de-
termine x = |W*\ W/| and choose a permutation 7 such that
T(Wi) = Wéand 7(Wi) = WJ. Then, 47 = r(a'0).
This vector separates R/ from R; by Lemma 4.

It remains to show that these vectors satisfy our conditions.
In more detail, we first prove Claim (1) and the discuss an
auxiliary claim establishing some symmetry properties of
the vectors 40 for every = € {1,...,z}. Based on this
auxiliary claim, we then show Claims (2) and (3).

Claim (1): R/ = {v € RMI:vj e {1,...
{i}: va®i > 0}

For provmg this claim, we only need to show that all
vectors 47 are non-zero because it has already been proven

that these vectors separate separate sz from ij- . Hence,

once it is established that the vectors 4%/ are non-zero, the
claim follows from Lemma 3. Now, consider two committees
VVZ Wi € Wy and let & = |[W*\ WY|. Since we derive

4% from @0* by permuting the latter vector, 4"/ is non-
zero if 4'0>%= is non-zero. Hence, it only remains to show
that ¢’ %= is a non-zero vector. For this, we use that szg =
{z € RV € {1,..., Wi} \ {io}: zui > 0} due
to Lemma 3, where the vectors u'0-* denote the hyperplanes
given by Lemma 2. Now, let v denote a point in the interior
of Rf such a point exists as Rf is fully dimensional and
thus has a non-empty interior. Smce v E 1ntRi0, it holds that
vuof > 0forall £ € {1,...,)W|} \ {i}, in particular that
vu''= > (0. Next, we note that also the vectors 7(u'"=)
for 7 € T are non-zero and separate szo from lez. So,
we can exchange u'®*» with 7(u*"*=) in the presentation
of leo and infer that vr(u'=) > 0 since v is still in the
interior of Rf Hence, v = vy - 7(ui) > 0,
so @'+ is a non-zero vector. This implies that 7* (%%=%)
also is a non-zero vector and we can thus also represent R{O
by replacmg u'o'= with 7*(a@'="). This implies again that
vT*(@'=>") > 0 and we therefore conclude that va‘-'s =
v(a'ots 4+ 7*(al=%)) > 0, so 4% is indeed a non-zero
vector.

Auxiliary Claim: Symmetry of @0

We will first prove that the vectors 40>+ are rather sym-
metric. In more detail, we will show that 4 ”"’” 1220’“ for
all ballots B(¢1), B({2) € Aand all z € {1 z} such
that |B(¢1)| = |B(¢2)] and |B(¢1) N X| = \B(Eg) N X|
for all X € {X%MN% Xio\iz Xi\iol For this, we fix
such ballots B(¢1), B(¢2) and an index © € {1,...z}.
By our assumptions, there is a bijection 7 : C — C
such that B(¢3) = 7(B(¢1)) and 7(X) = X for all
X € {XiNi= Xio\iz Xiz\io} By the latter insight, it fol-
lows that 7 o 7 € T for every permutation 7 € 7. More-
over, for distinct permutations 7,7 € 7, it holds that
T oT; # T o Ty because there is a candidate ¢ such that

71(c) # 72(c). This shows that {7 o 7: 7 € T} = T. Since
B(ls) = 7(B(#1)), we derive for every vector u € R4l that
N( )52 = Uy, . Consequently, 107” = ZTET (uioyir)& =

dorer T(T(u)),, = ZTET T(u=),, = uz"’“ This
proves that the vector %> satisfies our symmetry con-
dition, and clearly the vector @'=% = —q'-i= satisfies
this condition, too. Finally, recall that we choose 7* such
that 7 (X%0M) = XioNie r*(Xi\e) = X\ and
7*(X%\0) = X%\i= This means that | B(¢) N X" | =
[T (B(O)NX M|, |BO)NX 0N | = |7 (B(£)NX =\l
and |B(¢) N X% \o| = |7*(B(¢)) N X\« |, Since |B(¢1) N
X| = |B(fs)NX|forall X € {X 0N Xio\iz yiz\io} the
same holds for 7*(B(¢1)) and 7*(B(¢2)) and we infer that
T* (@), = 7* (@), Finally, this means that ¢, =

ZO’“—}—T (@ierio),, —ug’“—l—r (@ierio),, = ﬂz‘;’“ which
proves our auxiliary claim.



Claim (2): 4% = —a/*

Consider two committees Wi,Wj € Wy, let ¢ =
Wi\ Wi = |W7 \ W1|, and fix a ballot B(f). We
will show that @, = —@;" to prove this claim. For this,
let 7 denote the permutation such that 7(W) = W¢,
T(Wie) = W7, and 4% = T(WO“) Similarly, we define
7/ as the permutation with /(W) = Wi, 7/(Wis) =
W', and 4" = 7'('*). By definition, it holds that

ay’ = A e and @)’ = ﬂ}“’“ for the indices £1, f» with
B(¢) = 7(B(¢1)) and B(¢) = 7' (B (¢2)). Hence, the claim

~00, 0 ~50, 0

follows by proving that @,"* = —u,"". For this, we
first observe that the COIldlthIl on 7 and 7’ require that
T(Xioﬂiz> _ T/(Xmﬁim) — Xiﬁj, T(X“’\“) — Xi\j,
T(X\Nio) = XN /(XioNie) = X9\ and 7/(Xe\i0) =
X?\J, Hence, we infer that |B(¢;) N X%M%| = |B({) N
X[ = [B(ly) N X0Me| |B(fy) N X'\ | = [B(€) N
XNI| = |B(fy) N X%\io| and |B(f1) N X% \io| = | B(£) N
XI\{| = |B(fy) N X'\ |, Moreover, it clearly holds that
|B(¢1)| = |B(¢)| = |B(f2)|. Now, we consider again the
permutation 7* used in the definition of 4‘-* and recall
that 7% (W) = W=, 7*(W'=) = W', and 7*(7*(¢)) = ¢
for all ¢ € C. Furthermore, let £3 denote the index such that
B(l3) = 7*(B(¢1)) and note that | B(¢2)NX| = |B(¢3)NX|
for all X € {X%M= Xio\iz Xi\io C}l Hence, our auxil-
fary claim entails that @[> = u; = On the other hand,
we have by definition that T (@hert0),, = u[1
and 7*(@'e0),, = ﬂZ’“’ = ﬁ;" "= It is now easy to com-
pute that u“’ e — ftzo T o (gheio), = sz” e ﬂ}g e

() = e 47 (@) = il e
therefore conclude that )" = ﬂz"’“ = fﬁ}(’ “” which
proves this claim.

Claim (3): o/ = #(a
FWI) =W

For 4this}/ clai/m, we consider four committees
W Wi, W* W7 and a permutation 7 such that
W = W and 7#(W’) = W/. Moreover,
consider two ballots B(¢1),B(¢2) € A such that
B(t;) = #(B(fz)). We will show that a)7 = a}7,
which implies that @'+ = #(a"7). For this, let
x = [W'\ W/ = |W"\ W/| and let 7 and 7" denote
the permutations such that 7(W?) = W*, 7(W*=) = W,
T (Wio) = Wi, 7/(Wi=) = Wi', abd = 7(4io), and
@' = 7/(@'=). Clearly, there are integers (3, {4 such

Y if (W) = W and

that B(¢,) = 7/(B(¢3)) and B(¢3) = 7(B({4)). B

definition, this means that @, 7 = 7/(a"%), = 122 “”

and ﬁé’j = r(aiis),, = ﬂz"’“ Hence, our equality
"740711 _ AZ()ﬂac

follows by showing that = 4, For this, we
note that 7#(X‘J) = X?' ﬂj , #(XN) = X¥\ and
F(XIN) = X?/\i/. Moreover, analogous claims hold for
7 (between W' W' and W*, W) and for 7/ (between

Wio Wi= and W, WJ"). Thus, we can derive the following
equalities since permuting sets does not change the size of

their set intersection.
| B(£3)N X" | =|B(6)N X"
=|B(t2)NX"|=|B(ls)N X" |
|B(ts)NX 0V | = | B(£)nX V|
=[B(l)N X"V | =|B(fs)NX "0\ |
|B(ts)N X\ | =] B(6) X
=|B(£2)N X\ =|B(£s)N X" \io|

Finally, we clearly have that |B(¢3)] |B(¢1)| =
|B(f2)| = |B({4)|, so our auxiliary claim implies that
@2 = w,)"". This concludes the proof of this claim. [

After proving Lemma 5, we will next investigate its con-
sequences as we will heavily rely on this lemma. In more
detail, as explained in the proof sketches of Theorems 1 and 2,
we will frequently consider the hyperplanes 4% for commit-
tees Wi W3 with [W?\ W7| = 1. We thus show in the
next lemma that there is a compact representation of these
hyperplanes.

Lemma 6. Let f denote a non-imposing ABC voting rule
that satisfies anonymity, neutrality, and consistency. For
every ballot size r € {1,...,m}, there is a functions
si(x,y) that satisfies the following claims for all ballots
B(¢) with |B(£)| = r and committees W', WJ € Wy, with
Wi\ Wi| = 1.

1. ﬁ;“ = s (|B(6) n W, |B(¢) N W]).

2. 5, (|B(O) N W |B(O) n W) = 0if |[B(e) n W'| =

IB(f) nwJ. _

3.s,.(1B(C) n W', IB(6) N W) =

| | =5 (IB() N
WA, |B(£) N W),

Proof. Let f denote an ABC scoring rule that satisfies all
given conditions and let 4"/ denote the non-zero vectors

glven by Lemma 5. Our main goal is to show that , v —
ug,’] for all committees Wi, W4, W W94 € W, and bal-
lots B(¢), B({") € A such that |[Wi\ W7| = [Wi \ W7'| =
L |B(O)] = |B()]. |B() "W = |B(¢) "W, and
|B(¢) N Wi| = |B(¢') N W4'|. Clearly, this 1mphes the exis-
tence of the functions s, as we can just define s’ (z,y) = 4 0
for arbitrary committees W*, W7 € W, and a ballot B(¢)
with [W* \ W’| = 1, [B({)] = =, |[B({) " W'| = «z,
and |B(¢) N W7| = y. For proving our claim, we define
{a} = Wi\ Wi, {b} = Wi\ Wi, {a'} = W\ W7, and
{v'} = W7\ W, Moreover, we use a case distinction with
respect to whether |B(¢£) N W*| = |B(£) N W/| or not.
First, we suppose that |B(¢) N W*| = |B(¢) N W?| and
consequently also |B(£') N W | = |B(¢) N W7'|. In this
case, we claim that 112] = 112/,] "~ 0and prove this statement
only for ﬂé’j as the argument for a;’,f s symmetric. The key
insight here is that if | B(¢) NW?*| = | B(¢) NW7|, then either
{a,b} € B(¥) or {a,b} N B({£) = ). Now, let 7 denote the
permutation defined by 7(a) = b, 7(b) = a, and 7(2) = x
forall x € C\ {a,b}. It is easy to see that 7(W"*) = W7,



T(W3) = Wi, and 7(B(¥)) = B(¥). Therefore we can use
Claims (2) and (3) of Lemma 5 to infer that —4)”7 = aé -

(@), = 4y’ . Clearly, this is only possible 1f @y’ =0, 50
our claim follows.

A second case, suppose that |B(¢) N W[ # |B(¢) N WJ|.
Without loss of generality, we suppose that | B(¢) N W?¢| >
|B(¢) N W7|. This implies that |[B(¢) N W*¢| = |B(¢') N
W = |B()NWI'|+1=|B)NWI|+1,s0a € B({),
b¢g B({),a’ € B(¢'),and b’ ¢ B({'). Now, let 7 denote the
permutation such that 7(a) = a’, 7(b) = b/, (W N W) =
W N W', and 7(B(£)) = B(£'); by our assumptions such
a permutation exists. Clearly, 7(W?) = W, 7(W7) = W7,
and 7(B(¢)) = B({'), so Claim (3) of Lemma 5 entails that
ﬁ}l,j = (6 = @y’ . This proves the desired equality.

By the insights of the last two paragraphs, it follows that
there are functions s;(z,y) with 4,7 = s{p ) (IB(() N
W'|,|B(¢) N W) for all ballots B(¢) and committees W*,
W with [W*\W7| = 1. Moreover, the analysis in the second
paragraph immediately implies that s1(|B(¢) "W, |B(¢) N
W) = 0 for all committees W, W9 and ballots B(¢) with
[WA\WI| =1, |B({)| = r,and |BU)NW?| = |B({)NW|
because @,” = 0. Hence, our functions s, satisfy Claims (1)
and (2). Moreover, Claim (2) implies Claim (3) in the case
that |[B(¢) N W' = |B(¢) N W1|.

Hence, it remalns to show that s.(|B(¢) N W'|,|B(£) N
Wi|) = —sL(|B(£) " W7, B(¥) OW1| )if |B(£) N W #
|B(¢) N Wj\. For this, consider again two committees
W, Wi e Wy, withW\W7 = {a}, WI\W?* = {b}. More-
over, consider a ballot B(¢) such thata € B(¢), b ¢ B(¢)
and let 7 denote the permutation defined by 7(a) = b,
7(b) = a,and 7(z) = z forall x € C\ {a, b}. By Claims (2)
and (3) of Lemma 5, we have for the ballot B =71(B(¢))
that —ay/ = @' = 7(4"9)p = @}’. On the other hand,
it is easy to see that |[B({) N W = |B(¢') N W/| and
|B()NWJ| = | B(¢')NW?|. Hence, we infer that s%(| B(¢£)N

WILIB(O 0 W) = i = il = —sL(B() n
WILIB() n W) = —su(|B(6) n WL |B(f) 0 W),
which proves this claim. 0

Based on the last insight, we can already fully characterize
the set of ABC voting rules that are ABC scoring rules if k =
1 or kK = m — 1. This turns out rather helpful for the proofs
of Theorem 1 and Theorem 2 because it is straightforward
to adapt the proof below to show these results when k €
{1,m —1}.

Proposition 4. Assume k =1 ork = m — 1. An ABC voting

rule is an ABC scoring rule if and only if it satisfies anonymity,
neutrality, consistency, continuity, and weak efficiency.

Proof. It is easy to check that ABC scoring rules satisfy all
given axioms. So, we focus on the converse and let f de-
note an ABC voting rule that satisfies all given axioms for
k = 1; the case that k = m — 1 follows from similar argu-
ments. First, if f is trivial, it is the ABC scoring rule induced
by the score function s(x,y) = 0. We hence suppose that
f is non-trivial. We will first show that f is non-imposing.
For this, we note that there is a ballot A € A such that

f(A) # Wy, because of non-triviality and consistency. Let
¢, d denote candidates such that {c} € f(A), {d} & f(A)
and consider a permutation 7 : C — C with 7(¢) = ¢. By
neutrality, {c} € f(7(A4)), {r(d)} & f(r(A)). Next, con-
sider the profile A* that consists of a ballot 7(A) for every
permutation 7 with 7(¢) = ¢. By consistency, we infer that
f(A*) = ﬂT:C‘)C: T(c)=c f(T(A)) = {{C}} NGUtrality im-
plies now that f is non-imposing
Next, we use Lemma 1 to obtain the function ¢

QA — 2™k \ {§} and define the sets R = {v €
QMlI: W € g(v)}. In turn, Lemma 5 entails the exis-

tence of symmetric non-zero vectors @'+ such that R/ =

{fv e R € {1,..., Wi} \ {i}: @*Fv > 0}. More-
over, since £k = 1, it follows for all distinct committees
Wi WJI € Wy that |[W? \ WJ| = 1. So, Lemma 6 ap-
plies and shows that there are functions s,.(x,y) such that
4y = sy (IW* 0 B(O)],[W? N B(()]) for all ballots
B(¢) € A and committees W*, W7 € W,. Based on these
functions, it is simply to infer the score functlon s(z, 2)
of f: we define 5(0,2) = 0 and s(1,2) = s.(1,0). It is
now easy to check that s(|W*n B(¢)|,|B(¢ )|) s(jWin
BOL,1BO)]) = sl (1B N W, [B(E) W) due to
the properties of s. discussed in Lemma 6. Consequently, it
holds that @"Jv = 37, |4y ves' (W N B(O],[W/ N

BB = Yseqr... ap vels(WN B, |BEO)]) -
s(|Wi n B(0)],|B(¢)])) for all Wi, WJ € W and v €
RIAl. We thus define (v, W) = D ore{1, A} ves(|Wi N
B(?)|,|B(¢)]) and infer that sz = {v € RALvj ¢
{1,..., Wi} \ {i}: a0 > 0} = {v € RMI: vy
{1,. ..,|Wk|} s(v, W) > 3(v,W7)}. Hence, f(A)
Ggw(A) C {W € We: YW € Wy, : §(A, W)
5(A, W)} := f/(A) forall A € A*.

Next, we will show that this subset relation is an equal-
ity. Suppose for this that there is a profile A such that
f(A) € f'(A) and let {d} € f'(A)\ f(A). We note
that f is consistent and non-trivial, so an analogous argu-
ment as for f shows that it is non-imposing. Thus, there
is a profile A’ such that f'(A’) = {{d}}. By the consis-
tency of f’ and the above subset relation, we have that
FOAA+ AN = ff(AMA+ A") = {{d}} for all A € N. How-
ever, this contradicts the continuity of f, which requires
that there is A € N such that f(AA + A") C f(A). So
f is the ABC scoring rule induced by s. Finally, we show
that s is non-decreasing. Otherwise, there is a ballot size
y € {1,...,m — 1} such that 0 = s(0,y) > s(1,y). Now,
consider a single ballot A of size y. By definition of s and
fs f(A) = {W € Wy,: W ¢ A}. However, this outcome
violates weak efficiency, so s needs to be non-decreasing in
its first argument. O

IV I m

A.2 Proof of Theorem 2

We will next turn to the proof of Theorem 2: BSAV rules are
the only ABC voting rules that satisfy anonymity, neutrality,
consistency, continuity, choice set convexity, and weak effi-
ciency. Since the proof that every BSAV rule satisfies these
axioms is in the main body, we focus here on the converse



direction. Unfortunately, this direction is rather involved and
we thus introduce several auxiliary lemmas before proving
Theorem 2. In more detail, we first construct several im-
portant auxiliary profiles in Lemma 7 to show that every
non-trivial ABC voting rule f that satisfies all of our axioms
is non-trivial. This allows us to access the vectors "/ derived
in Lemma 5. By investigating the linear independence of
these vectors, we can then show that f is a BSAV rule.

To ease the outlay of our lemmas, we introduce some
additional notation. Firstly, we define F 1 as the set of ABC
voting rules that satisfy anonymity, neutrality, consistency,
continuity, choice set convexity, and weak efficiency (i.e.,
the axioms required for Theorem 2). Secondly, we define the
convex hull of two committees W*, W7 € Wy, as [W;, W] =
{WGWkIWiij QWQWZUWJ}

We start the proof of Theorem 2 by constructing profiles in
which a single candidate is either guaranteed to be chosen or
to be not chosen. In more detail, given a candidate « € C and
a ballot size r, we consider the profile A*"" which contains
each ballot A with |A| = r and « € A once, and the profile
A~®" which contains each ballot A with |[A] = randx & A
once.

Lemma 7. Let f € F! denote a non-imposing ABC vot-
ing rule. It holds for all candidates x € C and ballot sizes
r € {l,...,m} that f(A*") = {W € Wy,: x € W} and
fA™®")y ={W € Wy: « € W} if there is a ballot A € A
with |A| = r and f(A) # W.

Proof. Consider an ABC voting rule f € F', a ballot size
r € {1,...,m}, and a candidate x € C. Moreover, suppose
that there is ballot A such that |A| = r and f(A4) # W.
First, this implies that  # m because otherwise A = C
and neutrality requires that all committees are chosen. Next,
by anonymity and neutrality, there are only three possible
outcomes for f(A*") and f(A~*"): for both of these pro-
files, either {W € Wy: 2 € WHL{W € Wy: o € W}, or
Wi has to be chosen as all committees in the first two sets
are symmetric to each other. Moreover, weak efficiency ex-
cludes that f(A™"7") = {W € Wy : © € W} as this axiom
allows us to replace x with any other candidate y € C \ {z}.
Finally, we note that anonymity and neutrality require that
f(A®T + A=%7") = W, because the profile A*" + A~%"
consists of all ballots of size r. Hence, by consistency and
our previous observations, we either have that f(A~"") =
fA®T) = Wy, or f(A™®") = {W € Wy: « ¢ W} and
f(A®™) = {W € Wy: & € W}. Indeed, for all other pos-
sible combinations, it holds that f(A*") N f(A=%") # )
and f(A™7) N f(A™™") # W, so consistency would be
violated.

Now suppose for contradiction that f(A™%") =
fA®T) = Wy. If r = 1 or r = m — 1, this conflicts
with the assumption that there is a ballot A of size 7 such that
f(A) # Wy. The reason for this is that either A*" or A=%"
only consist of a single ballot and neutrality between A and
A®T (resp. A~*") then requires that not all committees of
size k are chosen. Hence, we assume that 1 < r < m — 1.
For this case, let X, X~ denote two disjoint and possibly

empty sets of candidates. Moreover, we define A% X as
the profile containing each ballot A with |A| =r, X C A4,

and X~ N A = ) once. Note that AX X" is not the empty
profile if [X*| < rand | X | < m — r. Our goal is to prove
that f(AX "X ") = W), for all disjoint sets X+, X~ by an
induction over t = | Xt U X~| € {1,...,min(r,m —r)}.
When ¢ = min(r, m — r), then AX X" consists of a single
ballot and thus, this insight conflicts again with neutrality
and the assumption that there is a ballot A of size r with
f(A) # W.

Now, the induction basis ¢ = 1 of our claim follows
from our assumptions since f(A™"") = f(A™") = W,
and neutrality allows us to rename z to any other candi-
date. We therefore assume that the induction hypothesis
holds up to some ¢ € {1,...,min(r,m — r) — 1} and will
prove it for ¢ 4 1. For this, we will first show an auxiliary
claim: given two disjoint sets of candidates X, X~ with
| X+ U X~| =t—1and two candidates z,y € C \ (Xt U

X ), it holds that f(AX W{zwhX7) — p(AXT.X"U{zu})
and f(AXJrU{x},X’U{y}) _ f(AXJrU{y},X’U{x})' We
prove here only the first claim as the second one fol-
lows analogously. The central observation for the proof
is that AXJFU{r,y},X* _~_AX+,X7U{1} _|_AX+,X’U{y} —
AXTXT 4 AXTXTU{zu} Moreover, by the induc-
tion hypothesis, we know that f(AX X U{}) =
JAXTATUET) = fAXTAT
from consistency that

= W,. Hence, we infer

f(AXJrU{x,y},X*)
AX+U{95 y},X~ )ﬂf(AX+ X L_J{nc})mf(AX+ X u{y})

A Tu{z,y}, X~ +AX+’X U{z}+AX+,X U{y})

AX+X )mf(AXJr,X U{x,y})
AX+X U{xy})

I
R

(
(
(AX X~ JrAXJFX U{zy})
(
(

Finally, consider an arbitrary set of candidates X =
{z1,...,x141}. By weak efficiency, anonymity, and neutral-
ity, we have that W € f(A%) for all committees T that
minimize |X N W/|. Now, consider the profile A{v}X\{v}
for y € X. First, by our auxiliary claim, we have that
FAWEXNYH) = £(A%X\M2) for all 9, 2 € X. Now, if
there is a committee W € f(AWHX\M¥}) that minimizes
|W N X|, then f(A?X) N f(AtvhX\Mu}) =£ (), which means
that f(A%X) N fAWEXMY) = f(ADX\BE) = W, by
consistency and the induction hypothesis.

Hence, suppose next that there are only ballots W in
f(AWEXMY) that do not minimize |W N X|. By weak
efficiency, we know for every such committee W that we
can replace the candidates in z € W N (X \ {y}) with a
candidate 2z’ € C\ (W U X)) and the resulting committee TV’
must still be chosen for AT} X\ Now, if [TWNX| > 1 for
each W € W, this means that f chooses a committee with
minimal intersection with X as we can exchange all but one
candidate in X with candidates from outside X. Since this
contradicts the assumption that f does not choose such a com-



mittee, we suppose next that |[WW N X| = 0 for some commit-
tee. In this case, we can in an committee W € f(A{vHX\ul})
first replace all candidates but y by weak efficiency. Then,
we look at a second candidate z € X and use the fact that
fAth XM = f(A12h XM= (o also replace y. Hence,
we derive again that a committee minimizing |W N X]| is
chosen for f(A1v}HX\{¥}) So, we have in both cases that
FARXY N f(AlEXMu) £ () and consistency requires
therefore that f(A%X) = f(AlvhX\Mu})y = W), By apply-
ing our auxiliary claim to these two profiles, we derive anal-
ogous claims for all profiles AX X~ with XT N X~ =0
and XT U X~ = X. Finally, since X is chosen arbitrar-
ily, this proves the induction step and we can thus infer that
f(A) = W for each ballot A of size r. This contradicts our
assumptions, so the lemma follows. O

As a consequence of Lemma 7, every non-trivial ABC
voting rule f € F'! is non-imposing. Indeed, for every such
voting rule f, there is some ballot A such that f(A4) # Wk;
otherwise, consistency requires that f(A) = W, for all pro-
files A € A*. Consequently, we can use Lemma 7 to con-
struct a profile A" for some ballot size r and candidate
x such that f(A™") = {W € W;: 2 € W}. Finally, by
consistency, it is easy to infer that f(AY) = {W}, where
AW is the profile that consists of all A®" with x € W.
Since the trivial rule is clearly the BSAV rule induced by
a, = 0forallr € {1,...,m}, we therefore focus on non-
imposing ABC voting rules for the rest of the proof. Fur-
thermore, we will restrict our attention to committee sizes
k € {2,...,m — 2}. The reason for this is that all ABC vot-
ing rules satisfy choice set convexity and all scoring rules are
BSAV rules if & € {1, m — 1}. Hence, Proposition 4 implies
Theorem 2 in this case.

Since we will focus on non-imposing rules from now on,
we can access the normal vectors @’ from Lemma 5 and
the functions s defined in Lemma 6. In particular, we will
next investigate these functions s in more detail and show
that they are actually constant. Note that in the next lemma,
the set Q(k,r) = {max(0,k +r —m), ..., min(k,r) — 1}
contains all integers x such that there is a ballot A of size
r and two committees committee W, W7 € W such that
(WI\WI|=1,|[AnNWi =2+ 1,and |[ANWI| = .

Lemma 8. Suppose 2 < k < m — 2 and let f € F!
denote a non-imposing ABC voting rule. For all ballot
sizes v € {1,...,m}, there is constant o, € R such that
st(x + 1,2) = «a, ifz € Q(k,r). Moreover, if there is a
ballot of size v such that f does not choose W, on it, then
a, > 0.

Proof. Let f € F! denote a non-imposing ABC voting rule
and let s} denote the functions derived in Lemma 6. More-
over, we consider an arbitrary ballot size € {1,...,m}.
First, if f(A) = W; for all ballots A of size r, then
st(x + 1,) = 0 for all z € Q(k,r). Otherwise, there
are two committees W* W7 and a ballot B(¢) such that
|IB(O)| =7, [WiI\WI| =1,|[ANW = |ANWI| +1and
sL(|B(O)NWE|, |B(£)NW7|) # 0. By Claim (1) of Lemma 6,
this means that @,” # 0, where 4" is one of the vectors de-

rived in Lemma 5. Hence, by Claim (2) of Lemma 5, we
either have that v(A)4"7 < 0 or v(A)@?"* < 0 for the profile
A that only contains ballot B(¢). We suppose subsequently

that v(A)@#7 < 0. This means that v(A) ¢ R by Claim (1)
of Lemma 5 and thus W & g(v(A)) = f(A) because of the

definition of le . However, this contradicts that f(A) = W
for all ballots of size r and thus, s%(z + 1,z) = 0 must hold
forall x € Q(k,r).

Hence, we suppose next that f is non-trivial on ballot
size r. In this case, we consider two committees W* W7 ¢
Wi with |[W N WJ| = k — 2; such committees exist since
2 < k < m — 2. For a simple notation, we further define
WAWI = {a1,as} and WI\W?* = {by, by }. The main goal
for our proof is to show that s} (z+1,z) = s} (z+2, z+1) for
all z,x+1 € Q(k,r). By repeatedly applying this argument,
it follows that sl(z + 1,2) = sl(y + 1,y) for all x,y €
Q(k,r).

To prove this claim, fix some index x such that x,x + 1 €
Q(k,r). In particular, this means that there is a ballot A of
size 7 such that |W? N A| = z + 2. Now, since f is non-
trivial for ballot size r, Lemma 7 shows that f(A*") =
{WeWy:zeWhand f(A™*") ={W e Wy: 2 € W}
for every candidate = € C. Next, consider the profile Al that
consists of a copy of A% for every x € W N W/ and of a
copy of A=®" for every z € C\ (W*UW/). By consistency,
it is easy to verify that f(Al) = [W* WJ]. As third step,
consider the profile A% which consists of the following two
ballots: the first voter in A2 approves aj, as, x candidates of
WiNWJ, and r — x — 2 candidates of C\ (W*UW?/), and the
second voter has the same ballot except that he replaces a
and ag with by and by; such a ballot exists as x4+ 1 € Q(k, r).

Now, by the continuity of f, there is A € N such that
FNAL + A%) C [W* WY]. Based on choice set convexity,
anonymity, and neutrality, we will show that this subset rela-
tion is actually an equality. For this, we note that for every
permutation 7 with 7({a1, a2}) = {b1,b2}, 7({b1,b2}) =
{ay,a2}, and 7(z) = z for x € C \ {a1, az, b1, b2}, it holds
that 7(AA! + A%) = MA' + A? (possibly after reorder-
ing voters). Hence, anonymity and neutrality show that if
Wi e f(AAl + A?), then W7 € f(AA! + A?), and if
W e f(NAL + A?%) for W € [Wi WI]\ {W? W7}, then
(W WIN\A{WEWIL C f(NAL + A2%). Now, if Wi, W7 €
F(XNAY + A?), the choice set convexity immediately shows
that f(AA! + A?) = [W? W7]. On the other hand, if
(Wi WIN{W?E, W7} C f(ANAL+ A?), then the committees
W = {a1, bo JUWNW7) and W' = {by, ag }U(W NW7)
are chosen. By choice set convexity, we thus infer again that
Wi WI e f(AA*+ A?) because W', W7 € [W, W’]. Thus,
we indeed have f(AA! + A%) = [Wi W]

Now, letv! = v(A!), v? = v(A?),and v* = v(AA! + A?)
denote the vectors corresponding to the profiles A', A2, and
AAY + A2, respectively. Moreover, consider the committee
W = {a1,b2} U(W?NW7) which lies strictly between W
and W7 . Finally, let i7" denote the hyperplanes constructed
in Lemma 5 and note that 4% can be described by the the
functions s’. In particular, it holds that v24¢ = s (z+2, 2+
1) + sk(x,2 + 1) as the first voter in A? approves z + 2
members of W¢ and 2 + 1 members of W¥, and the second



voter approves  members of W and and z + 1 members
of W*. Our goal is hence to show that s%(z + 2,z + 1) +
st(z,x 4+ 1) = 0 since Claim (3) in Lemma 6 then implies
that s!(z + 2,2 + 1) = s.(x + 1, z). For doing this, we note
that v*0* = (! + v ) i, 50 it is enough to show that
vlatt = 0 and v*a®t = 0. For the latter, we observe that
v* € R/ and v* € RJ since Wi, W* € f(AA' + A?) =
g(v*). Since Claim (1) of Lemma 5 shows that RZ, ={ve
RAL VG e {1, .., We}\{'}: va?" > 0} for all i/, we
derive that v*4>* = 0. Finally, to show that v'a** = 0, let
7 denote the permutation defined by 7(as) = by, 7(ba) =
ag, and 7(x) = x. It can be checked that 7(A™") = A™"
and 7(A™®") = A™®" (up to renaming voters) for every
candidate z € C\ {aa, b2 }. Hence, it also holds that 7(A!) =
A? (up to renaming voters). On the other hand, we have that
7(W?) = W* and 7(W?*) = W*. Hence, we can use Clalms
(2) and (3) of Lemma 5 to compute that 2v' 4% = v!a® 4
T(Ul)T(ﬂi’é) _ Uluzf + vl,&@,z _ Uluiﬁ vlul/ _ O
Clearly, this implies that a5t = 0, so it indeed holds that
stz + 2,2 +1) = st (z + 1, ), which shows that there are
constants v, such that s1(x +1,2) = a, forallz € Q(k,r).

Finally, we need to show that . > 0 if there is a ballot
A of size r with f(A) # Wj. For doing so, we consider
two committees W, W7 € W, with [W?\ WJ| = 1. More-
over, let A denote the profile that consists of A*" for every
x € W' By consistency and Lemma 7, it is easy to derive
that f(A) = {W}. Moreover, by continuity and consistency,
there is A € N such that f(AA + B(¢)) = {W?} for every
ballot B(¢) € A. This implies for the vector v(A) that it
is in the interior of le . By Lemma 5, we hence infer that
v(A)uij > 0. Flnally, since |W* \ Wj| = 1, we can rep-
resent @7 by sl. Because all ballots in A have size r and
the symmetry propertles of s! identified in Lemma 6, it thus
holds that v&*/ = a,.c; — a,-ca, Where ¢ states how many
voters in A approve more candidates in W then in W7 and
co counts how many candidates prefer more candidates in
W than in W*. Finally, by the construction of A, it is easy to
see that ¢; > o, so v(A)a"/ > 0 implies that o, > 0. [

Note that Lemma 8 has strong consequences for the
vectors 47 constructed in Lemma 5, in particular if we
consider committees Wi, W3, W& W94 € W, such that
Wi\ Wi =W\ W/ = {a} and W3 \ Wi = W'\
Wi = {b}. For these committees, the lemma shows that
iy” = 8180 (IBONW'], | BIO)NW?]) = 8150 (1B(£)N
W | BO)NWI'|) = a 7" for every ballot B(£) € A with
a € B({),b ¢ B(¢). Hence, by Lemma 6, it thus follows
that 44 = 477", To reflect this insight, we change from
now on the notation from 4% to 4", where a and b are the
candidates such that W* \ W7 = {a}, W7 \ W* = {b}.

In the next lemma, we apply this insight to derive some
auxiliary claims on the profiles A™" and A=*".

Lemma 9. Suppose 2 < k < m — 2 and let f € F' denote
a non-imposing ABC voting rule. The following claims hold
for all distinct candidates a,b,c € C and ballot sizes v €
{1,...,m}:

1. ,aab (Acr) — Aab (Afc,'r‘) =0

2. a¥by(AbT) =
_ﬁb,aU(A—b,r)

3. a%bv(AT) > 0 and 0% v(A™T) < 0 if there is a
ballot A of size r with f(A) # Wy,

4. {La,b + be’C — (oc

ﬁb’“v(Ab’T) and ﬁ“’bv(A_b’r) =

Proof. Let f € F! denote a non-imposing ABC voting rule
and fix three candidates a, b, ¢ and a ballot size r. Moreover,
we let X denote a set of £k — 1 < m — 3 candidates with
{a,b,c}NX = ( and define the committees W* = X U{a},
Wb =X U{b},and W¢ = X U {c}.

Claim (1): The claim follows by considering the permuta-
tion 7 with 7(a) = b, 7(b) = a, and 7(x) = x forall x € C.
Then, it is easy to see that 7(A%") = A%" (up to renam-
ing voters) and 7(W?) = WP, 7(W?) = W. Hence, we
get that 2viAC’T)ﬁ“’b = (A% + 1 (v(AST))T(a%P) =
V(A7) 0% — v(A°T)a%" = 0 by using Lemma 6. This im-
plies that v(A®")4%" = 0 and an analogous argument works
for A=4".

Claim (2): The claim follows immediately from Claim (2)
in Lemma 5 because 1" = —a%.

Claim (3): We focus on the profile A*" as the claim for
A~®" can be shown analogously. Hence, note that for every
ballot B({) in the profile A®", either a,b € B({) or a €

B(¢), b ¢ B(¢). By Claim (2) of Lemma 6, we infer that

Aab_

a3’ = 0ifa,b € B(f) and by Lemma 8, we infer that u{"" =
a, if a € B((), b ¢ B({) for some constant .. Hence,
v(A*")0%" = n,q,., where n, > 0 states the number of
ballots B(¢) in A%" with a € B({), b ¢ B({). Finally, if
there is a ballot A of size r with f(A) # W, Lemma 8
shows that «,, > 0 and the claim follows.

Claim (4): For this claim, we consider a ballot B(¢) and
note that @, = s, (|B(¢) "W, |B(¢) N W¥|) for all
distinct 2,y € {a, b, c}. The statement now follows by con-
sidering the 8 cases enumerating whether a € B({), b €
B(¢), and ¢ € B({). For instance, if a,c € B(¢), b & B(¢),
then 4 = 0 (by Claim (2) of Lemma 6) and 4" =

St (B0 N WOLIBO) 0 W) = sy (1B N

WP, |B(t) n We|) = 7122 *“ (by Claim (3) of Lemma 6).
The remaining cases work similar and we leave them to the
reader. O

We now turn to the central part of the proof of Theorem 2.
For this, consider two committees W*, W7 with [W \W/| =
t > landlet{ay,...,a;} = Wi\ W7 and {b1,...,b;} =
W3 \ W Our main goal is to show that the vector 47
can be represented as the sum of all vectors 4% for z €
{1,...,t} as this will allow us to represent the underlying
voting rule as BSAV rule.

To this end, we first show the linear independence of a
large set of vectors 7.

Lemma 10. Suppose 2 < k < m — 2 and let f € F!
denote a non-imposing ABC voting rule. Moreover, con-
sider 2t distinct candidates a1,b1,...,as,b;. The set U =
{aa17b1’aaz,bz7 . ’aat,bt} U {ﬁal,az’ Q208 ,@atq?at}
is linearly independent.



Proof. Let f € F* denote a non-imposing ABC voting rule.
Moreover, consider 2t candidates a1, by, . .., as, by and let M
be defined as in the lemma. For the proof of the lemma, we
put the vectors in U as rows into a matrix M € R2¢=1xIAl,
In more detail, let row ¢ of M with 0 < ¢ < ¢ be given by
4%% and let row ¢ + ¢ with 0 < i < t be given by G%®i+1,
We want to show that for each 7 < 2t — 1 there is a vector
v € R such that Mv = w satisfies that w; # 0 and
w; = 0 for all j # 4. Then, the dimension of the image of
M is 2t — 1, which is the column rank of the matrix. Since it
is a basic fact in linear algebra that the column rank equals
the row rank, this means that the vectors in U are linearly
independent.

For showing this claim, we first observe that there is a
ballot size r such that f(A*") = {W € Wy: z € W} and
fA™®") = {W € Wi:z € W} by Lemma 7 and the
non-imposition of f. Based on the claims in Lemma 9, we
define now the vectors v’ that satisfy our constraints for the
rows ¢ € {1,...,t}. In more detail, it suffices to consider
the profile A~%"" and its corresponding vector v % for this.
Indeed, we note here that for all vectors & € U but 4%i-b,
it follows that v=%¢, = 0 by Claim (1) in Lemma 9. On
the other hand, Claims (2) and (3) in this lemma show that
v bigeibi £ 0, so v satisfies our requirements.

For the other t — 1 rows, we consider a sightly more com-
plicated profile: let A® denote the profile that consists of
A%" and A" for all j < i and let v* denote the corre-
sponding vector. Using Claim (1) of Lemma 9, we infer
for all 4%% with j < i that v'a%% = 3", (v(A®7) +
v(AeT)) A%t = (v(A%T) + v(A%T))a% % Now by
the choosing 7 with 7(a;) = b, 7(b;) = a;, and
7(x) = x for all other candidates, we get that (v(A%") +
,U(Abj,r))ﬁaj,bj — ,U(Aa],r),&aj,bj +T(U(Abj’r))7'(ﬁaj’bj) —
v(A% )% 4 (A% T)ab% = 0, where the last equal-
ity uses Claim (2) of Lemma 9. An analogous argument
also applies for the vectors 4%+ with j < i. Next, by
Claim (1) of Lemma 9, we infer also v*4%% = 0 and
v'% %+ for j > i. Finally, consider the vector 4% ®i+1,
By Claim (1), we have that v' %%+t = 3% (0(A%") +
(Ab3 7))+ = y( A% 7) (% %+1, By the same argument
as in the last paragraph, this is non-zero, thus proving the
lemma. 0

As next step, we show that the linear independence ob-
served in Lemma 10 turns into a linear dependence once
we add a vector @7 with W\ W7 = {ay,...,a;} and
Wi\ W= {by,...,b;}

Lemma 11. Suppose 2 < k < m — 2 and
let f € F' denote a non-imposing ABC vot-
ing rule. Moreover, consider 2t distinct candidates
ai,bi,...,a:, by, and two committees W' W3 € W,
with Wi\ W/ = {al,...,atb} and W3 \ Wi =
{by,...,bs}. The set U = {a®:br qgazbz . qaebe} U
{aava2 gezas  gat-vel {ahI} is linearly dependent.

Proof. Let f € F' denote an non-imposing ABC voting
rule, and consider candidates a1, by, . .., as, by and commit-
tees W*, W7 as defined in the lemma. We assume for con-
tradiction that the vectors in U are linearly independent. Our

goal is to find a vector v* such that v* ¢ R‘if for every
i € {1,...,|Wk|}. This contradicts one of our basic insights,

namely that Uie{l,...,\Wk\} le = QM as this requires that

Uiegt,...owvey Rl =RMI,

To his end, we first consider the the matrix M that contains
the vectors u € U as rows. Since U is by assumption linear
independent, the image of M has full dimension R2¢. This
means that there is a vector v € Rl such that vi®+0» = 1
forallz € {1,...,t}, va% %+t =0forallz € {1,...,t—
1}, and 4/ = —1. First, we note that, by repeatedly applying
Claim (4) of Lemma 9, it is easy to infer that vg%=% =
oY oot = 0 forall z,y € {1,...,t} with z < .
Moreover, by the symmetry of these vectors (see Lemma 5),
the same holds for ©*v>*+. By applying again claim (4) of
Lemma 9, we thus infer that vi%= %y = v(4% % +(%:bv) =
1forall x,y € {1,...,t}. This insight implies that for every
committee Wi € [W?, W3], there is another committee
wi' e [Wi, Wj} such that va " < 0. In more detail, if
W # W7, there are candidates a, ¢ W and b, € W
Then, it holds for the committee W' = (W \ {b,}) U {a;}
that vi’ 7" = vabv% = % by = —1. On the other side,
for W, it holds by definition of v that v/ = —1.

For the second step, let r denote a ballot size such that
f(A) # W; for some ballot A with |A| = r. This means
that f(A®") = {W € Wy: 2 € W} and f(A™"") =
{W € Wy: © ¢ W} by Lemma 7. Now, consider the profile
A containing one copy A%" for each z € W* N W7 and
one copy of each A= for x ¢ W' U W/, By consistency,
f(AY) = [Wi, WI). For W W4 e [W?, W], Claim (1)
of Lemma 5 shows now that 4*7v(A') = 0. On the other
hand, we will show that for every committee W# ¢ [W?,
W3], there is another committee 7' such that v(A')ai" 7" <
0. For this, leta € (WIUW)\ W, be Wi\ (WiuW9),
and define W' as Wi' = (W\ {b})U{a}. By Claims (1) to
(3) of Lemma 9, it follows that v(A')a" 7" = v(AY)abe =
(WA ) 4o (AT b = (AP ab e —p(AYT) A% < 0.

Now, let v™ = nv(A!) + v, where n is large enough such
that still 047" < 0 for all W ¢ [W?, W] and their
corresponding W', It holds that v™ ¢ R/ for all W' e
W Firstly, by definition of v,,, v, ¢ RJ for all W¢ ¢
[W?,W4]. Next, consider a committee W € [W? Wi
and a corresponding W7 e [W* Wi] with va’ 7" < 0.
By construction 0™/ = (nv(A') + v)a’" < 0 since
v(AYa"" = 0. In total, v" ¢ Uieqr, . wily sz = R,
Clearly, this is a contradiction, so the vectors in U are linearly
dependent. O

As as consequence of Lemma 10 and Lemma 11, ther‘e‘are
unique real coefficients 04, p; ;.- dq,_;,q, Such that 4*7 =
Say by 001 4o 4 8,, | o, %1% In the next lemma, we
will determine these coefficient and show that 4%/ can be
represented as a (scaled) sum of the 7%=

Lemma 12. Suppose 2 < k < m —2and let f € F' denote
a non-imposing ABC voting rule. Moreover, consider two



committees W', W7 € Wy, such that [W*\ Wi| = ¢ > 1
and let W\W7 = {a1,...ar} and WI\W* = {by,...b;}.
There is & > 0 such that W/°7* =63, , Qb

Proof. Let f € F! be a non-imposing ABC voting rule,
and let W% W7 aq,by,...as, b be defined as in the lemma.
First, we observe that the case ¢ = 1 is trivial with
0 = 1 and hence suppose that £ > 1. By Lemma 11,
the 2¢ vectors in U = {a® b qo2b2 . gt} U
{aavaz gezas  gae-vae} g {ghI}) are lmearly depen-
dent, whereas Lemma 10 shows that the vectors in U \ {@7}
are linearly independent. Thus, there are unique real coeffi-
cients 84, by s« - - Oay 4.0, SUch that 47 = §o, 5 4001 4+ -+
5%71 ar Qot—1,at

Our goal is to determine these coefficients. For this, we let
r denote a ballot size such that f(A) # W for some ballot
A of size r, and define v* = v(A™") for every profile A™".

Next, we proceed in three steps to show the lemma.

Step 1: v™1 471V = pT2472:92 > ()

First, we show that v*1q*v% = op®2q%2Y%2 > (0 for
all x1,x2,y1,y2 € C. For this, let 7 denote the permuta-
tion defined by 7(x1) = z2, 7(x2) = x1, 7(y1) = Y2,
T(y2) = y1,and 7(z) = z forall z € C \ {z1,22,y1,¥2}.
By Claim (3) in Lemma 5, it holds that 7(4*1:¥1) = ¢%2:¥2,
and by the symmetry of the profiles A®", we infer that
7(v®1) = v™2. Hence, we can now compute that v** §*1-¥1 =
T(v™)(GFYr) = v®2472-¥2, Finally, Claim (3) in Lemma 9
shows that v*24*2:¥2 > (), thus proving the claim.

Step 2: 64, p, = -+ = 0,0, > 0.

For this step, we cons1der two indices x,y € {1,...,t}
and the vectors v®= and v®. Moreover, let 7 denote the
permutation with 7(bg) = by, 7(by) = bs, T(az) = ay,
7(ay) = a, and 7(z) = z for all candidates z € C \
{az,ay,b;,b,}. By Claim (1) in Lemma 9, v’atJ =
b= (5a1,b1ﬁa1,b1 +-- .+5at_1,atﬁat71,at) — 5am,bmvaﬁazybz
and vPvatd = 8, 4 vPvas by follows from an analo-
gous reasoning. Finally, we note that 7(4°7) = 4% since
T(W% = W* and 7(WJ) = WJ. Hence, we can com-
pute that &, 5, 0" be ‘= begid = r(vbe)7(atd) =
it = ay b,V vi®by, Since vl % Pe = by vty <
0 (by Step 1 and Claim (3) of Lemma 9, this proves that
Moreover, since vb= € Rf (as Wi e

(Abf””)) we infer from Claim (1) of Lemma 5 pbeqid =
vbr g < 0. Since vPr(®eb= < (), this means that
0y b, = 0.

Step 3: 5@17112 == 6047170% =0.

For this step, suppose first that ¢ = 2. Then, we only need
to show that 4%**2 = (0. To do so, we consider the vector v®1.
First, we note that v® 92:2 = ( by Claim (1) of Lemma 9.
Hence, v 459 = 84, 5, 0100 + 64y 0, 0109192, Now,
we define A = v@q%% > ( and note that by Step
1, v = A(84, b, + Oay.a)- Analogously, v224HI =
Sanby V209202 4 5, 1 0920992 = A(840, — ay.ap)- TO
derive our claim, we consider the permutation 7 with 7(a1) =
as, T(ag) = a1, and 7(z) = « for all candidates. Just as in
the last step, we can now infer that A(dq, p, + 0q,,0,) =

z Qs

b

51113,17,3 = 6ay by -

v b = 7(v4)T(a) = v205 = A(Guy by — Oay.an)-
Since A > 0 and 64, b, = 0q,,b,, this equality can only be
true if 64, 4, = 0, thus proving our claim.

Finally, consider the case that ¢ > 2 and consider an index
i € {2,...,t — 1}. Moreover, let v = (v% 4+ vb). Next,
we note for all & € U \ {a%7,q%bi gai-1:3 gttt}
that 24 = 0 by Claim (1) of Lemma 9. Furthermore,
vl = gt — bigbiei = ( by Step 1. On the other
hand, 9% %+1 = p®igds%i+1 = —pigi-1.% > () by the
symmetry of the 4™¥ and Step 1 Hence, we conclude that

’J = 1_} (5(11 bl al’bl + + 5ﬂt 17a1uat lyat) =

i (@i Git1 + 5% 1,a Qi ai—1,i —

ai,amv iqletitl — §o. 0% %%+ On the other

hand, v*4*/ = —v'4*/ = 0 by using the symmetry of ¥°

with respect to a; and b;. By using Step 1, we thus infer now
that 64, | 4, = 0a;,a,,, foralli € {2,...,t—1}.

Finally, we will show that all é,, , o, are 0. For this
consider the vectors v®* and v®?. For the permutation 7
which mirrors a; and as while fixing all remaining can-
didates, we obtain v*14% = 7(v*)7T(aH) = Vb,
On the other hand, we can derive from Lemma 9 that
VUGN = 5y, 5 01U 4 6, 0,0 092 and 09200 =
5a27b2v“2ﬁ“2’b2 + 0ay,a, V2 U2 4 g, 0, 020203, By our
previous analysis, Jq, p, vV 40 = &y, 5, v2202%2 and
L 5a27a3v“2u“2’a3, SO our equations im-
ply that 8, 4,v*20%*? = 0. Since v**u*"*? # 0, this
means that d,, o, = 0 and thus, all these d’s are 0. Finally,
since 47 is a non-zero vector and 8, 5, = 04,5, > 0 for
all z,y € {1,...,t}, this inequality must be strict and the
lemma follows by choosing § = dg, b, - O
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Finally, we are now ready to prove Theorem 2.

Theorem 2. An ABC voting rule is a BSAV rule if and only
if it satisfies anonymity, neutrality, consistency, continuity,
choice set convexity, and weak efficiency.

Proof. First, the direction from left to right has been shown
in the main body. Moreover, if k € {1,m — 1}, then the
set of BSAV rules is equal to the set of ABC scoring rules
and choice set convexity becomes trivial. Hence, the theo-
rem follows from Proposition 4. Next, assume that f € F 1
for k € {2,...,m — 2}. If f is trivial, it is clearly the
BSAV rule induced by the weights o, = 0 for all z. On
the other hand, if f is non-trivial, Lemma 7 holds and con-
sistency therefore entails that f is non-imposing. Hence,
we can access all our auxiliary lemmas now. In particu-
lar, our goal is to show that f is the BSAV rule described
by the weights «,. constructed in Lemma 8. For doing so,
we define the score function s(|B(¢) N W|,|B(¢)|) =
(o)) | B(€) N W?| and extend it to vectors v € R4l by
8(0, W) =321 ap ves(IB(6) N W[, [B(£)|). Departing
from here, our proof proceeds in three steps. First, we show
that there is for all committees W, W7 a constant § > 0 such
that ity = s(|B(O)NW?|, [B(€)]) —s(| B()NW, |B(0)])
for all ballots B(¢). Based on this insight, we show in the
second step that f(A) C f'(A) = {W? € Wy: VIWJ €

Wi §(v(A), W) > 3(v(A), WJ)} Finally, we turn this



subset relation in an equality in the last step and prove that f
is a BSAV rule.

Step 1: There is § > 0 such that §i,’ = s(|B(¢) N
Wil [B()]) - s(1B(€) N W3, [B()]) for all BO).

For this step, consider two arbitrary committees W* W7 €
Wi, and let B(¢) € A denote a ballot. Moreover, let
r = |B(f)| denote size of B(¢) and define W\ WJ =
{a1,...,a;}, Wi\ W = {by,...,b;}. By the definition
of s, we have that s(|B(¢) N W[, |B(¢)]) — s(|B(¢) N
Wil |B(0)|) = a,.(|B)NW?|—|B(£ )ﬂWj|) On the other
hand, we know by Lemma 12 that @/ = § 3% _ qobs
for some 6’ > 0. Hence, this step follows by showing that
Y6 = o, (B NW — [B(E) AW,

For doing so, we partition the the indices I = {1, ...,t}
into four sets: Iy = {x € [: a,,b, € B{)}, b ={z e 1:
tg,by & B(O)}. Is = {z € I : ag € B(£), b, ¢ B({)}, and
Iy={x€l:a, ¢ B({),b, € B({)}. Now, by Lemma 6,
we know that 4"’ bs — 0 forall x € I1 U I as 4, be
“z b= LB ) NW|,|B(¢) nWi'|) = 0 for two arbi-
trary committees W', W7 € Wy, with W& \ W7 = {a,}
and W3' \ Wi = {b,}. Moreover, a similar reasoning and

Lemma 8 show that @ A““b = q, forall z € I5 and u“”’b =

—a, for all z € I4 We thus have that ' _ af*" =
arlls] = ap|ls| = o, (|B(0) N {as, ..., ar}] — [B(€) N
{b1,...,0¢}) = . (|BE)NW*|— |B(¢ )ﬂWJ\) thus prov-
ing our claim.

Step 2: f(A) C f/(A) forall A € A*.

For proving this claim, we recall the function g and
the sets le defined in and after Lemma 1. In particular,
by the definition of these objects, we have that f(A) =
gw(A)) = {W' e Wp:v(4) € R} ¢ (Wi e
Wi v(A) € :le }. Hence, the claim follows by showing
that f/(A) = {W! € Wi: YWI € Wy: 5(v(A), W?) >
3(0(A),WH} = {Wi € Wy: v(4) € RI}. For do-
ing this, we note that R can be represented as R =
{v e W:Vj € {1,. W\{z} il > 0} (Clalm (1)
of Lemma 5). Hence, tol show our equivalence, we need
to prove that 5(v(A), W"*) > 5(v(A), W7) if and only if
v(A)a™ > 0 for every profile A and committees W*, W7,

To do so, consider an arbitrary profile A € A* and let W*,
W7 denote two arbitrary committees. By the last step, we
have a § > 0 such that 54,7 = s(|B(¢) N W|,|B(£)]) —

s(|B(€) n WY, |B(£)]) ‘for all ballots B(¢). Hence, it is
easy to see that v(A)a"™ =3 ,cqy a3 0(A)e(s(|B()N
WH,[B(0)]) — s(IB(€) n W[, |B(€)])) = 3(v(A), W) —
5(v(A), W7), which clearly implies our claim.

Step 3: f(A) is a BSAV rule.

For this step, we show that f(A) = f/(A) and that f'(A)
is a BSAV rule. For the latter point, we only need to observe
that all - are non-negative. Assume for contradiction that
this is not the case. Then, there is a ballot size » such that
ar < 0and f'(A) = {W € W: VW € Wy: [ANW]| <
|A N W’|} for an arbitrary ballot A with |A| = r. Since f
chooses a subset of f/(A), f violates weak efficiency as we

cannot decrease the number of unapproved candidates in any
committee. This contradicts our assumptions, so o, > 0 and
/" is a BSAV rule by definition.

Next, to show that f(A) = f’(A), we assume for contra-
diction that there is a profile A’ for which this is not the case.
This means that there is a committee W € f/(A) \ f(A).
Moreover, since f’ is a BSAV rule, it satisfies all precon-
ditions of Lemma 7. So, we can infer analogously as for
f that f’ is non-imposing and consistent. Now, let A" de-
note a profile with f/(A’) = {W}. By consistency of
f' and the subset relation of the last step, we have that
fOAA+A") = f/(NMA+A") = {W} forall A € N. However,
this contradicts the continuity of f and thus our assumption
that f'(A) # f(A’) is wrong. Hence, f is indeed the BSAV
rule induced by «.. O

A.3 Proof of Theorem 1

In this section, we will prove our characterization of Thiele
rule (Theorem 1). We focus here on showing that every rule
that satisfies anonymity, neutrality, consistency, continuity,
and independence of losers is indeed a Thiele; the other di-
rection can be found in the main body. To prove this claim,
we essentially follow the same steps as for the proof of Theo-
rem 2 and a detailed proof sketch is given in the main body.
Moreover, for a short notation, we define F2 as the set of all
ABC voting rules that satisfy anonymity, neutrality, consis-
tency, continuity, and independence of losers (i.e., the axioms
of Theorem 1).

For the first step in our analysis, we consider again the
profiles A*" and A~*" in which all ballots A of size r with
x € Aand x € A, respectively, are reported once.

Lemma 13. Let f € F? denote a non-trivial ABC voting
rule. There is a ballot size v such that f(A*") = {W €
Wi:x € Whand f(A~"") = {W € Wy: & W} forall
z el

Proof. Let f € F? denote a non-imposing ABC voting rule.
To show this lemma, we will find a ballot size r such that
fA™™) = {W € Wy: 2z ¢ W} forall z € C. This
implies that f(A™") = {W € Wj: € W} because of the
following reasoning. First, anonymity and neutrality entail
that f(A™" + A="") = W), as the profile A™" + A=%"
contains all ballots of size r. Hence, consistency requires that
either f(A®") = f(A™®") =Wy or f(A®")Nf(A™™") =
(. In particular, if f(A™®") = {W € Wy: x ¢ W}, then
F(A®TY C{W € Wy: x € W}. Finally, by applying again
anonymity and neutrality to A®", it is easy to see that this
subset relation must be an equality.

Now, for finding the index r such that f(A~%") = {W €
Wi © & W}, we first investigate the choice of f for single
ballots. By neutrality, it holds that f(C) = W, for the ballot
C in which all candidates are approved. Next, consider an
arbitrary candidate x € C. By independence of losers, we
know that {WW € Wy:z ¢ W} C f(C\ {x}). Invoking
again neutrality, we derive that there are only two possible
outcomes for the ballot C \ {z}: either f(C\ {z}) = {W €
Wi:x & Whor f(C\ {z}) = W;. If the former is the
case, the profile only containing the ballot C \ {x} constitutes
A~"" for r = m — 1 and we are done.



Hence, suppose that f(C \ {x}) = Wi. By neutrality, the
same holds for every ballot of size m — 1. In this case, we can
simply repeat deleting candidates from C\ {«} until we arrive
ataballot C\ X such that f(C\ X) # Wj; such a ballot must
exist as consistency otherwise implies that f is trivial. More-
over, we suppose that the set of deleted candidates X is mini-
mal. By neutrality, this means that f(C \ Y') = W), for every
set of candidates Y with |Y| < | X|. Now, let y denote an ar-
bitrary candidate in X and define X¥ = X \ {y}. By our pre-
vious insight, f(C \ X¥) = W, and independence of losers
then shows that {W € Wy.: y € W} C f(C\ X). Since y
is chosen arbitrarily, we can apply this argument for every
y € X and derive that {W € Wy,: X € W} C f(C\ X).
Moreover, since f(C \ X) # Wy and f is neutral, we infer
that this subset relation must actually be an equality. Also,
since f(C\X) # W, we get that | X | < k because otherwise
the set {W € Wy, : X ¢ W} contains all committees.

Now, fix a candidate = € C and consider A=%" for r =

— | X|. This profile contains each ballot C'\ Y with |Y| =
|X| and z € Y once. By neutrality, we have for each of
these ballots that f(C\Y) = {W € Wy: Y € W} In
particular, since z € Y for all considered ballots, it holds
that {W € Wy:x ¢ W} C f(C\Y) for all ballots in
A™%". Hence, consistency applies for A~*" and shows that
FAT"") = Nyce: jyvi=ix|azey F(C\Y). This means that
W & f(A=®") for all committees W € W, withx € W as
thereisasetY withz € Y and |Y| = | X| such thatY C W.
Conversely, it immediately follows from consistency that
W e f(A=®") for all committees W € Wy, with z & W.
Hence, we have that f(A™") = {W € Wy:z & W}
which concludes the proof of the lemma.

Since the ballot size r for the profiles A*" and A=*"
plays no role in our subsequent analysis, we will omit it and
mean by A* and A~7 the profiles A*" and A~*" for the
ballot size r given by Lemma 13.

Moreover, based on Lemma 13, it follows straightfor-
wardly that every non-trivial ABC voting rule f € F? is
non-imposing. For this, it suffices to consider the profile A"
that consists of a copy of A” for every candidate x € W as
consistency then ensures that f(A") = {WW}. Since the triv-
ial rule is clearly the Thiele rule defined by s(x) = 0 for all
x, we therefore focus from now on non-imposing rules. This
allows us to use the vectors 7%/ constructed in Lemma 5 and
the functions s constructed in Lemma 6. As the next step,
we use independence of losers to remove the dependence on
the ballot size of the functions s..

Lemma 14. Let f € F? denote a non-imposing ABC vot-
ing rule. There is a function s(x,y) such that s*(|W* N
B()|,|W7 0 B()|) = 4y’ for all committees W', W7 &
Wy, and ballots B({) € Awith |[W*\ W7| = 1.

Proof. Let f € F? denote a non-imposing ABC voting
rule and consider two committees W*, W7 € W with
[W*\ WJ| = 1. Now, by Lemma 6, there are functions
sk such that @7 = sy (W N B()|,|[W7 N B(0)])
for all B(¢) € A. For proving this lemma, it thus suf-

fices to show that s (|W* N B(()|,|[W7 n B({)]) =

sipen (W B(£)[,|W3 N B(¢')|) for any two ballots
B(¢), B(¢') with W N B(¢)| = [WN B(¢")| and [W7 N
B(l)| = [WinB({")|.1f|B(£)| = | B(¢)], this follows from
the definition of the functions s}. Moreover, if [W*NB({)| =
WiNB(¢")| = [WinB(¢)| = |W7NB({')|, then Claim (2)
of Lemma 6 shows that s g(¢) (|[W*NB(¢ )|, (WinB(0)]) =
8|y (IWH N B(L)], [W/ ﬁB(fl)D

Hence, we suppose that |B(¢)| # |B(£’)| and |[W' N
B(0)| # |W7 N B(¢)|. Without loss of generality, we make
this more precise by assuming that |B(¢)| > |B(¢')| and
[Win B(£)| = [W7 N B(¢)| + 1. In particular, the latter ob-
servation means thata € B(¢) N B(¢') and b ¢ B(¢) U B(¢')
for the candidates {a} = W*\ W7 and {b} = W7 \ W
By this insight, it it easy to see that there is a permutation
7 such that B(¢") = 7(B({")) € B((), |[W'n B(¢)| =
Wi N B({")| and [W7 N B({)| = |W7 N B({")|. More-
over, it holds that sy (|W* N B(¢)|,|W7 N B(¢)]) =
sipen (W N B[, |Win B(L")]), so it suffices to show
that 5o (IW* N B")[, [W? N B(L")]) = s1p@) (IW' N
B0, W7 0 B(0)]).

For this, consider the profile A in which all ballots are
reported once. Clearly, f(A) = W, by anonymity and
neutrality. Next, let A’ denote the profile derived from A
by replacing the ballot B({) with B(¢"). Since B(¢") C
B(0), Win B(¢)| = [W*n B({")|, and |W7 N B({)| =
|W3 N B(£")|, this means that we only disapprove candi-
dates z € C \ (W* U WY). So, independence of losers im-
plies that Wi W7 € f(A’). Now, consider the vector %7
given by Lemma 5. By Claim (1) of this lemma, we have
that v(A)@" = v(A")i = 0 because v(A), v(A') € RS
and v(A),v(4") € ij Hence, v(A)a" — v(A')abI =
aly? — ;] = 0. This implies that sip)|(IW'NB)], [Win
BO)l) = a7 = il — speny (W 0 BE),IW 0
B(¢")|), thus proving the lemma. O

We note that the function s' clearly inherits the symmetry
properties of the functions s} discussed in Claims (2) and (3)
of Lemma 6.

Now, it follows essentially from Lemmas 13 and 14 as
well as the proof of Proposition 4 that all rules in F2 are
Thiele rule if Kk = 1 or kK = m — 1. We thus focus on the
case that 2 < k < m — 2./T(/) show this case, we need to
relate the vectors 4"/ and 4" 7" to each other for committees
Wer Wi wr W2 with [W*\ W7 # |[W* \ W7 |. For
doing so, we consider a sequence of sequence of committees
Wio ... Wt such that [WJ \ WJt| = t and |[WJ=-1 \
Wi=| =1 forevery z € {1,...,t}. Our goal is then to show
that 770-7¢ is the (scaled) sum over the vectors 47=—1+J= To
this end, we proceed analogously as in Appendix A.2 and
first show that the vectors {@/0+J1 ... @7t=1J¢} are linearly
independent.

Lemma 15. Suppose 2 < k < m — 2 and let f € F? de-
note a non-imposing ABC voting rule. Moreover, consider
a sequence of committees Wio ... Wit fort > 2 such
that |Wio \ Wit| = t and |WJL ) \W]L| = 1 for all
x € {1,...,t}. The vectors 0/0-J1 4172 . qie=1Jt gre
linearly independent



Proof. Let f € F? denote a non-imposing ABC voting rule
and consider a sequence of committees W70, ... Wt as
specified by the lemma. The conditions that |WJ0 \ Wi |=t
and [WJ=-1 \ W?| = 1forx € {1,...,t} means that when
moving from W7=-1 to W7=, we need to exchange a candi-
date a € WJ=—1 (W \ Wt) with a candidate b € W= N
(W3t \ WJo). Hence, we can write each committee in this se-
quence as W = {by,... by, ap41,..., 01, Cip1,- - ck}
In particular, W7o \ Wit = {ay,.. at} Wit \ Wio =
{bl,...,bt},andeoﬂWj‘ :{Ct+11" Ck}

For showing that the vectors /= ~1+/= for & e{l,....t}
are linearly independent, we consider the matrix M whose z-
th row corresponds to the vector 4/=-1+J= for x € {1,...,t}.

In more detail, we will show that the image of M has full di-
mension, i.e., {w € R: Jv € RM!: Mv = w} = R’ This
suffices to prove the lemma because the image dimension of
a matrix is equivalent to its rank, which is equivalent to the
number of linearly independent rows. To this end, we con-
sider the profiles A* constructed in Lemma 13. In more detail,
we claim that the vectors w = Muv(A%) satisfy w, # 0 and
wy = 0 for y # x, which implies that the image of M has
full dimension.

To prove this claim, we consider first two indices x,y €
{1,...,t} with z # y. Now, let 7 denote the permutation
defined by 7(ay) = by, 7(by) = a,, and 7(z) = z for all
other candidates. It is easy to see 7(v(A%)) = v(A%) due
to the symmetry of this profile and 7 (a/v—1Jv) = @JvJu-1 =
—@Jv-1:Jy because of Lemma 5. Hence, it follows that

(Aw)ujy Ly — 7—( (A‘T)) (u]y luJy) — (Aw)rajyfl’j'y’
which is only possible if v(A®)aiv-1:Jv = O

Finally, for showing that v( A% )a/=—1+J= = (), we consider
a committee W' with a, € W, b, & W and define A as
the profile that contains a copy of A* for every z € W*. By
an analogous argument as in the last paragraph, we infer that
U(A)ajw—l-,jrn — ZZEW"' U(Az)ajm—lvjz — ,U(Aflm),&jm—hjm_
On the other hand, consistency and Lemma 13 show that
f(A) = {W?%}. Moreover, continuity implies that there is
a A € N such that f(AA + B({)) = {WZ} for all bal-
lots B({), so we can infer that v(A) € intR This means
that v(A)a/=J==1 > 0 by Claim (1) of Lemma 5 and thus,
v(A)@IeIr—1 = (A% )gIe—1:de < 0, O

Our next goal is to show that the linear independence
observed in Lemma 15 turns into a linear dependence if we
add the vector 707t to the set. For this, we first show an
auxiliary claim.

Lemma 16. Assume 2 < k < m and let f € F? de-
note a non-imposing ABC voting rule. Moreover, consider
an arbitrary sequence of committees W7o, ... W7t € W,
such that |Wi \ Wit| = t and |WW=—1 \ Wi=| = 1
forall x € {1,...,t}. Let B({) be any ballot such that
(WP NB(¢)| < |WI*NB(L)|. It holds that 3" _, s*(|B(£)N

i - WitnB(¢
Wiz, [B(6) W) = STV R st @ — 1),
Proof. Let f € JF? denote an non-imposing ABC vot-
ing rule and let the committees W70 ... W7t and the
ballot B(/) be defined as in the lemma. Furthermore, let
; |B(¢) N W=| be the x-th intersection size and

consider the sum ' _, s'(i*1,4%). If i*~1 = 4%, then
s'(i*71,i®) = 0. Hence, we can shorten the sum by re-
moving all such terms without affecting the sum. More rig-
orously, we define y,, = 0 and i* = i* for x = 0, and
it = ¥=+1 where Y41 1 the smallest integer y > y,
such that i¥ # ¥%=. Moreover, let £ denote the length of
this new sequence and observe that i@ =t — 1 or
i* = "t f1forall z € {0,...,f — 1} Furthermore,
by definition, ' _, s'(i*~1,i%) = Zi:l sH(1%1,07).
Next, we suppose that £ > |W7t N B(¢)| — |[Wo N B(¢)|.
In this case, it is straightforward to see that there must be an

index i% such that i = 12, By Lemma 6, we thus have
that s1(i%,i"") = —s1(4*T1,i%) = —s1(4*T,i**?) and
we can hence remove these two terms from our sum. Clearly,
we can then compress our indices again and repeat the argu-
ment until we have only £ < |W7f N B( )| — [Wion B(0)]

intersection sizes left. Let 7° t denote this reduced

set and note that [i* — z“3+1|_— 1 for all x. Moreover,
it is not difficult to see that i = i® and i* = i, so
we have that *~! = i — 1 for all z € {1,...,%} and

Wit 0 B(¢)| — |WJ° N B(£)|. Finally, since we
only remove terms that sum up to 0, it clearly holds that
22:1 sl(ix_17 ZI) = Zi:l Sl(%x—l, ix)sl(gac—l’ Zx) =
ZLZ‘J;Q]‘?((@(MH s!(z—1,z), thus proving the lemma. [J

Based on Lemmas 15 and 16, we will now show that the

vector 4170+7¢ can be represented as (scaled) sum of the vectors
aloI qivIz o qdt-1dt 707t are linearly dependent.

Lemma 17. Suppose 2 < k < m — 2 and let f € F?
denote a non-imposing ABC voting rule. Moreover, consider
an arbitrary sequence of committees W70, ... , W7t € W,
such that |Wo \ Wit| = t and |Wi==1 \ Wi=| = 1 for
all v € {1,...,t}. There is a § > 0 such that 4ot =

52221 {ie—1:da

Proof. Let f € F? denote an non-imposing ABC voting rule
and consider a sequence of committees W7o, ... Wit ¢ W,
as stated by the lemma. Moreover, we define W7o \ Wit =
{al, - ,at}, Wit \ Wio = {bl, - ,bt}, and Wi =
(Wio N Wity U {by,...,bs,az11,-..,b:}. Next, we con-
sider the function s!(x + 1, z) derived in Lemma 14. First, if
this function is constant, then we can use the same arguments
as in Appendix A.2. In particular, note here that we show in
Lemma 8 an analogous claim and that the subsequent lemmas
(Lemmas 9 to 12) do not rely on choice set convexity or weak
efficiency.

We hence suppose that there is a index p > 1 such
s(p+ 1,p) # s(p,p — 1). Moreover, we define p as min-
imal such value and let a = s!(1,0). In particular, we
have that s'(z + 1,2) = « for all z < p. In this case,
we will prove the lemma by an induction on the length of
the considered sequence. First, if ¢ = 1, the statement is
trivial and the induction basis thus holds. Hence, we aim to
show the lemma for t > 1 and suppose that there is a ¢’

with @t = § Z L @'==1% for all sequences of com-
mittees W, ... W with W% \ Wi| = ¢ < ¢ and



|Wie=1\ Wi=| = 1forall z € {1,...,t'}. To prove the in-

duction step for our sequence W70, ... Wt we proceed in
multiple steps. In our first four steps (Steps 1.1 to 1.4), we will
show that the vectors {@7071, @192 ... @Jt-1It J0-9t} are

linearly dependent. Based on Lemma 15, it thus follows that
there are coefficients d,,, not all of which are 0, such that
@0t = S §,09+197% In the last step (Step 2), we
then show that all J,, are the same and greater 0, thus proving
the lemma.

Step 1: The vectors {7071 47192 . qgit—1J gJodt}
are linearly independent.

Assume for contradiction that the given vectors are
linearly independent. To derive a contradiction to this
assumption, we will construct a vector v* that is not
contained in R/ for any W' € Wj. Consequently,

U$E{1,<~~7‘Wk‘} R{ # RIAI Just as for Lemma 11, this con-
tradicts the insight thilt Uwe{17..‘,‘wk‘} R{ = QI and there-
fore U_we_{lw--»_‘Wk‘} le = Rw. SQ, Fhe assumption that the
set {@J0Ir Iz o qIt=10t 3309t} ig linearly indepen-
dent must have been wrong. For constructing v*, we will step
by step narrow down the choice set.

Step 1.1: For our first step, let W' = {W € W*: Win
Wi C W C WU W7}, ie., W! is the convex hull of
Wt and WJ. We will construct a vector v! such that for
every committee W & W1, there is another committee W7

such that v'@*7 < 0. This shows that v* ¢ R/ for these
committees by Claim (1) of Lemma 5.

For constructing this vector, we recall the profiles A*
and A% constructed in Lemma 13. First, we note that
v(A®)i = v(A=*)a 7 = 0 for all committees W, W7
with [We\ Wi = 1, {z} # {a} = W'\ W, and
{z} # {b} = WJI\ W', For showing this claim, considering
the permutation 7 with 7(a) = b, 7(b) = a, and 7(z) = z
for all remaining candidates. It is now easy to verify that
V(AT = 7(v(A%))T(0H) = v(A%)W) = —v(A®)aHI
due to the symmetry of A* and Lemma 5. This is only possi-
ble if v(A®)a"7 = 0 and an analogous argument also shows
our claim for A~%. Furthermore, it holds that v(A*)a%7 > 0
and v(A~%)a" < 0 for all committees W W7 with
W\ WJ = {x}. For showing this, consider the profile
A that consists of a copy of A%for every z € W' (the claim
for A=* works analogously by considering the profile con-
sisting of A~% for x ¢ W*). By consistency, f(A4) = {W?},
and by continuity, we infer that v(A) € int le . Hence, by
Claim (1) of Lemma 5, v(A)@*/ > 0. On the other hand,
we have that v(A)a™ = Y v(A%)aH = v(AT)a
as v(A#)a = 0 for all z € W N WJ. Combining these
insights shows that v(A%)a%7 > 0.

Now, for completing this step, we define A! as the profile
that contains a copy of A% for z € W7 N W7t and a copy
of A= forz € C \ (W70 U WJt). By consistency, it is easy
to infer that f(A') = W?'. Hence, Claim (1) of Lemma 5
shows for v! = v(Al) and W¢ W7 € W that v'a®I = 0.
Next, consider a committee W* & W!. This means that
there is a pair of candidates a € Wi b ¢ W' such that
a€C\(WionWit)yandb € WionWit,ora € C\

(Wdo U Wit) and b € W0 U Wt In both cases, it follows
from our previous analysis that v14%7/ < 0 for the committee
W defined by W7 = (W*\ {a}) U {b}. For instance, if
a€C\ (WhuWwit)CC\(WinWit),be WionWit,
then v'a? = v(A~4) a7 + v(AY)aH = v(A~Y)a —
v(Ab)a7* < 0. This completes this step.

Step 1.2: For our second step, let W? = {W € W': Vz €
{1,...,t}: {az, by }}. As second step, we will construct a
vector v? such that for each W ¢ W2, there is a committee
W such that v2a%7 < 0.

For constructing this vector, recall that s'(z + 1,7) = «
for all x < p and s'(p + 1,p) # «. Moreover, consider
two arbitrary committees W W7 € Wt with {W? Wi} #
{Wio Wit} By this assumption, it holds that |[W*\ W7| =
t' < t, so we can use our induction hypothesis to con-
struct 4% . For doing so, let W ... W denote a sequence
of committees from W to W7. By the induction hypoth-

. Ad 4 tl ~d 5
esis, u" = §). _, W'=+t1' = for some § > 0. In turn,

Lemma 16 shows that @7 = § Ziﬂg&‘;‘g&vﬂﬂ st(z—1,7)
for all ballots B(¢) with | B(¢)NW*| < |B(¢)NW7|. Hence,
if additionally |B(£) N W*| < pand |B(¢{) N W7| < p, then
4y’ = —da(|B() N W[ — [B(6) N W) = da(|B(¢) N
W — |B(¢) " W7|). On the other hand, if |B(¢) N W*| < p
and [B(¢) NW?| = p+ 1, then 4y’ = da(|B(¢) N W] —
p)—ds(p+1,p) = Sa(|BU)NW? —|B)NWI|) +ba —
ds(p+1,p).

Now for constructing the vector vZ, we consider first the
profiles A” that contain ballot A with |[A|] = p + 1 and
az, by € A once. Moreover, we define A as the profile that
consists of a copy of A” forall z € {1,...,t} andlet v =
v(A).

First, we observe that all candidates in (W7 U WJt) \
(WJo N Wit) are approved by the same number of vot-
ers in A. Hence all committees in WW! have the same total
number of approvals _in A e, Y cia 17@|B(€) n Wil =
> e<ia) Vel B(€) N W] for all committees W*, W/ € W'
Moreover, note that for every ballot A in A and every com-
mittee W € W2, it holds that [IW N A| < p because
Al = p+1and {by,a,} C Aforsomez € {1,...,t}
but {b,,a,} € W. Hence, for all W' W7 € W? with
{WE W7} # {Wdo Wit}, the following equation holds
due to our previous analysis. In this equation, we define
L={te{l,....|Al}: |IBO)NW*| <|B{)"W’|} and



Lo={Ce{1,... |A}: |B(O)NW?| > |B(¢) N Wi},

I = Z vty

Le{1,...,| A}

= vty = > vedy’
el | Lely

=Y wda(|B() N\W| - [B(6)n W)
lely

— " wda(|B(O) N W~ |B(L) n W)

LeTs
=da > w|B()NW|
Ce{1, Al
—da Y wlBEO)NW|
e, Al}
=0.
Moreover, it also holds that v47°7t = (. For explain-

ing this, we consider the permutation 7 with 7(a,) = by,
T(by) = ag forall z € {1,...,t} and 7(2) = z for all re-
maining candidates. It is easy to see that 7(v(A%)) = v(A®)
for all z € {1,...,t} and hence 7() = v. By our usual
permutation arguments, it thus follows that 74707t = 0.

Next, consider a committee W* € W! \ W2. Then
az, by € Wiforsomex € {1,...,t}. Moreover, let y denote
the number of ballots A in A such that |[ANW?¢| = p + 1.
Since p +1 < k and a.,b, € WY, there is at least one
ballot A in A® such that A C W and thus v > 1. We
claim that v37°* > 0 if @ > s*(p,p — 1) and v/ < 0 if
a < s'(p+ 1,p). Note for this first that |[WWi N WY| < ¢
since W* € W' and a,, € W*. Moreover, it holds for ev-
ery ballot B(¢) with v, # 0 that |[WWJ° N B(¢)| < p since
|B(¢)| = p+1andb, € B(£)\W forsomex € {1,...,t}.
On the other hand, W% N B(¢)| < p + 1. Using our ini-
tial insights, we thus derive the following equations, where
I = {¢ € {0,...,|Al}: |Bl)nW'| = p+ 1} and
Iy ={£e{0,....[Al}: [B(O)nW'| < p}.

vit = ol + Y i)
Lely Lels
=Y wdal|B(L) N\WP| — [B(6) N W)
el
+ > we(da— 85 (p+1,p))
Lel
+ Y vba(|B(O) N W[ — [B(6) N W)
Lels
=dy(a—s'(p+1,p))
+oa Y w|BE)NWP

Le{1,...,|A|}
—da Y w|B(O)NW|
Le{1,...,|Al}

=0y(a—s'(p+1,p)).

In particular, we use in the last steps that all committees in
W! have the same total number of approvals. Since § > 0
and v > 0, this shows that 7% < 0if o < s(p + 1,p) and
va7o* > 0if > s(p + 1, p). Hence, with the right sign in
front of 7, all W¥ € W' \ W? are dominated.

Finally, let v> = A! + 0 if o > s(p + 1,p) and v? =
Ml — v if a < s(p + 1,p). In this definition, A > 0 is so
large that for all committees W* € W, \Wl, there is another
committee W7 € W, such that v24*7 < 0. Now, note that
forall Wi € WY\ W2, we have that v2%9° = —92470:% < 0
since v'@/0" = 0 and we choose the sign of ¥ such that
+9a79* > 0. Following a similar reasoning, it is easy to see
that v24%7 = 0 for Wi, W7 € W2,

Step 1.3: For constructing our next vector, we define
W3 = {W e W?: Ve € {1,...,t — 1}: {az,bp11} &
W}. Put differently, W3 consists all committees W% such
that W?® = W7 N W U{by,...,bz,az41,...,0¢}, i€,
W3 = {WJo ... Wt} We aim to construct a vector v*
such that all committees outside of V3 are dominated by
some other committee. .

To this end, consider the profile A* forxz € {1,...,t— 1}
that contains each ballot A with |A| = p+ 1 and {a,, by41}

once. Furthermore, define the profile A as follows: A contains

a copy of A" for each z € {1,...,t — 1} and so many
copies of the ballots {a;} and {b;} that every candidate in
(W uW?t)\ (W7o NWIt) is approved by the same number

of voters. Moreover, we define & = v(A). By the definition
of A, it immediately follows that Doveqr,.ap b BN
Wl =3 reqi,..1a el B(€) N W' for all W, W' € W2,
Furthermore, it holds for all committees W € W3 and ballots
A in A that |IW N A| < p. Hence, it follows from exactly
the same reasoning as in the last step that 947 = 0 for all
Wi WI e W3 with {W? WJ} £ {WJo Wt} Moreover,
the permutation 7 with 7(a,) = bi—py1, 7(by) = Gp—py1
forz € {1,...,t} and 7(z) = z for all other candidates
maps A® to At=**1, This means that 7(A) = A and our
permutation argument thus also shows that 4707 = 0.
Next, consider a committee W* € W? \ W3, In particular,
this means that {a,, b,+1} C W' for some z € {1,...,t —
1}. Now, let v denote the number of ballots A in A such that
[ANWY| =p+1.Sincep+ 1 < kand {ag,by41} C W,
there is clearly a ballot B(¢) such that | B(¢)| = p+1, 9, # 0,
and B(¢) C W, so~y > 1. Since a, € W*, this means that
|[Wio\ W| < t. Again, for all ballots B(¢) with 9, # 0, we
have |B(¢) N Wi | < pand |B() N W*| < p+ 1. So, we
can apply the same reasoning as for ¥ to infer that @/0*% > 0
ifa>s'(p+1,p)and 4/ < 0ifa < s*(p+1,p).
Finally, let v = M2 +9if @ > s(p+1,p) and v3 = \v?—
v if a < s(p+ 1, p). Here, we choose A > 0 again so large
that for every committee W* € Wj, \ W2, there is another
committee W7 € W, such that v34%/ < 0. Moreover, note
that for every committee Wi e W2 \ W3, we have that
V3490 < 0 because 47°v? = 0 and we choose the sign of
© so that £6470° > 0. Finally, v30%Y = 0 for all 7,y €
W3 because v24%Y = 0 and 04*Y = 0. Hence, for every
committee W% € W, \ W3, there is another committee W7
such that v34%7 < 0, and for all W*, W7 € W3, it holds that



V30 = 0.

Step 1.4: As last step, we consider the matrix M that con-
tains the vectors 47071 ... (J==1:3=% {Jo:dt a5 rows. More
specifically, we assume that the z-th row of M is @f=—1+J=
forz € {1,...,t} and the ¢ + 1-th row of M is @7, Now,
by assumption, the rows of M are linearly independent, i.e.,
the matrix has row rank of ¢ 4+ 1. This means equivalently
that it has a column rank of £ 4+ 1, which in turn implies that
the image of M has full dimension. Thus, there is a vector
v* such that w = Mv* satisfies w, = 1 forz € {1,...,t}
and W41 = —1.

Next, just as in the previous steps, we define vt = Avd+o¥,
where A > 0 is so large that for every committee W &
Wi \ W3, there is another committee W/ € W, with
v4uY* < 0. Now, by definition of v* and Claim (1) of
Lemma 5, v* ¢ R{ for every Wi € Wy \ W3. On the
other hand, we have shown in Step 3 that 03I = 0 for
all Wi, W7 € W3. So v*a»7 = v*4J for these commit-
tees. This means that v*@/07t = —1 < —0 and v*@/=—17= =
—vtgiede-1 = —1 < Oforallz € {1,...,t}. So, v* & R{
for any committee W* € W, which gives us the desired
contradiction. Hence, the initial assumption is wrong and the
vectors 47071 . @Je=1:Jt (Jo-Jt are linearly independent.

Step 2: There is § > 0 such that @/oJr =
03 gy Wt

By  Step 1, we know that the set
{@jodr .. q@dt=1dt 4J0dt} is linearly dependent, whereas
the set {a’o91, ... @/+-1Jt} is linearly independent
(Lemma 15). Consequently, there are unique values d,
for € {1,...,t}, not all of which are 0, such that

aodt = Zt (5 @/==1:J= . Now, consider the profiles A”
constructed in Lemma 13. As discussed before, it holds
that 4*Jv(A¢) = 0 for all committees Wi W7 € W
such that [W \ WJ| = 1 and ¢ € Wi n Wi or
c ¢ WiUW/J. Conversely, 47 v(A°) > 0 for all committees
Wi Wi € Wy with W\ W7 = {c}. Moreover, observe
that a¥*1v(A°) = G¥2*29(A°?) # 0 for all committees
Wyt W= Wy W= € W, with W \ W# = {¢;} and
W¥2\ W#2 = {cy}. This can again be proven by choosing a
suitable permutation 7.

Now, let z € {1,...,t} be an arbitrary index. By our pre-
vious argument, we have that v(A% )@J==1J= > ( because
az; € W==1\ W=, On the other side, a, € W=t N Wiv
foralll < y < z, and a, € W1 U W for all
y > x. So, we infer that 4/v-1Jvv(A%) = 0 for all y €
{1,...,t} with y # . Hence, it follows that v( A% )@7o-Jt =
22:1 O, v(A% ) @v-10v = § v A% )@de—1:Tx,

As next step, we consider two distinct indices z1, x5 €
{1,...,t} and the profiles A*>: and A%:=. Moreover, let T :
C — C be a permutation such that 7(a,, ) = ayz,, 7(az,) =
az,, and 7(c) = ¢ for all other candidates. First, a,,, a,, €
Wio \ Wit, so r(WJo) = We and 7(WJt) = WJt, Hence,
U<Aam1)ﬂjo7jt = T(U(Aazl))T(ajmjt) = v(A%> )r&j(};jt by
Claim (3) of Lemma 5. Combining our last two insights thus
shows that 0, @721 =17 ~¥1y( A%1) = §,, @2 —1Teap( A%2),
Since v(A% )ajmlfhjml = v(A%:2 )r&jzg—lyjzg £ 0,
this means that §,, = §,,. This proves that @70t =

83t @d==17+ for some § € R. Moreover, since there
is at least one non-zero J,, it follows that § # 0

Finally, we need to show that § > 0. For this, we note
that W € f(A%) as a; € W7 and therefore v(A%) €
ij-o. Now, by Claim (1) of Lemma 5, this means that
v(A%)as07¢ > (. On the other side, we have already shown
that v(A%) 47 = §u(A% )47 and that v( A% )a/07t and
0 # 0. Combining these claims then shows that § > 0 and
thus proves the lemma. O

Finally, we are now ready to prove Theorem 1.

Theorem 1. An ABC voting rule is a Thiele rule if and only
if it satisfies anonymity, neutrality, consistency, continuity,
and independence of losers.

Proof. We note that the direction from left to right has been
shown in the main body. Hence, we focus on the converse
direction and assume that f € F2. Now, if f is the trivial
rule, it is clearly the Thiele rule defined by s(0) = 0. On
the other hand, we can assume that f is non-imposing if it
is non-trivial by Lemma 13. This allows us to access the
vectors 4"/ constructed in Lemma 5 and the function s'
constructed in Lemma 14. Now, we define the function s(x)
as follows: 5(0) = Oand s(x) = -7, s(y,y—1) forallz €
{1,...,k}. Moreover, we extend s to vectors by §(v, W) =
> reqr,.... 1 ves(|B(€) N W]). We will show this lemma
by proving that f(A) = f/(A) = {W € Wy: VIV/ €
Wi §(v(A), W) > §(v(A), W)} and that f’ is a Thiele
rule. For doing so, we proceed in multiple steps.

Step 1: There is § > 0 such that 6a,’ = s(|B(£) N
W) — s(|B(¢) N W?|) for all ballots B(E)

As first step, we show that the vectors @/ can be repre-
sented by the function s. For this, consider two arbitrary
committees W, W7 € W, and a ballot B(¢). First, if
|[Wi\ WJ| = 1, then this claim follows from Lemma 14.
Hence, suppose that [W®\ W7| = ¢t > 2, which requires
that 2 < k < m — 2, which means that Lemma 17 ap-
plies. To use this lemma, let W7, ... W7t denote a se-
quence of committees from W' to WJ. Then, we infer
that 47 = §3 . _, @==1J= for some § > 0. Now, sup-

pose that |B(¢) N W < |B(¢) N W|. Then, Lemma 16
B(ONW|

shows that > | ZL—|E)3?£)nW7 o stz —1,2).

By the definition of s and the fact that s'(z — 1,2) =

Qde—1:0z —

B()nw
—s!(z,x — 1), we get that ZL (\B?e)mvlv7|+13 (x—1,2) =
B(O)NnW| j
= e SH @ = 1) = —(s(IB(6) N W) —

s(IB(O)NW?)) = s(|B(O)nW*) —
the claim is proven in this case. .
Next, assume that | B(£)NW*| > | B(£)NW7|. In this case,
we can consider the vectors 47" and our previous argument
shows that @) = = 8(s(|B(O)NW7)—s(|B(£)NW?)). Finally,
the step follows again since iy’ = —a)".
Step 2: f(A) C f'(A) for all profiles A € A*
For showing this step, consider an arbitrary profile A. By
our lemmas, we have that f(A) = g(v(A)) = {W"* €

s(|B(¢) N W7). Hence,



Wi v(A) € R} € {Wi € Wy:v(A) € R/}. Hence,
our goal is to show that v(4) € R/ if and only if
5(v(A), W) > s(v(A), W) for all committees W7 € W.
For doing so, we recall that le = {v € R V) e
{1,...,Wi|} \ {i}: va™? > 0}. Hence, it clearly suffices
to show that v(A)a"’ > 0 if and only if 5(v(A), W) >
5(v(A), W7). For this, we observe that by Step 1, v(A)u"7 =
2eeqt,... iy V(A (s(IBIONW!) = s(IB()NW'])) =
5(3(v(A), W?) — 3(v(A), W7)) for some § > 0. This shows
that our claim holds and thus this step follows.

Step 3: f(A) C f'(A) for all profiles A € A* and [’ is
a Thiele rule

First, we show that f'(A) is a Thiele rule. For this, we
note first that s(0) = 0 by definition and it thus only re-
mains to prove that s is non-decreasing. Now, assume for
contradicting that there is an index p € {1,...,k} such
that s(p) < s(p — 1). First, suppose that p > 1. In this
case, consider the profile A in which every ballot of size p
is reported once. By anonymity and neutrality, it follows
that f(A) = f'(A) = Wj. Next, we consider two ar-
bitrary committees W, W’ € Wy and let c € W\ W'.
Moreover, let B(¢) denote a ballot such that B(¢{) C W
and ¢ € B(¢). Finally, let A’ denote the profile in which
we replace B(¢) with B(¢) \ {c}. It is easy to see that
s(AW) = s(A,W) —s(p) +s(p—1) > s(A,W) =
s(A,W') = s(A’,W'). Hence, W' ¢ f'(A’) and therefore
also W' ¢ f(A’). However, this contradicts independence
of losers as W’ € f(A) and ¢ ¢ W’. Hence, we infer that
s(p) = s(p—1) forall p € {2,...,k}. As second case
suppose that p = 1, which means that s(1) < s(0) = 0. In
this case, let A denote the profile consisting of all ballots
of size 2. Now, consider a ballot {z, y} and let W and W’
denote committees such that x € W,y ¢ W and x ¢ W',
y € W’'. Finally, let A’ denote the profile derived from A by
replacing the ballot {z, y} with the ballot {y}. It is easy to
see that s(A", W) = s(A, W) — s(1) + s(0) > s(A, W) =
s(A, W) = s(A’,W’). Hence, W' € f(A) and W' ¢ f(A)
as W' & f'(A’). This contradicts independence of losers as
x ¢ W’. Both cases combined show that s is non-decreasing,
so f’ is indeed a Thiele rule.

Finally, we show that f(A) = f’(A) for all profiles A €
A*. Assume that this is not the case, which means that there is
a profile A and a committee W such that W € f/(A) \ f(A)
because of Step 2. Moreover, note that f is a Thiele rule
and hence satisfies consistency and all the other axioms of
Theorem 1. Next, since s is non-zero (as the vectors 47
are non-zero), f’ is not the trivial rule. Hence, we can use
Lemma 13 to show that f’ is non-imposing. In particular,
there is a profile A’ such that f(A4’) = f'(4’) = {W}. By
consistency of f’, this means that f(AA + A") = f/(AA +
A"y = {W} for every A € N. However, this contradicts the
continuity of f and therefore, our initial assumption must
have been wrong. This shows that f is the Thiele rule defined
by s. O

B Proof of Propositions 2 and 3

Finally, we discuss the proofs of Propositions 2 and 3.

Proposition 2. PAV is the only Thiele rule that satisfies
party-proportionality.

Proof. First, we show that PAV satisfies party-proportiona-
lity. To this end, let A denote a party-list profile with parties
P4 and consider two parties P;, P; such that I?’il < ﬁ)ﬁ
Moreover, we assume for contradiction that there is a com-
mittee W € PAV(A) such that P, C W and P; € W.
Now, let z € P,NW and y € P; \ W and consider the
committee W' = (W U {y}) \ {z}. It is easy to com-
pute that Seay (A, W) = Seav (A, W) — (37 + twrpT =
Spav(A, W) — ‘}3—1‘ + I%\ > Spav(A, W). However, this
contradicts that W € PAV(A) and thus shows that our as-
sumption that P; ¢ W was wrong. So, PAV satisfies party-
proportionality.

For the other direction, let f denote a Thiele rule satisfying
party-proportionality and let s denote its Thiele scoring func-
tion. First, we show that s(1) > 0 and consider to this end
the profile A in which two voters approves party P, = {c;}
and one voter approves party Po = {ca,...,cr11}. Now,
if s(0) = 0, it holds for the committee W = P, that
W € f(A) because s is non-decreasing. However, we have

that ﬁj—h > ﬁ)—; and P;  W. Hence, this violates party-

proportionality and therefore s(1) > 0 must be true. Since
Thiele rules are invariant under scaling s, we subsequently
assume that s(1) = 1.

As the next step, we suppose for contradiction that there

is anindex £ € {2,...,k} such that s(¢) # Zi:l 1 More-
over, we assume that ¢ is minimal, i.e., s(y) = 3:1 % for

all x < £. Now, we proceed with a case distinction with re-
spect to s(¢) and first consider the case that s(¢) > Zizl i
In this case, we define A = s(¢) — Zl Landlett € N

r=1 x
such that At > 1 and ﬁt > ¢ + 1. Furthermore, let A
denote the party-list profile where n; = ¢t voters approve
the party P, = {c1,...,c¢} and every other candidate is in
a singleton party that is approved by ¢ + 1 voters. Now, it
can be checked that for all committees W, W’ € W, with
P, C W and ¢ = |PLNW'| < ¢, the following inequality
holds:

$(AW) = tls(f) + (k — 0)(t + 1)

4
1
=tﬁzg+t€A+(k—€)(t+1)
=1
‘o 1
>tfzg+t€(£—£)z+é+(k—€)(t+1)

=1

2tZZ%+(€—€’)(t+1)+(ks—€)(t+1)

t€2é+(k—€’)(t+1)

r=1
= 4(A,W).

This proves that Py C W for all W € f(A). However, this
means that there is a party P; = {c} # P, with c ¢ W for



some W e f(A). This contradicts party-proportionality as
= =t+1>t= | ‘ and P; C W, so the assumption

|P
that s(¢) > Zl_:l - must have been wrong.

For the second case, we suppose that s(¢) < ng:l L
define A = Z ~ — s(¥), and let t > 2 such that t/A >
1. Moreover, we c0n51der the profile A in which £ voters
approve the party P; = {c1,. .., ce} and all other candidates
are in singleton parties that are approved by ¢ — 1 voters.

Now, we can compute for all committees W, W’ € W, with
Py CWand |[W NP |=/{—1that

$(AW) = tls(f) + (k — 0)(t — 1)

14
:téZ%—tzAJr(k—é)(t—i)
=1
5711
>t€ZE+t—1+(k—£)(t—l)

tez +(k— L4+ 1)(t—1)

= S(A,W).

Hence, it holds for all committees W € f(A) that P, € W.
In turn, this means that there is a candidates c € W \ Pl.
However, this contradlcts party-proportionality since = P =

t>t—-1=

\ |
that s(¢) < Zx 1 7 is wrong. Hence, we now conclude that

s(l) = Zi:l Lforall ¢ € {1,...,k},so fis PAV. O

Proposition 3. SAVis the only BSAV rule that satisfies party-
proportionality and aversion to single-party committees.

Proof. First, it follows immediately from the definition of
SAV that this rule satisfies both party-proportionality and
aversion to single-party committees. We thus focus on the
converse direction and therefore consider a BSAV rule f
that is party-proportional and has aversion to single-party
committees. Moreover, let o € R denote the weight vector
of f. First, we show that a;; > O and consider to this end
the profile A where 2 voters approve party P; = {c;} and 1
voter approves party Py = {ca,...,ck+1}. Now, if a1 = 0,
it is easy to see that P, € f(A). However, this contradicts
party-proportionality as ﬁj—h > ﬁj—g‘ and no member of P;
is chosen in the committee W = P,. Hence, it must hold
that oy > 0 and we can rescale our weight vector such that
a1 = 1. Moreover, we note that the entry o, has no effect
on f as voters who approve all candidates increase the score
of each committee by the same. We thus also suppose that
o = L.

Next, we assume for contradiction that there is an index ¢ €
{2,...,m — 1} such that ay # +. Just as for Proposition 1,
we use a case distinction with respect to oy and first assume
that ap > %. In this case, we define A = oy — % and let
t € N such that t/A > 1. Moreover, we consider the profile
A in which ¢t voters approve the party P, = {c1,...,¢c¢}
and each candidate ¢ € C \ P; is uniquely approved by ¢ + 1

voters. We can now compute for every committee W with
[WNP|=¢that 5(A,W) =tlllay+ (k—0)(t+1) =
tl (34 A)+ (k—0)(t+1) = tk+k+ ¢ (t{A—1). Since
t¢A > 1, this means that the committees W that maximize
|[W N P;| have maximal score. Now, if £ = |Py| > k, this
means that W C P, for all W € f(A). However, f then
fails aversion to single- party committees since n; = t+ 1>
t=
then‘ f ‘fails party- proportionahty since P, C W for every
W € f(A). This implies that there is another party P; = {c}
with P; N W = (. Since ‘P =t+1>t= |P1‘,party-
proportionality is violated. In summary, this means that the
assumption that a,p > % has been wrong.

For the second case, suppose that oy < % Moreover,
we define A = % — ay and let ¢ > 2 such that t/A > 1.
Finally, consider the profile A in which ¢/ voters approve
P, = {c1,...,c¢} and every other candidate is in a singleton
party approved by ¢t—1 voters. In this profile, every committee
W with |[W N Py| = ¢ gets a score of §(A, W) = tll'ay +
(k=0H(t—-1)= téé’(— —A)+(k=0)(t—-1)=tk—k—
' (t¢A —1). Since téA > 1, this means that the committees
W € f(A) minimize |[W N Py|, so P, € W. On the other
hand, this implies that for every W € f(A) that there is
another party P; = {c} such that ¢ € W. This, however,
violates party proportlonality P; C W and P, £ W even
though = ‘P = =t—-1<t= ‘ ‘ Hence we also have in this

case a contradiction and can now infer that oy = Z’ which
means that f is SAV. O



