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ABSTRACT
Approval-based committee (ABC) voting rules elect a fixed size

subset of the candidates, a so-called committee, based on the vot-

ers’ approval ballots over the candidates. While these rules have

recently attracted significant attention, axiomatic characterizations

are largelymissing so far.We address this problem by characterizing

ABC voting rules within the broad and intuitive class of sequen-

tial valuation rules. These rules compute the winning committees

by sequentially adding candidates that increase the score of the

chosen committee the most. In more detail, we first characterize

almost the full class of sequential valuation rules based on mild

standard conditions and a new axiom called consistent committee

monotonicity. This axiom postulates that the winning committees

of size 𝑘 can be derived from those of size 𝑘 − 1 by only adding

candidates and that these new candidates are chosen consistently.

By requiring additional conditions, we derive from this result also

a characterization of the prominent class of sequential Thiele rules.

Finally, we refine our results to characterize three well-known

ABC voting rules, namely sequential approval voting, sequential

proportional approval voting, and sequential Chamberlin-Courant

approval voting.
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1 INTRODUCTION
Whether it is choosing dishes for a shared lunch, shortlisting candi-

dates for interviews, or electing a parliament of a country—all these

problems require us to elect a fixed size subset of the available can-

didates based on the voters’ preferences. This problem, commonly

studied under the term approval-based committee (ABC) voting, has
recently attracted significant attention within the field of social

choice theory because of its versatile applications [10, 11, 16]. In

more detail, the study objects for this problem are ABC voting

rules which choose a subset of the candidates of predefined size,

a so-called committee, based on the voters’ approval ballots, i.e.,

each voter reports the set of candidates she finds acceptable.

Due to the large amount of work on ABC voting, there is a

wide variety of ABC voting rules, e.g., Thiele methods, sequential
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Thiele methods, Phragmen’s rules, the method of equal shares,

and many more (we refer to [16] for an overview of these rules).

For deciding which rule to use in a given situation, social choice

theorists commonly reason about their properties: if a voting rule

satisfies desirable properties, it seems to be a good choice for the

election at hand. However, such reasoning does not rule out the

existence of an even more attractive voting rule satisfying the

required properties. For narrowing down the choice to a single

ABC voting rule, a characterization of this rule is required, i.e., one

needs to show that the rule is the unique method that satisfies a

set of properties. Unfortunately, such characterizations are largely

missing in the literature on ABC voting rules and it is therefore an

important open problem to derive such results (see, e.g., [16, Q1]).

The goal of this paper thus is to provide such characterizations

for ABC voting rules within the new but broad and intuitive class of

sequential valuation rules. For computing the winning committees,

these rules rely on a valuation function which assigns a score to

each pair of ballot and committee. A simple example of such a

function is 𝑣 (𝐴𝑖 ,𝑊 ) = |𝐴𝑖 ∩𝑊 |, where 𝐴𝑖 is an arbitrary ballot

and𝑊 a committee. Based on a valuation function, a sequential

valuation rule proceeds in rounds and, in each round, it extends the

previously chosen committees with the candidates that increase the

total score by the most. Clearly, the prominent class of sequential

Thiele rules, which only rely on the size of the intersection of the

given ballot and committee to compute the score, forms a subset of

the class of sequential valuation rules. However, our class is much

more general as it contains, for instance, step-dependent sequential

scoring rules, whose valuation functions depend on the sizes of the

ballot, the committee, and the intersection of these two.

Our Contribution. As our main contribution, we characterize

the class of sequential valuation rules that satisfy mild standard

conditions based on a new axiom called consistent committee mono-

tonicity. This property combines the well-known notions of com-

mittee monotonicity [e.g., 2, 10, 13] and consistency [e.g., 12, 15, 23].

Roughly, committee monotonicity requires that the winning com-

mittees of size 𝑘 can be derived from those of size 𝑘 − 1 by simply

adding candidates. On the other hand, the idea of consistency is

that whenever two disjoint districts separately elect the same can-

didates, these candidates should be the winners when we consider

both districts simultaneously. Consistent committee monotonicity

combines these two axioms by requiring that the candidates that

extend the committees of size 𝑘 are chosen consistently: if some

common candidates extend a committee𝑊 in two disjoint districts,

these candidates should also extend𝑊 in the combined election. Or,

to put it simpler, consistent committee monotonicity restricts com-

mittee monotonicity by requiring that the newly added candidates

are chosen in a reasonable way.

Based on this axiom, we characterize the class of sequential val-

uation rules that satisfy anonymity, neutrality, non-imposition, and
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Figure 1: Overview of our results. An arrow from class 𝑋 to
class 𝑌 with label 𝑍 means an ABC voting rule in the class 𝑋
is in the class 𝑌 if and only if it satisfies property 𝑍 .

continuity. These four conditions are mild standard axioms that

are satisfied by almost all ABC rules considered in the literature

and we henceforth summarize them by the term proper. In more

detail, we first show that every proper sequential valuation rule is

a step-dependent sequential scoring rule, i.e., its valuation function

only depends on the sizes of the ballot, the committee, and the

intersection of these two. As second step, we then characterize

step-dependent sequential scoring rules as the only proper and con-

sistently committee monotone ABC voting rules. Or, put differently,

when the winning committees should be computed sequentially

and the newly added candidates are chosen in a consistent way, we

naturally arrive at the class of step-dependent sequential scoring

rules, thus giving a strong argument for using these rules.

Based on our characterization of step-dependent sequential valu-

ation rules, we also infer characterizations of more restricted classes

of voting rules by requiring additional axioms. In particular, we

present such results for step-dependent sequential Thiele rules

(whose valuation function only depends on the size of the commit-

tee and the size of the intersection of the ballot and the committee)

and sequential Thiele rules (whose valuation function only depends

on the size of the intersection of the ballot and the committee).

Hence, we derive a hierarchy of characterizations based on our

first theorem and, in particular, provide a full characterization of

the prominent class of sequential Thiele rules. Finally, we leverage

these results to characterize three commonly studied ABC voting

rules, namely sequential approval voting, sequential proportional

approval voting, and sequential Chamberlin-Courant approval vot-

ing, by investigating how they treat clones. An overview of our

results can also be found in Figure 1.

Related Work. The study of committee monotone ABC voting

rules has a long tradition as already Thiele [22] suggested the class

of sequential Thiele rules. In particular, for a number of applications

such as choosing finalists for a competition or shortlisting candi-

dates for an interview, it is frequently reasoned that committee

monotonicity is a desirable property [2, 10, 13]. More generally,

Faliszewski et al. [11] view committee monotonicity as the fun-

damental property when choosing candidates only based on their

quality because in such settings, there is no reason why a candidate

that is elected for a committee of size 𝑘 should not be elected for

a committee of size 𝑘 + 1. Another important advantage of such

sequential ABC rules is that they are easy to compute, whereas

rules that directly optimize the score (e.g., Thiele rules) are usually

NP-hard to compute [21]. On the other hand, it is known that com-

mittee monotonicity conflicts with other desirable properties. For

instance, Barberà and Coelho [2] show that committee monotonic-

ity is incompatible with a variant of Condorcet-consistency when

voters report strict rankings over the candidates and it has been

repeatedly observed that committee monotone ABC rules are less

proportional than other ABC voting rules [10, 16, 20].

Even more work has focused on specific committee monotone

ABC voting rules [e.g., 1, 8, 9, 14]. For instance, Delemazure et al. [9]

show that all sequential Thiele rules but sequential approval voting

fail strategyproofness, and Brill et al. [8] investigate these rules

with respect to proportionality axioms. An interesting observation

in this context is that Phragmen’s sequential rule is committee

monotone and satisfies strong proportionality conditions [6, 19];

unfortunately, this rule fails our consistency criterion.

From a more technical standpoint our results are also related

to theorems for different settings as consistency led to a number

of important characterizations. In particular, based on this axiom,

Young [23] characterizes scoring rules for single winner elections,

Fishburn [12] characterizes approval voting for single winner elec-

tions with dichotomous preferences, Young and Levenglick [24]

characterize a method called Kemeny’s rule in a model where the

outcome is a ranking over the candidates, and Brandl et al. [3]

characterize a voting rule called maximal lotteries in a randomized

setting. More recently, Lackner and Skowron [15] characterized

ABC scoring rules based on a consistency condition for committees

instead of single candidates. Indeed, this result is closely related to

ours as it implies a characterization of Thiele rules, whereas our

results lead to a characterization of sequential Thiele rules. Also, the

result of Lackner and Skowron [15] is, to the best of our knowledge,

the only complete characterization in the realm of ABC voting.

2 THE MODEL
Let N = {1, 2, 3, . . . } denote an infinite set of voters and let C =

{𝑎1, . . . , 𝑎𝑚} denote a fixed set of𝑚 candidates. We define F (N) as
the set of finite and non-empty subsets of N. Intuitively, an element

𝑁 ∈ F (N) represents a concrete electorate, whereas N is the set of

all possible voters. Given an electorate 𝑁 ∈ F (N), we assume that

every voter 𝑖 ∈ 𝑁 has dichotomous preferences over the candidates,

i.e., she partitions the candidates into approved and disapproved

ones. Thus, voters report approval ballots 𝐴𝑖 which are non-empty

subsets of C. Let A denote the set of all possible approval ballots.

An approval profile 𝐴 for an electorate 𝑁 is an element of A𝑁
,

i.e., a function with domain 𝑁 that maps every voter 𝑖 ∈ 𝑁 to

her approval ballot 𝐴𝑖 . We define A∗ =
⋃

𝑁 ∈F(N) A𝑁
as the set

of all possible approval profiles. Given a profile 𝐴 ∈ A∗
, we let



𝑁𝐴 indicate the set of voters who report a ballot in the profile 𝐴

and we say that two profiles 𝐴,𝐴′
are disjoint if 𝑁𝐴 ∩ 𝑁𝐴′ = ∅.

Moreover, for two disjoint profiles 𝐴 and 𝐴′
, we define 𝐴 +𝐴′

as

the profile with 𝑁𝐴+𝐴′ = 𝑁𝐴 ∪ 𝑁𝐴′ , (𝐴 +𝐴′)𝑖 = 𝐴𝑖 for all 𝑖 ∈ 𝑁𝐴 ,

(𝐴 +𝐴′)𝑖 = 𝐴′
𝑖
for all 𝑖 ∈ 𝑁𝐴′ .

Given an approval profile, the goal is to choose a committee.

Formally, a committee is a subset of the candidates with a specific

size. We denote by W𝑘 the set of all committees of size 𝑘 and

by W =
⋃𝑚

𝑘=0
W𝑘 the set of all committees. For selecting the

winning committees for an approval profile 𝐴, we use approval-
based committee (ABC) voting rules. These rules are functions which
take an arbitrary approval profile 𝐴 ∈ A∗

and target committee

size 𝑘 ∈ {0, . . . ,𝑚} as input and return a non-empty subset of W𝑘 .

Intuitively, the chosen set contains the winning committees and

we allow for sets of committees as output to indicate that multiple

committees are tied for the win. Furthermore, note that ABC voting

rules are also defined for committees of size 0: 𝑓 (𝐴, 0) = {∅} for all
profiles 𝐴 since the empty set is the only committee of size 0. This

definition is only used for notational convenience.

In this paper, we will restrict our attention to proper ABC voting

rules which satisfy the following four conditions. Note that almost

all commonly studied ABC voting rules are proper voting rules as

the subsequent axioms are extremely mild.
1

• Anonymity: An ABC voting rule 𝑓 is anonymous if 𝑓 (𝐴,𝑘) =
𝑓 (𝜋 (𝐴), 𝑘) for all 𝐴 ∈ A∗

, 𝑘 ∈ {0, . . . ,𝑚}, and bijections

𝜋 : N → N. Here, 𝐴′ = 𝜋 (𝐴) denotes the profile such that

𝑁𝐴′ = 𝜋 (𝑁𝐴) and 𝐴′
𝜋 (𝑖 ) = 𝐴𝑖 for all 𝑖 ∈ 𝑁𝐴 .

• Neutrality: An ABC voting rule 𝑓 is neutral if 𝑓 (𝜏 (𝐴), 𝑘) =
{𝜏 (𝑊 ) : 𝑊 ∈ 𝑓 (𝐴,𝑘)} for all 𝐴 ∈ A∗

, 𝑘 ∈ {0, . . . ,𝑚}, and
𝜏 : C → C. 𝐴′ = 𝜏 (𝐴) denotes here the profile such that

𝑁𝐴′ = 𝑁𝐴 and 𝐴′
𝑖
= 𝜏 (𝐴𝑖 ) for all 𝑖 ∈ 𝑁𝐴 .

• Continuity: An ABC voting rule 𝑓 is continuous if for all dis-
joint profiles𝐴,𝐴′ ∈ A∗

and committee sizes 𝑘 ∈ {0, . . . ,𝑚}
such that |𝑓 (𝐴,𝑘) | = 1, there is an integer 𝑗 ∈ 𝑁 such that

𝑓 ( 𝑗𝐴 + 𝐴′, 𝑘) = 𝑓 (𝐴,𝑘). Here, 𝑗𝐴 denotes a profile consist-

ing of 𝑗 disjoint copies of 𝐴; the identities of the voters are

irrelevant for proper rules due to anonymity.

• Non-imposition: An ABC voting rule 𝑓 is non-imposing if

for every committee𝑊 ∈ W, there is a profile 𝐴 ∈ A∗
such

that 𝑓 (𝐴, |𝑊 |) = {𝑊 }.
Anonymity and neutrality are common fairness conditions

which require that voters and candidates, respectively, are treated

equally. Continuity, also known as overwhelming majority axiom

[18], requires that a sufficiently large group can force the voting

rule to choose their desired committee. Finally, non-imposition

states that each committee has a chance to be uniquely chosen.

Aside of these standard conditions, we will use two new axioms

in our analysis: independence of losers and committee separability.

The idea of independence of losers is that a chosen committee

𝑊 ∈ 𝑓 (𝐴,𝑘) should still be chosen if some voters change their

preferences by disapproving candidates 𝑐 ∉𝑊 because, intuitively,

this does not affect the quality of𝑊 . Formally, we say an ABC

1
Indeed, we are only aware of a single studied voting rule that fails to be proper: the

minimax rule, which chooses the committees that minimize the maximal Hamming-

distance to a ballot. This rule fails continuity as it completely ignores how many voters

report a specific ballot. We view this rule as unreasonable in light of our axioms.

voting rule 𝑓 is independent of losers if𝑊 ∈ 𝑓 (𝐴, |𝑊 |) implies that

𝑊 ∈ 𝑓 (𝐴′, |𝑊 |) for all profiles 𝐴,𝐴′ ∈ A∗
, committees𝑊 ∈ W,

voters 𝑖 ∈ 𝑁𝐴 , and candidates 𝑐 ∈ 𝐴𝑖 \𝑊 such that 𝐴′
is derived

from𝐴 by assigning voter 𝑖 the ballot𝐴𝑖 \ {𝑐}. Note that this axiom
is well-known in single winner voting and choice theory [e.g., 4, 5].

Our second non-standard axiom is committee separability. The

rough intuition of this axiom is that if there are two disjoint profiles

𝐴 and 𝐵 such that no voters 𝑖 ∈ 𝑁𝐴 , 𝑗 ∈ 𝑁𝐵 approve a common

candidate, we can decompose every chosen committee𝑊 into two

subcommittees which are chosen for 𝐴 and 𝐵 individually. For for-

mally defining this axiom, let𝐶𝐴 =
⋃

𝑖∈𝑁𝐴
𝐴𝑖 denote the candidates

that are approved by some voter in the profile 𝐴. Then, an ABC

voting rule 𝑓 is committee separable if𝑊 ∈ 𝑓 (𝐴 + 𝐵, |𝑊 |) implies

that𝑊 ∩𝐶𝐴 ∈ 𝑓 (𝐴, |𝑊 ∩𝐶𝐴 |) and𝑊 ∩𝐶𝐵 ∈ 𝑓 (𝐵, |𝑊 ∩𝐶𝐵 |) for
all disjoint profiles𝐴, 𝐵 with𝐶𝐵 = C \𝐶𝐴 and committees𝑊 ∈ W.

Note that committee separability and independence of losers are

rather mild as they are satisfied by many commonly studied rules.

2.1 Consistent Committee Monotonicity
The key axiom for our results is consistent committee monotonicity,

which is a strengthening of the well-known axiom of committee

monotonicity. The idea of the latter property is that the winning

committees of size 𝑘 are derived by adding candidates to those of

size 𝑘 − 1. While this is straightforward to define for ABC voting

rules that always choose a single winning committee, it becomes

less clear how to define committee monotonicity when allowing

for multiple tied winning committees. We use the definition of

Elkind et al. [10] in this paper, which requires that every winning

committee of size 𝑘 is derived from a winning committee of size

𝑘 − 1 and every winning committee of size 𝑘 − 1 is extended to a

winning committee of size 𝑘 .

Definition 1. An ABC voting rule 𝑓 is committee monotone if for
every profile 𝐴 ∈ A∗

and 𝑘 ∈ {1, . . . ,𝑚}, it holds that:
(1) 𝑊 ∈ 𝑓 (𝐴,𝑘) implies that there is𝑊 ′ ∈ 𝑓 (𝐴,𝑘−1) with𝑊 ′ ⊆𝑊 .

(2) 𝑊 ∈ 𝑓 (𝐴,𝑘 − 1) implies that there𝑊 ′ ∈ 𝑓 (𝐴,𝑘) with𝑊 ⊆𝑊 ′
.

Committee monotone ABC voting rules are closely connected to

generator functions 𝑔, which take a profile𝐴 and a committee𝑊 ≠ C
as input and output a possibly empty subset 𝑔(𝐴,𝑊 ) of C \𝑊 . In

particular, generator functions induce committee monotone ABC

voting rules in a natural way: a generator function 𝑔 generates an
ABC voting rule 𝑓 if𝑊 ∈ 𝑓 (𝐴,𝑘 − 1) implies 𝑔(𝐴,𝑊 ) ≠ ∅ and

𝑓 (𝐴,𝑘) = {𝑊 ∪ {𝑥} : 𝑊 ∈ 𝑓 (𝐴,𝑘 − 1), 𝑥 ∈ 𝑔(𝐴,𝑊 )} for all 𝑘 ∈
{1, . . . ,𝑚} and 𝐴 ∈ A∗

. Since 𝑓 (𝐴, 0) = {∅}, this recursion is well-

defined. Note that a generator function generates at most one ABC

voting rule, but an ABC voting rule can be generated by multiple

generator functions. As we show next, committee monotonicity is

in fact equivalent to the existence of a generator function.

Proposition 1. An ABC voting rule 𝑓 is committee monotone if and
only if it is generated by a generator function 𝑔.

Proof. Consider an arbitrary ABC voting rule 𝑓 and first as-

sume that 𝑓 is generated by a generator function 𝑔, i.e., 𝑓 (𝐴,𝑘) =
{𝑊 ∪ {𝑥} : 𝑊 ∈ 𝑓 (𝐴,𝑘 − 1), 𝑥 ∈ 𝑔(𝐴,𝑊 )} for all profiles 𝐴 and

committee sizes 𝑘 . Now, fix a profile 𝐴 ∈ A∗
and a committee

size 𝑘 ∈ {1, . . . ,𝑚}. If𝑊 ∈ 𝑓 (𝐴,𝑘), then there is𝑊 ′ ∈ 𝑓 (𝐴,𝑘 − 1)



and 𝑥 ∈ 𝑔(𝐴,𝑊 ′) such that𝑊 =𝑊 ′ ∪ {𝑥} because 𝑔 generates 𝑓 .

Conversely, if𝑊 ′ ∈ 𝑓 (𝐴,𝑘 − 1), then 𝑔(𝐴,𝑊 ′) cannot be empty

and there is a candidate 𝑥 ∈ C \𝑊 ′
such that𝑊 ∪ {𝑥} ∈ 𝑓 (𝐴,𝑘).

This shows that 𝑓 is committee monotone.

Next, suppose that 𝑓 is committee monotone. We define the

generator function of𝑔 as follows: if𝑊 ∉ 𝑓 (𝐴, |𝑊 |), then𝑔(𝐴,𝑊 ) =
∅. On the other hand, if𝑊 ∈ 𝑓 (𝐴, |𝑊 |) and𝑊 ≠ C, there is a

committee𝑊 ′ ∈ 𝑓 (𝐴, |𝑊 | + 1) with𝑊 ⊆𝑊 ′
due to the committee

monotonicity of 𝑓 . We thus define𝑔(𝐴,𝑊 ) = {𝑥 ∈ C\𝑊 : 𝑊∪{𝑥} ∈
𝑓 (𝐴, |𝑊 | + 1)} if𝑊 ∈ 𝑓 (𝐴, |𝑊 |). Now, let 𝑓𝑔 denote the ABC voting

rule defined by 𝑓𝑔 (𝐴, 0) = {∅} and 𝑓𝑔 (𝐴,𝑘) = {𝑊 ∪ {𝑥} : 𝑊 ∈
𝑓𝑔 (𝐴,𝑘 − 1), 𝑥 ∈ 𝑔(𝐴,𝑊 )} for all 𝑘 > 0. We prove inductively that

𝑓𝑔 (𝐴,𝑘) = 𝑓 (𝐴,𝑘) for all profiles 𝐴 and 𝑘 ∈ {0, . . . ,𝑚}, which
implies that 𝑓𝑔 is well-defined and that 𝑔 generates 𝑓 . The induction

basis 𝑘 = 0 is true since 𝑓𝑔 (𝐴, 0) = {∅} = 𝑓 (𝐴, 0) for all profiles
𝐴. Hence, consider a fixed 𝑘 ∈ {0, . . . ,𝑚 − 1} and 𝐴 ∈ A∗

and

suppose that 𝑓𝑔 (𝐴,𝑘) = 𝑓 (𝐴,𝑘). First, let𝑊 ∈ 𝑓 (𝐴,𝑘 + 1). Due to
committee monotonicity, there is𝑊 ′ ∈ W𝑘 and 𝑥 ∈𝑊 \𝑊 ′

such

that𝑊 ′ ∈ 𝑓 (𝐴,𝑘) = 𝑓𝑔 (𝐴,𝑘) and𝑊 ′ ∪ {𝑥} =𝑊 . This implies that

𝑥 ∈ 𝑔(𝐴,𝑊 ′) and hence𝑊 ∈ 𝑓𝑔 (𝐴,𝑘 + 1). For the other direction,
let𝑊 ∈ 𝑓𝑔 (𝐴,𝑘 +1), which means that there are𝑊 ′

and 𝑥 such that

𝑊 = 𝑊 ′ ∪ {𝑥},𝑊 ′ ∈ 𝑓𝑔 (𝐴,𝑘) = 𝑓 (𝐴,𝑘), and 𝑥 ∈ 𝑔(𝐴,𝑊 ′). The
definition of 𝑔 now shows that𝑊 ∈ 𝑓 (𝐴,𝑘 +1). Hence, 𝑓 (𝐴,𝑘 +1) =
𝑓𝑔 (𝐴,𝑘 + 1) and we infer inductively that 𝑔 generates 𝑓 . □

Since a generator function completely describes the ABC voting

rule induced by it, we can expect that a well-behaved generator

function yields an attractive committee monotone ABC voting rule.

Consequently, we now introduce axioms for generator functions.

Our main condition on these functions is consistency, which is con-

cerned with the behavior of the generator function when combining

two disjoint profiles. In more detail, suppose that the choice of the

generator 𝑔 intersects for two disjoint profiles 𝐴 and 𝐴′
and a com-

mittee𝑊 . Intuitively, the best candidates in the combined profile

𝐴 +𝐴′
should be exactly those in the intersection as they are win-

ning for the individual electorates. Hence, consistency requires for

such situations that, if 𝑔(𝐴+𝐴′,𝑊 ) ≠ ∅, it contains precisely the el-
ements in the intersection of 𝑔(𝐴,𝑊 ) and 𝑔(𝐴′,𝑊 ). Note that such
consistency axioms have already led to several prominent results

[e.g., 3, 12, 15, 23]. Subsequently, we formally define consistency

and introduce the notion of consistent committee monotonicity.

The latter axiom strengthens committee monotonicity by requiring

that the voting rule is generated by a consistent generator function.

Definition 2. A generator function 𝑔 is consistent if 𝑔(𝐴,𝑊 ) ∩
𝑔(𝐴′,𝑊 ) ≠ ∅ and 𝑔(𝐴 + 𝐴′,𝑊 ) ≠ ∅ imply that 𝑔(𝐴 + 𝐴′,𝑊 ) =

𝑔(𝐴,𝑊 ) ∩𝑔(𝐴′,𝑊 ) for all disjoint profiles 𝐴,𝐴′ ∈ A∗
and commit-

tees𝑊 ∈ W \ {C}. An ABC voting rule 𝑓 is consistently committee
monotone if it is generated by a consistent generator function.

Furthermore, analogous to ABC voting rules, we call a generator

function 𝑔 proper if it is

• anonymous: 𝑔(𝐴,𝑊 ) = 𝑔(𝜋 (𝐴),𝑊 ) for all 𝐴 ∈ A∗
,𝑊 ∈

W \ {C}, 𝜋 : N→ N,
• neutral: 𝑔(𝜏 (𝐴), 𝜏 (𝑊 )) = 𝜏 (𝑔(𝐴,𝑊 )) for all 𝐴 ∈ A∗

,𝑊 ∈
W \ {C}, 𝜏 : C → C,

• continuous: for all 𝐴,𝐴′ ∈ A∗
and 𝑊 ∈ W \ {C} with

|𝑔(𝐴,𝑊 ) | = 1 and 𝑔(𝐴′,𝑊 ) ≠ ∅, there is 𝑗 ∈ N such that

𝑔( 𝑗𝐴 +𝐴′,𝑊 ) = 𝑔(𝐴,𝑊 ), and
• non-imposing: for every𝑊 ∈ W \ {C} and 𝑥 ∈ C \𝑊 , there

is 𝐴 ∈ A∗
such that 𝑔(𝐴,𝑊 ) = {𝑥}.

Just as for ABC voting rules, all these conditions are very mild.

Finally, we say that a generator function𝑔 is complete if𝑔(𝐴,𝑊 ) ≠ ∅
for all profiles 𝐴 ∈ A∗

and committees𝑊 ∈ W.

2.2 Sequential Valuation Rules
The main goal of this paper is to characterize the class of sequential

valuation rules. These rules rely on valuation functions 𝑣 , which
are a mappings of the type 𝑣 : A × W → R, to compute the

outcome. Less formally, a valuation function specifies for every

ballot 𝐴𝑖 and committee𝑊 the number of points that a voter with

ballot 𝐴𝑖 assigns to the committee𝑊 . The score of a committee

𝑊 in a profile 𝐴 is defined as 𝑠𝑣 (𝐴,𝑊 ) =
∑
𝑖∈𝑁𝐴

𝑣 (𝐴𝑖 ,𝑊 ). Now,
a sequential valuation function 𝑓 works as follows: 𝑓 (𝐴, 0) = {∅}
and for 𝑘 ≥ 1, 𝑓 (𝐴,𝑘) = {𝑊 ∪ {𝑥} : 𝑊 ∈ 𝑓 (𝐴,𝑘 − 1) ∧ ∀𝑦 ∈
C \𝑊 : 𝑠𝑣 (𝐴,𝑊 ∪ {𝑥}) ≥ 𝑠𝑣 (𝐴,𝑊 ∪ {𝑦})}, i.e., 𝑓 extends in each

step the currently chosen committees with the candidates that

increase the score by the most.
2

Note that our definition of sequential valuation functions is so

general that it includes even non-proper ABC voting rules. For in-

stance, if 𝑣 is constant, the corresponding sequential valuation rule

always chooses all committees of the given size and thus fails non-

imposition. Nevertheless, we will focus only on proper sequential

valuation rules and, in particular, on the following three subclasses.

• Sequential Thiele rules rely on a Thiele counting function

to compute the outcome. A Thiele counting function is a

mapping ℎ(𝑥) : {0, . . . ,𝑚} → R which is non-negative, non-

decreasing, and satisfies ℎ(1) > ℎ(0). Then, the valuation
function of a sequential Thiele rule is 𝑣 (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖∩𝑊𝑖 |).
In other words, every voter values a committee only based

on how many of its members she approves.

• Step-dependent sequential Thiele rules use a step-dependent
Thiele counting function as valuation function. A step-

dependent Thiele counting function is a mapping ℎ(𝑥,𝑦) :

{0, . . . ,𝑚} × {1, . . . ,𝑚} → R which is non-negative, non-

decreasing in 𝑥 , and satisfies for each 𝑦 ∈ {1, . . . ,𝑚 − 1}
that there is 𝑥 ∈ {1, . . . , 𝑦} with ℎ(𝑥,𝑦) > ℎ(𝑥 − 1, 𝑦). The
valuation function of a step-dependent sequential Thiele rule

is then 𝑣 (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |). Intuitively, these rules
can use in every step a different Thiele counting function.

• Step-dependent sequential scoring rules compute the win-

ner based on a step-dependent counting function. A step-

dependent counting function is a mapping ℎ(𝑥,𝑦, 𝑧) :

{0, . . . ,𝑚} × {1, . . . ,𝑚} × {1, . . . ,𝑚} → R such that for

every 𝑦 ∈ {1, . . . ,𝑚 − 1}, there is 𝑥 ∈ {1, . . . , 𝑦} and

𝑧 ∈ {𝑥, . . . ,𝑚 − 1 − (𝑦 − 𝑥)} with ℎ(𝑥,𝑦, 𝑧) ≠ ℎ(𝑥 − 1, 𝑦, 𝑧).
Then, the valuation function of a step-dependent sequential

scoring rule is 𝑣 (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |, |𝐴𝑖 |).

2
Of course, it is also possible to choose the committees that maximize the score for a

given valuation function. These rules, however, fail committee consistency and it is

not clear why they should be more desirable than their sequential variants.



The class of sequential Thiele rules contains many prominent

ABC voting rules, such as sequential approval voting3 (seqAV) de-
fined by ℎ(𝑥) = 𝑥 , sequential proportional approval voting (seqPAV)
defined by ℎ(0) = 0 and ℎ(𝑥) = ∑𝑥

𝑖=1

1

𝑖 for 𝑥 > 0, and sequential
Chamberlin-Courant approval voting (seqCCAV) defined by ℎ(0) = 0

and ℎ(𝑥) = 1 for 𝑥 > 0. An example of a step-dependent sequential

Thiele rule can be constructed by switching between seqAV and

seqCCAV in the different steps. Finally, sequential satisfaction ap-

proval voting (seqSAV), defined by ℎ(𝑥,𝑦, 𝑧) = 𝑥
𝑧 , is an example of

a step-dependent sequential scoring rule.

It is easy to see that every sequential valuation function 𝑓 is con-

sistently committee monotone as it can be verified that its generator

function 𝑔(𝐴,𝑊 ) = {𝑥 ∈ C \𝑊 : ∀𝑦 ∈ C \𝑊 : 𝑠𝑣 (𝐴,𝑊 ∪ {𝑥}) ≥
𝑠𝑣 (𝐴,𝑊 ∪ {𝑦}} is consistent (here, 𝑣 denotes the valuation function

of 𝑓 ). Furthermore, all step-dependent sequential scoring rules are

proper ABC voting rules. In particular, the technical condition on ℎ

is necessary to ensure that step-dependent sequential scoring rules

are non-imposing. Finally, note that every sequential Thiele rule

is a step-dependent sequential Thiele rule, which are in turn step-

dependent sequential scoring rules. Consequently, all three classes

of sequential valuation rules only contain proper ABC voting rules.

We can even make the relation between these different types of

rules precise as shown in the next proposition.

Proposition 2. The following equivalences hold:

(1) A sequential valuation rule is a step-dependent sequential scoring
rule if and only if it is proper.

(2) A step-dependent sequential scoring rule is a step-dependent se-
quential Thiele rule if and only if it is independent of losers.

(3) A step-dependent sequential Thiele rule is a sequential Thiele rule
if and only if it is committee separable.

Proof Sketch. The "only if" part of the claims is always easy to

prove as it is, e.g., straightforward to see that every step-dependent

sequential scoring rule is a proper sequential valuation rule. Hence,

we focus on the "if" part. The key insight for (1) is that the valu-

ation function 𝑣 of a proper sequential valuation rule is neutral,

i.e., 𝑣 (𝐴𝑖 ,𝑊 ) = 𝑣 (𝜏 (𝐴𝑖 ), 𝜏 (𝑊 )) for all ballots 𝐴𝑖 , committees𝑊 ,

and permutations 𝜏 : C → C. Since |𝐴𝑖 | = |𝜏 (𝐴𝑖 ) |, |𝑊 | = |𝜏 (𝑊 ) |,
and |𝐴𝑖 ∩𝑊 | = |𝜏 (𝐴𝑖 ∩𝑊 ) |, for all ballots 𝐴𝑖 , committees 𝑊 ,

and permutations 𝜏 , the corresponding sequential valuation rule

is a step-dependent sequential scoring rule. For (2), the "if" part

intuitively holds because independence of losers excludes the pos-

sibility that the step-dependent Thiele counting function ℎ de-

pends on the size of the ballot. Indeed, we show based on this

axiom that ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |, |𝐴𝑖 |) − ℎ( |𝐴𝑖 ∩𝑊 | − 1, |𝑊 |, |𝐴𝑖 |) =

ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |, |𝐴𝑖 ∩𝑊 |) −ℎ( |𝐴𝑖 ∩𝑊 | −1, |𝑊 |, |𝐴𝑖 ∩𝑊 |) for all𝐴𝑖

and𝑊 . Based on this insight, we then construct a step-dependent

Thiele counting function that induces 𝑓 , which proves (2). Finally,

the "if" part of (3) follows since committee separability relates the

different steps of the rule. In more detail, we can construct two

disjoint profiles𝐴, 𝐵 such that 𝑓 (𝐴+𝐵, |𝐶𝐴 |) = {𝐶𝐴} and then, com-

mittee separability shows that all following steps must be equal to

3
Sequential approval voting is often called approval voting since the sequential and

the optimizing variant coincide. For consistency in our names, we prefer to call this

rule sequential approval voting.

the choice of 𝐵. Formalizing this argument rules out that ℎ depends

on |𝑊 | and we thus end up with a sequential Thiele rule. □

3 CHARACTERIZATIONS OF SEQUENTIAL
VALUATION RULES

We are now ready to discuss our main result, a characterization of

step-dependent sequential scoring rules: an ABC voting rule is a

step-dependent sequential scoring rule if and only if it is proper and

consistently committee monotone. Combined with Proposition 2,

we infer as corollary also characterizations of step-dependent se-

quential Thiele rules and sequential Thiele rules. Moreover, this

proposition also emphasizes the generality of our result since char-

acterizing step-dependent sequential scoring rules is equivalent to

characterizing all proper sequential valuation rules. Due to space

constraints, we defer the proofs of all auxiliary propositions to the

appendix and discuss proof sketches instead.

While it is quite easy to show that every step-dependent sequen-

tial scoring rule is proper and consistently committeemonotone, the

converse claim is much more involved. Our main idea for proving

this direction is to investigate the generator function of consistently

committee monotone and proper ABC voting rules. Hence, we first

verify the conjecture that attractive committee monotone ABC

voting rules are generated by well-behaved generator functions.

Proposition 3. An ABC voting rule is proper and consistently com-
mittee monotone if and only it is generated by a proper, consistent,
and complete generator function.

Proof Sketch. If 𝑓 is generated by a proper, consistent, and

complete generator function, it is fairly straightforward that it is

consistently committee monotone and proper. We thus focus on the

inverse direction and suppose that 𝑓 is a proper and consistently

committee monotone ABC voting rule. The key insight for this

direction is that non-imposition and continuity can be generalized

to sequences of committees𝑊1, . . . ,𝑊ℓ with |𝑊𝑘 | = 𝑘 and𝑊𝑘−1
⊆

𝑊𝑘 for all 𝑘 ∈ {1, . . . , ℓ} (we assume subsequently that𝑊0 = ∅):
(1) If ℓ < 𝑚, there is a profile 𝐴 such that 𝑓 (𝐴,𝑘) = {𝑊𝑘 } for all

𝑘 ∈ {1, . . . , ℓ} and 𝑓 (𝐴, ℓ + 1) = {𝑊ℓ ∪ {𝑥} : 𝑥 ∈ C \𝑊ℓ }.
(2) For any two profiles 𝐴,𝐴′

such that 𝑓 (𝐴,𝑘) = {𝑊𝑘 } for all 𝑘 ∈
{1, . . . , ℓ}, there is an integer 𝑗 such that 𝑓 ( 𝑗𝐴 +𝐴′, 𝑘) = {𝑊𝑘 }
for all 𝑘 ∈ {1, . . . , ℓ}.
For instance, we prove (1) by an induction on the length of

the sequence: by non-imposition, there is for every committee

𝑊ℓ+1 ∈ Wℓ+1 a profile 𝐴1
such that 𝑓 (𝐴1, ℓ + 1) = {𝑊ℓ+1}. Com-

mittee monotonicity implies therefore that there is a sequence of

committees𝑊1, . . . ,𝑊ℓ such that𝑊𝑘 ∈ 𝑓 (𝐴1, 𝑘) and𝑊𝑘+1
\𝑊𝑘 ⊆

𝑔(𝐴,𝑊𝑘 ) for all 𝑘 ∈ {1, . . . , ℓ}, where 𝑔 is a consistent genera-

tor function of 𝑓 . By the induction hypothesis, there is a pro-

file 𝐴2
such that 𝑓 (𝐴2, 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ} and

𝑓 (𝐴2, ℓ + 1) = {𝑊ℓ ∪ {𝑥} : 𝑥 ∈ C \𝑊ℓ }. We can now use the consis-

tency of𝑔 to infer that 𝑓 (𝐴1+𝐴2, 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ+1}.
Finally, using anonymity, neutrality, and consistent committee

monotonicity, we can further modify the profile to ensure that

𝑊ℓ+1 is extended by all remaining candidates.

Now, we will extend the consistent generator function 𝑔 of 𝑓

to make it complete. Consider for this a sequence of committees

𝑊1, . . . ,𝑊ℓ with |𝑊𝑘 | = 𝑘 and𝑊𝑘−1
⊆ 𝑊𝑘 for all 𝑘 ∈ {1, . . . , ℓ}.



Due to (1), there is a profile 𝐴𝑊ℓ
with 𝑓 (𝐴𝑊ℓ , 𝑘) = {𝑊𝑘 } for all

𝑘 ∈ {1, . . . , ℓ} and 𝑓 (𝐴𝑊ℓ , ℓ+1) = {𝑊ℓ∪{𝑥} : 𝑥 ∈ C\𝑊ℓ }. We define

the function 𝑔(𝐴,𝑊ℓ ) = 𝑔(𝐴 + 𝑗𝐴𝑊ℓ ,𝑊ℓ ), where 𝑗 is the smallest

integer such that 𝑓 (𝐴 + 𝑗𝐴𝑊ℓ , 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ};
such an integer exists because of (2). First, note that 𝑔 generates

𝑓 since 𝑔(𝐴,𝑊 ) = 𝑔(𝐴,𝑊 ) for all profiles 𝐴 and committees𝑊

with𝑊 ∈ 𝑓 (𝐴, |𝑊 |). We infer this fact from consistent committee

monotonicity as 𝑔( 𝑗𝐴𝑊 ,𝑊 ) = C \𝑊 , 𝑔(𝐴,𝑊 ) ≠ ∅, and 𝑔(𝐴 +
𝑗𝐴𝑊 ,𝑊 ) ≠ ∅. Finally, 𝑔 needs to satisfy anonymity, neutrality, non-

imposition, and continuity as it generates 𝑓 and otherwise, 𝑓 would

fail these properties, too. □

As second step, we characterize the class of proper, consistent,

and complete generator functions. In particular, we show that for

every committee𝑊 ≠ C, 𝑔(𝐴,𝑊 ) can be described by a weighted

variant of single winner approval voting. For making this formal, let

𝑣 (𝑥,𝑦) : {0, . . . ,𝑚} × {1, . . . ,𝑚} → R be a weight function. Then,

𝑣-weighted approval voting is defined as the generator function

AV 𝑣 (𝐴,𝑊 ) = {𝑐 ∈ C \𝑊 : ∀𝑑 ∈ C \𝑊 :

∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣 ( |𝑊 ∩
𝐴𝑖 |, |𝐴𝑖 |) ≥

∑
𝑖∈𝑁𝐴 : 𝑑∈𝐴𝑖

𝑣 ( |𝑊 ∩𝐴𝑖 |, |𝐴𝑖 |)}.

Proposition 4. Let 𝑔 denote a proper, consistent, and complete gener-
ator function. For every committee𝑊 ≠ C, there is a weight function
𝑣𝑊 such that 𝑔(𝐴,𝑊 ) = AV 𝑣𝑊 (𝐴,𝑊 ) for all profiles 𝐴 ∈ A∗.

Proof Sketch. Let 𝑔 denote a proper, consistent, and complete

generator function and fix a committee𝑊 ≠ C. We show the propo-

sition by applying a separating hyperplane argument analogous to

how Young [23] derives his characterization of scoring rules.

For doing so, we need to transform the domain of 𝑔(·,𝑊 )
from preference profiles to a numerical space and we show as

first step that 𝑔(·,𝑊 ) can be computed only based on the values

𝑛(𝑐, 𝐴,𝑊 , 𝑘, ℓ) = |{𝑖 ∈ 𝑁 : 𝑐 ∈ 𝐴𝑖 ∧ |𝐴𝑖 ∩𝑊 | = 𝑘 ∧ |𝐴𝑖 | = ℓ}| for
𝑐 ∈ C \𝑊 , 𝑘 ∈ {0, . . . , |𝑊 |}, and ℓ ∈ {𝑘 + 1, . . . ,𝑚 − 1 − |𝑊 | + 𝑘}.
For proving this claim, we start with much more restricted profiles

and show that if 𝐴𝑖 ∩𝑊 = 𝐴 𝑗 ∩𝑊 and |𝐴𝑖 | = |𝐴 𝑗 | for all 𝑖, 𝑗 ∈ 𝑁𝐴

and all candidates 𝑥 ∈ C \𝑊 are approved by the same number of

voters, then 𝑔(𝐴,𝑊 ) = C \𝑊 . Once this restricted claim is proven,

we can use our axioms to weaken the restrictions; e.g., consistency,

neutrality, and anonymity allow us to show that 𝑔(𝐴,𝑊 ) = C \𝑊
if |𝐴𝑖 ∩𝑊 | = |𝐴 𝑗 ∩𝑊 | and |𝐴𝑖 | = |𝐴 𝑗 | for all 𝑖, 𝑗 ∈ 𝑁𝐴 and all can-

didates 𝑥 ∈ C \𝑊 have the same approval score. Finally, this means

that if there are constants 𝑐𝑘,ℓ such that 𝑛(𝑥,𝐴,𝑊 , 𝑘, ℓ) = 𝑐𝑘,ℓ for

all candidates 𝑐 ∈ C \𝑊 and indices 𝑘 and ℓ , then 𝑔(𝐴,𝑊 ) = C \𝑊
as we can decompose 𝐴 with respect to 𝑘 and ℓ into profiles 𝐴𝑘,ℓ

in which every voter approves 𝑘 candidates of𝑊 and ℓ candidates

in total. Together with consistency, we infer from this observa-

tions that 𝑔(·,𝑊 ) can indeed be computed based on on the matrix

𝑁 (𝐴,𝑊 ) that contains all the values 𝑛(𝑐, 𝐴,𝑊 , 𝑘, ℓ).
As next step, we use standard constructions to extend the domain

of 𝑔 further from integer matrices 𝑁 (𝐴,𝑊 ) to rational matrices. In

particular, to extend𝑔 to negative numbers, we rely on thematrix𝑄2

that corresponds to the profile in which each ballot is reported once.

For this profile, anonymity and neutrality ensure that 𝑔(𝑄2,𝑊 ) =
C \𝑊 and we can thus extend 𝑔 to negative numbers by defining

𝑔(𝑄1,𝑊 ) = 𝑔(𝑄1 + 𝑗𝑄2,𝑊 ), where 𝑗 ∈ N is a scalar such that

𝑄1 + 𝑗𝑄2 contains only positive integers. Similar, we can extend

𝑔 to rational matrices by defining 𝑔(𝑄1,𝑊 ) = 𝑔( 𝑗𝑄1,𝑊 ), where 𝑗

is the smallest integer such that 𝑗𝑄1 only contains integers. Note

that for both constructions, consistency ensures that 𝑔 remains

well-defined (see also [23] who uses equivalent constructions).

Finally, note that the extension of 𝑔(·,𝑊 ) to matrices of rational

numbers preserves all desirable properties of 𝑔. Hence, we can

now partition the feasible input matrices 𝑄 into sets 𝑅𝑐 = {𝑄 : 𝑐 ∈
𝑔(𝑄,𝑊 )} for 𝑐 ∈ C \𝑊 . It is not difficult to see that these sets

are convex (with respect to Q) and symmetric since 𝑔 is consistent,

anonymous, and neutral. Moreover, the interior of 𝑅𝑐 and 𝑅𝑑 is

disjoint for distinct candidates 𝑐, 𝑑 ∈ C\𝑊 and we can thus derive a

separating hyperplane between these sets. From the normal vectors

of these hyperplanes, we finally derive the weight function 𝑣𝑊 . □

Based on Proposition 4, we finally prove our main result.

Theorem 1. An ABC voting rule is a step-dependent sequential
scoring if and only if it is proper and consistently committee monotone.

Proof. We show in Proposition 2 that every step-dependent se-

quential scoring rule 𝑓 is proper. For proving that 𝑓 is consistently

committee monotone, letℎ denote its step-dependent counting func-

tion. Moreover, let𝑊 𝑥 =𝑊 ∪{𝑥} for every committee𝑊 and candi-

date 𝑥 ∈ C \𝑊 . By definition, 𝑓 (𝐴, 0) = ∅ and 𝑓 (𝐴,𝑘) = {𝑊 𝑐
: 𝑊 ∈

𝑓 (𝐴,𝑘−1), 𝑐 ∈ C\𝑊 : ∀𝑑 ∈ C\𝑊 : 𝑠ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴,𝑊 𝑑 )}. Thus,
𝑔(𝐴,𝑊 ) = {𝑐 ∈ C \𝑊 : ∀𝑑 ∈ C \𝑊 : 𝑠ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴,𝑊 𝑑 )} is
obviously complete and generates 𝑓 . Moreover, 𝑔 is consistent since

the scores are additive, i.e., 𝑠ℎ (𝐴 +𝐴′,𝑊 ) = 𝑠ℎ (𝐴,𝑊 ) + 𝑠ℎ (𝐴′,𝑊 𝑐 )
for all profiles 𝐴,𝐴′

and committees 𝑊 . Hence, if 𝑠ℎ (𝐴,𝑊 𝑐 ) ≥
𝑠ℎ (𝐴,𝑊 𝑑 ) and 𝑠ℎ (𝐴′,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴′,𝑊 𝑑 ), then 𝑠ℎ (𝐴 + 𝐴′,𝑊 𝑐 ) ≥
𝑠ℎ (𝐴 +𝐴′,𝑊 𝑑 ). Moreover, if one of the inequalities is strict for 𝐴

or 𝐴’, so it is for 𝐴 +𝐴′
. Thus, 𝑔(𝐴 +𝐴′,𝑊 ) = 𝑔(𝐴,𝑊 ) ∩ 𝑔(𝐴′,𝑊 )

if 𝑔(𝐴,𝑊 ) ∩ 𝑔(𝐴′,𝑊 ) ≠ ∅ for all profiles 𝐴,𝐴′
, and committees𝑊 ,

which proves that 𝑔 is consistent.

For the other direction, consider a proper and consistently com-

mittee monotone ABC voting rule 𝑓 . By Proposition 3, 𝑓 is gen-

erated by a proper, consistent, and complete generator function 𝑔.

Furthermore, by Proposition 4, there is for every committee𝑊 ≠ C
a weight function 𝑣𝑊 such that 𝑔(𝐴,𝑊 ) = AV 𝑣𝑊 (𝐴,𝑊 ) for all
𝐴 ∈ A∗

. Now, consider two committees𝑊 and𝑊 ′
with |𝑊 | =

|𝑊 ′ | < 𝑚 and let 𝑣𝑊 and 𝑣𝑊
′
denote the corresponding weight

functions. We first show that AV 𝑣𝑊 (𝐴′,𝑊 ′) = AV 𝑣𝑊
′ (𝐴′,𝑊 ′)

for every profile 𝐴′
. For this, let 𝑐′ ∈ AV 𝑣𝑊

′ (𝐴′,𝑊 ′), which
is the case if and only if

∑
𝑖∈𝑁𝐴′ : 𝑐′∈𝐴′

𝑖
𝑣𝑊

′ ( |𝑊 ′ ∩ 𝐴′
𝑖
|, |𝐴′

𝑖
|) ≥∑

𝑖∈𝑁𝐴′ : 𝑑 ′∈𝐴′
𝑖
𝑣𝑊

′ ( |𝑊 ′ ∩𝐴′
𝑖
|, |𝐴′

𝑖
|) for all 𝑑′ ∈ C \𝑊 ′

. Next, let 𝜏 :

C → C denote a permutation such that 𝜏 (𝑊 ) =𝑊 ′
, and let𝐴 ∈ A∗

and 𝑐 ∈ C such that 𝜏 (𝐴) = 𝐴′
and 𝜏 (𝑐) = 𝑐′. Because of 𝑔(𝐴,𝑊 ) =

AV 𝑣𝑊 (𝐴,𝑊 ), 𝑔(𝐴′,𝑊 ′) = AV 𝑣𝑊
′ (𝐴′,𝑊 ′), and the neutrality of 𝑔,

it holds that 𝑐′ ∈ AV 𝑣𝑊
′ (𝐴′,𝑊 ′) if and only if 𝑐 ∈ AV 𝑣𝑊 (𝐴,𝑊 ).

By the definition of AV 𝑣𝑊 , the last claim is true if and only if∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣𝑊 ( |𝑊 ∩𝐴𝑖 |, |𝐴𝑖 |) ≥
∑
𝑖∈𝑁𝐴 : 𝑑∈𝐴𝑖

𝑣𝑊 ( |𝑊 ∩𝐴𝑖 |, |𝐴𝑖 |)
for all 𝑑 ∈ C \𝑊 . Finally, observe that 𝑥 ∈ 𝐴𝑖 if and only if

𝜏 (𝑥) ∈ 𝐴′
𝑖
, |𝐴𝑖 | = |𝐴′

𝑖
|, and |𝑊 ∩ 𝐴𝑖 | = |𝑊 ′ ∩ 𝐴′

𝑖
| for all can-

didates 𝑥 ∈ C \ 𝑊 and voters 𝑖 ∈ 𝑁𝐴 . Hence, we conclude

that

∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣𝑊 ( |𝑊 ∩ 𝐴𝑖 |, |𝐴𝑖 |) ≥ ∑
𝑖∈𝑁𝐴 : 𝑑∈𝐴𝑖

𝑣𝑊 ( |𝑊 ∩
𝐴𝑖 |, |𝐴𝑖 |) if and only if

∑
𝑖∈𝑁𝐴 : 𝑐′∈𝐴′

𝑖
𝑣𝑊 ( |𝑊 ′ ∩ 𝐴′

𝑖
|, |𝐴′

𝑖
|) ≥∑

𝑖∈𝑁𝐴 : 𝜏 (𝑑 ) ∈𝐴′
𝑖
𝑣𝑊 ( |𝑊 ′∩𝐴′

𝑖
|, |𝐴′

𝑖
|) for all𝑑 ∈ C\𝑊 . Therefore, we

derive that 𝑐′ obtains the maximal score in 𝐴′
with respect to 𝑣𝑊

′



if and only if the same holds with respect to 𝑣𝑊 . This proves that

AV 𝑣𝑊 (𝐴′,𝑊 ′) = AV 𝑣𝑊
′ (𝐴′,𝑊 ′) for all profiles𝐴′

and committees

𝑊,𝑊 ′
with |𝑊 | = |𝑊 ′ | < 𝑚.

Next, let𝑊0, . . . ,𝑊𝑚−1 denote committees such that |𝑊𝑖 | = 𝑖

and let 𝑣𝑖 = 𝑣𝑊𝑖
. We define the function 𝑣 (𝑥,𝑦, 𝑧) : {0, . . . ,𝑚} ×

{0, . . . ,𝑚 − 1} × {1, . . . ,𝑚} → R by 𝑣 (𝑥,𝑦, 𝑧) = 𝑣𝑦 (𝑥, 𝑧). By
our previous reasoning, it holds that 𝑔(𝐴,𝑊 ) = AV 𝑣 |𝑊 | (𝐴,𝑊 ) =

{𝑐 ∈ C \𝑊 : ∀𝑑 ∈ C \𝑊 :

∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣 ( |𝐴𝑖 ∩𝑊 |, |𝑊 |, |𝐴𝑖 |) ≥∑
𝑖∈𝑁𝐴 : 𝑑∈𝐴𝑖

𝑣 ( |𝐴𝑖 ∩ 𝑊 |, |𝑊 |, |𝐴𝑖 |)}. Our next goal is to derive

a valuation function from 𝑣 . For doing so, define the function

ℎ(𝑥,𝑦, 𝑧) : {0, . . . ,𝑚} × {1, . . . ,𝑚} × {1, . . . ,𝑚} → R as fol-

lows: ℎ(0, 𝑦, 𝑧) = 0 for all 𝑦, 𝑧 ∈ {1, . . . ,𝑚} and ℎ(𝑥,𝑦, 𝑧) =

ℎ(𝑥 − 1, 𝑦, 𝑧) + 𝑣 (𝑥 − 1, 𝑦 − 1, 𝑧) for all 𝑥,𝑦, 𝑧 ∈ {1, . . . ,𝑚}. We

claim that 𝑓 is the sequential valuation rule induced by the val-

uation function 𝑤 (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |, |𝐴𝑖 |). For this, let
𝑔𝑤 (𝐴,𝑊 ) = {𝑐 ∈ C \𝑊 : ∀𝑑 ∈ C \𝑊 :

∑
𝑖∈𝑁𝐴

𝑤 (𝐴𝑖 ,𝑊 ∪ {𝑐}) ≥∑
𝑖∈𝑁𝐴

𝑤 (𝐴𝑖 ,𝑊 ∪ {𝑑})}. We will show that 𝑔𝑤 (𝐴,𝑊 ) = 𝑔(𝐴,𝑊 )
for all profiles 𝐴 ∈ A∗

and committees𝑊 ≠ C. Note for this that
for all profiles 𝐴, committees𝑊 , and candidates 𝑐 ∈ C \𝑊 , the

following equation holds:∑︁
𝑖∈𝑁𝐴

ℎ( |𝑊 𝑐 ∩𝐴𝑖 |, |𝑊 𝑐 |, |𝐴𝑖 |) − ℎ( |𝑊 ∩𝐴𝑖 |, |𝑊 𝑐 |, |𝐴𝑖 |)

=
∑︁

𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

ℎ( |𝑊 ∩𝐴𝑖 | + 1, |𝑊 𝑐 |, |𝐴𝑖 |) − ℎ( |𝑊 ∩𝐴𝑖 |, |𝑊 𝑐 |, |𝐴𝑖 |)

+
∑︁

𝑖∈𝑁𝐴 : 𝑐∉𝐴𝑖

ℎ( |𝑊 ∩𝐴𝑖 |, |𝑊 𝑐 |, |𝐴𝑖 |) − ℎ( |𝑊 ∩𝐴𝑖 |, |𝑊 𝑐 |, |𝐴𝑖 |)

=
∑︁

𝑖∈𝑁𝐴 :𝑐∈𝐴𝑖

𝑣 ( |𝑊 ∩𝐴𝑖 |, |𝑊 |, |𝐴𝑖 |) .

Now, define 𝐶 (𝐴,𝑊 ) = ∑
𝑖∈𝑁𝐴

ℎ( |𝑊 ∩𝐴𝑖 |, |𝑊 | + 1, |𝐴𝑖 |). Then,
the above equation shows that 𝑠𝑤 (𝐴,𝑊 𝑐 ) ≥ 𝑠𝑤 (𝐴,𝑊 𝑑 ) if and
only if 𝑠𝑤 (𝐴,𝑊 𝑐 ) − 𝐶 (𝐴,𝑊 ) ≥ 𝑠𝑤 (𝐴,𝑊 𝑑 ) − 𝐶 (𝐴,𝑊 ) if and

only if

∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣 ( |𝑊 ∩ 𝐴𝑖 |, |𝑊 |, |𝐴𝑖 |) ≥ ∑
𝑖∈𝑁𝐴 : 𝑑∈𝐴𝑖

𝑣 ( |𝑊 ∩
𝐴𝑖 |, |𝑊 |, |𝐴𝑖 |). Hence, 𝑔𝑤 (𝐴,𝑊 ) = 𝑔(𝐴,𝑊 ) for all profiles 𝐴 and

committees𝑊 . This proves that 𝑓 is indeed a sequential valuation

rule as 𝑔 generates 𝑓 . Finally, since 𝑓 is proper, Proposition 2 shows

that it is a step-dependent sequential valuation rule. □

Due to Proposition 2, Theorem 1 entails also characterizations of

step-dependent sequential Thiele rules and sequential Thiele rules.

Corollary 1. The following statements hold:

(1) An ABC voting rule is a step-dependent sequential Thiele rule if
and only if it is consistently committee monotone, independent of
losers, and proper.

(2) An ABC voting rule is a sequential Thiele rule if and only if it is
consistently committee monotone, independent of losers, commit-
tee separable, and proper.

Remark 1. All axioms are required for Theorem 1 as there are

ABC voting rules other than step-dependent sequential scoring

rules that satisfy all but one condition. If we omit anonymity, we

can use seqAV but count the vote of voter 1 twice. When omitting

neutrality, we can use seqAV but count the votes for candidate 𝑎

twice. When omitting non-imposition, the rule that always returns

all committees of the given size satisfies all remaining conditions.

The rule that refines the generator of seqAV by breaking ties based

on the Chamberlin-Courant score only fails continuity. Finally,

when omitting consistent committee monotonicity, Thiele rules

satisfy all remaining conditions. We can also not weaken consistent

committee monotonicity to committee monotonicity as reverse

sequential Thiele rules then satisfy all given conditions.

Remark 2. Our hierarchy of sequential valuation rules misses the

class of sequential scoring rules, which are defined by a valuation

function of the form 𝑣 (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖 ∩𝑊 |, |𝐴𝑖 |). Clearly, these
rules form a subclass of step-dependent sequential scoring rules.

However, committee separability does not characterize sequential

scoring rules within the class of step-dependent sequential scoring

rules and we thus omit them.

Remark 3. A natural follow-up question to Theorem 1 is whether

sequential valuation rules can be characterized by consistent com-

mittee monotonicity, anonymity, and continuity since they satisfy

these three axioms. Unfortunately, this is not the case as we can

still treat candidates differently (see Remark 1). On the other hand,

it might be possible to characterize the rules that satisfy anonymity,

neutrality, continuity, and consistent committee monotonicity.

4 CHARACTERIZATIONS OF SPECIFIC ABC
VOTING RULES

Finally, we leverage our results to derive characterizations of spe-

cific voting rules. First, note here that our characterizations can

be combined with known results that single out rules within the

class of, e.g., Sequential Thiele rules, to derive full characterizations.

However, many results in the literature require technical auxiliary

conditions and we thus prefer to present our own characterizations

for seqCCAV, seqAV, and seqPAV. We state our results restricted to

the class of sequential Thiele rules; Corollary 1 turns them into

characterizations for general ABC voting rules by adding the nec-

essary axioms. Moreover, we focus on the case𝑚 ≥ 3, since for

𝑚 = 2 every sequential Thiele rule coincides with seqAV.
The main idea for our characterizations is to study how ABC

voting rules treat clones. To this end, we say that two candidates 𝑐, 𝑑

are clones in a profile 𝐴 if 𝑐 ∈ 𝐴𝑖 if and only if 𝑑 ∈ 𝐴𝑖 for all voters

𝑖 ∈ 𝑁𝐴 . Depending on the goal of the election, clones should be

treated differently. For instance, if our goal is to choose a committee

that is as diverse as possible, there is no point in choosing both

clones. We formalize this condition as follows: an ABC voting rule 𝑓

is clone-rejecting if 𝑓 (𝐴, |𝑊 |) = {𝑊 } implies that {𝑐, 𝑑} ⊈𝑊 for all

profiles𝐴 with clones 𝑐, 𝑑 and committees𝑊 ≠ C. The requirement

that a single committee is chosen is necessary since, for instance,

in the profile where all voters approve all candidates, we need to

choose clones but we will also choose multiple committees. As our

next result shows, this axiom characterizes seqCCAV.

Theorem 2. seqCCAV is the only sequential Thiele rule that satisfies
clone-rejection if𝑚 ≥ 3.

Proof. Since seqCCAV clearly satisfies clone-rejection, we focus

on the inverse direction. Hence, consider a sequential Thiele rule 𝑓

other than seqCCAV and let ℎ denote its Thiele counting function.

Since sequential Thiele functions are invariant under scaling and

shifting ℎ, we can suppose that ℎ(0) = 0 and ℎ(1) = 1. Moreover,

because 𝑓 is not seqCCAV, there is an integer 𝑥 ∈ {2, . . . ,𝑚 − 1}



such that ℎ(𝑥) > 1 and ℎ(𝑥 ′) = 1 for all 𝑥 ′ ∈ {1, . . . , 𝑥 − 1}. Now,
let Δ = ℎ(𝑥) − 1 and ℓ ∈ N such that ℓΔ > 1. We consider the

following profile 𝐴 to show that 𝑓 fails clone-rejection: there are

ℓ voters who approve the candidates 𝑐1, . . . , 𝑐𝑥 , 𝑥 voters who ap-

prove 𝑐1 and 𝑐2, and for each 𝑖 ∈ {3, . . . , 𝑥 + 1} there are 𝑥 + 2 − 𝑖

voters who approve only 𝑐𝑖 . Now, due to the minimality of 𝑥 , 𝑓

agrees in the first 𝑥 − 1 rounds with seqCCAV and we thus have

that 𝑓 (𝐴, 𝑥 − 1) = {{𝑐1, 𝑐3, . . . , 𝑐𝑥 }, {𝑐2, 𝑐3, . . . , 𝑐𝑥 }}. On the other

hand, it holds that 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑥 }) ≥ 𝑠ℎ (𝐴, {𝑐1, 𝑐3, . . . , 𝑐𝑥 }) +
ℓΔ > 𝑠ℎ (𝐴, {𝑐1, 𝑐3, . . . , 𝑐𝑥 }) + 1 and 𝑠ℎ (𝐴, {𝑐1, 𝑐3, . . . , 𝑐𝑥 , 𝑐𝑥+1}) =

𝑠ℎ (𝐴, {𝑐2, 𝑐3, . . . , 𝑐𝑥 , 𝑐𝑥+1}) = 𝑠ℎ (𝐴, {𝑐1, 𝑐3, . . . , 𝑐𝑥 }) + 1. Thus,

𝑓 (𝐴, 𝑥) = {{𝑐1, . . . , 𝑐𝑥 }}. However, this committee contains the

clones 𝑐1 and 𝑐2, which proves that 𝑓 fails clone-rejection. □

The polar opposite to diverse committees are quality-based ones,

where the goal is to find the 𝑘 best candidates regardless of how

well they represent the voters. In such a setting, clones should be

treated as equal as possible and we thus say that an ABC voting

rule 𝑓 is clone-accepting if for all profiles 𝐴 with clones 𝑐, 𝑑 and

committees𝑊 ⊆ C \ {𝑐, 𝑑}, it holds that𝑊 ∪ {𝑐} ∈ 𝑓 (𝐴, |𝑊 ∪ {𝑐}|)
implies that𝑊 ∪ {𝑐, 𝑑} ∈ 𝑓 (𝐴, |𝑊 ∪ {𝑐, 𝑑}|). Or, in words, the only

reason that a winning committee does not contain both clones is if

this conflicts with the committee size. Perhaps surprisingly, clone-

acceptance does not characterize seqAV. For instance, the sequential
Thiele rule defined by ℎ(0) = 0, ℎ(1) = 1, and ℎ(𝑥) = 2𝑥 + 1 for

𝑥 ≥ 2 satisfies this axiom, too. However, this rule prefers to choose

candidates that are approved by voters who already approve a

chosen candidate. This behavior can be interpreted as trust in a

voter’s recommendation and can be reasonable for quality-based

elections. Nevertheless, to single out seqAV, we use a mild condition

prohibiting this behavior: an ABC voting rule 𝑓 is distrusting if for

all profiles 𝐴, committees 𝑊 ≠ C with 𝑓 (𝐴, |𝑊 |) = {𝑊 }, and
candidates 𝑏, 𝑐 , it holds that 𝑏 ∈𝑊 implies 𝑐 ∈𝑊 if more voters in

𝐴 report the ballot {𝑐} than there are voters who approve 𝑏. Based

on these two axioms, we derive the following theorem.

Theorem 3. seqAV is the only sequential Thiele rule that is clone-
accepting and distrusting if𝑚 ≥ 3.

Proof Sketch. We focus on the direction from right to left and

thus consider a sequential Thiele rule 𝑓 other than seqAV. Moreover,

let ℎ denote the corresponding Thiele counting function and sup-

pose again that ℎ(0) = 0 and ℎ(1) = 1. Since 𝑓 is not seqAV, there
is a integer 𝑥 ∈ {2, . . . ,𝑚 − 1} such that ℎ(𝑥) ≠ 𝑥 but ℎ(𝑥 ′) = 𝑥 ′

for 𝑥 ′ ∈ {1, . . . , 𝑥 − 1}. Now, let Δ = |ℎ(𝑥) − 𝑥 | and ℓ ∈ N such

that ℓΔ > 1. If ℎ(𝑥) > 𝑥 , 𝑓 fails distrust in the following profile 𝐴,

where𝑊 is a committee of size 𝑥 − 1 ≤ 𝑚 − 2 and 𝑐, 𝑑 ∈ C \𝑊 :

ℓ voters approve𝑊 ∪ {𝑐}, ℓ + 1 voters approve 𝑑 , and two voters

approve𝑊 . Indeed, it can be checked that 𝑓 (𝐴, 𝑥) = {𝑊 ∪ {𝑐}}
but distrust requires that 𝑑 is not chosen after 𝑐 . On the other

hand, if ℎ(𝑥) < 𝑥 , 𝑓 fails clone-acceptance in the following pro-

file 𝐴, where 𝑊 is a committee 𝑊 with |𝑊 | = 𝑥 − 2 ≤ 𝑚 − 3

and 𝑏, 𝑐, 𝑑 ∈ C \𝑊 : ℓ voters report 𝑊 ∪ {𝑐, 𝑑} and ℓ − 1 vot-

ers report 𝑏. Indeed, 𝑓 (𝐴, 𝑥 − 1) = {𝑊 ∪ {𝑐},𝑊 ∪ {𝑑}} but

𝑓 (𝐴, 𝑥) = {𝑊 ∪ {𝑏, 𝑐},𝑊 ∪ {𝑏, 𝑑}}. Thus, seqAV is the only dis-

trusting and clone-accepting sequential Thiele rule. □

Finally, a large stream of research on ABC voting rules tries to

find proportional committees, i.e., the chosen committee should pro-

portionally reflect the voters’ preferences. For defining this concept,

we rely on heavily restricted profiles 𝐴 in which 𝑛1 voters report

the same ballot 𝐴1 and 𝑛2 voters approve a single candidate 𝑐 ∉ 𝐴1.

In such a profile, each clone 𝑑 ∈ 𝐴1 that is in the elected committee

𝑊 represents on average
𝑛1

|𝐴1∩𝑊 | voters, whereas the candidate

𝑐 represents 𝑛2 voters. Following the idea of proportionality, we

should choose a subset of 𝐴1 for a committee size 𝑘 if
𝑛1

𝑘
> 𝑛2 as

every candidate 𝑑 ∈ 𝐴1 represents on average more voters than

𝑐 . Conversely, if
𝑛1

𝑘
< 𝑛2, the chosen committee should contain 𝑐 .

Thus, we say an ABC voting rule is clone-proportional if for all such
profiles 𝐴, committee sizes 𝑘 ≤ |𝐴1 |, and committees𝑊 ∈ 𝑓 (𝐴,𝑘),
it holds that 𝑐 ∉ 𝑊 if

𝑛1

𝑘
> 𝑛2 and 𝑐 ∈ 𝑊 if

𝑛1

𝑘
< 𝑛2. Note that

clone-proportionality is closely related to D’Hondt proportionality

[7, 15]. Next, we show that this axiom characterizes seqPAV.

Theorem 4. seqPAV is the only sequential Thiele rule that satisfies
clone-proportionality if𝑚 ≥ 3.

Proof Sketch. We only show that no other sequential Thiele

rule 𝑓 but seqPAV satisfies clone-proportionality. For this, let ℎ

denote the Thiele counting function of 𝑓 and normalize ℎ such that

ℎ(0) = 0 and ℎ(1) = 1. Since 𝑓 is not seqPAV, there is a minimal

integer 𝑥 ∈ {2, . . . ,𝑚−1} such that ℎ(𝑥) ≠ ∑𝑥
𝑖=1

1

𝑖 . As in the proofs

of Theorems 2 and 3, we can now construct a profile in which

𝑓 fails clone-proportionality. For instance, if ℎ(𝑥) >
∑𝑥
𝑖=1

1

𝑖 , let

Δ = ℎ(𝑥) −∑𝑥
𝑖=1

1

𝑖 and ℓ ∈ N such that ℓ𝑥 · Δ > 1 and consider the

following profile 𝐴: ℓ𝑥 voters report {𝑐1, . . . , 𝑐𝑥 } and ℓ + 1 voters

approve a single candidate 𝑐 ∉ {𝑐1, . . . , 𝑐𝑥 }. It can be checked that

𝑓 (𝐴, 𝑥) = {{𝑐1, . . . , 𝑐𝑥 }} but clone-proportionality requires that

𝑐 ∈ 𝑊 for𝑊 ∈ 𝑓 (𝐴, 𝑥) as ℓ + 1 > ℓ𝑥
𝑥 . A similar counter example

can be constructed if ℎ(𝑥) < ∑𝑥
𝑖=1

1

𝑖 and thus, seqPAV is the only
sequential Thiele rule that satisfies this axiom. □

Remark 4. Notably, clone-acceptance characterizes seqAV within
the class of sequential Thiele rules with non-increasing partial sums

ℎ( 𝑗) − ℎ( 𝑗 − 1). In the literature, the definition of sequential Thiele

rules often includes this condition. Similarly, if we allow Thiele

counting functions to be decreasing in 𝑥 , seqCCAV is not the only
sequential Thiele rule that satisfies clone-rejection.

5 CONCLUSION
In this paper, we provide axiomatic characterizations for the new

class of sequential valuation rules. These rules are based on valua-

tion functions, which assign each pair of ballot and committee a

score and compute the winning committees greedily by extending

the current winning committees with the candidates that increase

the score by the most. Clearly, sequential valuation rules general-

ize the prominent class of sequential Thiele rules whose valuation

function only depends on the size of the intersection between the

given ballot and committee. Our main result characterizes the class

of proper (=anonymous, neutral, continuous, and non-imposing)

sequential valuation rules based on a new axiom called consistent

committee monotonicity. This axiom combines the well-known

notions of committee monotonicity and consistency by requiring

that the winning committees of size 𝑘 are derived from those of size



𝑘 − 1 by only adding new candidates, and that these newly added

candidates are chosen in a consistent way across the profiles. By

adding additional conditions, we also derive characterizations of

important subclasses such as sequential Thiele rules and of promi-

nent ABC voting rules such as sequential proportional approval

voting. For a full overview of our results, we refer to Figure 1.

Our theorems address one of the major open problems in the

field of ABC voting: while there is an enormous number of different

voting rules, there are almost no characterizations. Such characteri-

zations are crucial for reasoning about which rule to use because

without a characterization, there is always the possibility that a

more attractive rule exists. Moreover, many ideas of our results

seem rather universal and it might be possible to re-use them to

characterize other rules such as Phragmen’s rule or Thiele rules.

REFERENCES
[1] H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and T. Walsh. 2017. Justified

Representation in Approval-Based Committee Voting. Social Choice and Welfare
48, 2 (2017), 461–485.

[2] S. Barberà and D. Coelho. 2008. How to choose a non-controversial list with k

names. Social Choice and Welfare 31, 1 (2008), 79–96.
[3] F. Brandl, F. Brandt, and H. G. Seedig. 2016. Consistent Probabilistic Social Choice.

Econometrica 84, 5 (2016), 1839–1880.
[4] F. Brandl and D. Peters. 2021. Approval Voting under Dichotomous Preferences:

A Catalogue of Characterizations. (2021). Working paper.

[5] F. Brandt and P. Harrenstein. 2011. Set-Rationalizable Choice and Self-Stability.

Journal of Economic Theory 146, 4 (2011), 1721–1731.

[6] M. Brill, R. Freeman, S. Janson, and M. Lackner. 2017. Phragmén’s Voting Meth-

ods and Justified Representation. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI). 406–413.

[7] M. Brill, J.-F. Laslier, and P. Skowron. 2017. Multiwinner Approval Rules as

Apportionment Methods. In Proceedings of the 31st AAAI Conference on Artificial
Intelligence (AAAI). 414–420.

[8] M. Brill, J.-F. Laslier, and P. Skowron. 2018. Multiwinner Approval Rules as

Apportionment Methods. Journal of Theoretical Politics 30, 3 (2018), 358–382.
[9] T. Delemazure, T. Demeulemeester, M. Eberl, J. Israel, and P. Lederer. 2022. Strate-

gyproofness and Proportionality in Party-approval Multiwinner Voting. Working

paper.

[10] E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko. 2017. Properties of Multi-

winner Voting Rules. Social Choice and Welfare 48 (2017), 599–632.
[11] P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. 2017. Multiwinner Voting:

A New Challenge for Social Choice Theory. In Trends in Computational Social
Choice, U. Endriss (Ed.). Chapter 2.

[12] P. C. Fishburn. 1978. Axioms for approval voting: Direct proof. Journal of
Economic Theory 19, 1 (1978), 180–185.

[13] D. M. Kilgour and E. Marshall. 2012. Approval balloting for fixed-size committees.

In Electoral Systems. Springer, Chapter 12, 305–326.
[14] M. Lackner and P. Skowron. 2020. Utilitarian Welfare and Representation Guar-

antees of Approval-based Multiwinner Rules. Artificial Intelligence 288 (2020),
103366.

[15] M. Lackner and P. Skowron. 2021. Consistent Approval-Based Multi-Winner

Rules. Journal of Economic Theory 192 (2021), 105173.

[16] M. Lackner and P. Skowron. 2022. Multi-Winner Voting with Approval Prefer-

ences. https://arxiv.org/abs/2007.01795.

[17] A. McLennan. 2018. Advanced Fixed Point Theory for Economics. Springer-Verlag.
[18] R. B. Myerson. 1995. Axiomatic derivation of scoring rules without the ordering

assumption. Social Choice and Welfare 12, 1 (1995), 59–74.
[19] D. Peters and P. Skowron. 2020. Proportionality and the Limits of Welfarism. In

Proceedings of the 21nd ACM Conference on Economics and Computation (ACM-EC).
793–794.

[20] P. Skowron, M. Lackner, M. Brill, D. Peters, and E. Elkind. 2017. Proportional

Rankings. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI). 409–415.

[21] P. K. Skowron, P. Faliszewski, and J. Lang. 2016. Finding a Collective Set of Items:

From Proportional Multirepresentation to Group Recommendation. Artificial
Intelligence 241 (2016), 191–216.

[22] T. N. Thiele. 1895. Om Flerfoldsvalg. Oversigt over det Kongelige Danske Vidensk-
abernes Selskabs Forhandlinger (1895), 415–441.

[23] H. P. Young. 1975. Social Choice Scoring Functions. SIAM J. Appl. Math. 28, 4
(1975), 824–838.

[24] H. P. Young and A. Levenglick. 1978. A Consistent Extension of Condorcet’s

Election Principle. SIAM J. Appl. Math. 35, 2 (1978), 285–300.



A APPENDIX: PROOFS
In this appendix, we discuss the proofs omitted in the main body.

Note that we use some additional notation which has already been

used in some of the proofs in the main body. In particular, we define

a sequence of committees𝑊1, . . . ,𝑊ℓ as a set of committees such

that |𝑊𝑘 | = 𝑘 and𝑊𝑘−1
⊆𝑊𝑘 (where𝑊0 = ∅) for all 𝑘 ∈ {1, . . . ,𝑚}.

Moreover, given a committee𝑊 and a candidate 𝑥 ∈ C \𝑊 , we

let𝑊 𝑐 =𝑊 ∪ {𝑐}. Finally, we want to mention that we place the

proofs of more involved statements in own subsections, and that

we do not order these subsections according to the appearance of

the corresponding result in the main body.

A.1 Proof of Proposition 3
As first result, we prove Proposition 3: a proper ABC voting rule is

consistently committee monotone if and only if there is a proper,

consistent, and complete generator function that generates 𝑓 . For

proving this proposition, we show a number of auxiliary claims,

which will also be helpful for proving other results. We start by

proving that the consistency of the generator function implies a

mild variant of consistency for the generated ABC voting rule itself.

Lemma 1. Let 𝑓 denote a consistently committee monotone ABC
voting rule and let 𝑔 denote a consistent generator function of 𝑓 . For
all profiles 𝐴,𝐴′ ∈ A∗ and sequences of committees𝑊1, . . . ,𝑊ℓ such
that 𝑓 (𝐴,𝑘) = {𝑊𝑘 } ⊆ 𝑓 (𝐴′, 𝑘), and𝑊𝑘 \𝑊𝑘−1

⊆ 𝑔(𝐴′,𝑊𝑘−1
)

for all 𝑘 ∈ {1, . . . , ℓ}, it holds that 𝑓 (𝐴 + 𝐴′, 𝑘) = {𝑊𝑘 } for all
𝑘 ∈ {1, . . . , ℓ}.

Proof. Let 𝑓 ,𝑔,𝐴,𝐴′
, and𝑊1, . . . ,𝑊ℓ be defined as in the lemma.

The lemma follows by repeatedly using the consistency of 𝑔, which

results formally in an induction. The induction basis 𝑘 = 0 is by

definition true since 𝑓 (𝐴 + 𝐴′, 0) = 𝑓 (𝐴, 0) = 𝑓 (𝐴′, 0) = {∅}. For
the induction step, fix some 𝑘 ∈ {0, . . . , ℓ − 1} and assume that

𝑓 (𝐴 +𝐴′, 𝑘) = {𝑊𝑘 }. Hence, for each 𝑋 ∈ {𝐴,𝐴′, 𝐴 +𝐴′}, we have
that𝑊𝑘 ∈ 𝑓 (𝑋, 𝑘) which entails that 𝑔(𝑋,𝑊𝑘 ) ≠ ∅. Moreover, we

assume that𝑊𝑘+1
\𝑊𝑘 ⊆ 𝑔(𝐴′,𝑊𝑘 ) and it holds that 𝑔(𝐴,𝑊𝑘 ) =

𝑊𝑘+1
\𝑊𝑘 since 𝑓 (𝐴,𝑘) = {𝑊𝑘 } and 𝑓 (𝐴,𝑘 + 1) = {𝑊𝑘+1

}. Hence,
consistency shows that 𝑔(𝐴 +𝐴′,𝑊𝑘 ) =𝑊𝑘+1

\𝑊𝑘 , which implies

that 𝑓 (𝐴 +𝐴′, 𝑘 + 1) = {𝑊𝑘+1
}. This proves the induction step and

thus also the lemma. □

Based on Lemma 1, we show next that every proper and consis-

tently committee monotone ABC voting rule 𝑓 satisfies a stronger

variant of non-imposition since there is even for every sequence

of committees𝑊1, . . . ,𝑊ℓ a profile 𝐴 such that 𝑓 (𝐴, |𝑊𝑘 |) = {𝑊𝑘 }
for all 𝑘 ∈ {1, . . . , ℓ}. Even more, we may additionally assume that

𝑓 (𝐴, ℓ + 1) = {𝑊ℓ ∪ {𝑥} : 𝑥 ∈ C \𝑊ℓ }.

Lemma 2. Let 𝑓 denote a proper ABC voting rule that satisfies
consistent committee monotonicity. For every ℓ ∈ {1, . . . ,𝑚 − 1} and
every sequence of committees𝑊1, . . . ,𝑊ℓ , there is a profile 𝐴 such
that 𝑓 (𝐴,𝑘) = {𝑊𝑘 } for all 𝑘 ≤ ℓ and 𝑓 (𝐴, ℓ + 1) = {𝑊ℓ ∪ {𝑥} : 𝑥 ∈
C \𝑊ℓ }.

Proof. Let 𝑓 denote a proper ABC voting rule that satisfies con-

sistent committee monotonicity and let 𝑔 denote a corresponding

consistent generator function. We will inductively show that for ev-

ery ℓ ∈ {1, . . . ,𝑚−1} and every sequence of committees𝑊1, . . . ,𝑊ℓ

there is a profile 𝐴 such that 𝑓 (𝐴,𝑘) = {𝑊𝑘 } for 𝑘 ∈ {1, . . . , ℓ} and

𝑓 (𝐴,𝑊ℓ ) = {𝑊𝑒𝑙𝑙 ∪ {𝑥} : 𝑥 ∈ C \𝑊ℓ }. For the induction basis

ℓ = 1, observe that non-imposition shows that for every commit-

tee𝑊 = {𝑥} ∈ W1 a profile 𝐴 such that 𝑓 (𝐴, 1) = {𝑊 }. Now,
let 𝜏 : C → C denote a permutation such that 𝜏 (𝑥) = 𝑥 . By the

neutrality of 𝑓 , it follows that 𝑓 (𝜏 (𝐴), 1) = {𝑊 } for every such

permutation. This means that 𝑔(𝐴, ∅) = 𝑔(𝜏 (𝐴), ∅) = {𝑥} and,

since 𝑔(𝐴 + 𝜏 (𝐴), ∅) cannot be empty, consistency of 𝑔 entails that

𝑔(𝐴 + 𝜏 (𝐴), ∅) = {𝑥}. Now, let 𝐴∗
denote the profile consisting of

𝜏 (𝐴) for every permutation 𝜏 with 𝜏 (𝑥) = 𝑥 . Following the above

reasoning, it holds that 𝑔(𝐴∗, ∅) = {𝑥} and thus, 𝑓 (𝐴∗, 1) = {𝑊 }.
On the other hand, all candidates 𝑦 ∈ C \𝑊 are completely sym-

metric and thus, 𝑓 (𝐴∗, 2) = {{𝑥,𝑦} : 𝑦 ∈ C \𝑊 }, which proves the

induction basis.

Next, we assume that the lemma holds for a fixed ℓ ∈ {1, . . . ,𝑚−
2} and prove it for ℓ +1. For this, consider an arbitrary committee𝑊

of size ℓ+1. By non-imposition, there is a profile𝐴 such that 𝑓 (𝐴, ℓ+
1) = {𝑊 }. Moreover, by consistent committee monotonicity, there

is an order over the candidates 𝑐1, . . . , 𝑐ℓ+1 in𝑊 such that𝑊𝑘 =

{𝑐1, . . . , 𝑐𝑘 } ∈ 𝑓 (𝐴,𝑘) and 𝑐𝑘+1
∈ 𝑔(𝐴,𝑊𝑘 ) for all 𝑘 ∈ {1, . . . , ℓ}.

Observe that the committees𝑊1, . . . ,𝑊ℓ form a sequence of profiles

of length ℓ . Thus, the induction hypothesis proves that there is a

profile 𝐴′
such that 𝑓 (𝐴′, 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ} and

𝑓 (𝐴′, ℓ + 1) = {𝑊ℓ ∪ {𝑥} : 𝑥 ∈ C \𝑊ℓ }. In particular, this means

that 𝑔(𝐴′,𝑊𝑘 ) = {𝑐𝑘+1
} for all 𝑘 < ℓ and 𝑔(𝐴′,𝑊ℓ ) = C \𝑊ℓ .

Using Lemma 1, we can therefore infer that 𝑓 (𝐴 + 𝐴′, 𝑘) = {𝑊𝑘 }
for all 𝑘 ∈ {1, . . . , ℓ}. Furthermore, |𝑓 (𝐴, ℓ + 1) | = 1 implies that

𝑔(𝐴,𝑊ℓ ) = {𝑐ℓ+1}. Thus, the consistency of 𝑔 proves that 𝑔(𝐴 +
𝐴′,𝑊ℓ ) = 𝑔(𝐴,𝑊ℓ ) ∩ 𝑔(𝐴′,𝑊ℓ ) = {𝑐ℓ+1}. We derive therefore that

𝑓 (𝐴′ + 𝐴, ℓ + 1) = {𝑊ℓ+1} and hence, 𝑓 (𝐴 + 𝐴′, 𝑘) = {𝑊𝑘 } for all
𝑘 ∈ {1, . . . , ℓ + 1}.

It remains to construct a profile 𝐵 such that 𝑓 (𝐵, 𝑘) = {𝑊𝑘 } for
all 𝑘 ∈ {1, . . . , ℓ + 1} and 𝑓 (𝐵, ℓ + 2) = {𝑊ℓ+1 ∪ {𝑥} : 𝑥 ∈ C \𝑊ℓ+1}.
For doing so, define 𝐵𝜏 = 𝜏 (𝐴 + 𝐴′) as the profile derived from

𝐴 + 𝐴′
by permuting the candidates according to 𝜏 . If 𝜏 (𝑥) = 𝑥

for all 𝑥 ∈ 𝑊ℓ+1, neutrality shows that 𝑓 (𝐵𝜏 , 𝑘) = {𝑊𝑘 } for all

𝑘 ∈ {1, . . . , ℓ +1}. Now define 𝐵 as the profile that precisely consists

of the profiles 𝐵𝜏 for all permutations 𝜏 : C → C such that 𝜏 (𝑥) = 𝑥

for all 𝑥 ∈ 𝑊ℓ+1. A repeated application of Lemma 1 proves that

𝑓 (𝐵, 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ + 1} since all 𝐵𝜏 agree on

these committees. On the other hand, all candidates 𝑐 ∈ C \𝑊ℓ+1

are completely symmetric in 𝐵. Hence, neutrality and anonymity

show that if𝑊ℓ+1 ∪ {𝑥} ∈ 𝑓 (𝐵, ℓ + 1) for some 𝑥 ∈ C \𝑊ℓ+1, then

the same holds for all 𝑥 ∈ C \𝑊ℓ+1. Finally, consistent committee

monotonicity shows that there only such committees can be chosen

since 𝑓 (𝐵, ℓ + 1) = {𝑊ℓ+1}. Thus, 𝑓 (𝐵, ℓ + 2) = {𝑊ℓ+1 ∪ {𝑥} : 𝑥 ∈
C \𝑊ℓ+1}, which proves the induction step. □

Note that Lemma 2 also allows us to construct for every sequence

of committees𝑊1, . . . ,𝑊𝑚 (i.e., a sequence with length𝑚) a profile

𝐴 such that 𝑓 (𝐴,𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . ,𝑚}. The reason for

this is that every sequence of length𝑚 − 1 automatically extends

to such a sequence since C is the only committee of size𝑚.

Analogous to Lemma 2, we strengthen next continuity by show-

ing that for all integers ℓ ∈ {1, . . . ,𝑚} and profiles 𝐴,𝐴′ ∈ A∗

such that |𝑓 (𝐴,𝑘) | = 1 for all 𝑘 ∈ {1, . . . , ℓ}, there is an integer 𝑗

such that 𝑓 ( 𝑗𝐴 + 𝐴′, 𝑘) = 𝑓 ( 𝑗𝐴 + 𝐴′, 𝑘) for all 𝑘 ∈ {1, . . . , ℓ}. Or,



more informally, a sufficient majority can enforce the outcome for

multiple committee sizes at once.

Lemma 3. Let 𝑓 denote a proper ABC voting rule that satisfies
consistent committee monotonicity. Given two profiles 𝐴, 𝐴′ and an
integer ℓ ∈ {1, . . . ,𝑚} such that |𝑓 (𝐴,𝑘) | = 1 for all 𝑘 ∈ {1, . . . , ℓ},
there is an integer 𝑗 such that 𝑓 ( 𝑗𝐴 + 𝐴′, 𝑘) = 𝑓 (𝐴,𝑘) for all 𝑘 ∈
{1, . . . , ℓ}.

Proof. Let 𝑓 denote a proper ABC voting rule that satisfies

consistent committee monotonicity, and consider two profiles

𝐴,𝐴′ ∈ A∗
and an integer ℓ ∈ {1, . . . ,𝑚} such that |𝑓 (𝐴,𝑘) | = 1

for all 𝑘 ≤ ℓ . We will prove the lemma by induction on ℓ . First,

note that the induction basis ℓ = 1 follows immediately from the

continuity of 𝑓 , which states that there is an integer 𝑗1 such that

𝑓 ( 𝑗1𝐴 + 𝐴′, 1) = 𝑓 (𝐴, 1). Now, assume that the lemma holds up

to a fixed ℓ ∈ {1, . . . ,𝑚 − 1}, i.e., there is an index 𝑗ℓ such that

𝑓 (𝐴′′, 𝑘) = 𝑓 (𝐴,𝑘) for all 𝑘 ≤ ℓ , where 𝐴′′ = 𝑗ℓ𝐴 +𝐴′
. Because of

continuity, there is an integer 𝑗 such that 𝑓 ( 𝑗𝐴 + 𝐴′′, ℓ + 1) =

𝑓 (𝐴, ℓ + 1). On the other hand, we can use Lemma 1 to show

that 𝑓 ( 𝑗𝐴 + 𝐴′′, 𝑘) = 𝑓 (𝐴′′, 𝑘) = 𝑓 (𝐴,𝑘) for all 𝑘 ≤ ℓ because

𝑓 (𝐴,𝑘) = 𝑓 (𝐴′′, 𝑘) for all 𝑘 ≤ ℓ . In summary, this means that

𝑓 ( 𝑗𝐴 + 𝐴′′, 𝑘) = 𝑓 (𝐴,𝑘) for all 𝑘 ≤ ℓ + 1. Finally, note that

𝑗𝐴 + 𝐴′′ = ( 𝑗 + 𝑗ℓ )𝐴 + 𝐴′
, so the integer 𝑗ℓ+1 = 𝑗 + 𝑗ℓ proves

the induction step and thus also the lemma. □

Note that Lemma 2 and Lemma 3 are important tools for the

proofs of most of our results. Next, we will use these insights to

show that every consistent and complete generator function of

a proper and consistently committee monotone ABC voting rule

must be proper itself.

Lemma 4. Every complete and consistent generator function of
a proper and consistently committee monotone ABC voting rule is
proper.

Proof. Let 𝑓 denote a proper and consistently committee mono-

tone ABC voting rule and assume that 𝑔 is a generator function of

𝑓 that is both complete and consistent. We will show that 𝑔 satisfies

anonymity, neutrality, non-imposition, and continuity and is thus

proper.

Claim 1: 𝑔 is non-imposing.
First, we show that 𝑔 is non-imposing and consider thus a

committee𝑊 with |𝑊 | < 𝑚 and a candidate 𝑥 ∉ 𝑊 . Consider

an arbitrary order of the candidates 𝑐1, . . . , 𝑐ℓ ∈ 𝑊 and define

𝑊𝑘 = {𝑐1, . . . , 𝑐𝑘 } for all 𝑘 ≤ ℓ and𝑊ℓ+1 =𝑊ℓ ∪ {𝑥}. In particular,

𝑊 =𝑊ℓ and𝑊ℓ+1 =𝑊 ∪ {𝑥}. By Lemma 2, there is a profile𝐴 such

that 𝑓 (𝐴,𝑘) =𝑊𝑘 for all 𝑘 ≤ ℓ + 1. This entails that 𝑔(𝐴,𝑊 ) = {𝑥}
and thus proves that 𝑔 is non-imposing.

Claim 2: 𝑔 is anonymous.
Assume for contradiction that 𝑔 fails anonymity, which means

that there is a profile 𝐴, a committee𝑊 ≠ C, and a permutation

𝜋 : N → N such that 𝑔(𝐴,𝑊 ) ≠ 𝑔(𝜋 (𝐴),𝑊 ). As first step, we
consider an arbitrary order of the candidates 𝑐1, . . . , 𝑐ℓ ∈ 𝑊 and

define𝑊𝑘 = {𝑐1, . . . , 𝑐𝑘 } for all ∈ {1, . . . , ℓ}. In particular,𝑊 =𝑊ℓ .

By Lemma 2, there is a profile 𝐴′
such that 𝑓 (𝐴′, 𝑘) = {𝑊𝑘 } for all

𝑘 ∈ {1, . . . , ℓ} and 𝑓 (𝐴′, ℓ + 1) = {𝑊ℓ ∪ {𝑥} : 𝑥 ∈ C \𝑊ℓ }. The last
point means for 𝑔 that 𝑔(𝐴′,𝑊ℓ ) = C \𝑊ℓ .

Furthermore, by Lemma 3, there is an integer 𝑗 such that 𝑓 ( 𝑗𝐴′ +
𝐴,𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ}. Thus, the completeness and

consistency of𝑔 imply that𝑔( 𝑗𝐴′+𝐴,𝑊ℓ ) = 𝑔( 𝑗𝐴′,𝑊ℓ )∩𝑔(𝐴,𝑊ℓ ) =
𝑔(𝐴,𝑊ℓ ). Now, since 𝑔 generates 𝑓 , we infer therefore that 𝑓 ( 𝑗𝐴′ +
𝐴, ℓ + 1) = {𝑊ℓ ∪ 𝑥 : 𝑥 ∈ 𝑔(𝐴,𝑊ℓ )}.

Finally, consider the profile 𝜋 ( 𝑗𝐴′ +𝐴). By the anonymity of 𝑓 ,

it follows that 𝑓 (𝜋 ( 𝑗𝐴′ +𝐴), 𝑘) = 𝑓 (𝜋 ( 𝑗𝐴′), 𝑘) = {𝑊𝑘 } for all 𝑘 ∈
{1, . . . , ℓ} and 𝑓 (𝜋 ( 𝑗𝐴′), ℓ+1) = {𝑊ℓ∪{𝑥} : 𝑥 ∈ C\𝑊 }. This entails
again that 𝑔(𝜋 ( 𝑗𝐴′),𝑊ℓ ) = C \𝑊ℓ . Hence, an analogous reasoning

as for 𝑗𝐴′ + 𝐴 shows that 𝑔(𝜋 ( 𝑗𝐴′ + 𝐴),𝑊ℓ ) = 𝑔(𝜋 ( 𝑗𝐴′),𝑊ℓ ) ∩
𝑔(𝜋 (𝐴),𝑊ℓ ) = 𝑔(𝜋 (𝐴),𝑊ℓ ). This implies that 𝑓 (𝜋 ( 𝑗𝐴′ +𝐴), ℓ +1) =
{𝑊ℓ ∪ 𝑥 : 𝑥 ∈ 𝑔(𝜋 (𝐴),𝑊ℓ )}. However, we have by assumption that

𝑔(𝐴,𝑊ℓ ) ≠ 𝑔(𝜋 (𝐴),𝑊ℓ ) and thus 𝑓 ( 𝑗𝐴′+𝐴, ℓ+1) ≠ 𝑓 (𝜋 ( 𝑗𝐴′+𝐴), ℓ+
1). This conflicts with the anonymity of 𝑓 and shows therefore that

the assumption that 𝑔 fails anonymity is false.

Claim 3: 𝑔 is neutral
We assume for contradiction that 𝑔 is not neutral, which means

that there is a profile 𝐴, a committee𝑊 ≠ C, and a permutation

𝜏 : C → C such that 𝑔(𝜏 (𝐴), 𝜏 (𝑊 )) ≠ 𝜏 (𝑔(𝐴,𝑊 )). Analogous to
the last claim, let 𝑐1, . . . , 𝑐ℓ denote the candidates in𝑊 and define

𝑊𝑘 = {𝑐1, . . . , 𝑐𝑘 }. Thus,𝑊 =𝑊ℓ . By Lemma 2, there is a profile 𝐴′

such that 𝑓 (𝐴′, 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ} and 𝑓 (𝐴′, ℓ + 1) =
{𝑊ℓ∪{𝑥} : 𝑥 ∈ C\𝑊ℓ }. This means again that𝑔(𝐴′,𝑊ℓ ) = C\𝑊𝑘 . A

completely analogous reasoning as in Claim 2 shows now that there

is an integer 𝑗 such that 𝑓 ( 𝑗𝐴′ +𝐴,𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ}
and 𝑓 ( 𝑗𝐴′ +𝐴, ℓ + 1) = {𝑊ℓ ∪ 𝑥 : 𝑥 ∈ 𝑔(𝐴,𝑊 )}.

Next, consider the profile 𝜏 ( 𝑗𝐴′ + 𝐴). By the neutrality of

𝑓 , we have that 𝑓 (𝜏 ( 𝑗𝐴′ + 𝐴), 𝑘) = 𝑓 (𝜏 ( 𝑗𝐴′, 𝑘) = {𝜏 (𝑊𝑘 )}
for all 𝑘 ∈ {1, . . . , ℓ}. Moreover, this axiom also shows that

𝑓 (𝜏 ( 𝑗𝐴′), ℓ + 1) = {𝜏 (𝑊ℓ ∪ {𝑥}) : 𝑥 ∈ C \𝑊ℓ }. This implies that

𝑔(𝜏 ( 𝑗𝐴′), 𝜏 (𝑊ℓ )) = C \ 𝜏 (𝑊ℓ ) = 𝜏 (C \ 𝑊ℓ ). In turn, we infer

from consistency and completeness that 𝑔(𝜏 ( 𝑗𝐴′ + 𝐴), 𝜏 (𝑊ℓ )) =

𝑔(𝜏 ( 𝑗𝐴′), 𝜏 (𝑊ℓ )) ∩ 𝑔(𝜏 (𝐴), 𝜏 (𝑊ℓ )) = 𝑔(𝜏 (𝐴), 𝜏 (𝑊ℓ )). Since 𝑔 gen-

erates 𝑓 , this means that 𝑓 (𝜏 ( 𝑗𝐴′ + 𝐴), 𝑘) = {𝜏 (𝑊ℓ ) ∪ {𝑥} : 𝑥 ∈
𝑔(𝜏 (𝐴), 𝜏 (𝑊ℓ ))}. However, since𝑔(𝜏 (𝐴), 𝜏 (𝑊ℓ )) ≠ 𝜏 (𝑔(𝐴,𝑊ℓ )), this
means that 𝑓 (𝜏 ( 𝑗𝐴′ + 𝐴), 𝑘) = {𝜏 (𝑊ℓ ) ∪ {𝑥} ∈ 𝑔(𝜏 (𝐴), 𝜏 (𝑊ℓ ))} ≠

{𝜏 (𝑊ℓ ∪{𝑥}) : 𝑥 ∈ 𝑔(𝐴,𝑊ℓ )} = 𝜏 (𝑓 ( 𝑗𝐴′+𝐴, ℓ+1)). This contradicts
that 𝑓 satisfies neutrality and thus, the assumption that 𝑔 is not

neutral must be wrong.

Claim 4: 𝑔 is continuous.
Finally, we show that 𝑔 is continuous and consider therefore two

profiles 𝐴 and 𝐴′
and a committee𝑊 such that 𝑔(𝐴,𝑊 ) = {𝑐} for

some candidate 𝑐 ∈ C \𝑊 . We need to show that there is an integer

𝑗 such that 𝑔( 𝑗𝐴 + 𝐴′,𝑊 ) = 𝑔(𝐴,𝑊 ). For doing so, let 𝑐1, . . . , 𝑐ℓ
denote the candidates in𝑊 and define𝑊𝑘 = {𝑐1, . . . , 𝑐𝑘 } for all
𝑘 ∈ {1, . . . , ℓ}. Using again Lemma 2, there is a profile 𝐴′′

such

that 𝑓 (𝐴′′, 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ} and 𝑓 (𝐴′′, ℓ + 1) =

{𝑊ℓ ∪ 𝑥 : 𝑥 ∈ C \𝑊ℓ }. By Lemma 3, we can find an integer 𝑗 such

that 𝑓 ( 𝑗𝐴′′ + 𝐴,𝑘) = 𝑓 (𝐴′′, 𝑘) for all 𝑘 ∈ {1, . . . , ℓ}. On the other

hand, we infer that 𝑔( 𝑗𝐴′′ + 𝐴,𝑊ℓ ) = 𝑔( 𝑗𝐴′′,𝑊ℓ ) ∩ 𝑔(𝐴,𝑊ℓ ) =

𝑔(𝐴,𝑊ℓ ) = {𝑐} due to the consistency and completeness of 𝑔. Since

𝑔 generates 𝑓 , this means that 𝑓 ( 𝑗𝐴′′ +𝐴, ℓ + 1) = {𝑊ℓ ∪ {𝑐}}.
Now, using again Lemma 3, we can find another integer 𝑗 ′ such

that 𝐵 = 𝑗 ′ ( 𝑗𝐴′′ +𝐴) +𝐴′
and 𝑓 (𝐵, 𝑘) = 𝑓 ( 𝑗𝐴′′ +𝐴,𝑘) for all 𝑘 ∈

{1, . . . , ℓ + 1}. In particular, this implies that 𝑔(𝐵,𝑊ℓ ) = 𝑔(𝐴,𝑊ℓ ) =
{𝑐}. We prove that 𝑔 is continuous by showing that 𝑔(𝐵,𝑊ℓ ) =



𝑔( 𝑗 ′𝐴 + 𝐴′,𝑊ℓ ). For doing so, let 𝑗 ′′ = 𝑗 · 𝑗 ′. It clearly holds that

𝑔( 𝑗 ′′𝐴′′,𝑊ℓ ) = C \𝑊ℓ and therefore, 𝑔( 𝑗 ′′𝐴′′ + ( 𝑗 ′𝐴 + 𝐴′),𝑊ℓ ) =
𝑔( 𝑗 ′′𝐴′′,𝑊ℓ ) ∩ 𝑔( 𝑗 ′𝐴 + 𝐴′,𝑊ℓ ) = 𝑔( 𝑗 ′𝐴 + 𝐴′,𝑊ℓ ). Hence, 𝑔( 𝑗 ′𝐴 +
𝐴′,𝑊ℓ ) = 𝑔(𝐴,𝑊ℓ ), which proves that 𝑔 is continuous. □

Finally, we have all ingredients to prove Proposition 3.

Proposition 3. An ABC voting rule is proper and consistently com-
mittee monotone if and only it is generated by a proper, consistent,
and complete generator function.

Proof. We show both directions independently from each other.

Claim 1: If 𝑓 is generated by a proper, consistent, and com-
plete generator function 𝑔, it is a proper and consistently
committee monotone ABC voting rule.

Let 𝑔 denote a proper, consistent, and complete generator func-

tion 𝑔, and let 𝑓 denote the ABC voting rule generated by 𝑔. Note

that the completeness of 𝑔 ensures that it indeed induces an ABC

voting rule. Now, 𝑓 is by definition consistently committee mono-

tone since 𝑔 is consistent. Hence, it remains to show that 𝑓 is

anonymous, neutral, non-imposing, and continuous.

Anonymity: First, we show that 𝑓 is anonymous. For doing so,

consider an arbitrary profile 𝐴 and a permutation 𝜋 : N → N.
We will show by an induction on the committee size 𝑘 that

𝑓 (𝐴,𝑘) = 𝑓 (𝜋 (𝐴), 𝑘) for all 𝑘 ∈ {1, . . . ,𝑚}. Hence, note that the in-
duction basis 𝑘 = 0 is trivial since 𝑓 (𝐴, 0) = {∅} = 𝑓 (𝜋 (𝐴), 0)
by definition. Next, fix some 𝑘 ∈ {0, . . . ,𝑚 − 1} and suppose

that 𝑓 (𝐴,𝑘) = 𝑓 (𝜋 (𝐴), 𝑘). Since 𝑔 is anonymous, we have that

𝑔(𝐴,𝑊 ) = 𝑔(𝜋 (𝐴),𝑊 ) for all𝑊 ∈ 𝑓 (𝐴,𝑘) = 𝑓 (𝜋 (𝐴), 𝑘), which
implies that 𝑓 (𝐴,𝑘 + 1) = 𝑓 (𝜋 (𝐴), 𝑘 + 1). This proves the induction
step and thus shows that 𝑓 is anonymous.

Neutrality: Our next goal is to show that 𝑓 is neutral. Hence,

consider again an arbitrary profile 𝐴 and a permutation 𝜏 : C → C.
we use again an induction on the committee size 𝑘 to show that

𝑓 (𝜏 (𝐴), 𝑘) = 𝜏 (𝑓 (𝐴,𝑘)). The induction basis 𝑘 = 0 is trivial because

𝑓 (𝐴, 0) = {∅} = 𝑓 (𝜏 (𝐴), 0) by definition. Hence, assume that there

is fixed 𝑘 ∈ {0, . . . ,𝑚 − 1} such that 𝑓 (𝜏 (𝐴), 𝑘) = 𝜏 (𝑓 (𝐴,𝑘)). Since
𝑔 is neutral, it follows that 𝑔(𝜏 (𝐴), 𝜏 (𝑊 )) = 𝜏 (𝑔(𝐴,𝑊 )) for all
𝑊 ∈ 𝑓 (𝐴,𝑘). This means that 𝑓 (𝜏 (𝐴), 𝑘 + 1) = {𝑊 ∪ {𝑥} : 𝑊 ∈
𝑓 (𝜏 (𝐴), 𝑘), 𝑥 ∈ 𝑔(𝜏 (𝐴),𝑊 )} = {𝜏 (𝑊 ) ∪ {𝑥} : 𝑊 ∈ 𝑓 (𝐴,𝑘), 𝑥 ∈
𝑔(𝜏 (𝐴), 𝜏 (𝑊 ))} = {𝜏 (𝑊 ∪ {𝑥}) : 𝑊 ∈ 𝑓 (𝐴,𝑘), 𝑥 ∈ 𝑔(𝐴,𝑊 )} =

𝜏 (𝑓 (𝐴,𝑘 + 1)), which proves that 𝑓 is neutral.

Continuity: As third point, we show that 𝑓 is continuous. For

doing so, assume that for every two profiles 𝐴 and 𝐴′
and every

committee 𝑊 , there is an integer 𝑗 such that 𝑔( 𝑗𝐴 + 𝐴′,𝑊 ) ⊆
𝑔(𝐴,𝑊 ); we will prove that this claim is correct later on. Next,

consider two profiles 𝐴 and 𝐴′
and a committee size 𝑘 such that

|𝑓 (𝐴,𝑘) | = 1. Our goal is to show that there is an integer 𝑗 such

that 𝑓 ( 𝑗𝐴 +𝐴′, 𝑘) = 𝑓 (𝐴,𝑘).
For doing so, let 𝐹 =

⋃𝑘−1

ℓ=0
𝑓 (𝐴, ℓ) denote the set of all com-

mittees of size at most 𝑘 − 1 that 𝑓 chooses for 𝐴. By our aux-

iliary claim, there is for every 𝑊 ∈ 𝐹 a integer 𝑗𝑊 such that

𝑔( 𝑗𝑊𝐴+𝐴′,𝑊 ) ⊆ 𝑔(𝐴,𝑊 ). Now, let 𝑗∗ denote themaximum among

these integers and note that consistency and completeness imply

that𝑔( 𝑗∗𝐴+𝐴′,𝑊 ) = 𝑔( 𝑗𝑊𝐴+𝐴′,𝑊 )∩𝑔(( 𝑗∗− 𝑗𝑊 )𝐴,𝑊 ) ⊆ 𝑔(𝐴,𝑊 )
for all committees 𝑊 ∈ 𝐹 with 𝑗𝑊 < 𝑗∗. This means that

𝑔( 𝑗∗𝐴 + 𝐴′,𝑊 ) ⊆ 𝑔(𝐴,𝑊 ) for all𝑊 ∈ 𝐹 , which clearly implies

that 𝑓 ( 𝑗∗𝐴 + 𝐴′, ℓ) ⊆ 𝑓 (𝐴, ℓ) for all ℓ ∈ {1, . . . , 𝑘}. Since 𝑓 is an

ABC voting rule, 𝑓 ( 𝑗∗𝐴 + 𝐴′, 𝑘) ≠ ∅. Thus, |𝑓 (𝐴,𝑘) | = 1 entails

𝑓 ( 𝑗∗𝐴 +𝐴′, 𝑘) = 𝑓 (𝐴,𝑘), which proves that 𝑓 is continuous.

It remains to show our auxiliary claim that for all profiles 𝐴 and

𝐴′
and all committees𝑊 , there is an integer 𝑗 such that 𝑔( 𝑗𝐴 +

𝐴′,𝑊 ) ⊆ 𝑔(𝐴,𝑊 ). Assume for contradiction that this is not the

case, which means that there are profiles 𝐴, 𝐴′
and a committee

𝑊 such that 𝑔( 𝑗𝐴 + 𝐴′,𝑊 ) ⊈ 𝑔(𝐴,𝑊 ) for all 𝑗 ∈ N. First, note
that this requires that |𝑔(𝐴,𝑊 ) | ≥ 2 as otherwise, this assumption

directly contradicts the continuity of 𝑔. Next, let 𝐼𝑐 = { 𝑗 ∈ N : 𝑐 ∈
𝑔( 𝑗𝐴+𝐴′,𝑊 )} denote the set of integers 𝑗 such that 𝑔 chooses 𝑐 for

𝑗𝐴+𝐴′
. It must hold that 𝐼𝑐 = ∅ for all 𝑐 ∈ 𝑔(𝐴,𝑊 ): if there is 𝑗 ∈ 𝐼𝑐 ,

consistency implies for 𝑔(( 𝑗 +1)𝐴+𝐴′,𝑊 ) that 𝑔(( 𝑗 +1)𝐴+𝐴,𝑊 ) =
𝑔(𝐴,𝑊 )∩𝑔( 𝑗𝐴+𝐴′,𝑊 ) ⊆ 𝑔(𝐴,𝑊 ) since𝑔(𝐴,𝑊 )∩𝑔( 𝑗𝐴+𝐴′,𝑊 ) ≠
∅. This, however, contradicts our assumptions.

Next, let 𝑐 ∈ C\𝑔(𝐴,𝑊 ) denote a candidate such that 𝐼𝑐 contains
infinitely many elements; such a candidate must exist since there

is only a finite number of candidates but N is infinite. Moreover,

let 𝑎 denote a candidate in 𝑔(𝐴,𝑊 ). For each other candidate 𝑥 ∈
𝑔(𝐴,𝑊 ) \ {𝑎}, we define 𝜏𝑥 as the permutation that maps 𝑥 to

𝑐 , 𝑐 to 𝑥 , and every other candidate to itself. By neutrality, we

have that 𝑐 ∈ 𝑔(𝜏𝑥 (𝐴), 𝜏𝑥 (𝑊 )), 𝑥 ∉ 𝑔(𝜏𝑥 (𝐴), 𝜏𝑥 (𝑊 )). Now, note
that 𝜏𝑥 (𝑊 ) = 𝑊 since 𝑥 ∈ 𝑔(𝐴,𝑊 ) and 𝑐 ∈ 𝑔( 𝑗𝐴 + 𝐴′,𝑊 ) for
𝑗 ∈ 𝐼𝑐 imply that 𝑐, 𝑥 ∉ 𝑊 . Moreover, consistency shows that

𝑐 ∈ 𝑔(𝜏𝑥 ( 𝑗𝐴),𝑊 ), 𝑥 ∉ 𝑔(𝜏𝑥 ( 𝑗𝐴),𝑊 ) for all integers 𝑗 ∈ N.
Finally, consider the profiles 𝐵 𝑗

which consists of 𝑗 copies of 𝐴,

𝑗 copies of 𝜏𝑥 (𝐴) for every 𝑥 ∈ 𝑔(𝐴,𝑊 ) \ {𝑎}, and one copy of 𝐴′
.

Now, since 𝑐 ∈ 𝑔( 𝑗𝐴+𝐴′,𝑊 ) for all 𝑗 ∈ 𝐼𝑐 and 𝑐 ∈ 𝑔(𝜏𝑥 ( 𝑗𝐴),𝑊 ) for
all 𝑗 ∈ N and 𝑥 ∈ 𝑔(𝐴,𝑊 ) \ {𝑎}, consistency shows that 𝑔(𝐵 𝑗 ,𝑊 ) =
𝑔( 𝑗𝐴 + 𝐴′,𝑊 ) ∩⋂

𝑥∈𝑔 (𝐴,𝑊 )\{𝑎} 𝑔(𝜏𝑥 ( 𝑗𝐴),𝑊 ) = {𝑐} for 𝑗 ∈ 𝐼𝑐 . In

particular, the last equality holds since𝑔( 𝑗𝐴,𝑊 )∩𝑔( 𝑗𝐴+𝐴′,𝑊 ) = ∅
and 𝜏𝑥 (𝐴) only swaps 𝑐 and 𝑥 .

On the other side, it holds for the profile 𝐵, which consists only of

a single copy of𝐴 and one copy of 𝜏𝑥 (𝐴) for every 𝑥 ∈ 𝑔(𝐴,𝑊 )\{𝑎},
that 𝑔(𝐵,𝑊 ) = {𝑎} because of consistency. Hence, continuity im-

plies that there is an index 𝑗∗ such that 𝑔( 𝑗∗𝐵 +𝐴′,𝑊 ) = {𝑎}. How-
ever, 𝐼𝑐 is infinite and there is thus an index 𝑗 ∈ 𝐼𝑐 with 𝑗 > 𝑗∗ such
that 𝑐 ∈ 𝑔(𝐵 𝑗 ,𝑊 ) = 𝑔( 𝑗𝐵 + 𝐴′,𝑊 ). This contradicts consistency:
𝑔( 𝑗𝐵 +𝐴′,𝑊 ) = 𝑔(( 𝑗 − 𝑗∗)𝐵,𝑊 ) ∩𝑔( 𝑗∗𝐵 +𝐴′,𝑊 ) = {𝑎}. Hence the
assumption that there is no integer 𝑗 such that 𝑔( 𝑗𝐴 + 𝐴′,𝑊 ) ⊆
𝑔(𝐴,𝑊 ) is wrong and the claim therefore proven.

Non-imposition: Finally, we show that 𝑓 is non-imposing. Hence,

consider an arbitrary committee 𝑊 = {𝑐1, . . . , 𝑐ℓ }. We need to

show that there is a profile 𝐴 such that 𝑓 (𝐴, |𝑊 |) = {𝑊 }. For this,
let𝑊𝑘 = {𝑐1, . . . , 𝑐𝑘 } for all 𝑘 ∈ {1, . . . , ℓ}. We will inductively

construct a profile𝐴 such that 𝑓 (𝐴,𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ}.
The base case 𝑘 = 1 follows immediately from the non-imposition

of 𝑔 because this axiom implies that there is a profile 𝐴 such that

𝑔(𝐴, ∅) = {𝑐1}.
Next, consider a fixed 𝑘′ ∈ {1, . . . , ℓ − 1} and assume that we

have a profile 𝐴 such that 𝑓 (𝐴,𝑘) = {𝐴𝑘 } for all integers 𝑘 ∈
{1, . . . , 𝑘′}. In particular, this means that 𝑔(𝐴,𝑊𝑘−1

) = {𝑐𝑘 } for

all 𝑘 ∈ {1, . . . , 𝑘′} (where𝑊0 = ∅). Furthermore, let 𝜏 denote a

permutation on the candidates such that 𝜏 (𝑥) = 𝑥 for all 𝑥 ∈𝑊𝑘 ′ .

Neutrality implies that 𝑔(𝜏 (𝐴), 𝜏 (𝑊𝑘−1
)) = 𝑔(𝜏 (𝐴),𝑊𝑘−1

) = {𝑐𝑘 }
for all 𝑘 ∈ {1, . . . , 𝑘′}. In turn, consistency and completeness prove



then that 𝑔(𝐴 +𝜏 (𝐴),𝑊𝑘−1
) = {𝑐𝑘 } for all such permutations 𝜏 and

𝑘 ∈ {1, . . . , 𝑘′}. Hence, consider now the profile 𝐴′
that consists of

a copy of 𝜏 (𝐴) for every permutation 𝜏 : C → C such that 𝜏 (𝑥) = 𝑥

for 𝑥 ∈ 𝑊𝑘 ′ . By repeating the previous arguments, we infer that

𝑔(𝐴′,𝑊𝑘−1
) = {𝑐𝑘 } for all 𝑘 ∈ {1, . . . , 𝑘′}. Moreover, the profile 𝐴′

is completely symmetric with respect to the candidates 𝑐 ∈ C \𝑊𝑘 ′ .

Hence, neutrality and anonymity require that 𝑔(𝐴′,𝑊𝑘 ′ ) = C \𝑊𝑘 ′ .

Finally, since 𝑔 is non-imposing, there is a profile 𝐴′′
such that

𝑔(𝐴′′,𝑊𝑘 ′ ) = {𝑐𝑘 ′+1
}. Moreover, by using the same auxiliary claim

as for our analysis on continuity, we can find an integer 𝑗 such

that 𝑔( 𝑗𝐴′ +𝐴′′,𝑊𝑘−1
) ⊆ 𝑔(𝐴′,𝑊𝑘−1

) for all 𝑘 ∈ {1, . . . , 𝑘′}. Since
𝑔 is complete and |𝑔(𝐴′,𝑊𝑘−1

) | = 1 for all these 𝑘 , this implies

𝑔( 𝑗𝐴′ +𝐴′′,𝑊𝑘−1
) = {𝑐𝑘 } for all 𝑘 ∈ {1, . . . , 𝑘′}. On the other hand,

completeness and consistency require that 𝑔( 𝑗𝐴′ + 𝐴′′,𝑊𝑘 ′ ) =

𝑔( 𝑗𝐴′,𝑊𝑘 ′ ) ∩𝑔(𝐴′′,𝑊𝑘 ′ ) = {𝑐𝑘 ′+1
}. This entails for 𝑓 that 𝑓 ( 𝑗𝐴′ +

𝐴′′, 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , 𝑘′ + 1} and thus proves the

induction step. Hence, 𝑓 is indeed non-imposing.

Claim 2: If 𝑓 is a proper and consistently committee mono-
tone ABC voting rule, it is generated by a proper, consistent,
and complete generator function.

Let 𝑓 denote a proper ABC voting rule that satisfies consistent

committee monotonicity. Thus, 𝑓 can be generated by a consis-

tent generator function 𝑔. We only need to extend 𝑔 to a com-

plete generator function to prove this claim since Lemma 4 then

shows that it is also proper. For doing so, we will define a sec-

ond generator function 𝑔(𝐴,𝑊 ) for 𝑓 . To this end, consider a

single committee𝑊 ≠ C and let𝑊1, . . . ,𝑊ℓ denote a sequence

of committees such that 𝑊ℓ = 𝑊 . Moreover, let 𝐴𝑊 denote a

profile such that 𝑓 (𝐴𝑊 , 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ} and

𝑓 (𝐴𝑊 , ℓ + 1) = {𝑊 ∪ {𝑥} : 𝑥 ∈ C \𝑊 }; such a profile exists be-

cause of Lemma 2. Then, we define 𝑔(𝐴,𝑊 ) = 𝑔( 𝑗𝐴𝑊 +𝐴,𝑊 ) for
all profiles 𝐴 and committees𝑊 , where 𝑗 denotes the smallest in-

tegers such that 𝑓 ( 𝑗𝐴𝑊 + 𝐴,𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , |𝑊 |};
such an integer exists because of Lemma 3. In particular, observe

that this condition ensures that 𝑔( 𝑗𝐴𝑊 +𝐴,𝑊 ) ≠ ∅ and thus, 𝑔 is

indeed complete. In the remainder of this proof, we will show that

𝑔 generates 𝑓 and is consistent because Lemma 4 then shows that

it satisfies all our requirements.

First, we show that 𝑔 generates 𝑓 . For this, we will show that for

all profiles 𝐴 and committees𝑊 with𝑊 ∈ 𝑓 (𝐴, |𝑊 |), it holds that
𝑔(𝐴,𝑊 ) = 𝑔(𝐴,𝑊 ) = 𝑔( 𝑗𝐴𝑊 + 𝐴,𝑊 ). By our definition, we have

that𝑊 ∈ 𝑓 (𝐴𝑊 , |𝑊 |) and𝑊 ∈ 𝑓 ( 𝑗𝐴𝑊 + 𝐴, |𝑊 |), and we assume

that𝑊 ∈ 𝑓 (𝐴, |𝑊 |). Moreover, a repeated application of consistent

committee monotonicity shows that 𝑓 (𝐴𝑊 , |𝑊 |) = 𝑓 ( 𝑗𝐴𝑊 , |𝑊 |)
and we hence derive that 𝑔(𝑋,𝑊 ) ≠ ∅ for all 𝑋 ∈ { 𝑗𝐴𝑊 , 𝐴, 𝑗𝐴𝑊 +
𝐴}. Finally, our definition of 𝐴𝑊 also implies that 𝑔( 𝑗𝐴𝑊 ,𝑊 ) =

C\𝑊 and thus, consistency entails that𝑔(𝐴,𝑊 ) = 𝑔( 𝑗𝐴𝑊 +𝐴,𝑊 ) =
𝑔( 𝑗𝐴𝑊 ,𝑊 ) ∩ 𝑔(𝐴,𝑊 ) = 𝑔(𝐴,𝑊 ). Hence, 𝑔 and 𝑔 coincide for all

profiles 𝐴 and committees𝑊 with𝑊 ∈ 𝑓 (𝐴, |𝑊 |), which implies

that 𝑔 generates 𝑓 .

Finally, we show that 𝑔 is consistent. Thus, consider a fixed com-

mittee𝑊 ≠ C and let𝑊1, . . . ,𝑊ℓ denote the sequence of profiles

used for defining𝑔(𝐴,𝑊 ). In particular, we have that𝑊ℓ =𝑊 . More-

over, let𝐴𝑊 denote the profile such that 𝑔(𝐴,𝑊 ) = 𝑔( 𝑗𝐴𝑊 +𝐴,𝑊 )
for some 𝑗 ∈ N. Recall that 𝑓 (𝐴𝑊 , 𝑘′) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , ℓ}

and 𝑓 (𝐴𝑊 , ℓ + 1) = {𝑊ℓ ∪ {𝑥} : 𝑥 ∈ C \𝑊ℓ }. Finally, for prov-
ing that 𝑔 is consistent, consider two profiles 𝐴, 𝐴′

such that

𝑔(𝐴,𝑊 ) ∩ 𝑔(𝐴′,𝑊 ) ≠ ∅, and define 𝑗 , 𝑗 ′, and 𝑗 ′′ as the smallest

integers such that 𝑓 ( 𝑗𝐴𝑊 +𝐴,𝑘) = 𝑓 ( 𝑗 ′𝐴𝑊 +𝐴′, 𝑘) = 𝑓 ( 𝑗 ′′𝐴𝑊 +
(𝐴 + 𝐴′), 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , |𝑊 |}. By definition of

𝑔, 𝑔(𝐴,𝑊 ) = 𝑔( 𝑗𝐴𝑊 + 𝐴,𝑊 ), 𝑔(𝐴′,𝑊 ) = 𝑔( 𝑗 ′𝐴𝑊 + 𝐴,𝑊 ), and
𝑔(𝐴 + 𝐴′,𝑊 ) = 𝑔( 𝑗 ′′𝐴𝑊 + (𝐴 + 𝐴′),𝑊 ). We proceed with a case

distinction with respect to the relation between 𝑗 + 𝑗 ′ and 𝑗 ′′.

• First, assume that 𝑗 + 𝑗 ′ = 𝑗 ′′. Then, the consistency of

𝑔 implies that 𝑔(𝐴 + 𝐴′,𝑊 ) = 𝑔( 𝑗 ′′𝐴𝑊 + 𝐴 + 𝐴′,𝑊 ) =

𝑔( 𝑗𝐴𝑊 + 𝐴,𝑊 ) ∩ 𝑔( 𝑗 ′𝐴𝑊 + 𝐴′,𝑊 ) = 𝑔(𝐴,𝑊 ) ∩ 𝑔(𝐴′,𝑊 ).
Hence, consistency holds.

• As second case, assume that 𝑗 + 𝑗 ′ > 𝑗 ′′ and define ℓ =

𝑗 + 𝑗 ′ − 𝑗 ′′. First, we note that 𝑓 (ℓ𝐴𝑊 , 𝑘) = {𝑊𝑘 } for all
𝑘 ∈ {1, . . . , |𝑊 |} and 𝑔(ℓ𝐴𝑊 ,𝑊 ) = C \𝑊 because of the

consistency of 𝑔. Hence, we can use Lemma 1 to deduce

that 𝑓 (( 𝑗 + 𝑗 ′)𝐴𝑊 + 𝐴 + 𝐴′, 𝑘) = 𝑓 (ℓ𝐴𝑊 + 𝑗 ′′𝐴𝑊 + 𝐴 +
𝐴′, 𝑘) = {𝑊𝑘 } for all 𝑘 ∈ {1, . . . , |𝑊 |}. Consistency therefore
implies that 𝑔( 𝑗 ′′𝐴𝑊 +𝐴 +𝐴′,𝑊 ) = 𝑔( 𝑗 ′′𝐴𝑊 +𝐴 +𝐴′,𝑊 ) ∩
𝑔(ℓ𝐴𝑊 ,𝑊 ) = 𝑔(( 𝑗+ 𝑗 ′)𝐴𝑊 +𝐴+𝐴′,𝑊 ). Moreover, analogous

to the above case, we have that 𝑔(( 𝑗 + 𝑗 ′)𝐴𝑊 + 𝐴,𝑊 ) =

𝑔( 𝑗𝐴𝑊 +𝐴) ∩ 𝑔( 𝑗 ′𝐴𝑊 +𝐴′,𝑊 ). In summary, we thus have

that 𝑔(𝐴 +𝐴′,𝑊 ) = 𝑔(𝐴,𝑊 ) ∩ 𝑔(𝐴′,𝑊 ).
• As last case, note that 𝑗 + 𝑗 ′ < 𝑗 ′′ is not possible since we
choose the integer 𝑗 ′′ minimal. In particular, it follows from

Lemma 1 that 𝑓 ( 𝑗𝐴𝑊 + 𝐴 + 𝑗 ′𝐴𝑊 + 𝐴′, 𝑘) = {𝑊𝑘 } for all
𝑘 ∈ {1, . . . , |𝑊 |}. This contradicts the minimality of 𝑗 ′′ if
𝑗 + 𝑗 ′ < 𝑗 ′′ and thus, this case cannot happen.

□

A.2 Proof of Proposition 4
In this section, we show Proposition 4 which states that for a fixed

committee𝑊 ≠ C, every proper, consistent, and complete generator

function 𝑔 is equivalent to 𝑣-weighted approval voting for some

weight function 𝑣 . Note that this claim is trivial if |𝑊 | = 𝑚 − 1

because 𝑔(𝐴,𝑊 ) = C \𝑊 for every complete generator function as

only a single candidate remains. Thus, it holds for every committee

𝑊 of size𝑚 − 1 that 𝑔(𝐴,𝑊 ) = 𝐴𝑉𝑣𝑊 (𝐴,𝑊 ), where 𝑣𝑊 (𝑥,𝑦) = 1

for all 𝑥,𝑦. As a consequence, we will focus in the majority of this

section on the case that |𝑊 | ≤ 𝑚 − 2.

For proving Proposition 4, we use the fact that, for a fixed com-

mittee𝑊 , 𝑔(·,𝑊 ) is closely connected to single winner voting rules,
so-called social choice functions (SCFs). In particular, 𝑔(·,𝑊 ) can
be seen as an SCF on the candidates B = C \𝑊 . To simplify our

analysis, we will only consider SCFs with restricted domain: we

require that all voters approve the same number of candidates in B.

To make this formal, let B𝑘 denote the size 𝑘 subsets of the set of

available candidates B. Moreover, let B∗
𝑘
denote the set of approval

profiles in which all voters report a preference in B𝑘 . Finally, a

social choice function (SCF) on the domain B∗
𝑘
maps every profile

𝐴 ∈ B∗
𝑘
to a non-empty subset of B, which is interpreted as the set

of winners of the elections.

Three SCFs will turn out to be particular important for our

analysis: approval voting (AV ) chooses the candidates that are

approved by the most voters, anti-approval voting (AV ) chooses
the candidates that are approved by the least voters, and the



trivial rule (TRIV ) always chooses all candidates. Furthermore,

analogous to ABC voting rules, we introduced axioms for SCFs:

anonymity requires that permuting the voters does not affect the

outcome (𝑓 (𝐴) = 𝑓 (𝜋 (𝐴))), neutrality that permuting the candi-

dates in the profile permutes them correspondingly in the choice set

(𝑓 (𝜏 (𝐴)) = 𝜏 (𝑓 (𝐴))), and consistency that if the intersection of the

choice sets for two disjoint profiles is non-empty, then precisely this

intersection is chosen when considering both profiles combined

(𝑓 (𝐴) ∩ 𝑓 (𝐴′) ≠ ∅ implies that 𝑓 (𝐴 +𝐴′) = 𝑓 (𝐴) ∩ 𝑓 (𝐴′)). As we
show next, these three axioms characterize AV , AV , and TRIV .

Lemma 5. Let B = C \𝑊 denote the non-empty set of feasible
candidates and let 𝑘 ∈ {1, . . . , |B|}. AV , AV , and TRIV are the only
SCFs on B∗

𝑘
that satisfy anonymity, neutrality, and consistency.

Proof. Fix a set𝑊 ⊊ C and let B = C \𝑊 . Moreover, we define

𝑚 = |B| for this proof and let 𝑘 ∈ {1, . . . , |C \𝑊 |}. It is straight-
forward to check that AV , AV , and TRIV are anonymous, neutral,

and consistent for B∗
𝑘
and we thus focus on the converse direction.

Hence, let 𝑓 denote an anonymous, neutral, and consistent SCF on

B∗
𝑘
. First, note that if𝑚 = 1, then every rule has to always return the

single available candidate. Similar, if 𝑘 =𝑚, every anonymous and

neutral SCF on

(C\𝑊
𝑘

)∗
must always return all candidates because

all voters have to approve all candidates. Hence, 𝑓 coincides with

AV (as well as AV and TRIV ) for all profiles in this case and we

therefore assume that 1 ≤ 𝑘 < 𝑚.

For proving that 𝑓 is one of our three SCFs, we will consider

profiles consisting of a single ballot 𝐴𝑖 . First, if 𝑓 (𝐴𝑖 ) = C for some

𝐴𝑖 ∈ B𝑘 , then neutrality implies that 𝑓 (𝐴′
𝑖
) = C for all 𝐴′

𝑖
since

|𝐴𝑖 | = |𝐴′
𝑖
| for all ballots in our domain. Consistency then shows

that 𝑓 is TRIV . Because of neutrality, there are two possible cases

left: 𝑓 (𝐴𝑖 ) = 𝐴𝑖 or 𝑓 (𝐴𝑖 ) = B \ 𝐴𝑖 for all 𝐴𝑖 ∈ B𝑘 . We will show

in Step 2 that the former implies that 𝑓 is AV and in Step 3 that

the latter implies that 𝑓 is AV . Before proving these claims, we will

discuss an auxiliary statement showing that if two candidates 𝑎, 𝑏

have the same approval score 𝑠 (𝐴, 𝑥) = |{𝑖 ∈ 𝑁𝐴 : 𝑥 ∈ 𝐴𝑖 }|, then
both are either chosen or unchosen in 𝑓 (𝐴).

Step 1: If 𝑠 (𝐴, 𝑎) = 𝑠 (𝐴,𝑏), then 𝑎 ∈ 𝑓 (𝐴) if and only if
𝑏 ∈ 𝑓 (𝐴).

Consider a profile 𝐴 and two candidates 𝑎, 𝑏 ∈ B with 𝑠 (𝐴, 𝑎) =
𝑠 (𝐴,𝑏). First, if 𝑠 (𝐴, 𝑎) = 𝑠 (𝐴,𝑏) = 0, no voter approves 𝑎 or 𝑏.

Neutrality then shows that 𝑎 ∈ 𝑓 (𝐴) if and only if 𝑏 ∈ 𝑓 (𝐴) as
permuting 𝑎 and 𝑏 leads to the same profile 𝐴. Hence, we focus on

the case that 𝑠 (𝐴, 𝑎) = 𝑠 (𝐴,𝑏) > 0 and suppose for contradiction

that 𝑎 ∈ 𝑓 (𝐴), 𝑏 ∉ 𝑓 (𝐴). Now, note that for every permutation

𝜏 : B → B with 𝜏 (𝑎) = 𝑎 and 𝜏 (𝑏) = 𝑏, neutrality implies 𝑎 ∈
𝑓 (𝜏 (𝐴)), 𝑏 ∉ 𝑓 (𝜏 (𝐴)). Next, define 𝐴∗

as the profile that consists

of the profiles 𝜏 (𝐴) for every permutation 𝜏 : B → B such that

𝜏 (𝑎) = 𝑎 and 𝜏 (𝑏) = 𝑏. Neutrality requires for every subprofile 𝜏 (𝐴)
that 𝑎 ∈ 𝑓 (𝜏 (𝐴)), 𝑏 ∉ 𝑓 (𝜏 (𝐴)) and, in turn, consistency shows that

𝑎 ∈ 𝑓 (𝐴∗), 𝑏 ∉ 𝑓 (𝐴∗).
Subsequently, we consider a different decomposition of 𝐴∗

. Note

for this that for every two ballots𝐴𝑖 ,𝐴
′
𝑖
with 𝑎 ∈ 𝐴𝑖 , 𝑎 ∈ 𝐴′

𝑖
, 𝑏 ∉ 𝐴𝑖 ,

𝑏 ∉ 𝐴′
𝑖
, there are precisely (𝑘 − 1)!(𝑚 − 𝑘 − 1)! permutations 𝜏

with 𝜏 (𝑎) = 𝑎, 𝜏 (𝑏) = 𝑏 that map 𝐴𝑖 to 𝐴
′
𝑖
. An analogous statement

also holds when exchanging the roles of 𝑎 and 𝑏. Hence, we can

partition 𝐴∗
in the following profiles: in 𝐴1

all voters approve both

𝑎 and 𝑏, in 𝐴2
no voter approves either 𝑎 or 𝑏, and for every set of

candidates 𝑋 ⊆ B \ {𝑎, 𝑏} with |𝑋 | = 𝑘 − 1, there is a profile 𝐴𝑋
in

which all voters either report {𝑎}∪𝑋 or {𝑏}∪𝑋 . In particular, since

𝑠 (𝐴, 𝑎) = 𝑠 (𝐴,𝑏), both 𝑎 and 𝑏 are approved by the same number of

voters in 𝐴𝑋
. Finally, note that 𝑎 and 𝑏 are completely symmetric

in all subprofiles of 𝐴∗
and thus also in 𝐴∗

itself. Hence, anonymity

and neutrality require that 𝑎 ∈ 𝑓 (𝐴∗) if and only if𝑏 ∈ 𝐴∗
. However,

this contradicts our previous observation 𝑎 ∈ 𝑓 (𝐴∗), 𝑏 ∉ 𝑓 (𝐴∗),
and thus our initial assumption that 𝑎 ∈ 𝑓 (𝐴), 𝑏 ∉ 𝑓 (𝐴) must be

wrong. Consequently, we infer that 𝑠 (𝐴, 𝑎) = 𝑠 (𝐴,𝑏) implies that

𝑎 ∈ 𝑓 (𝐴) if and only if 𝑏 ∈ 𝑓 (𝐴).

Step 2: If 𝑓 (𝐴𝑖 ) = 𝐴𝑖 for all 𝐴𝑖 ∈ B∗
𝑘
, then 𝑓 (𝐴) = AV (𝐴) for

all 𝐴 ∈ B∗
𝑘
.

The claim follows by showing that 𝑓 cannot choose candi-

dates that have less than maximal approval score. Due to the non-

emptiness and Step 1, 𝑓 then must choose the approval winners.

Hence, assume for contradiction that there is a profile 𝐴 ∈ B∗
𝑘
and

two candidates 𝑎, 𝑏 ∈ B such that 𝑏 ∈ 𝑓 (𝐴) but 𝑠 (𝐴, 𝑎) > 𝑠 (𝐴,𝑏).
Next, let 𝐴′

denote a profile consisting of 𝑠 (𝐴, 𝑎) − 𝑠 (𝐴,𝑏) voters
who approve 𝑏 but not 𝑎. Since 𝑏 ∈ 𝑓 (𝐴′

𝑖
) = 𝐴′

𝑖
and 𝑎 ∉ 𝑓 (𝐴′

𝑖
) for

all voters 𝑖 ∈ 𝑁𝐴′ , consistency entails that 𝑏 ∈ 𝑓 (𝐴′), 𝑎 ∉ 𝑓 (𝐴′).
Another application of consistency then shows that 𝑏 ∈ 𝑓 (𝐴 +𝐴′)
and 𝑎 ∉ 𝑓 (𝐴 +𝐴′). However, 𝑠 (𝐴 +𝐴′, 𝑎) = 𝑠 (𝐴 +𝐴′, 𝑏) and Step 1

thus requires that 𝑎 ∈ 𝑓 (𝐴+𝐴′) if and only if 𝑏 ∈ 𝑓 (𝐴+𝐴′). Hence,
our initial assumption is wrong and 𝑏 ∈ 𝑓 (𝐴) is only possible if

there is no candidate 𝑎 with 𝑠 (𝐴, 𝑎) > 𝑠 (𝐴,𝑏). Equivalently, this
means that 𝑓 (𝐴) = AV (𝐴).

Step 3: If 𝑓 (𝐴𝑖 ) = B \𝐴𝑖 for all 𝐴𝑖 ∈ B∗
𝑘
, then 𝑓 (𝐴) = AV (𝐴)

for all 𝐴 ∈ B∗
𝑘
.

Analogous to the last case, we will show that 𝑓 cannot choose

candidates that have above minimal approval score. The non-

emptiness of 𝑓 and Step 1 then show again that 𝑓 chooses the

anti-approval winners. Thus, assume for contradiction that there

is a profile 𝐴 ∈ B∗
𝑘
and two candidates 𝑎, 𝑏 such that 𝑏 ∈ 𝑓 (𝐴) and

𝑠 (𝐴, 𝑎) < 𝑠 (𝐴,𝑏). Similar to the last case, let 𝐴′
denote a profile

consisting of 𝑠 (𝐴,𝑏) − 𝑠 (𝐴, 𝑎) such that 𝑎 ∈ 𝐴′
𝑖
and 𝑏 ∉ 𝐴′

𝑖
for all

𝑖 ∈ 𝑁𝐴′ . Consistency and our assumption that 𝑓 (𝐴′
𝑖
) = B \ 𝐴′

𝑖
show that 𝑏 ∈ 𝑓 (𝐴′), 𝑎 ∉ 𝑓 (𝐴′). Hence, another application of

consistency shows that 𝑏 ∈ 𝑓 (𝐴 + 𝐴′), 𝑎 ∉ 𝑓 (𝐴 + 𝐴′). However,
this contradicts Step 1 since 𝑠 (𝐴 +𝐴′, 𝑎) = 𝑠 (𝐴 +𝐴′, 𝑏). This shows
that the initial assumption must be wrong and 𝑓 indeed can only

choose candidates with minimal approval scores. In other words,

this means that 𝑓 (𝐴) = AV (𝐴) for all profiles 𝐴 ∈ B∗
𝑘
. □

As next step, we will start to analyze 𝑔(·,𝑊 ) for a fixed com-

mittee𝑊 . In particular, we will show that every proper generator

function that is complete and consistent induces an SCF for the can-

didates C \𝑊 that satisfies all requirements of Lemma 5 when we

assume that all voters 𝑖 ∈ 𝑁𝐴 approve the same subset of𝑊 and the

same number of candidates. Based on this insight, we will infer the

behavior of 𝑔(𝐴,𝑊 ) for sufficiently symmetric profiles. For formal-

izing the latter, let 𝑛(𝑐, 𝐴,𝑊 , 𝑘, ℓ) = |{𝑖 ∈ 𝑁𝐴 : 𝑐 ∈ 𝐴𝑖 ∧ |𝐴𝑖 ∩𝑊 | =
𝑘 ∧ |𝐴𝑖 | = ℓ}| denote the number of voters who approve 𝑐 ∈ C \𝑊 ,

𝑘 candidates of𝑊 , and ℓ candidates in total. Note that by definition

𝑛(𝑐, 𝐴,𝑊 , 𝑘, ℓ) = 0 if 𝑘 ≥ ℓ or ℓ > 𝑚 − (|𝑊 | − 𝑘) since there is no



ballot such in which a voter approves 𝑐 and the right number of

candidates of𝑊 and C.

Lemma 6. Let 𝑔 denote a proper, complete, and consistent generator
function. It holds that 𝑔(𝐴,𝑊 ) = C \𝑊 for every profile 𝐴 and
committee𝑊 with |𝑊 | ≤ 𝑚 − 2 for which there are constants 𝑐𝑘,ℓ
such that 𝑛(𝑥,𝐴,𝑊 , 𝑘, ℓ) = 𝑐𝑘,ℓ for all 𝑥 ∈ C \𝑊 , 𝑘 ∈ {0, . . . , |𝑊 |},
and ℓ ∈ {𝑘 + 1, · · · ,𝑚 − 1 − |𝑊 | + 𝑘}.

Proof. Consider a proper generator function 𝑔 that is complete

and consistent and fix an arbitrary committee𝑊 with |𝑊 | ≤ 𝑚 − 2.

We will prove the lemma in multiple steps by first focusing on more

restricted profiles.

Step 1: As first step, we will show that 𝑔(𝐴,𝑊 ) = C \𝑊 for all

profiles 𝐴 for which there is a subset 𝑋 of𝑊 and constants 𝑐 ∈ N,
ℓ ∈ {|𝑋 | +1, . . . ,𝑚} such that |𝐴𝑖 | = ℓ and𝑊 ∩𝐴𝑖 = 𝑋 for all voters

𝑖 ∈ 𝑁𝐴 , and 𝑛(𝑥,𝐴,𝑊 , |𝑋 |, ℓ) = 𝑐 for all candidates 𝑥 ∈ C \𝑊 . To

this end, let B = C \𝑊 denote the set of still available candidates

and let Bℓ−|𝑋 | denote the set of size ℓ − |𝑋 | subsets of C′
. Moreover,

we define B∗
ℓ−|𝑋 | as the set of profiles in which each voter submits

a ballot in Bℓ−|𝑋 | . Finally, consider the following SCF ℎ on the

domain B∗
ℓ−|𝑋 | : given a profile 𝐴 ∈ B∗

ℓ−|𝑋 | , we construct a new

profile 𝐴′
on C by setting 𝐴′

𝑖
= 𝐴𝑖 ∪ 𝑋 for all voters 𝑖 ∈ 𝑁𝐴 . Then,

ℎ(𝐴) B 𝑔(𝐴′,𝑊 ).
It is not difficult to see that ℎ inherits anonymity, neutrality, and

consistency from 𝑔(·,𝑊 ). In particular, note for neutrality that this

axiom requires for ℎ only that we can permute the candidates in

B and such permutation do not affect the set𝑊 . Thus, we can use

Lemma 5 to derive that ℎ is either AV , AV , or TRIV . Hence, we infer
that if all candidates 𝑥 ∈ C \𝑊 are approved by the same number

of voters in 𝐴′
, then 𝑔(𝐴′,𝑊 ) = ℎ(𝐴) = C \𝑊 . In particular, if

𝑛(𝑥,𝐴,𝑊 , |𝑋 |, ℓ) = 𝑐 for all candidates 𝑥 ∈ C \𝑊 , |𝐴𝑖 | = ℓ , and

𝐴𝑖 ∩𝑊 = 𝑋 for all 𝑖 ∈ 𝑁 , then 𝑔(𝐴,𝑊 ) = C \𝑊 .

Step 2: For the second step, we fix two integers 𝑗1, 𝑗2 ∈ N with

𝑗1 ≤ |𝑊 | and 𝑗1 < 𝑗2 ≤ 𝑚 − 1 − |𝑊 | + 𝑗1 and consider profiles 𝐴

such that |𝐴𝑖 | = 𝑗2 and |𝐴𝑖 ∩𝑊 | = 𝑗1 for all voters 𝑖 ∈ 𝑁𝐴 . Or, in

other words, all voters still approve the same number of candidates

with respect to both C and𝑊 , but they are no longer required to

report the exact same subset of𝑊 . We assume once again that there

is a constant 𝑐 such that 𝑛(𝑥,𝐴,𝑊 , 𝑗1, 𝑗2) = 𝑐 for all 𝑥 ∈ C \𝑊 and

will show that 𝑔(𝐴,𝑊 ) = C \𝑊 . Note for this case that neutrality

requires that 𝑔(𝜏 (𝐴), 𝜏 (𝑊 )) = 𝜏 (𝑔(𝐴,𝑊 )) = 𝑔(𝐴,𝑊 ) for every
permutation 𝜏 : C → C with 𝜏 (𝑥) = 𝑥 for 𝑥 ∈ C \𝑊 since

𝑔(𝐴,𝑊 ) ⊆ C \𝑊 . Hence, consider the profile 𝐴∗
which consists of

a copy of 𝐴 permuted by every such permutation 𝜏 . By consistency

and the previous argument, it follows that 𝑔(𝐴∗,𝑊 ) = 𝑔(𝐴,𝑊 ).
For proving this step, we consider a different decomposition of

𝐴∗
. In more detail, we can also decompose 𝐴∗

into profiles subpro-

files𝐴𝑋
which precisely contain the voters 𝑖 with𝐴∗

𝑖
∩𝑊 = 𝑋 . Now,

observe that for any two sets 𝑋1, 𝑋2 ⊆𝑊 with |𝑋1 | = |𝑋2 |, there is
the same number of permutations 𝜏 with 𝜏 (𝑥) = 𝑥 for all 𝑥 ∈ C \𝑊
that maps 𝑋1 to 𝑋2. Hence, each profile 𝐴𝑋

consists of multiple

copies of a profile 𝐴𝑋
, which is derived from the original profile

𝐴 by setting 𝐴𝑋
𝑖

= (𝐴𝑖 \𝑊 ) ∪ 𝑋 for all 𝑖 ∈ 𝑁𝐴 . In particular, this

shows that there is an integer 𝑗 such that 𝑛(𝑥,𝐴𝑋 ,𝑊 , 𝑗1, 𝑗2) = 𝑗𝑐

for all candidates 𝑥 ∈ C \𝑊 and 𝑋 ⊆ 𝑊 with |𝑋 | = 𝑗1. Since

𝐴𝑋
𝑖
∩𝑊 = 𝑋 and |𝐴𝑋

𝑖
| = 𝑗2 for all 𝑖 ∈ 𝑁𝐴𝑋 , we can thus use the

insights of Step 1 to derive that 𝑔(𝐴𝑋 ,𝑊 ) = C \𝑊 . This holds

for every 𝑋 ⊆𝑊 with |𝑋 | = 𝑗1 and consistency thus implies that

𝑔(𝐴∗𝑊 ) = C \𝑊 because 𝐴∗
is the collection of the profiles 𝐴𝑋

for all 𝑋 ⊆ 𝑊 with |𝑋 | = 𝑗1. This proves that 𝑔(𝐴,𝑊 ) = C \𝑊
because 𝑔(𝐴,𝑊 ) = 𝑔(𝐴∗,𝑊 ).

Step 3: Finally, consider an arbitrary profile𝐴 for which there are

constants 𝑐𝑘,ℓ ∈ N such that 𝑛(𝑥,𝐴,𝑊 , 𝑘, ℓ) = 𝑐𝑘,ℓ for all candidates

𝑥 ∈ C \𝑊 , 𝑘 ∈ {0, . . . , |𝑊 |}, and ℓ ∈ {𝑘 +1, . . . ,𝑚−1− |𝑊 | +𝑘}. We

can partition 𝐴 into profiles 𝐴𝑘,ℓ
in which voters approve exactly

𝑘 ∈ {0, . . . , |𝑊 |} candidates of𝑊 and 𝑙 ∈ {𝑘, . . . ,𝑚 − |𝑊 | + 𝑘}
candidates in total. By the definition of 𝐴, it holds for all profiles

𝐴𝑘,ℓ
with 𝑘 < ℓ ≤ 𝑚 − 1 − |𝑊 | + 𝑘 that 𝑛(𝑥,𝐴𝑘,ℓ ,𝑊 , 𝑘, ℓ) = 𝑐𝑘,ℓ for

all 𝑥 ∈ C \𝑊 . Thus, Step 2 shows that 𝑔(𝐴𝑘,ℓ ,𝑊 ) = C \𝑊 for all

𝑘, ℓ with 𝑘 < ℓ ≤ 𝑚 − 1 − |𝑊 | + 𝑘 .
On the other hand, if 𝑘 = ℓ , the voters in 𝐴𝑘,𝑙

do not approve

any candidate in C \𝑊 . Thus, neutrality immediately requires that

𝑔(𝐴𝑘,ℓ ,𝑊 ) = C\𝑊 for these profiles. Similarly, if ℓ =𝑚− (|𝑊 | −𝑘),
then all voters in 𝐴𝑘,ℓ

approve all candidates in C \𝑊 and thus

neutrality again implies that 𝑔(𝐴𝑘,ℓ ,𝑊 ) = C \𝑊 . Hence, it holds

for all subprofiles of 𝐴 that C \𝑊 is chosen and consistency thus

shows that 𝑔(𝐴,𝑊 ) = C \𝑊 , too. □

As next step, we will show that we can compute 𝑔(𝐴,𝑊 ) only
based on the values 𝑛(𝑥,𝐴,𝑊 , 𝑘, ℓ) for all 𝑥 ∈ C \ 𝑊 , 𝑘 ∈
{0, . . . , |𝑊 |}, and ℓ ∈ {𝑘 + 1, . . . ,𝑚 − 1 − |𝑊 | + 𝑘}. For making

this more formal, let 𝑍𝑊 = {(𝑘, ℓ) : 0 ≤ 𝑘 ≤ |𝑊 |, 𝑘 < ℓ ≤
𝑚 − 1 − |𝑊 | + 𝑘} denote the set of pairs such that 𝑔 can rely

on 𝑛(𝑥,𝐴,𝑊 , 𝑘, ℓ) for computing the outcome. Then, we define

𝑛(𝑥,𝐴,𝑊 ) = (𝑛(𝑥,𝐴,𝑊 , 𝑘, ℓ)) (𝑘,ℓ ) ∈𝑍 as the vector that contains all

entries 𝑛(𝑥,𝐴,𝑊 , 𝑘, ℓ) for (𝑘, ℓ) ∈ 𝑍 . Moreover, let 𝑁 (𝐴,𝑊 ) denote
the matrix, which contains the vectors 𝑛(𝑥,𝐴,𝑊 ) as rows for all
𝑥 ∈ C \𝑊 .

Lemma 7. Let 𝑔 denote a proper, consistent, and complete generator
function. It holds that 𝑔(𝐴,𝑊 ) = 𝑔(𝐴′,𝑊 ) for all profiles 𝐴, 𝐴′ and
committees𝑊 such that 𝑁 (𝐴,𝑊 ) = 𝑁 (𝐴′,𝑊 ) and |𝑊 | ≤ 𝑚 − 2.

Proof. Let 𝑔 denote a proper generator function satisfying con-

sistency and completeness. Moreover, consider two arbitrary pro-

files 𝐴, 𝐴′
and a committee𝑊 such that 𝑁 (𝐴,𝑊 ) = 𝑁 (𝐴′,𝑊 ) and

|𝑊 | ≤ 𝑚 − 2. As next step, let 𝐴′′
denote a profile containing |𝑁𝐴′ |

copies of every ballot𝐴𝑖 and let𝐴
∗ = 𝐴′′ +𝐴−𝐴′

denote the profile

derived from 𝐴′′
by first adding all ballots in 𝐴 and then removing

the ballots of 𝐴′
. Since 𝑁 (𝐴,𝑊 ) = 𝑁 (𝐴′,𝑊 ), it follows imme-

diately that there are constants 𝑐𝑘,ℓ such that 𝑛(𝑥,𝐴′′,𝑊 , 𝑘, ℓ) =

𝑛(𝑥,𝐴∗,𝑊 , 𝑘, ℓ) = 𝑐𝑘,𝑙 for all 𝑥 ∈ C \𝑊 , 𝑘 ∈ {0, . . . , |𝑊 |} and

ℓ ∈ {𝑘 + 1, · · · ,𝑚 − 1 − |𝑊 | + 𝑘}. Lemma 6 therefore shows that

𝑔(𝐴′′,𝑊 ) = 𝑔(𝐴∗,𝑊 ) = C \𝑊 . Using consistency, we can thus

derive that 𝑔(𝐴,𝑊 ) = 𝑔(𝐴 + 𝐴′′,𝑊 ) = 𝑔(𝐴∗ + 𝐴′,𝑊 ) = 𝑔(𝐴′,𝑊 ),
which proves the lemma. □

As a consequence of Lemma 7, we can view every proper, consis-

tent, and complete generator function𝑔 as a mapping that computes

thewinning candidates only based on𝑁 (𝐴,𝑊 ) instead of the profile
𝐴 itself. Or, in other words, for every committee𝑊 there is a func-

tion 𝑔𝑊 (𝑄) that maps each element 𝑄 ∈ 𝐷N
𝑊

= {𝑁 (𝐴,𝑊 ) : 𝐴 ∈
A∗} to C \𝑊 such that 𝑔(𝐴,𝑊 ) = 𝑔𝑊 (𝑁 (𝐴,𝑊 )).



Before deriving the next lemma, we point out a number of im-

portant observations on 𝐷N
𝑊

and 𝑔𝑊 . In particular, note that 𝐷N
𝑊

is

closed under addition since 𝑁 (𝐴 +𝐴′,𝑊 ) = 𝑁 (𝐴,𝑊 ) + 𝑁 (𝐴′,𝑊 )
and multiplication with integers 𝑘 ∈ N because 𝑁 (𝑘𝐴,𝑊 ) =

𝑘𝑁 (𝐴,𝑊 ). Moreover,𝑔𝑊 inherits a number of important properties

from 𝑔:

• 𝑔𝑊 is consistent: for all𝑄,𝑄 ′ ∈ 𝐷N
𝑊

with𝑔𝑊 (𝑄)∩𝑔𝑊 (𝑄 ′) ≠
∅, it holds that 𝑔𝑊 (𝑄 +𝑄 ′) = 𝑔𝑊 (𝑄) ∩𝑔𝑊 (𝑄 ′). The reason
for this is that there is are profiles 𝐴,𝐴′ ∈ A∗

with 𝑄 =

𝑁 (𝐴,𝑊 ) and 𝑄 ′ = 𝑁 (𝐴′,𝑊 ), which implies that 𝑔(𝐴,𝑊 ) =
𝑔𝑊 (𝑄) and 𝑔(𝐴′,𝑊 ) = 𝑔𝑊 (𝑄 ′). Hence, consistency of 𝑔

requires that𝑔(𝐴+𝐴′,𝑊 ) = 𝑔(𝐴,𝑊 )∩𝑔(𝐴′,𝑊 ) and, because
𝑁 (𝐴+𝐴′,𝑊 ) = 𝑁 (𝐴,𝑊 ) +𝑁 (𝐴′,𝑊 ) = 𝑄 +𝑄 ′

, we therefore

infer that 𝑔𝑊 (𝑄 +𝑄 ′) = 𝑔𝑊 (𝑄) ∩ 𝑔𝑊 (𝑄 ′).
• 𝑔𝑊 is neutral: for a permutation 𝜏 : C \𝑊 → C \𝑊 , let

𝜏 (𝑄) denote the matrix derived by reordering the rows of

𝑄 according to 𝜏 . Then, 𝑔𝑊 (𝜏 (𝑄)) = 𝜏 (𝑔𝑊 (𝑄)) for all per-
mutations 𝜏 : C \𝑊 → C \𝑊 and matrices 𝑄 ∈ 𝐷N

𝑊
.

This follows since there is a profile 𝐴 with 𝑄 = 𝑁 (𝐴,𝑊 )
and 𝜏 (𝑄) = 𝑁 (𝜏 (𝐴),𝑊 ), which entails that 𝑔𝑊 (𝜏 (𝑄)) =

𝑔(𝜏 (𝐴),𝑊 ) = 𝜏 (𝑔(𝐴,𝑊 )) = 𝜏 (𝑔𝑊 (𝑄)).
• 𝑔𝑊 is continuous: for all 𝑄,𝑄 ′ ∈ 𝐷N

𝑊
with |𝑔𝑊 (𝑄) | = 1,

there is an integer 𝑘 such that 𝑔𝑊 (𝑘𝑄 + 𝑄 ′) = 𝑔𝑊 (𝑄).
This follows again by going back to profiles 𝐴,𝐴′

with

𝑄 = 𝑁 (𝐴,𝑊 ) and 𝑄 ′ = 𝑁 (𝐴′,𝑊 ): |𝑔𝑊 (𝑄) | = 1 implies

that |𝑔(𝐴,𝑊 ) | = 1 and thus, the continuity of 𝑔 entails that

there is 𝑘 ∈ N such that 𝑔(𝑘𝐴 + 𝐴′,𝑊 ) = 𝑔(𝐴,𝑊 ). Since
𝑁 (𝑘𝐴 +𝐴′,𝑊 ) = 𝑘𝑄 +𝑄 ′

, our claim follows.

• 𝑔𝑊 is non-imposing: for all candidates 𝑐 ∈ C \𝑊 , there is

a 𝑄 ∈ 𝐷N
𝑊

such that 𝑔𝑊 (𝑄) = {𝑐}. This follows as we can
find a profile 𝐴 such that 𝑔(𝐴,𝑊 ) = {𝑐}.

Next, we show that we can extend 𝑔𝑊 to a function on

Q | C\𝑊 |× |𝑍𝑊 |
while maintaining the properties above and that

𝑔𝑊 (𝑄) = 𝑔(𝐴,𝑊 ) for all profiles 𝐴 ∈ A∗
such that 𝑄 = 𝑁 (𝐴,𝑊 ).

Lemma 8. Let 𝑔 denote a proper generator function satisfying con-
sistency and completeness and fix a committee𝑊 with |𝑊 | ≤ 𝑚 − 2.
There is a function 𝑔𝑊 from Q | C\𝑊 |× |𝑍𝑊 | to 2

C\𝑊 \ {∅} such that
(1) for all 𝑄 ∈ 𝐷N

𝑊
and 𝐴 ∈ A∗ with 𝑄 = 𝑁 (𝐴,𝑊 ), it holds that

𝑔𝑊 (𝑄) = 𝑔(𝐴,𝑊 ).
(2) ℎ is consistent, neutral, continuous, and non-imposing.

Proof. Let𝑔 denote a proper, consistent, and complete generator

function and fix a committee𝑊 with |𝑊 | ≤ 𝑚 − 2. Because of

Lemma 7, there is a function 𝑔𝑊 (𝑄) from 𝐷N
𝑊

to C \𝑊 such that

𝑔(𝐴,𝑊 ) = 𝑔𝑊 (𝑁 (𝐴,𝑊 )) for all profiles 𝐴 ∈ A∗
. Moreover, by

the observation prior to this lemma, 𝑔𝑊 is continuous, neutral,

consistent, and non-imposing. Also, recall that 𝐷N
𝑊

is closed under

addition of its elements and under multiplication with scalars in N.
For proving the lemma, we will heavily rely on the profile 𝐴∗

in which each ballot 𝐴𝑖 ∈ A is submitted exactly once and its

corresponding matrix 𝐸 = 𝑁 (𝐴∗,𝑊 ) because the the symmetry of

𝐴∗
ensures that 𝑔𝑊 (𝐸) = C \𝑊 . Based on 𝐸, we will first show

that the space 𝐷Z
𝑊

= {𝑄 − 𝑘𝐸 : 𝑘 ∈ N0, 𝑄 ∈ 𝐷N
𝑊
} is closed under

addition of its elements and under multiplication with scalars in

Z. Based on this insight, we will extend 𝑔𝑊 from 𝐷N
𝑊

and show

that our extension satisfies the required properties. In Step 3 and

Step 4, we proceed analogously for 𝐷
Q
𝑊

= {𝑄/𝑘 : 𝑘 ∈ N, 𝑄 ∈ 𝐷Z
𝑊
}.

Finally, we will show that 𝐷
Q
𝑊

= Q | C\𝑊 |× |𝑍𝑊 |
, which then proves

the lemma.

Step 1: 𝐷Z
𝑊

is closed under addition and multiplication
with scalars in Z.

Our first goal is to show that𝐷Z
𝑊

= {𝑄−𝑘𝐸 : : 𝑘 ∈ N0, 𝑄 ∈ 𝐷N
𝑊
}

is closed under addition and multiplication with scalars in Z. We

start by discussing the claim on addition. For this, observe that if

𝑄,𝑄 ′ ∈ 𝐷Z
𝑊
, then there are 𝑃, 𝑃 ′ ∈ 𝐷N

𝑊
and integers 𝑘, 𝑘′ ∈ N0

such that 𝑄 = 𝑃 − 𝑘𝐸 and 𝑄 ′ = 𝑃 ′ − 𝑘′𝐸. Since 𝐷N
𝑊

is closed

under addition, we derive that 𝑃 + 𝑃 ′ ∈ 𝐷N
𝑊
. This implies that

𝑄 +𝑄 ′ = 𝑃 + 𝑃 ′ − (𝑘 + 𝑘′)𝐸 ∈ 𝐷Z
𝑊
.

Next, we show that 𝐷Z
𝑊

is closed under multiplication with

scalars 𝑘 ∈ Z. For this, let 𝑄 denote an arbitrary element of 𝐷Z
𝑊

and note that, by definition, there are 𝑃 ∈ 𝐷N
𝑊

and ℓ ∈ N0 such

that 𝑄 = 𝑃 − ℓ𝐸. We need to show that 𝑘𝑄 ∈ 𝐷Z
𝑊

for all 𝑘 ∈ Z
and proceed for this with a case distinction with respect to 𝑘 . First,

observe that 0𝑄 is the matrix containing only 0’s. Since 𝐸 ∈ 𝐷N
𝑊

and 0 = 𝐸−𝐸, this 0-matrix is in𝐷Z
𝑊
. Next, if 𝑘 ∈ N, 𝑘𝑄 ∈ 𝐷Z

𝑊
since

𝐷N
𝑊

is closed under multiplication with scalars in N. In particular,

this means that 𝑘𝑃 ∈ 𝐷N
𝑊

and thus, 𝑘𝑄 = 𝑘𝑃 − 𝑘ℓ𝐸 ∈ 𝐷Z
𝑊
.

As last case, suppose that 𝑘 is negative. By the last case, we

already know that −𝑘𝑄 ∈ 𝐷Z
𝑊

since −𝑘 ∈ N. This means that there

are 𝑃 ′ ∈ 𝐷N
𝑊

and ℓ′ ∈ N0 such that −𝑘𝑄 = 𝑃 ′ − ℓ′𝐸. Next, let
ℓ′′ ≥ ℓ′ denote an integer such that all entries in 𝑃 ′ − ℓ′′𝐸 are

negative; such an ℓ′′ exists since all profiles are finite. By definition
of 𝐷N

𝑊
, there is a profile𝐴′

such that 𝑃 ′ = 𝑁 (𝐴′,𝑊 ) and recall that
𝐸 = 𝑁 (𝐴∗,𝑊 ), where 𝐴∗

contains every ballot exactly once. Now,

construct the profile 𝐴′′
as follows: first, we clone the profile 𝐴∗

ℓ′′ times and then we remove for each voter in 𝑖 ∈ 𝑁𝐴′ a voter

with the corresponding ballot in 𝐴′
𝑖
from 𝐴′′

. It is not difficult

to see that 𝑃 ′′ = 𝑁 (𝐴′′,𝑊 ) = ℓ′′𝑁 (𝐴∗,𝑊 ) − 𝑁 (𝐴′,𝑊 ) and of

course, 𝑃 ′′ ∈ 𝐷N
𝑊
. Finally, we derive from this observation that

𝑘𝑄 = ℓ′𝐸 − 𝑃 ′ = 𝑃 ′′ − (ℓ′′ − ℓ′)𝐸, which proves that 𝑘𝑄 ∈ 𝐷Z
𝑊
.

Hence,𝐷Z
𝑊

is indeed closed under multiplication with scalars 𝑘 ∈ Z.

Step 2: Extending 𝑔𝑊 to 𝐷Z
𝑊
.

As second step, we extend 𝑔𝑊 to a function 𝑔𝑊 on 𝐷Z
𝑊
. In partic-

ular, we define𝑔𝑊 (𝑄−𝑘𝐸) = 𝑔𝑊 (𝑄) for every 𝑘 ∈ N0 and𝑄 ∈ 𝐷N
𝑊
.

This is well-defined because of consistency: if there are two differ-

ent matrices𝑄,𝑄 ′ ∈ 𝐷N
𝑊

and 𝑘, ℓ ∈ N0 such that𝑄 −𝑘𝐸 = 𝑄 ′ − ℓ𝐸,

then 𝑄 ′ = 𝑄 + (𝑘 − ℓ)𝐸. Assuming that 𝑘 > ℓ , we can derive 𝑄 ′

from 𝑄 by adding 𝑘 − ℓ copies of 𝐸. Thus, consistency implies that

𝑔𝑊 (𝑄 ′) = 𝑔𝑊 (𝑄) ∩ 𝑔((𝑘 − ℓ)𝐸) = 𝑔𝑊 (𝑄). If 𝑘 < ℓ , we can use an

analogous argument by exchanging the roles of 𝑄 and 𝑄 ′
.

Next, we show that 𝑔𝑊 satisfies all required properties. First,

note that for𝑄 ∈ 𝐷N
𝑊
, we have that𝑔𝑊 (𝑄) = 𝑔𝑊 (𝑄) = 𝑔(𝐴,𝑊 ) for

all profiles 𝐴 ∈ A∗
with 𝑄 = 𝑁 (𝐴,𝑊 ). This immediately implies

also that 𝑔𝑊 is non-imposing as 𝑔𝑊 satisfies this property.

For proving that 𝑔𝑊 is neutral, consistent, and continuous,

slightly more involved arguments are required. For presenting

them, let 𝑄,𝑄 ′ ∈ 𝐷Z
𝑊

and note that, by definition of 𝐷Z
𝑊
, there is

𝑃, 𝑃 ′ ∈ 𝐷N
𝑊

and 𝑘, 𝑘′ ∈ N0 such that𝑄 = 𝑃 −𝑘𝐸 and𝑄 ′ = 𝑃 ′ −𝑘′𝐸.



Using the definition of 𝑔𝑊 , it thus follows that 𝑔𝑊 (𝑄) = 𝑔𝑊 (𝑃)
and 𝑔𝑊 (𝑄 ′) = 𝑔𝑊 (𝑃 ′).

We are now ready to show that 𝑔𝑊 is neutral. For doing so, let 𝜏

denote a permutation on C \𝑊 and 𝜏 (𝑄) the matrix derived from

𝑄 by permuting its rows according to 𝜏 . It is not difficult to see that

𝜏 (𝑄) = 𝜏 (𝑃) − 𝑘𝜏 (𝐸). Moreover, 𝐸 is completely symmetric and

thus 𝜏 (𝐸) = 𝐸. Hence, we infer that 𝑔𝑊 (𝜏 (𝑄)) = 𝑔𝑊 (𝜏 (𝑃) − 𝑘𝐸) =
𝑔𝑊 (𝜏 (𝑃)) = 𝜏 (𝑔𝑊 (𝑃)) = 𝜏 (𝑔𝑊 (𝑃−𝑘𝐸)) = 𝜏 (𝑔𝑊 (𝑄)), which shows
that 𝑔𝑊 is neutral.

As next claim, we prove that 𝑔𝑊 is consistent. Thus, assume

that 𝑔𝑊 (𝑄) ∩ 𝑔𝑊 (𝑄 ′) ≠ ∅. The consistency of 𝑔𝑊 implies that

𝑔𝑊 (𝑃 + 𝑃 ′) = 𝑔𝑊 (𝑃) ∩ 𝑔𝑊 (𝑃 ′) and thus, 𝑔𝑊 (𝑄 + 𝑄 ′) = 𝑔𝑊 (𝑃 +
𝑃 ′−(𝑘+𝑘′)𝐸) = 𝑔𝑊 (𝑃+𝑃 ′) = 𝑔𝑊 (𝑃)∩𝑔𝑊 (𝑃 ′) = 𝑔𝑊 (𝑄)∩𝑔𝑊 (𝑄 ′).

A similar argument shows that 𝑔𝑊 is continuous. For this, sup-

pose that |𝑔𝑊 (𝑄) | = 1. Since |𝑔𝑊 (𝑃) | = |𝑔𝑊 (𝑄) | = 1, the con-

tinuity of 𝑔𝑊 implies that there is an integer ℓ ∈ N such that

𝑔𝑊 (ℓ𝑃 +𝑃 ′) = 𝑔𝑊 (𝑃). Finally, using the definition of 𝑔𝑊 again, we

derive that𝑔𝑊 (ℓ𝑄+𝑄 ′) = 𝑔𝑊 (ℓ𝑃+𝑃 ′−(ℓ𝑘+𝑘′)𝐸) = 𝑔𝑊 (ℓ𝑃+𝑃 ′) =
𝑔𝑊 (𝑃) = 𝑔𝑊 (𝑄). This shows that 𝑔𝑊 is continuous.

Step 3: 𝐷Q
𝑊

is closed under addition and multiplication
with scalars in Q.

Next, we show again that 𝐷
Q
𝑊

is closed under addition and mul-

tiplication with scalars in Q. For addition, consider two elements

𝑄,𝑄 ′ ∈ 𝐷
Q
𝑊
. By definition there are 𝑃, 𝑃 ′ ∈ 𝐷Z

𝑊
and 𝑘, 𝑘′ ∈ N

such that 𝑄 = 𝑃/𝑘 and 𝑄 ′ = 𝑃 ′/𝑘′. Clearly, 𝑘′𝑃, 𝑘𝑃 ′ ∈ 𝐷Z
𝑊

since 𝐷Z
𝑊

is closed under multiplication with integers. Hence,

𝑘′𝑃 + 𝑘𝑃 ′ ∈ 𝐷Z
𝑊

due to is closure under addition. Finally, this

means that 𝑄 + 𝑄 ′ = 𝑃/𝑘 + 𝑃 ′/𝑘′ = (𝑘′𝑃 + 𝑘𝑃 ′)/(𝑘 · 𝑘′) ∈ 𝐷
Q
𝑊
,

which shows that 𝐷
Q
𝑊

is closed under addition.

As last point, we show that 𝐷
Q
𝑊

is closed under multiplying with

scalars 𝑘 ∈ Q. Since 𝑘 ∈ Q, there are ℓ1 ∈ Z and ℓ2 ∈ N such that

𝑘 =
ℓ1
ℓ2
. Now, consider an arbitrary 𝑄 ∈ 𝐷

Q
𝑊

and recall that by

definition, there is 𝑃 ∈ 𝐷Z
𝑊

and ℓ3 ∈ N such that 𝑄 = 𝑃/ℓ3. Since
𝐷Z
𝑊

is closed under multiplication with scalars in Z, we have that

ℓ1𝑃 ∈ 𝐷Z
𝑊
. Because ℓ2 · ℓ3 ∈ N, we thus have that𝑄 = ℓ1𝑃/(ℓ2 · ℓ3) ∈

𝐷
Q
𝑊

by definition.

Step 4: Extending 𝑔𝑊 to 𝐷
Q
𝑊
.

As fourth step, we extend 𝑔𝑊 to 𝐷
Q
𝑊

by defining 𝑔𝑊 (𝑄/𝑘) =

𝑔𝑊 (𝑄) for every 𝑄 ∈ 𝐷Z
𝑊
, 𝑘 ∈ N. Once again, consistency

ensures that this is well-defined: if there are 𝑄,𝑄 ′ ∈ 𝐷Z
𝑊

and

𝑘, ℓ ∈ N such that 𝑄/𝑘 = 𝑄 ′/ℓ , then the consistency of 𝑔𝑊 en-

sures that 𝑔𝑊 (𝑄/𝑘) = 𝑔𝑊 (𝑄) = 𝑔𝑊 (ℓ𝑄) = 𝑔𝑊 (𝑘𝑄 ′) = 𝑔𝑊 (𝑄 ′) =
𝑔𝑊 (𝑄 ′/ℓ).

Moreover, note that 𝑔𝑊 (𝑄) = 𝑔𝑊 (𝑄) = 𝑔(𝑊,𝐴) for all 𝑄 ∈ 𝐷N
𝑊

and profiles𝐴 with𝑄 = 𝑁 (𝐴,𝑊 ) by the definitions of 𝑔𝑊 , 𝑔𝑊 , and

𝑔𝑊 . Hence, 𝑔𝑊 indeed satisfies the first condition of this lemma.

Also, this shows that 𝑔𝑊 is non-imposing as even 𝑔𝑊 , which is

defined on 𝐷N
𝑊

⊆ 𝐷
Q
𝑊
, satisfies this axiom.

Analogous to Step 2, proving the neutrality, consistency, and

continuity of 𝑔𝑊 takes more effort and we consider therefore

𝑄,𝑄 ′ ∈ 𝐷
Q
𝑊
. By the definition of 𝐷

Q
𝑊
, there are 𝑃, 𝑃 ′ ∈ 𝐷Z

𝑊
and

𝑘, 𝑘′ ∈ N such that 𝑄 = 𝑃/𝑘 and 𝑄 ′ = 𝑃 ′/𝑘′. The definition of 𝑔𝑊
then shows that 𝑔𝑊 (𝑄) = 𝑔𝑊 (𝑃) and 𝑔𝑊 (𝑄 ′) = 𝑔𝑊 (𝑃 ′).

Now, we prove that 𝑔𝑊 inherits neutrality from 𝑔𝑊 . For show-

ing this, let 𝜏 denote a permutation on C \𝑊 . It is apparent that

𝜏 (𝑄) = 𝜏 (𝑃)/𝑘 and thus, 𝑔𝑊 (𝜏 (𝑄)) = 𝑔𝑊 (𝜏 (𝑃)/𝑘) = 𝑔𝑊 (𝜏 (𝑃)) =
𝜏 (𝑔𝑊 (𝑃)) = 𝜏 (𝑔𝑊 (𝑃/𝑘)) = 𝜏 (𝑔𝑊 (𝑄)).

Next, we will show that 𝑔𝑊 is consistent. For this, assume that

𝑔𝑊 (𝑄) ∩𝑔𝑊 (𝑄 ′) ≠ ∅, which implies that 𝑔𝑊 (𝑃) ∩𝑔𝑊 (𝑃 ′) ≠ ∅. We

infer from the consistency of 𝑔𝑊 that 𝑔𝑊 (𝑘′𝑃 + 𝑘𝑃 ′) = 𝑔𝑊 (𝑘′𝑃) ∩
𝑔𝑊 (𝑘𝑃 ′) = 𝑔𝑊 (𝑃) ∩ 𝑔𝑊 (𝑃 ′). This implies that 𝑔𝑊 (𝑄 + 𝑄 ′) =

𝑔𝑊 (𝑃/𝑘 + 𝑃 ′/𝑘′) = 𝑔𝑊 ((𝑘′𝑃 + 𝑘𝑃 ′)/(𝑘 · 𝑘′)) = 𝑔𝑊 (𝑘′𝑃 + 𝑘𝑃 ′) =
𝑔𝑊 (𝑃) ∩ 𝑔𝑊 (𝑃 ′) = 𝑔𝑊 (𝑄) ∩ 𝑔𝑊 (𝑄 ′). Hence, 𝑔𝑊 is consistent.

As last point, we prove that 𝑔𝑊 is continuous and we thus sup-

pose that |𝑔𝑊 (𝑄) | = 1. For proving this claim, note that consis-

tency implies that 𝑔𝑊 (𝑃) = 𝑔𝑊 (𝑘′𝑃) and 𝑔𝑊 (𝑃 ′) = 𝑔𝑊 (𝑘𝑃 ′).
Since 𝑔𝑊 (𝑄) = 𝑔𝑊 (𝑃), there is an integer ℓ ∈ N such that

𝑔𝑊 (ℓ𝑘′𝑃 +𝑘𝑃 ′) = 𝑔𝑊 (𝑘′𝑃). This means for 𝑔𝑊 that 𝑔𝑊 (ℓ𝑄 +𝑄 ′) =
𝑔𝑊 ((ℓ𝑘′𝑃+𝑘𝑃 ′)/(𝑘 ·𝑘′)) = 𝑔𝑊 (ℓ𝑘′𝑃+𝑘𝑃 ′) = 𝑔𝑊 (𝑘′𝑃) = 𝑔𝑊 (𝑃) =
𝑔𝑊 (𝑄), i.e., 𝑔𝑊 is continuous.

Step 5: 𝐷Q
𝑊

= Q | C\𝑊 |× |𝑍𝑊 | .

Finally, we will show that 𝐷
Q
𝑊

is equal to the full space

Q | C\𝑊 |× |𝑍𝑊 |
. For proving this, we will show that the standard

basis of Q | C\𝑊 |× |𝑍𝑊 |
is part of 𝐷

Q
𝑊
. Hence, consider a fixed can-

didate 𝑐 ∈ C \𝑊 and a tuple (𝑘, ℓ) ∈ 𝑍𝑊 . First, let 𝐴1
denote the

profile in which each ballot 𝐴𝑖 ∈ A except those with |𝐴𝑖 | = ℓ

and |𝐴𝑖 ∩ 𝑊 | = 𝑘 appears once. It is not difficult to see that

𝑄1 = 𝑁 (𝐴1,𝑊 ) differs from 𝐸 only in the column corresponding to

(𝑘, ℓ) since all these entries are 0 for 𝑄1
. Next, let 𝑄2 = 𝑄1 − 𝐸 and

note that 𝑄2 ∈ 𝐷Z
𝑊
. This matrix has non-zero entries only in the

column (𝑘, ℓ), and all entries in this column are equal and negative,

i.e., there is 𝑥1 such that 𝑄2

𝑑,𝑘,ℓ
= −𝑥1 for all 𝑑 ∈ C \𝑊 .

Furthermore, let𝐴3
denote the profile which contains each ballot

𝐴𝑖 ∈ A with |𝐴𝑖 | = ℓ , |𝐴𝑖∩𝑊 | = 𝑘 , and 𝑐 ∈ 𝐴𝑖 once. Note that there

is at least one such ballot because 𝑘 ≤ |𝑊 | and 𝑘 < ℓ . Moreover, no

such ballot contains all candidates 𝑥 ∈ C\𝑊 because ℓ < 𝑚−|𝑊 |+𝑘 .
Hence, it follows that 𝑐 is approved by strictly more voters than any

other candidate 𝑑 ∈ 𝐶 \ (𝑊 ∪ {𝑐}). On the other hand, due to the

symmetry of 𝐴3
, all these candidates 𝑑 are approved by the same

number of voters. Finally, note that 𝑄3 = 𝑁 (𝐴3,𝑊 ) has only non-

zero entries in the column corresponding to (𝑘, ℓ). Hence, there are
two positive constants 𝑥2, 𝑥3 such that 𝑥2 > 𝑥3, 𝑄

3

𝑐,𝑘,ℓ
= 𝑥2, and

𝑄3

𝑑,𝑘,ℓ
= 𝑥3 for all 𝑑 ∈ C \ (𝑊 ∪ {𝑐}).

As last step, let𝑄4 = 𝑥1𝑄
3+𝑥3𝑄

2
. Since𝐷Z

𝑊
is closed under mul-

tiplication with scalars in Z and addition of its elements, it follows

that 𝑄4 ∈ 𝐷Z
𝑊
. Moreover, we infer from our previous observations

that 𝑄4

𝑐,𝑘,ℓ
= 𝑥1 · (𝑥2 − 𝑥3) > 0, whereas all other entries are 0.

Hence, the matrix 𝑄5 =
𝑄4

𝑥1 · (𝑥2−𝑥3 ) contains 1 at 𝑄5𝑐, 𝑘, ℓ and 0 for

all other entries. Moreover, this matrix is in 𝐷
Q
𝑊

by the definition

of this set. Since 𝑐 ∈ C \𝑊 and (𝑘, ℓ) ∈ 𝑍𝑊 are arbitrarily chosen,

it follows that the standard basis is part of 𝐷
Q
𝑊
. Finally, this shows

that 𝐷
Q
𝑊

= Q | C\𝑊 |× |𝑍𝑊 |
since 𝐷

Q
𝑊

is closed under addition of its

elements and multiplication with scalars in Q. □



Finally, we are able to prove Proposition 4. For showing this

statement, we will use a separation theorem for convex sets and

thus, we will use standard terminology from convex optimization

(e.g., polyhedron, subspace, dimension, facets) in the subsequent

proof. We refer to McLennan [17] for the definitions of these terms.

Proposition 4. Let 𝑔 denote a proper, consistent, and complete gener-
ator function. For every committee𝑊 ≠ C, there is a weight function
𝑣𝑊 such that 𝑔(𝐴,𝑊 ) = AV 𝑣𝑊 (𝐴,𝑊 ) for all profiles 𝐴 ∈ A∗.

Proof. Let 𝑔 be defined as in the lemma and first note that the

case that |𝑊 | =𝑚 − 1 is trivial as there is only a single remaining

candidate. Hence, 𝑔(𝐴,𝑊 ) = AV𝑊
𝑣 (𝐴) for every weight function

𝑣 as both are by definition always non-empty. Thus, consider a

committee𝑊 of size |𝑊 | ≤ 𝑚−2. Moreover, we define 𝑑1 = |C \𝑊 |
and 𝑑2 = |𝑍𝑊 |. Finally, in this proof we will denote the candidates

in C \𝑊 merely by numbers from 1 to 𝑑1.

By Lemma 8, there is a function 𝑔𝑊 from Q𝑑1×𝑑2
to 2

C\𝑊 \
{∅} that is consistent, neutral, non-imposing, and continuous, and

that satisfies that 𝑔𝑊 (𝑁 (𝐴,𝑊 )) = 𝑔(𝐴,𝑊 ) for all 𝐴 ∈ A∗
. Next,

define 𝑅𝑖 = {𝑄 ∈ Q𝑑1×𝑑2
: 𝑐𝑖 ∈ 𝑔𝑊 (𝑄)} for every 𝑖 ∈ {1, . . . , 𝑑1}.

Moreover, let 𝑅𝑖 denote the closure of 𝑅𝑖 with respect to R𝑑1×𝑑2
.

We will prove the proposition in multiple steps by analyzing

the sets 𝑅𝑖 . In more detail, we show in Step 1 that these sets are

full-dimensional and convex cones. This implies that they have a

non-empty interior. As next step, we prove that the interiors of

these sets are disjoint. We can therefore use the separation theorem

for convex sets to find a separating hyperplane between every pair

𝑅𝑖 , 𝑅 𝑗 . Even more, we show in the third step that these hyperplanes

are unique up to multiplication with a positive scalar. As fourth

step, we extract a scoring vector from these separating hyperplanes

and show thereafter that 𝑔𝑊 (𝑄) can be represented based on this

score vector. Finally, we derive from this insight that 𝑔(𝐴,𝑊 ) can
be represented by AV𝑊

𝑣 (𝐴) for some weight vector 𝑣 .

Step 1: Our first goal is to show that 𝑅𝑖 is a fully dimensional

and convex cone for every 𝑖 ∈ {1, . . . , 𝑑1}. For this, note that the
consistency of 𝑔𝑊 implies that 𝑅𝑖 is a Q-cone. (A set is called Q-
convex if it is closed with respect to convex combinations using

rational scalars 0 ≤ 𝑞 ≤ 1 instead of real ones. Moreover, a Q-
cone is a Q-convex set that is closed with respect to multiplica-

tion of any non-negative, rational scalar.) It is not difficult to see

that 𝑅𝑖 , i.e., the closure of 𝑅𝑖 with respect to R𝑑1×𝑑2
, is convex

for every 𝑖 ∈ {1, . . . , 𝑑1}. This is also formally proven by Young

[23]. Moreover,

⋃
𝑖∈{1,...,𝑑1 } 𝑅𝑖 = R

𝑑1×𝑑2
and neutrality entails that

𝑅𝜏 (𝑖 ) = 𝜏 (𝑅𝑖 ) for all permutations 𝜏 : {1, . . . , 𝑑1} → {1, . . . , 𝑑1} and
𝑖 ∈ {1, . . . , 𝑑1}. In particular, the latter fact means that all 𝑅𝑖 have

the same dimension and they must thus have the same dimension as

R𝑑1×𝑑2
. Hence, the interior of 𝑅𝑖 (with respect to R𝑑1×𝑑2

), denoted

by int 𝑅𝑖 , is non-empty.

Step 2: Next, we will show that that the interiors of 𝑅𝑖 , 𝑅 𝑗 do not

intersect. Hence, assume for contradiction that int 𝑅𝑖 ∩ int 𝑅 𝑗 ≠ ∅
for some 𝑖, 𝑗 ∈ {1, . . . , 𝑑1} with 𝑖 ≠ 𝑗 . Then, there is 𝑄 ∈ 𝐷Q ∩
int 𝑅𝑖∩int 𝑅 𝑗 , whichmeans that {𝑖, 𝑗} ⊆ 𝑔𝑊 (𝑄). On the other hand,
there is 𝑄 ′

such that 𝑔𝑊 (𝑄 ′) = {𝑖} because 𝑔𝑊 is non-imposing.

Now, since𝑄 is in the interior of both𝑅𝑖 and 𝑅 𝑗 , we can find a 𝜆 ∈
Q such that 0 < 𝜆 < 1 and (1−𝜆)𝑄+𝜆𝑄 ′ ∈ 𝐷Q∩int 𝑅𝑖∩int 𝑅 𝑗 . This

means that (1−𝜆)𝑄+𝜆𝑄 ′ ∈ 𝑅𝑖 ∩𝑅 𝑗 and thus {𝑖, 𝑗} ⊆ 𝑔𝑊 ((1−𝜆)𝑄+
𝜆𝑄 ′). However, consistency requires that 𝑔𝑊 ((1−𝜆)𝑄 +𝜆𝑄 ′) = {𝑖},
contradicting the previous claim. Thus, int 𝑅𝑖 ∩ int 𝑅 𝑗 = ∅ for all

distinct candidates 𝑖, 𝑗 ∈ {1, . . . , 𝑑1}.

Step 3: As third step, we show for all 𝑖, 𝑗 ∈ {1, . . . , 𝑑1} that

there is a unique hyperplane (up to multiplication with positive

scalars) that separates 𝑅𝑖 and 𝑅 𝑗 . Note for this that, because these

sets are convex and their interiors do not intersect, the separating

hyperplane theorem [e.g., 17] shows that there is a non-zero vector

𝑢𝑖 𝑗 ∈ R𝑑1×𝑑2
such that 𝑢𝑖 𝑗𝑄 ≥ 0 if 𝑄 ∈ 𝑅𝑖 and 𝑢

𝑖 𝑗𝑄 ≤ 0 if 𝑄 ∈ 𝑅 𝑗 .

We define here the matrix multiplication𝑢𝑖 𝑗𝑄 as the standard scalar

product

∑
𝑘∈{1,...,𝑑1 },ℓ∈{1,...,𝑑2 } 𝑢

𝑖 𝑗

𝑘,ℓ
𝑄𝑘,ℓ . Furthermore, we suppose

that 𝑢 𝑗𝑖 = −𝑢𝑖 𝑗 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑑1} with 𝑖 ≠ 𝑗 . Clearly, if 𝑢𝑖 𝑗

satisfies that 𝑢𝑖 𝑗𝑄 ≥ 0 if 𝑄 ∈ 𝑅𝑖 and 𝑢𝑖 𝑗𝑄 ≤ 0 if 𝑄 ∈ 𝑅 𝑗 , then

𝑢 𝑗𝑖𝑄 ≥ 0 if 𝑄 ∈ 𝑅 𝑗 and 𝑢
𝑗𝑖𝑄 ≤ 0 if 𝑄 ∈ 𝑅𝑖 . Hence, it suffices to

derive only one of these two vectors from a hyperplane argument.

Next, we show that the 𝑢𝑖 𝑗 are unique up to multiplication

with a positive scalar. For this, let 𝑆𝑖 = {𝑄 ∈ R𝑑1×𝑑2
: ∀𝑗 ∈

{1, . . . , 𝑑1}, 𝑗 ≠ 𝑖 : 𝑢𝑖 𝑗𝑄 ≥ 0} for all candidates 𝑖 ∈ {1, . . . , 𝑑1}. By
definition, we have that 𝑅𝑖 ⊆ 𝑆𝑖 . Hence, ∅ ⊊ int 𝑅𝑖 ⊆ int 𝑆𝑖 =

{𝑄 ∈ R𝑑1×𝑑2
: : ∀𝑗 ∈ {1, . . . , 𝑑1}, 𝑗 ≠ 𝑖 : 𝑢𝑖 𝑗𝑄 > 0}. Fur-

thermore, if 𝑢𝑖 𝑗𝑄 > 0 for some 𝑄 and 𝑖, 𝑗 ∈ {1, . . . , 𝑑𝑖 }, then
𝑢 𝑗𝑖𝑄 = −𝑢𝑖 𝑗𝑄 < 0, which implies that 𝑄 ∉ 𝑅 𝑗 . Therefore, int 𝑆𝑖 ⊆
𝑅𝑑1×𝑑2 \⋃𝑗∈{1,...,𝑑 𝑗 }\{𝑖 } 𝑅 𝑗 . Finally, since

⋃
𝑗∈{1,...,𝑑1 } 𝑅 𝑗 = R

𝑑1×𝑑2
,

it holds that 𝑅𝑑1×𝑑2 \⋃𝑗∈{1,...,𝑑 𝑗 }\{𝑖 } 𝑅 𝑗 ⊆ 𝑅𝑖 . By combining these

insights, we derive that int 𝑅𝑖 ⊆ int 𝑆𝑖 ⊆ 𝑅𝑖 . By taking the closure,

it thus follows that 𝑅𝑖 = 𝑆𝑖 .

In particular, this means that 𝑅𝑖 ≠ R
𝑑1×𝑑2

is a full-dimensional

polyhedron and thus, it has a facet 𝐹 of dimension 𝑑1 · 𝑑2 − 1.

Since all 𝑅 𝑗 are closed and

⋃
𝑗∈{1,...,𝑑1 } 𝑅 𝑗 = R

𝑑1×𝑑2
, it follows that⋃

𝑗∈{1,...,𝑑1 }\{𝑖 } 𝑅 𝑗 ∩ 𝐹 = 𝐹 . Finally, since 𝑑1 is finite, this means

that there is 𝑗 ≠ 𝑖 such that 𝐹 ∩𝑅 𝑗 has dimension𝑑1 ·𝑑2−1. This also

shows that the intersection of 𝑅𝑖 and 𝑅 𝑗 has dimension of 𝑑1 ·𝑑2 −1.

Now, by symmetry this must hold for all 𝑖, 𝑗 ∈ {1, . . . , 𝑑1}, 𝑖 ≠ 𝑗

and the dimensionality of 𝑅𝑖 ∩ 𝑅 𝑗 implies then that 𝑢𝑖 𝑗 is unique

up to multiplication with positive scalars.

Step 4: Our next goal is to represent 𝑔𝑊 by a weight vector. For

this purpose, we show first that 𝑢𝜏 (𝑖 )𝜏 ( 𝑗 ) = 𝜏 (𝑢𝑖 𝑗 ) for all permu-

tations 𝜏 : {1, . . . , 𝑑1} → {1, . . . , 𝑑1} and distinct 𝑖, 𝑗 ∈ {1, . . . , 𝑑1}.
For proving this claim, fix arbitrary 𝑖, 𝑗 and 𝜏 . Moreover, let 𝜏−1

denote the inverse permutation of 𝜏 , i.e., 𝜏−1 (𝜏 (𝑥)) = 𝑥 for all

𝑥 ∈ {1, . . . , 𝑑1}. By the neutrality of 𝑔𝑊 , we derive that 𝑄 ∈ 𝑅𝑖 if

and only if 𝜏 (𝑄) ∈ 𝑅𝜏 (𝑖 ) and 𝑄 ∈ 𝑅 𝑗 if and only if 𝜏 (𝑄) ∈ 𝑅𝜏 ( 𝑗 ) .
Furthermore, by the definition of our matrix multiplication, it holds

that 𝜏 (𝑄)𝑢𝑖 𝑗 = 𝑄𝜏 (𝑢𝑖 𝑗 ) for all matrices 𝑄 ∈ R𝑑1×𝑑2
.

Now, let 𝑄 ∈ 𝑅𝜏 (𝑖 ) . It follows by our previous observation

that 𝜏−1 (𝑄) ∈ 𝑅𝑖 and thus 𝜏−1 (𝑄)𝑢𝑖 𝑗 ≥ 0. Hence, we have that

𝑄𝜏 (𝑢𝑖 𝑗 ) ≥ 0. An analogous argument holds for 𝑅 𝑗 , and thus, we

have that 𝑄𝜏 (𝑢𝑖 𝑗 ) ≥ 0 if 𝑄 ∈ 𝑅𝜏 (𝑖 ) and 𝑄𝜏 (𝑢𝑖 𝑗 ) ≤ 0 if 𝑄 ∈ 𝑅𝜏 ( 𝑗 ) .
By the uniqueness of the separating hyperplane, we thus infer that

𝑢𝜏 (𝑖 )𝜏 ( 𝑗 ) = 𝜏 (𝑢𝑖 𝑗 ).
In particular, observe that this claim also holds for the per-

mutation 𝜏𝑖 𝑗 which only swaps 𝑖 and 𝑗 . Hence, we have that

𝜏𝑖 𝑗 (𝑢𝑖 𝑗 ) = 𝑢 𝑗𝑖 = −𝑢𝑖 𝑗 . Since 𝜏𝑖 𝑗 only swaps the 𝑖-th and 𝑗-th row



of 𝑢𝑖 𝑗 , we infer that 𝑢
𝑖 𝑗

ℓ,𝑘
= −𝑢𝑖 𝑗

ℓ,𝑘
for ℓ ∈ {𝑖, 𝑗}, 𝑘 ∈ {1, . . . , 𝑑2} and

𝑢
𝑖 𝑗

ℓ,𝑘
= 𝑢

𝑗𝑖

ℓ,𝑘
= 0 for ℓ ∈ {1, . . . , 𝑑1} \ {𝑖, 𝑗} and 𝑘 ∈ {1, . . . , 𝑑2}.

Now, let 𝑠 = 𝑢
𝑖 𝑗
𝑖
, i.e., 𝑠 is the 𝑖-th row of 𝑢𝑖 𝑗 . The argument

in the last paragraph shows that 𝑄𝑢𝑖 𝑗 ≥ 0 if 𝑄𝑖𝑠 ≥ 𝑄 𝑗𝑠 (here

𝑄𝑖𝑠 =
∑
𝑘∈{1,...,𝑑2 } 𝑄𝑖,𝑘𝑠𝑘 ). Now, by the symmetry of the 𝑢𝑖 𝑗 , it

follows that 𝑅𝑖 = {𝑄 ∈ R𝑑1×𝑑2
: ∀𝑗 ∈ {1, . . . , 𝑑1} \ {𝑖} : 𝑢𝑖 𝑗𝑄 ≥ 0} =

{𝑄 ∈ R𝑑1×𝑑2
: ∀𝑗 ∈ {1, . . . , 𝑑1} : 𝑄𝑖𝑠 ≥ 𝑄 𝑗𝑠}.

Step 5: Let ℎ𝑊 (𝑄) = {𝑖 ∈ {1, . . . , 𝑑1} : ∀𝑗 ∈ {1, . . . , 𝑑1} : 𝑄𝑖𝑠 ≥
𝑄 𝑗𝑠}, where 𝑠 is the vector derived in the last step. In this step,

we show that 𝑔𝑊 (𝑄) = ℎ𝑊 (𝑄) for all 𝑄 ∈ Q𝑑1×𝑑2
. For this, note

that the definition that ℎ𝑊 shows that it is neutral and consistent.

Moreover, it is non-imposing as 𝑠 is a non-zero vector. This follows

as the underlying 𝑢𝑖 𝑗 are also non-zero vectors by the separating

hyperplane theorem. Hence, let 𝑠𝑘 denote a non-zero entry in 𝑠 . If

𝑠𝑘 > 0, it follows that ℎ𝑊 (𝑄) = {𝑖} for the matrix𝑄 in which there

is a one in𝑄𝑖,𝑘 and 0 everywhere else, and if 𝑠𝑘 < 0, the same holds

for the matrix𝑄 with𝑄 𝑗,𝑘 = 1 for all 𝑗 ∈ {1, . . . , 𝑑1} with 𝑗 ≠ 𝑖 and

0 otherwise.

Next, observe that, by the reasoning in Step 4, we have that

𝑖 ∈ ℎ𝑊 (𝑄) if and only if 𝑄 ∈ 𝑅𝑖 . Since 𝑅𝑖 ⊆ 𝑅𝑖 and 𝑄 ∈ 𝑅𝑖 only

if 𝑖 ∈ 𝑔𝑊 (𝑄), it follows immediately that 𝑔𝑊 (𝑄) ⊆ ℎ𝑊 (𝑄) for all
𝑄 ∈ Q𝑑1×𝑑2

.

Finally, suppose there is𝑄 ∈ Q𝑑1×𝑑2
such that 𝑔𝑊 (𝑄) ⊊ ℎ𝑊 (𝑄)

and let 𝑖 ∈ 𝑔𝑊 (𝑄). Now, let 𝜏 denote an arbitrary permutation

such that 𝜏 (𝑖) = 𝑖 and 𝜏 ( 𝑗) = 𝑗 for all 𝑗 ∈ {1, . . . , 𝑑1} \ ℎ𝑊 (𝑄). The
neutrality of 𝑔𝑊 implies that 𝑖 ∈ 𝑔𝑊 (𝜏 (𝑄)) and, since ℎ𝑊 is by

definition neutral, it follows that ℎ𝑊 (𝜏 (𝑄)) = 𝜏 (ℎ𝑊 (𝑄)) = ℎ𝑊 (𝑄).
Now, let 𝑄∗

denote the matrix derived by summing up all 𝜏 (𝑄)
for permutations 𝜏 with 𝜏 (𝑖) = 𝑖 and 𝜏 ( 𝑗) = 𝑗 for 𝑗 ∈ {1, . . . , 𝑑1} \
ℎ𝑊 (𝑄). Consistency for 𝑔𝑊 implies that 𝑔𝑊 (𝑄∗) = {𝑖} and for ℎ𝑊
that ℎ𝑊 (𝑄∗) = ℎ𝑊 (𝑄).

Finally, let 𝑖′ ∈ ℎ𝑊 (𝑄) \ 𝑔𝑊 (𝑄) and let𝑊 ′
denote a profile

such that ℎ𝑊 (𝑄 ′) = {𝑖′}. Such a profile exists since ℎ𝑊 is non-

imposing. Now, by consistency, it holds for every integer ℓ ∈ N
that ℎ𝑊 (ℓ𝑄∗ +𝑄 ′) = {𝑖′} and therefore also 𝑔𝑊 (ℓ𝑄∗ +𝑄 ′) = {𝑖′}
because 𝑔𝑊 (ℓ𝑄∗+𝑄 ′) ⊆ ℎ𝑊 (ℓ𝑄 +𝑄 ′). However, this conflicts with
continuity, which states that there must be an integer ℓ′ such that

𝑔𝑊 (ℓ′𝑄∗ +𝑄 ′, ) = {𝑖}. Hence, our initial assumption is wrong and

𝑔𝑊 (𝑄) = ℎ𝑊 (𝑄) for all 𝑄 ∈ Q𝑑1×𝑑2
.

Step 6: Finally, we show that 𝑔(𝐴,𝑊 ) can be represented ap-

proval voting AV𝑊
𝑣 (𝐴). For doing so, consider a profile𝐴 ∈ A∗

and

let 𝑄 = 𝑁 (𝐴,𝑊 ). Now, recall that every entry in 𝑄 corresponds

to 𝑛(𝑐, 𝐴,𝑊 , 𝑘, ℓ) = |{𝑖 ∈ 𝑁𝐴 : 𝑐 ∈ 𝐴𝑖 ∧ |𝐴𝑖 ∩𝑊 | = 𝑘 ∧ |𝐴𝑖 | = ℓ}|
for some candidate 𝑐 ∈ C \𝑊 and (𝑘, ℓ) ∈ 𝑍𝑊 . Since our vector

𝑠 contains also an entry for (𝑘, ℓ) ∈ 𝑍𝑊 , there is a very natural

weight vector 𝑣𝑊 (𝑥,𝑦): we set 𝑣𝑊 (𝑥,𝑦) = 𝑠𝑥,𝑦 for all (𝑥,𝑦) ∈ 𝑍𝑊
and 0 otherwise. Hence, we need to show that 𝑔(𝐴,𝑊 ) contains
precisely the candidates 𝑐 ∈ C \ 𝑊 that maximize the score

𝑠𝑣𝑊 (𝐴, 𝑐) = ∑
𝑖∈𝑁𝐴 : 𝑐∈𝐴𝑖

𝑣𝑊 ( |𝐴𝑖 ∩𝑊 |, |𝐴𝑖 |).
For proving this, observe that 𝑠𝑣𝑊 (𝐴, 𝑐) is equivalent to∑
(𝑘,ℓ ) ∈𝑍𝑊 𝑛(𝑐, 𝐴,𝑊 , 𝑘, ℓ)𝑣 (𝑘, ℓ) = 𝑠 · 𝑁 (𝐴,𝑊 )𝑐 . Hence, it we de-

rive that 𝑔(𝐴,𝑊 ) = 𝑔𝑊 (𝑁 (𝐴,𝑊 )) = {𝑐 ∈ C \𝑊 : ∀𝑥 ∈ C \𝑊 : 𝑠 ·
𝑁 (𝐴,𝑊 )𝑐 ≥ 𝑠 ·𝑁 (𝐴,𝑊 )𝑥 } = {𝑐 ∈ C\𝑊 : ∀𝑥 ∈ C\𝑊 : 𝑠𝑣𝑊 (𝐴, 𝑐) ≥
𝑠𝑣𝑊 (𝐴, 𝑥)} = AV 𝑣𝑊 . This proves this proposition. □

A.3 Proof of Proposition 2
As last proposition, we show Proposition 2. For this, we first inves-

tigate the basic properties of the considered rules and show that all

sequential valuation rules are consistently committee monotone,

and that all step-dependent sequential scoring rules are proper.

Since step-dependent sequential scoring rules are valuation rules,

this also proves that these rules are also consistently committee

monotone. Analogous reasoning also entails that sequential Thiele

rules and step-dependent sequential Thiele rules are proper rules.

Lemma 9. Every step-dependent sequential scoring rule is a proper
ABC voting rule. Every sequential valuation rule is consistently com-
mittee monotone.

Proof. The lemma consists of five independent claims: every

sequential valuation rule is consistently committee monotone and

every step-dependent sequential scoring rule is anonymous, neutral,

continuous, and non-imposing. We will prove each of these claims

separately.

Claim 1: All sequential valuation rules are consistently
committee monotone.

Let 𝑓 denote a sequential valuation rule and 𝑣 its corresponding

valuation function. We will show by induction on the committee

size 𝑘 ∈ {0, . . . ,𝑚} that 𝑔(𝐴,𝑊 ) = {𝑥 ∈ C \𝑊 : ∀𝑦 ∈ C \𝑊 :

𝑠𝑣 (𝐴,𝑊 𝑥 ) ≥ 𝑠𝑣 (𝐴,𝑊 𝑦)} consistently generates 𝑓 . For this, let

𝑓𝑔 (𝐴,𝑘) = {𝑊 ∪ {𝑥} ∈ W𝑘 : 𝑊 ∈ 𝑓𝑔 (𝐴,𝑘 − 1), 𝑥 ∈ 𝑔(𝐴,𝑊 )}
denote the function generated by 𝑔 and note that 𝑓𝑔 is indeed an

ABC voting rule since 𝑔 is complete. For the induction basis, we

observe that 𝑓 (𝐴, 0) = 𝑓𝑔 (𝐴, 0) = {∅} for all profiles 𝐴. Next, as-
sume that 𝑓 (𝐴,𝑘) = 𝑓𝑔 (𝐴,𝑘) for some profile 𝐴 and a committee

size 𝑘 ∈ {0, . . . ,𝑚−1}. Moreover, let𝑊 ∈ 𝑓 (𝐴,𝑘). By the definition
of 𝑓 ,𝑊 ∪ {𝑥} ∈ 𝑓 (𝐴,𝑘 + 1) if and only if 𝑠𝑣 (𝐴,𝑊 𝑥 ≥ 𝑠𝑣 (𝐴,𝑊 𝑦)
for all 𝑦 ∈ C \𝑊 . This means by definition that 𝑥 ∈ 𝑔(𝐴,𝑊 ) and
𝑊 ∪ {𝑥} ∈ 𝑓𝑔 (𝐴,𝑘 + 1). Since this equivalence is true for all com-

mittees𝑊 and candidates 𝑥 , 𝑓 (𝐴,𝑘 + 1) = 𝑓𝑔 (𝐴,𝑘 + 1) and 𝑔 thus

generates 𝑓 .

Next, we show that 𝑔 is consistent. Thus, consider two profiles

𝐴 and 𝐴′
and a committee𝑊 such that 𝑔(𝐴,𝑊 ) ∩ 𝑔(𝐴′,𝑊 ) ≠ ∅.

By definition, 𝑥 ∈ 𝑔(𝐴,𝑊 ) ∩ 𝑔(𝐴′,𝑊 ) implies that 𝑠𝑣 (𝐴,𝑊 𝑥 ) ≥
𝑠𝑣 (𝐴,𝑊 𝑦) and 𝑠𝑣 (𝐴′,𝑊 𝑥 ) ≥ 𝑠𝑣 (𝐴′,𝑊 𝑦) for all 𝑦 ∈ C \𝑊 . Thus,

we infer that 𝑠𝑣 (𝐴 + 𝐴′,𝑊 𝑥 ) = 𝑠𝑣 (𝐴,𝑊 𝑥 ) + 𝑠𝑣 (𝐴′,𝑊 ∪ {𝑥}) ≥
𝑠𝑣 (𝐴,𝑊 𝑥 ) + 𝑠𝑣 (𝐴′,𝑊 𝑥 ) = 𝑠𝑣 (𝐴 +𝐴′,𝑊 𝑦) for all 𝑦 ∈ C \𝑊 . Hence,

𝑔(𝐴,𝑊 ) ∩ 𝑔(𝐴′,𝑊 ) ⊆ 𝑔(𝐴 + 𝐴′,𝑊 ). Conversely, if 𝑦 ∉ 𝑔(𝐴,𝑊 ) ∩
𝑔(𝐴′,𝑊 ), we have 𝑦 ∉ 𝑔(𝐴,𝑊 ) or 𝑦 ∉ 𝑔(𝐴′,𝑊 ). Without loss

of generality, suppose that 𝑦 ∉ 𝑔(𝐴,𝑊 ) and let 𝑥 ∈ 𝑔(𝐴,𝑊 ) ∩
𝑔(𝐴′,𝑊 ). Our assumptions entail that 𝑠𝑣 (𝐴,𝑊 𝑥 ) > 𝑠𝑣 (𝐴,𝑊 𝑦) and
𝑠𝑣 (𝐴′,𝑊 𝑥 ) ≥ 𝑠𝑣 (𝐴′,𝑊 𝑦). Thus, 𝑠𝑣 (𝐴 +𝐴′,𝑊 𝑥 ) > 𝑠𝑣 (𝐴 +𝐴′,𝑊 𝑦)
which proves that 𝑦 ∉ 𝑔(𝐴 +𝐴′,𝑊 ). We infer from this that 𝑔(𝐴 +
𝐴′,𝑊 ) = 𝑔(𝐴,𝑊 ) ∩ 𝑔(𝐴′,𝑊 ), which proves that 𝑔 is consistent.

Claim 2: Every step-dependent sequential scoring rule is
anonymous.

For this claim and all subsequent ones, let 𝑓 denote a step-

dependent sequential scoring rule and let ℎ(𝑥,𝑦, 𝑧) denote its step-
dependent counting function. We first show by an induction on

the committee size 𝑘 ∈ {0, . . . ,𝑚} that 𝑓 is anonymous. Thus,

consider a profile 𝐴 and a permutation 𝜋 : N → N, and note

that 𝑓 (𝐴, 0) = 𝑓 (𝜋 (𝐴), 0) = {∅} by definition. Hence, assume that



𝑓 (𝐴,𝑘) = 𝑓 (𝜋 (𝐴), 𝑘) for some fixed 𝑘 ∈ {0, . . . ,𝑚 − 1} and con-

sider𝑊 ∈ 𝑓 (𝐴,𝑘). By definition,𝑊 ∪ {𝑥} ∈ 𝑓 (𝐴,𝑘 + 1) for all
candidates 𝑥 ∈ C \𝑊 that maximize 𝑠ℎ (𝐴,𝑊 𝑥 ) = ∑

𝑖∈𝑁𝐴
ℎ( |𝐴𝑖 ∩

𝑊 𝑥 |, |𝑊 𝑥 |, |𝐴𝑖 |). Since𝐴′ = 𝜋 (𝐴) is derived from𝐴 only by permut-

ing the voters, it follows immediately that 𝑠ℎ (𝐴′,𝑊 𝑥 ) = 𝑠ℎ (𝐴,𝑊 𝑥 )
for all 𝑥 ∈ C \𝑊 and thus𝑊 ∪ {𝑥} ∈ 𝑓 (𝐴,𝑘 + 1) if and only if

𝑊 ∪ {𝑥} ∈ 𝑓 (𝐴,𝑘 + 1) for all committees𝑊 ∈ 𝑓 (𝐴,𝑘) and candi-

dates 𝑥 ∈ C \𝑊 . This shows that 𝑓 (𝐴,𝑘 + 1) = 𝑓 (𝜋 (𝐴), 𝑘 + 1) and
we thus infer inductively that 𝑓 is anonymous.

Claim 3: Every step-dependent sequential scoring rule is
neutral.

Let 𝑓 and ℎ be defined as in Claim 2. First, note that |𝐴| = |𝜏 (𝐴) |,
|𝑊 | = |𝜏 (𝑊 ) |, and |𝑊 ∩ 𝐴| = |𝜏 (𝑊 ∩ 𝐴) | for every profile 𝐴,

committee𝑊 , and permutation 𝜏 : C → C. Based on this fact,

we now show inductively that 𝑓 is neutral. Consider for this an

arbitrary profile 𝐴 and a permutation 𝜏 : C → C. Once again,

the induction basis 𝑘 = 0 is trivial since 𝑓 (𝜏 (𝐴), 0) = 𝜏 (𝑓 (𝐴, 0)) =
{∅}. Hence, assume that 𝑓 (𝜏 (𝐴), 𝑘) = 𝜏 (𝑓 (𝐴,𝑘)) for some fixed

𝑘 ∈ {0, . . . ,𝑚 − 1} and let𝑊 ∈ 𝑓 (𝐴,𝑘). It follows from our initial

observation that 𝑠ℎ (𝐴,𝑊 𝑥 ) = 𝑠ℎ (𝜏 (𝐴), 𝜏 (𝑊 𝑥 )) for every 𝑥 ∈ C \𝑊 .

Hence, if 𝑥 maximizes 𝑠ℎ (𝐴,𝑊 𝑥 ), then 𝜏 (𝑥) maximizes the score

𝑠ℎ (𝜏 (𝐴), 𝜏 (𝑊 )∪𝜏 (𝑥)), so it follows that𝑊 ∪{𝑥} ∈ 𝑓 (𝐴,𝑘+1) if and
only if 𝜏 (𝑊 ∪ {𝑥}) ∈ 𝑓 (𝜏 (𝐴), 𝑘 + 1). Equivalently, 𝑓 (𝜏 (𝐴), 𝑘 + 1) =
𝜏 (𝑓 (𝐴,𝑘 + 1)), which proves the induction step.

Claim 4: Every step-dependent sequential scoring rule is
continuous.

Let 𝑓 and ℎ be defined as in Claim 2. Moreover, consider two

profiles 𝐴,𝐴′ ∈ A∗
, a committee size 𝑘 , and a committee𝑊 ∈ W𝑘

such that 𝑓 (𝐴,𝑘) = {𝑊 }. For proving this claim, we define

𝐹 =
⋃𝑘

ℓ=0
𝑓 (𝐴, ℓ) and Δ(𝐴,𝑋, 𝑥,𝑦) = 𝑠ℎ (𝐴,𝑋𝑥 ) − 𝑠ℎ (𝐴,𝑋 𝑦). In

particular, observe that Δ(𝐴,𝑋, 𝑥,𝑦) = −Δ(𝐴,𝑋,𝑦, 𝑥) and Δ(𝐴 +
𝐴′, 𝑋, 𝑥,𝑦) = Δ(𝐴,𝑋, 𝑥,𝑦) +Δ(𝐴′, 𝑋, 𝑥,𝑦) for all profiles𝐴,𝐴′

, com-

mittees 𝑋 , and candidates 𝑥,𝑦 ∈ C \ 𝑋 . Moreover, define

Δ1 = min

𝑋 ∈𝐹,𝑐,𝑑∈C\𝑋 : 𝑋𝑐 ∈𝐹,𝑋𝑑∉𝐹
Δ(𝐴,𝑋, 𝑐, 𝑑), and

Δ2 = max

𝑋 ∈𝐹,𝑐,𝑑∈C\𝑋 : 𝑋𝑑 ∈𝐹,𝑋𝑐∉𝐹
Δ(𝐴′, 𝑋, 𝑐, 𝑑) .

Finally, let 𝑗 ∈ N denote the smallest integer such that 𝑗Δ1 > Δ2
.

We will show by induction on ℓ that 𝑓 ( 𝑗𝐴 + 𝐴′, ℓ) ⊆ 𝑓 (𝐴, ℓ)
for all ℓ ∈ {0, . . . , 𝑘}. This implies that 𝑓 ( 𝑗𝐴 + 𝐴′, 𝑘) = 𝑓 (𝐴,𝑘)
since |𝑓 (𝐴,𝑘) | = 1 and 𝑓 ( 𝑗𝐴 + 𝐴′, 𝑘) ≠ ∅. The induction basis

ℓ = 0 follows immediately from the definition of ABC voting rules.

Hence, suppose that 𝑓 ( 𝑗𝐴+𝐴′, ℓ) ⊆ 𝑓 ( 𝑗𝐴+𝐴′, ℓ) for some fixed ℓ ∈
{0, . . . , 𝑘−1} and consider a committee𝑊 ∈ 𝑓 ( 𝑗𝐴+𝐴′, ℓ). For every
𝑐, 𝑑 ∈ C \𝑊 such that𝑊 ∪ {𝑐} ∈ 𝑓 (𝐴, ℓ + 1),𝑊 ∪ {𝑑} ∉ 𝑓 (𝐴, ℓ + 1),
it follows that Δ( 𝑗𝐴+𝐴′,𝑊 , 𝑐, 𝑑) = 𝑗Δ(𝐴,𝑊 , 𝑐, 𝑑) +Δ(𝐴′,𝑊 , 𝑐, 𝑑) ≥
𝑗Δ1 − Δ2 > 0. By the definition of Δ this implies that𝑊 ∪ {𝑑} ∉

𝑓 ( 𝑗𝐴+𝐴′, ℓ +1) since𝑊 ∪{𝑐} has a higher score. Now, since 𝑑 is an

arbitrary candidate such that𝑊 ∪ {𝑑} ∉ 𝑓 (𝐴, ℓ + 1), it follows that
𝑊 ∪{𝑐} ∈ 𝑓 ( 𝑗𝐴+𝐴′, ℓ +1) can only be true if𝑊 ∪{𝑐} ∈ 𝑓 (𝐴, ℓ +1).
This implies that 𝑓 ( 𝑗𝐴 + 𝐴′, ℓ + 1) ⊆ 𝑓 (𝐴, ℓ + 1) and thus proves

the induction step.

Claim 5: Every step-dependent sequential scoring rule is
non-imposing.

Let 𝑓 and ℎ be defined as in Claim 2. For this step, it is crucial

that step-dependent counting functions ℎ(𝑥,𝑦, 𝑧) satisfy that for

every 𝑦 ∈ {1, . . . ,𝑚 − 1}, there is 𝑥 ≤ 𝑦 and 𝑧 ∈ {𝑥, . . . ,𝑚 − 1 −
𝑦 + 𝑥} such that ℎ(𝑥,𝑦, 𝑧) ≠ ℎ(𝑥 − 1, 𝑦, 𝑧). Furthermore, because of

neutrality, it suffices to show that for every committee size 𝑘 , there

is a profile 𝐴 and a committee𝑊 such that 𝑓 (𝐴,𝑘) = {𝑊 }; every
other committee of size 𝑘 can then be obtained by permuting 𝐴. As

in all previous cases, we use an induction on 𝑘 and the induction

basis 𝑘 = 0 follows by the definition of ABC voting rules.

Thus, assume that there is a 𝑘 ∈ {1, . . . ,𝑚 − 1} such that every

committee𝑊 with |𝑊 | ≤ 𝑘 is uniquely chosen for some profile

𝐴, i.e., 𝑓 (𝐴, |𝑊 |) = {𝑊 }. Note that if 𝑘 = 𝑚 − 1, we are already

done as 𝑓 (𝐴,𝑚) = {C} since C is the only committee of size𝑚. We

thus focus on the case that 𝑘 ≤ 𝑚 − 2. Now, using the induction

hypothesis and the construction in the proof of Lemma 2, we can

construct for every sequence of committees𝑊1, . . . ,𝑊𝑘 a profile

𝐴 such that 𝑓 (𝐴, ℓ) = {𝑊ℓ } for all ℓ ∈ {1, . . . , 𝑘} and 𝑓 (𝐴,𝑘 + 1) =
{𝑊𝑘 ∪ {𝑥} : 𝑥 ∈ C \𝑊𝑘 }.

Our next goal is to construct a profile 𝐴′
for which there is

a candidate 𝑐 ∈ C \𝑊𝑘 such that 𝑠ℎ (𝐴′,𝑊 𝑐
𝑘
) > 𝑠ℎ (𝐴′,𝑊 𝑑

𝑘
) for

all 𝑑 ∈ C \𝑊 𝑐
𝑘
. For constructing this profile, let 𝑥 ≤ 𝑘 + 1 and

𝑧 ∈ {𝑥, . . . ,𝑚−1−𝑦+𝑥} denote the integers such thatℎ(𝑥, 𝑘+1, 𝑧) ≠
ℎ(𝑥 − 1, 𝑘 + 1, 𝑧). We subsequently suppose that ℎ(𝑥, 𝑘 + 1, 𝑧) >

ℎ(𝑥 − 1, 𝑘 + 1, 𝑧) and explain at the end of this paragraph how to

adapt our construction to the case thatℎ(𝑥, 𝑘+1, 𝑧) < ℎ(𝑥−1, 𝑘+1, 𝑧).
Now, let 𝐴𝑖 denote a ballot such that |𝐴𝑖 ∩𝑊𝑘 | = 𝑥 − 1 and |𝐴𝑖 | = 𝑧

and let 𝑐, 𝑑 ∈ C \𝑊𝑘 denote candidates such that 𝑐 ∈ 𝐴𝑖 , 𝑑 ∉ 𝐴𝑖 .

Note that such a ballot exists due to our conditions on 𝑥 and 𝑧:

𝑥 ≤ 𝑘 + 1 ensures that |𝐴𝑖 ∩𝑊𝑘 | = 𝑥 − 1 is possible, 𝑧 ≥ 𝑥 ensures

that we can approve at least 𝑥 candidates, and 𝑧 ≤ 𝑚−1− (𝑘 +1−𝑥)
ensures that we can disapprove at least 𝑘 +2−𝑥 candidates (namely

𝑑 and the remaining 𝑘 − (𝑥 − 1) candidates in 𝑊𝑘 \ 𝐴𝑖 ). Next,

let 𝜏 denote an arbitrary permutation on C with 𝜏 (𝑒) = 𝑒 for all

candidates 𝑒 ∈𝑊𝑘∪{𝑐}. In particular, this means that 𝑐 ∈ 𝜏 (𝐴𝑖 ) and
𝜏 (𝐴𝑖 ) ∩𝑊𝑘 = 𝐴𝑖 ∩𝑊𝑘 . Finally, we define the profile 𝐴

′
by adding

a voter with the ballot 𝜏 (𝐴𝑖 ) for every such permutation. Since

𝑐 ∈ 𝜏 (𝐴𝑖 ) for all 𝜏 : C → C with 𝜏 (𝑒) = 𝑒 for 𝑒 ∈𝑊 𝑐
𝑘
, it follows that

𝑠ℎ (𝐴′,𝑊 𝑐
𝑘
) = (𝑚− |𝑊𝑘 | −1)! ·ℎ(𝑥, 𝑘+1, 𝑧). On the other hand, every

other candidate 𝑒 ∈ C \𝑊 𝑐
𝑘
is not approved in the ballots 𝜏 (𝐴𝑖 ) in

which 𝜏 maps 𝑒 to 𝑑 . Hence, these voters approve 𝑥 − 1 candidates

of𝑊 𝑒
𝑘
and since ℎ(𝑥, 𝑘 + 1, 𝑧) > ℎ(𝑥 − 1, 𝑘 + 1, 𝑧), it thus follows

that 𝑠ℎ (𝐴′,𝑊 𝑒
𝑘
) < (𝑚 − |𝑊𝑘 | − 1)!ℎ(𝑥, 𝑘 + 1, 𝑧) = 𝑠ℎ (𝐴′,𝑊 𝑐

𝑘
) for all

𝑒 ∈ C \𝑊 𝑐
𝑘
. For the case that ℎ(𝑥, 𝑘 + 1, 𝑧) < ℎ(𝑥 − 1, 𝑘 + 1, 𝑧), we

can apply the same construction with the role of 𝑐 and 𝑑 swapped

in 𝐴𝑖 .

Finally, we will construct a profile 𝐴∗
in which 𝑓 (𝐴∗, 𝑘 + 1) =

{𝑊𝑘 ∪ {𝑐}}. By Lemma 3, there is an integer 𝑗 such that 𝑓 ( 𝑗𝐴 +
𝐴′, ℓ) = {𝑊ℓ } for all ℓ ≤ 𝑘 . In particular, this means that 𝑓 ( 𝑗𝐴 +
𝐴′, 𝑘) = {𝑊𝑘 }. On the other hand, 𝑓 (𝐴,𝑘 +1) = {𝑊𝑘 ∪{𝑥} : 𝑥 ∈ C \
𝑊𝑘 }, which implies that 𝑠ℎ (𝐴,𝑊 𝑑

𝑘
) = 𝑠ℎ (𝐴,𝑊 𝑒

𝑘
) for all candidates

𝑑, 𝑒 ∈ C \𝑊𝑘 . Clearly, the same also holds for 𝑗𝐴 since we derive

this profile by only copying 𝐴 multiple times. Finally, we have

by construction that 𝑠ℎ (𝐴′,𝑊 𝑐
𝑘
) > 𝑠ℎ (𝐴′,𝑊 𝑑

𝑘
) for all 𝑑 ∈ C \𝑊 𝑐

𝑘
.

Because 𝑠ℎ ( 𝑗𝐴 + 𝐴′,𝑊 𝑒
𝑘
) = 𝑠ℎ ( 𝑗𝐴,𝑊 𝑒

𝑘
) + 𝑠ℎ (𝐴′,𝑊 𝑒

𝑘
) for all 𝑒 ∈

C \𝑊𝑘 , we infer that 𝑠ℎ ( 𝑗𝐴 + 𝐴′,𝑊 𝑐
𝑘
) > 𝑠ℎ ( 𝑗𝐴 + 𝐴′,𝑊 𝑑

𝑘
) for all

𝑑 ∈ C \𝑊 𝑐
𝑘
. Thus, 𝑓 ( 𝑗𝐴 +𝐴′, 𝑘 + 1) = {𝑊𝑘 ∪ {𝑐}}. This proves that



𝑓 is non-imposing for committees of size 𝑘 + 1 as neutrality allows

us to construct every outcome now. Hence, we inductively infer

that 𝑓 is non-imposing for every committee size. □

Next, we show the first claim of Proposition 2: a sequential

valuation rule is a step-dependent sequential scoring rule if and

only if it is proper.

Lemma 10. A sequential valuation rule is a step-dependent sequen-
tial scoring rule if and only if it is proper.

Proof. We have shown in Lemma 9 that every step-dependent

sequential scoring rule is proper. Moreover, their definition imme-

diately shows that every step-dependent sequential scoring rule is

a sequential valuation rule. Hence, only the converse remains to

be proven. For this, let 𝑓 denote a sequential valuation rule that is

proper, and let 𝑣 denote its corresponding valuation function. We

have shown in Claim 1 of Lemma 9 that the generator function

𝑔(𝐴,𝑊 ) = {𝑥 ∈ C \𝑊 : ∀𝑦 ∈ C \𝑊 : 𝑠𝑣 (𝐴,𝑊 𝑥 ) ≥ 𝑠𝑣 (𝐴,𝑊 𝑦)}
is consistent, complete, and generates 𝑓 . Hence, it follows from

Lemma 4 that 𝑔 is a proper generator function.

We prove this that 𝑓 is a step-dependent sequential scoring rule

in two steps. First, we show that 𝑓 is induced by a neutral valuation

function 𝑣∗ (i.e., 𝑣∗ (𝐴𝑖 ,𝑊 ) = 𝑣∗ (𝜏 (𝐴𝑖 ), 𝜏 (𝑊 )) for all permutations

𝜏 , ballots 𝐴𝑖 , and committees𝑊 ). Based on 𝑣∗, we will build as

second step a step-dependent counting function ℎ that induces 𝑓 .

Step 1: There is a valuation function 𝑣∗ that is neutral and
induces 𝑓

For proving this claim, we define the valuation function

𝑣𝜏 (𝐴𝑖 ,𝑊 ) = 𝑣 (𝜏 (𝐴𝑖 ), 𝜏 (𝑊 )) and the generator function 𝑔𝜏 (𝐴,𝑊 ) =
{𝑥 ∈ C \𝑊 : ∀𝑦 ∈ C \𝑊 : 𝑠𝑣𝜏 (𝐴,𝑊 𝑥 ) ≥ 𝑠𝑣𝜏 (𝐴,𝑊 𝑦} for every per-

mutation 𝜏 : C → C. In particular, observe that𝑔𝜏 (𝐴,𝑊 ) = 𝑔(𝐴,𝑊 )
for all profiles 𝐴 and committees𝑊 since

𝑔𝜏 (𝐴,𝑊 ) = {𝑥 ∈ C \𝑊 : ∀𝑦 ∈ C \𝑊 :∑︁
𝑖∈𝑁𝐴

𝑣𝜏 (𝐴𝑖 ,𝑊
𝑥 ) ≥

∑︁
𝑖∈𝑁𝐴

𝑣𝜏 (𝐴𝑖 ,𝑊
𝑦)}

= {𝑥 ∈ C \𝑊 : ∀𝑦 ∈ C \𝑊 :∑︁
𝑖∈𝑁𝐴

𝑣 (𝜏 (𝐴𝑖 ), 𝜏 (𝑊 𝑥 )) ≥
∑︁
𝑖∈𝑁𝐴

𝑣 (𝜏 (𝐴𝑖 ), 𝜏 (𝑊 𝑦))}

= {𝜏−1 (𝑥 ′) : 𝑥 ′ ∈ C \ 𝜏 (𝑊 ) : ∀𝑦′ ∈ C \ 𝜏 (𝑊 ) :∑︁
𝑖∈𝑁𝐴

𝑣 (𝜏 (𝐴𝑖 ), 𝜏 (𝑊 )𝑥
′
) ≥

∑︁
𝑖∈𝑁𝐴

𝑣 (𝜏 (𝐴𝑖 ), 𝜏 (𝑊 )𝑦
′
))}

= {𝜏−1 (𝑥 ′) : 𝑥 ′ ∈ 𝑔(𝜏 (𝐴), 𝜏 (𝑊 ))}
= 𝜏−1 (𝑔(𝜏 (𝐴), 𝜏 (𝑊 ))
= 𝑔(𝐴,𝑊 ).

Finally, consider the valuation function 𝑣∗ (𝐴𝑖 ,𝑊 ) =∑
𝜏∈T

𝑣𝜏 (𝐴𝑖 ,𝑊 ), where T is the set of all permutations on

C. Clearly, 𝑣∗ is neutral, i.e., 𝑣∗ (𝐴𝑖 ,𝑊 ) = 𝑣∗ (𝜏 (𝐴𝑖 ), 𝜏 (𝑊 )) for all
permutations 𝜏 , ballots 𝐴𝑖 , and committees𝑊 . We prove next that

𝑣∗ also induces our sequential valuation function 𝑓 . For doing so,

consider an arbitrary profile 𝐴 and let 𝑓 ∗ (𝐴,𝑘) = {𝑊 ∪ {𝑐} : 𝑊 ∈
𝑓 ∗ (𝐴,𝑘 − 1), 𝑐 ∈ C \𝑊 : ∀𝑑 ∈ C \𝑊 : 𝑠𝑣∗ (𝐴,𝑊 𝑐 ) ≥ 𝑠𝑣∗ (𝐴,𝑊 𝑑 )}
for all committee sizes 𝑘 . We will show by induction on 𝑘 that

𝑓 (𝐴,𝑘) = 𝑓 ∗ (𝐴,𝑘) for 𝑘 ∈ {0, . . . ,𝑚}. The induction basis 𝑘 = 0

follows trivially since 𝑓 (𝐴, 0) = {∅} = 𝑓 ∗ (𝐴, 0) by definition.

Now, assume that 𝑓 (𝐴,𝑘) = 𝑓 ∗ (𝐴,𝑘) for some fixed 𝑘 ∈
{0, . . . ,𝑚 − 1} and let 𝑊 ∈ 𝑓 (𝐴,𝑘). For each 𝑐 ∈ C \ 𝑊 , we

have that 𝑊 ∪ {𝑐} ∈ 𝑓 (𝐴,𝑘 + 1) if and only if 𝑐 ∈ 𝑔(𝐴,𝑊 ).
This is, in turn, equivalent to 𝑐 ∈ 𝑔𝜏 (𝐴,𝑊 ) for every permutation

𝜏 : C → C. Hence, we have that𝑊 ∪ {𝑐} ∈ 𝑓 (𝐴,𝑘 + 1) if and only if
𝑠𝑣𝜏 (𝐴,𝑊 𝑐 ) ≥ 𝑠𝑣𝜏 (𝐴,𝑊 𝑑 ) for all permutations 𝜏 ∈ T and 𝑑 ∈ C\𝑊𝑘 .

Since 𝑠𝑣∗ (𝐴,𝑊 𝑐 ) =
∑
𝜏∈T

𝑠𝑣𝜏 (𝐴,𝑊 𝑐 ) for all 𝑐 ∈ C \𝑊𝑘 , we infer

that𝑊 ∪ {𝑐} ∈ 𝑓 (𝐴,𝑘 + 1) if and only if𝑊 ∪ {𝑐} ∈ 𝑓 ∗ (𝐴,𝑘 + 1).
Finally, since𝑊 ∈ 𝑓 (𝐴,𝑘) is chosen arbitrarily, this shows that

𝑓 (𝐴,𝑘 + 1) = 𝑓 ∗ (𝐴,𝑘 + 1) and thus proves that 𝑣∗ induces 𝑓 .

Step 2: There is a step-dependent counting function
ℎ(𝑥,𝑦, 𝑧) that induces 𝑓 .

As second step, we show that 𝑓 is a step-dependent sequential

scoring rule by proving that it is induced by a step-dependent count-

ing function. For this, note first that there is a function ℎ(𝑥,𝑦, 𝑧)
such that 𝑣∗ (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |, |𝐴𝑖 |) for all ballots 𝐴𝑖 and

committees𝑊 . For proving this claim, consider two arbitrary ballots

𝐴𝑖 and𝐴
′
𝑖
and committees𝑊 and𝑊 ′

such that |𝐴𝑖∩𝑊 | = |𝐴′
𝑖
∩𝑊 ′ |,

|𝐴𝑖 | = |𝐴′
𝑖
|, and |𝑊 | = |𝑊 ′ |. Clearly, there is a permutation 𝜏

such that 𝜏 (𝐴𝑖 ) = 𝐴′
𝑖
, 𝜏 (𝐴𝑖 ∩𝑊 ) = 𝐴′

𝑖
∩𝑊 ′

, and 𝜏 (𝑊 ) = 𝑊 ′
.

Hence, the neutrality of 𝑣∗ shows that 𝑣∗ (𝐴𝑖 ,𝑊 ) = 𝑣∗ (𝐴′
𝑖
,𝑊 ′).

Consequently, 𝑣∗ only depends on |𝐴𝑖 ∩ 𝑊 |, |𝑊 |, and |𝐴𝑖 | to
compute the score, i.e., there is a function ℎ(𝑥,𝑦, 𝑧) such that

𝑣∗ (𝐴𝑖 ,𝑊 ) = ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |, |𝐴𝑖 |).
Finally, we show that ℎ(𝑥,𝑦, 𝑧) must be a step-dependent count-

ing function, which requires that there is for every𝑦 ∈ {1, . . . ,𝑚−1},
an 𝑥 ≤ 𝑦 and 𝑧 ∈ {𝑥, . . . ,𝑚 − 1 − 𝑦 + 𝑥} such that ℎ(𝑥,𝑦, 𝑧) ≠

ℎ(𝑥 − 1, 𝑦, 𝑧). Assume for contradiction that ℎ fails this condition,

i.e., there is 𝑦 ∈ {1, . . . ,𝑚 − 1} such that for each 𝑥 ∈ {1, . . . , 𝑦} and
𝑧 ∈ {𝑥, . . . ,𝑚 − 1 − 𝑦 + 𝑥}, ℎ(𝑥,𝑦, 𝑧) = ℎ(𝑥 − 1, 𝑦, 𝑧). Our goal is to
show that 𝑓 has to fail non-imposition, which contradicts that it is

a proper ABC voting rule. For this, consider an arbitrary ballot𝐴𝑖 , a

committee𝑊 ∈ W𝑦−1, and two candidates 𝑐, 𝑑 ∈ C \𝑊 . Our goal

is to show that ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 |) = ℎ( |𝐴𝑖 ∩𝑊 𝑑 |, |𝑊 𝑑 |, |𝐴𝑖 |).
If |𝐴𝑖 ∩𝑊 𝑐 | = |𝐴𝑖 ∩𝑊 𝑑 |, this is clear since all arguments of the left

and right side of ℎ are identical. Hence, we assume with out loss

of generality that |𝐴𝑖 ∩𝑊 𝑐 | > |𝐴𝑖 ∩𝑊 𝑑 |. In particular, this means

that 𝑐 ∈ 𝐴𝑖 , 𝑑 ∉ 𝐴𝑖 and |𝐴𝑖 ∩𝑊 𝑐 | = |𝐴𝑖 ∩𝑊 𝑑 | + 1. Now, note that

𝑥 = |𝐴𝑖 ∩𝑊 𝑐 | ≤ |𝑊 𝑐 | = 𝑦 and 𝑥 = |𝐴𝑖 ∩𝑊 𝑐 | ≤ |𝐴𝑖 | = 𝑧. Moreover,

we know that𝑑 ∉ 𝐴𝑖 and𝑦−𝑥 candidates of𝑊 𝑐
are not in𝐴𝑖 . Hence,

𝑧 = |𝐴𝑖 | ≤ 𝑚− 1− (𝑦 −𝑥). Therefore, our contradiction assumption

indeed shows that ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 |) = ℎ( |𝐴𝑖 ∩𝑊 𝑑 |, |𝑊 𝑑 |, |𝐴𝑖 |).
Since𝑊 , 𝑐 , 𝑑 , and 𝐴𝑖 are chosen arbitrarily, it follows that each

committee of size 𝑦 ≤ 𝑚 − 1 gets the same amount of points from

every ballot. Hence, |𝑓 (𝐴,𝑦) | ≠ 1 for all profiles 𝐴 since 𝑓 (𝐴,𝑦) =
{𝑊 ∪ {𝑦} : 𝑊 ∈ 𝑓 (𝐴,𝑦 − 1), 𝑥 ∈ C \𝑊 } and |C \𝑊 | ≥ 2. This

contradicts the non-imposition of 𝑓 . Our assumption that ℎ is not

a step-dependent counting function must therefore be wrong, and

𝑓 is thus a step-dependent sequential scoring rule. □

Next, we show that independence of losers characterizes

step-dependent sequential Thiele rules within the class of step-

dependent sequential scoring rules.



Lemma 11. A step-dependent sequential scoring rule is a step-
dependent sequential Thiele rule if and only if it is independent of
losers.

Proof. We proof both directions of the lemma separately.

Claim 1: A step-dependent sequential Thiele rule is a step-
dependent sequential scoring rule that satisfies indepen-
dence of losers.

First, note that every step-dependent sequential Thiele rule 𝑓 is

clearly a step-dependent sequential scoring rule since 𝑓 is induced

by a step-dependent Thiele counting function ℎ( |𝐴𝑖 ∩𝑊 |, |𝑊 |).
Clearly, we can extend ℎ to a step-dependent counting function

ℎ′ by ℎ′ (𝑥,𝑦, 𝑧) = ℎ(𝑥,𝑦) for all 𝑥,𝑦. Moreover, since for every

𝑦 ∈ {1, . . . ,𝑚 − 1}, there is 𝑥 ≤ 𝑦 such that ℎ(𝑥,𝑦) > ℎ(𝑥 − 1, 𝑦),
it follows that ℎ′ (𝑥,𝑦, 𝑧) ≠ ℎ(𝑥 − 1, 𝑦, 𝑧) for this 𝑥 and all 𝑧 ∈
{1, . . . ,𝑚}. Hence, 𝑓 is a step-dependent sequential scoring rule.

Moreover, it is easy to show that 𝑓 is independent of losers. For

doing so, consider two profiles 𝐴 and 𝐴′
on the electorate 𝑁𝐴 , a

committee𝑊 ∈ 𝑓 (𝐴, |𝑊 |), a voter 𝑖 ∈ 𝑁𝐴 , and a candidate 𝑐 ∈ 𝐴𝑖 \
𝑊 such that𝐴′ 𝐴′

𝑖
= 𝐴𝑖 \{𝑐} and𝐴 𝑗 = 𝐴′

𝑗
for all 𝑗 ∈ 𝑁 \{𝑖}. The last

assumption entails that ℎ( |𝐴 𝑗 ∩𝑊 ′ |, |𝑊 ′ |) = ℎ( |𝐴′
𝑗
∩𝑊 ′ |, |𝑊 ′ |) for

all voters 𝑗 ∈ 𝑁𝐴 \ {𝑖} and committees𝑊 ′ ∈ W. On the other hand,

we have for every committee𝑊 ′
that ℎ( |𝐴𝑖 ∩𝑊 ′ |, |𝑊 ′ |) = ℎ( |𝐴′

𝑖
∩

𝑊 ′ |, |𝑊 ′ |) if 𝑐 ∉𝑊 and ℎ( |𝐴𝑖 ∩𝑊 ′ |, |𝑊 ′ |) ≥ ℎ( |𝐴′
𝑖
∩𝑊 ′ |, |𝑊 ′ |) if

𝑐 ∈𝑊 since ℎ is non-decreasing in the first argument. Finally, since

𝑊 ∈ 𝑓 (𝐴, |𝑊 |), there is a sequence of candidates {𝑥1, 𝑑𝑜𝑡𝑠, 𝑥𝑘 } such
that for all ℓ ∈ {1, . . . , 𝑘}, it holds that𝑊ℓ = {𝑥1, . . . , 𝑥ℓ } ∈ 𝑓 (𝐴, ℓ)
and 𝑠ℎ (𝐴,𝑊 𝑥ℓ

ℓ−1
) ≥ 𝑠ℎ (𝐴,𝑊

𝑦

ℓ−1
) for all𝑦 ∈ C\𝑊ℓ−1. Because 𝑐 ∉𝑊 ,

our previous insights show that the scores of the committees𝑊ℓ

are always maximal, and thus 𝑊 ∈ 𝑓 (𝐴′, 𝑘). Hence 𝑓 satisfies

independence of losers.

Claim 2: Every step-dependent sequential scoring rule that
satisfies independence of losers is a step-dependent sequen-
tial Thiele rule.

Next, we show the converse and consider thus a step-dependent

sequential scoring rule 𝑓 that is independent of losers. Moreover,

let ℎ(𝑥,𝑦, 𝑧) denote its step-dependent sequential scoring function.

We will show that the function
¯ℎ defined by

¯ℎ(0, 𝑦) = 0,
¯ℎ(𝑥,𝑦) =

¯ℎ(𝑥−1, 𝑦) +ℎ(𝑥,𝑦, 𝑥)−ℎ(𝑥−1, 𝑦, 𝑥) for 𝑥 ∈ {1, . . . , 𝑦}, and ¯ℎ(𝑥,𝑦) =
¯ℎ(𝑦,𝑦) for 𝑥 > 𝑦 is a step-dependent Thiele counting function that

also induces 𝑓 . For this, we proceed in multiple steps. First, we

prove an auxiliary claim stating that we can build profiles with

specific outcomes, which will be used for the next steps. Then,

we show that for all profiles 𝐴, committees 𝑊 , and candidates

𝑐, 𝑑 ∈ C \𝑊 , it holds that 𝑠ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴,𝑊 𝑑 ) if and only if

𝑠 ¯ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠 ¯ℎ (𝐴,𝑊 𝑑 ). This clearly implies that
¯ℎ also induces 𝑓 .

As last step, we show that
¯ℎ is non-decreasing in 𝑥 (and thus also

non-negative since
¯ℎ(0, 𝑦) = 0 for all 𝑦) and satisfies that there is

𝑥 ≤ 𝑦 such that
¯ℎ(𝑥,𝑦) > ¯ℎ(𝑥 − 1, 𝑦).

Step 1: For all committees𝑊 and distinct 𝑐, 𝑑 ∈ C \𝑊 , there is a
profile𝐴 such that 𝑓 (𝐴, |𝑊 |) = {𝑊 } and 𝑓 (𝐴, |𝑊 | + 1) = {𝑊 𝑐 ,𝑊 𝑑 }.

For proving this claim, let𝑊1, . . . ,𝑊𝑘 denote a sequence of com-

mittees such that𝑊𝑘 =𝑊 𝑐
and𝑊𝑘−1

=𝑊 . By Lemma 2, there is

a profile 𝐴 such that 𝑓 (𝐴, ℓ) = {𝑊ℓ } for all ℓ ≤ 𝑘 . Next, consider

a permutation 𝜏 : C → C such that 𝜏 (𝑥) = 𝑥 for all 𝑥 ∈ 𝑊 𝑐
. By

neutrality, we have that 𝑓 (𝜏 (𝐴), ℓ) = {𝑊ℓ } for all ℓ ∈ {1, . . . , 𝑘}
and Lemma 1 implies thus that 𝑓 (𝐴 + 𝜏 (𝐴), ℓ) = {𝑊ℓ }, too. Now,
let 𝐴𝑐

denote the profile consisting of 𝜏 (𝐴) for every permutation

𝜏 : C → C with 𝜏 (𝑥) = 𝑥 for all 𝑥 ∈ 𝑊 𝑐
. By the same argument

as before, 𝑓 (𝐴𝑐 , ℓ) = {𝑊ℓ } for all ℓ ∈ {1, . . . , 𝑘}. In particular, this

means that 𝑠ℎ (𝐴𝑐 ,𝑊 𝑐 ) > 𝑠ℎ (𝐴𝑐 ,𝑊 𝑥 ) for all 𝑥 ∈ C \𝑊 𝑐
. Moreover,

we claim that 𝑠ℎ (𝐴𝑐 ,𝑊 𝑥 ) = 𝑠ℎ (𝐴𝑐 ,𝑊 𝑦) for all 𝑥,𝑦 ∈ C \𝑊 𝑐
. For

this, note that 𝑠ℎ (𝐴,𝑊 𝑥 ) = 𝑠ℎ (𝜏 (𝐴),𝑊 𝜏 (𝑥 ) } for all permutations

𝜏 that only reorder the candidates in C \𝑊 𝑐
. Since 𝐴𝑐

consists of

these profiles for all permutations, all of the candidates except 𝑐

must have the same score.

Next, consider the profile 𝐴𝑑
derived from 𝐴𝑐

by exchanging 𝑐

and 𝑑 ; formally 𝐴𝑑 = 𝜏𝑐𝑑 (𝐴𝑐
) where 𝜏𝑐𝑑 is the permutation that

only swaps 𝑐 and 𝑑 . By neutrality, we have that 𝑓 (𝐴𝑑 , ℓ) = {𝑊ℓ }
for ℓ ∈ {1, . . . , 𝑘 − 1} and 𝑓 (𝐴𝑑 , 𝑘) = {𝑊 𝑑 }. Moreover, we have

that 𝑠ℎ (𝐴𝑑 ,𝑊 𝑑 ) = 𝑠ℎ (𝐴𝑐 ,𝑊 𝑐 ) and 𝑠ℎ (𝐴𝑑 ,𝑊 𝑥 ) = 𝑠ℎ (𝐴𝑐 ,𝑊 𝑦) for all
𝑥 ∈ C\𝑊 𝑑

,𝑦 ∈ C\𝑊 𝑑
. Finally, we define𝐴 = 𝐴𝑑 +𝐴𝑐

. By Lemma 1,

we immediately get that 𝑓 (𝐴, ℓ) = {𝑊ℓ } for all ℓ ∈ {1, . . . , 𝑘 − 1}.
Furthermore, it holds that 𝑠ℎ (𝐴,𝑊 𝑥 ) = 𝑠ℎ (𝐴𝑐 ,𝑊 𝑥 ) + 𝑠ℎ (𝐴𝑑 ,𝑊 𝑥 )
for all 𝑥 ∈ C \𝑊 . This implies that 𝑠ℎ (𝐴,𝑊 𝑐 ) = 𝑠ℎ (𝐴,𝑊 𝑑 ) >

𝑠ℎ (𝐴,𝑊 𝑥 ) for all 𝑥 ∈ C \ (𝑊 ∪ {𝑐, 𝑑}). Hence, 𝐴 indeed satisfies

our requirements.

Step 2: It holds for all profiles 𝐴, committees𝑊 , and candidates
𝑐, 𝑑 ∈ C \𝑊 that 𝑠ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴,𝑊 𝑑 ) if and only if 𝑠 ¯ℎ (𝐴,𝑊 𝑐 ) ≥
𝑠 ¯ℎ (𝐴,𝑊 𝑑 ).

For proving this step, we consider a committee𝑊 and two candi-

dates 𝑐, 𝑑 ∈ C\𝑊 . Since 𝑠ℎ and 𝑠 ¯ℎ only sum up the scores of the indi-

vidual ballots, it suffices to focus on the ballots 𝐴𝑖 . Our goal is thus

to show that ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 |) − ℎ( |𝐴𝑖 ∩𝑊 𝑑 |, |𝑊 𝑑 |, |𝐴𝑖 |) =
¯ℎ( |𝐴𝑖∩𝑊 𝑐 |, |𝑊 𝑐 |)− ¯ℎ( |𝐴𝑖∩𝑊 𝑑 |, |𝑊 𝑑 |). First, if 𝑐, 𝑑 ∈ 𝐴𝑖 or 𝑐, 𝑑 ∉ 𝐴𝑖 ,

this follows immediately since |𝐴𝑖 ∩𝑊 𝑐 | = |𝐴𝑖 ∩𝑊 𝑑 | and thus,

ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 |) − ℎ( |𝐴𝑖 ∩𝑊 𝑑 |, |𝑊 𝑑 |, |𝐴𝑖 |)

= ¯ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |) − ¯ℎ( |𝐴𝑖 ∩𝑊 𝑑 |, |𝑊 𝑑 |) = 0.

Hence, suppose that 𝑐 ∈ 𝐴𝑖 , 𝑑 ∉ 𝐴𝑖 ; the case that 𝑑 ∈ 𝐴𝑖 , 𝑐 ∉ 𝐴𝑖

is symmetric. This implies that |𝐴𝑖 ∩𝑊 𝑑 | = |𝐴𝑖 ∩𝑊 𝑐 | − 1 and we

hence have to show that

ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 |) −ℎ( |𝐴𝑖 ∩𝑊 𝑐 | −1, |𝑊 𝑐 |, |𝐴𝑖 |)
= ¯ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |) − ¯ℎ( |𝐴𝑖 ∩𝑊 𝑐 | −1, |𝑊 𝑐 |)
=ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 ∩𝑊 𝑐 |) −ℎ( |𝐴𝑖 ∩𝑊 𝑐 | −1, |𝑊 𝑐 |, |𝐴𝑖 ∩𝑊 𝑐 |).

If |𝐴𝑖 | = |𝐴𝑖 ∩𝑊 𝑐 |, this claim holds trivially. Since |𝐴𝑖 | ≥ |𝐴𝑖 ∩
𝑊 𝑐 |, we thus suppose that |𝐴𝑖 | > |𝐴𝑖 ∩𝑊 𝑐 |, which implies that

𝑋 = 𝐴𝑖 \𝑊 𝑐 ≠ ∅. Also, recall that 𝑑 ∉ 𝐴𝑖 and thus 𝑑 ∉ 𝑋 . Next, let

𝐴 denote a profile such that 𝑓 (𝐴, |𝑊 |) = {𝑊 } and 𝑓 (𝐴, |𝑊 | + 1) =
{𝑊 𝑐 ,𝑊 𝑑 }; such a profile exists due to Step 1. Moreover, let 𝐴′

be a

profile consisting of two voters, one of which reports 𝐴𝑖 and the

other one reports (𝐴𝑖 \ {𝑐}) ∪ {𝑑}. Finally, let𝐴′′
denote the profile

derived from 𝐴′
by assigning the ballot 𝐴𝑖 \ 𝑋 = 𝐴𝑖 ∩𝑊 𝑐

to the

voter who originally submits 𝐴𝑖 . For these profiles, it holds that

𝑠ℎ (𝐴,𝑊 𝑐 ) =𝑠ℎ (𝐴,𝑊 𝑑 ) > 𝑠ℎ (𝐴,𝑊 𝑥 ) for all 𝑥 ∈ C\ (𝑊 ∪{𝑐, 𝑑}),
𝑠ℎ (𝐴′,𝑊 𝑐 ) =ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 |) +ℎ( |𝐴𝑖 ∩𝑊 𝑐 | −1, |𝑊 𝑐 |, |𝐴𝑖 |)

=𝑠ℎ (𝐴′,𝑊 𝑑 ),



𝑠ℎ (𝐴′′,𝑊 𝑐 ) =ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 ∩𝑊 𝑐 |)
+ℎ( |𝐴𝑖 ∩𝑊 𝑐 | −1, |𝑊 𝑐 |, |𝐴𝑖 |), and

𝑠ℎ (𝐴′′,𝑊 𝑑 ) =ℎ( |𝐴𝑖 ∩𝑊 𝑐 | −1, |𝑊 𝑐 |, |𝐴𝑖 ∩𝑊 𝑐 |)
+ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 |) .

Finally, it is not difficult to see that there is an integer 𝑗 such that

𝑓 ( 𝑗𝐴 +𝐴′, |𝑊 |) = ( 𝑗𝐴 +𝐴′′, |𝑊 |) = {𝑊 }, 𝑓 ( 𝑗𝐴 +𝐴′, |𝑊 | + 1) ⊆
{𝑊 𝑐 ,𝑊 𝑑 }, and ( 𝑗𝐴 +𝐴′′, |𝑊 | + 1) ⊆ {𝑊 𝑐 ,𝑊 𝑑 }. From the above

equations, it now follows that 𝑓 ( 𝑗𝐴 +𝐴′, |𝑊 | + 1) = {𝑊 𝑐 ,𝑊 𝑑 }. On
the other hand, since 𝐴′′

is derived from 𝐴′
by only disapproving

candidates 𝑥 ∈ C \ (𝑊 ∪ {𝑐, 𝑑}), a repeated application of indepen-

dence of losers shows that 𝑓 ( 𝑗𝐴 +𝐴′′, |𝑊 | + 1) = {𝑊 𝑐 ,𝑊 𝑑 }, too.
This implies that 𝑠ℎ (𝐴′′,𝑊 𝑐 ) = 𝑠ℎ (𝐴′′,𝑊 𝑑 ), which is equivalent to

=ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 |) −ℎ( |𝐴𝑖 ∩𝑊 𝑐 | −1, |𝑊 𝑐 |, |𝐴𝑖 |)
=ℎ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |, |𝐴𝑖 ∩𝑊 𝑐 |) −ℎ( |𝐴𝑖 ∩𝑊 𝑐 | −1, |𝑊 𝑐 |, |𝐴𝑖 ∩𝑊 𝑐 |).

This shows that 𝑠ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴,𝑊 𝑑 ) if and only if

𝑠 ¯ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠 ¯ℎ (𝐴,𝑊 𝑑 ) for all profiles 𝐴, committees 𝑊 , and

candidates 𝑐, 𝑑 ∈ C \𝑊 . Hence,
¯ℎ indeed induces 𝑓 .

Step 3: ¯ℎ is a step-dependent Thiele counting rule.
For proving this claim, we need to show that

¯ℎ(𝑥,𝑦) is non-
negative, non-decreasing in 𝑥 , and satisfies that for every 𝑦 ∈
{1, . . . ,𝑚 − 1} there is 𝑥 ∈ {1, . . . , 𝑦} such that ¯ℎ(𝑥,𝑦) > ¯ℎ(𝑥 − 1, 𝑦).
We start by showing that

¯ℎ is non-decreasing in 𝑥 . Note that

this immediately implies that it is non-negative since we defined

that
¯ℎ(0, 𝑦) = 0 for all 𝑦 ∈ {1, . . . ,𝑚}. Hence, assume for contradic-

tion that there is 𝑥 ∈ {0, . . . ,𝑚 − 1} and 𝑦 ∈ {1, . . . ,𝑚} such that

¯ℎ(𝑥,𝑦) > ¯ℎ(𝑥 + 1, 𝑦). Since ¯ℎ(𝑥 ′, 𝑦′) = ¯ℎ(𝑦′, 𝑦′) for all 𝑥 ′, 𝑦′ with
𝑥 ≥ 𝑦′, our assumption requires that 𝑥 < 𝑦. Moreover, we suppose

that𝑦 < 𝑚 because we can redefine
¯ℎ(𝑥,𝑚) = 0 for all 𝑥 . The reason

for this is that
¯ℎ(𝑥,𝑚) is only queried when 𝑓 needs to decide on a

winning committee of size𝑚, but there is only one such committee

and thus the values of
¯ℎ do not matter.

Now, let 𝑊1, . . . ,𝑊𝑦−1 denote an arbitrary sequence of com-

mittees with length 𝑦 − 1. By Lemma 2, there is a profile 𝐴 such

that 𝑓 (𝐴, ℓ) =𝑊ℓ for all ℓ ∈ {1, . . . , 𝑦 − 1} and 𝑓 (𝐴,𝑦) = {𝑊𝑦−1 ∪
{𝑥} : 𝑥 ∈ C \𝑊𝑦−1}. Furthermore, let 𝐴′

denote a profile in which

a single voter approves 𝑥 candidates of𝑊𝑦−1 and all candidates

in C \𝑊𝑦−1. Finally, define 𝐴
′′
as the profile derived from 𝐴′

by

letting the single voter disapprove one candidate 𝑐 ∈ C \𝑊𝑦−1.

It is again not difficult to see that there is an integer

𝑗 such that 𝑓 ( 𝑗𝐴 +𝐴′, ℓ) = 𝑓 ( 𝑗𝐴 +𝐴′′, ℓ) = {𝑊ℓ } for all ℓ ∈
{1, . . . , 𝑦 − 1}. On the other hand, we have that 𝑠 ¯ℎ (𝐴,𝑊 𝑐

𝑦−1
) =

𝑠 ¯ℎ (𝐴,𝑊 𝑑
𝑦−1

) for all 𝑐, 𝑑 ∈ C \𝑊𝑦−1 since 𝑓 (𝐴,𝑦) = {𝑊𝑦−1 ∪
{𝑥} : 𝑥 ∈ C \𝑊𝑦−1}. Also, it holds that 𝑠 ¯ℎ (𝐴′,𝑊 𝑐

𝑦−1
) = ¯ℎ(𝑥 +

1, 𝑦) = 𝑠 ¯ℎ (𝐴′,𝑊 𝑑
𝑦−1

) for all 𝑐, 𝑑 ∈ C \𝑊𝑦−1. Finally, we have that

𝑠ℎ (𝐴′′,𝑊 𝑐
𝑦−1

) = ¯ℎ(𝑥,𝑦) and 𝑠ℎ (𝐴′′,𝑊 𝑑
𝑦−1

) = ¯ℎ(𝑥 + 1, 𝑦) and thus,

𝑠ℎ (𝐴′′,𝑊 𝑐
𝑦−1

) > 𝑠ℎ (𝐴′′,𝑊 𝑑
𝑦−1

) for all 𝑑 ∈ C \𝑊 𝑐
𝑦−1

. Thus, we in-

fer that 𝑓 ( 𝑗𝐴 +𝐴′, 𝑦) = {𝑊𝑦−1 ∪ {𝑥} : 𝑥 ∈ C \𝑊𝑦−1} and 𝑓 ( 𝑗𝐴 +
𝐴′′, 𝑦) = {𝑊𝑦−1 ∪ {𝑐}}. However, since 𝑦 < 𝑚 and thus |𝑊𝑦−1 | ≤
𝑚 − 2, there is 𝑑 ∈ C \𝑊 𝑐

𝑦−1
such that𝑊𝑦−1 ∪ {𝑑} ∈ 𝑓 ( 𝑗𝐴 +𝐴′, 𝑦).

Because 𝑐 ∉𝑊𝑦−1 ∪ {𝑑}, independence of losers thus requires that
𝑊𝑦−1 ∪ {𝑑} ∈ 𝑓 ( 𝑗𝐴 +𝐴′′, 𝑦). This contradicts our previous insight,

and thus, the assumption that
¯ℎ(𝑥,𝑦) > ¯ℎ(𝑥 + 1, 𝑦) must have been

wrong. Hence,
¯ℎ is non-decreasing in 𝑥 .

Finally, we show that for every 𝑦 ∈ {1, . . . ,𝑚 − 1}, there is 𝑥 ∈
{1, . . . , 𝑦} such that ℎ(𝑥,𝑦) > ℎ(𝑥 − 1, 𝑦). Assume there is 𝑦 such

that this is not the case, which means that ℎ(𝑥,𝑦) = ℎ(𝑥 ′, 𝑦) for all
𝑥, 𝑥 ′ ≤ 𝑦. Since for |𝐴𝑖 ∩𝑊 | ≤ |𝑊 | for all committees𝑊 and ballots

𝐴𝑖 , this means that all committees of size 𝑦 always receive the same

score and, as there are at least two committees of size 𝑦 < 𝑚, 𝑓 can

therefore be not non-imposing. This contradicts our assumptions

and we thus conclude that 𝑓 is a step-dependent sequential Thiele

rule because it is induced by a step-dependent Thiele counting

function
¯ℎ. □

Finally, we prove that committee separability characterizes the

sequential Thiele rules within the class of step-dependent sequential

Thiele rules.

Lemma 12. A step-dependent sequential Thiele rule is a sequential
Thiele rule if and only if it is committee separable.

Proof. For proving this lemma, we need to show two claims:

every sequential Thiele rule is a step-dependent sequential Thiele

rule that satisfies committee separability, and every step-dependent

sequential Thiele rule that satisfies committee separability is a

sequential Thiele rule.

Claim 1: Every sequential Thiele rule is a step-dependent
sequential Thiele rule that satisfies committee separability.

Let 𝑓 denote a sequential Thiele rule and let ℎ(𝑥) denote its

Thiele counting rule. Clearly, 𝑓 is a step-dependent sequential

Thiele rule as we can define the step-dependent Thiele counting

function ℎ′ (𝑥,𝑦) = ℎ(𝑥) for all 𝑦 ∈ {1, . . . ,𝑚}.
Hence, it remains to show that 𝑓 is committee separable. For

doing so, recall that 𝐶𝐴 =
⋃

𝑖∈𝑁𝐴
𝐴𝑖 and 𝐶𝐵 =

⋃
𝑖∈𝑁𝐵

𝐵𝑖 and let

𝐴 and 𝐵 denote two disjoint profiles with 𝐶𝐴 = C \ 𝐶𝐵 . We will

show by an induction on the committee size 𝑘 ∈ {0, . . . ,𝑚} that for
every𝑊 ∈ 𝑓 (𝐴 + 𝐵, 𝑘), it holds that𝑊 ∩𝐶𝐴 ∈ 𝑓 (𝐴, |𝑊 ∩𝐶𝐴 |) and
𝑊 ∩𝐶𝐵 ∈ 𝑓 (𝐵, |𝑊 ∩𝐶𝐵 |). The induction basis 𝑘 = 0 is trivial since

𝑓 (𝐴 + 𝐵, 0) = 𝑓 (𝐴, 0) = 𝑓 (𝐵, 0) = {∅}.
Hence, suppose that our claim is true for a fixed 𝑘 ∈ {0, . . . ,𝑚 −

1} and let𝑊 ∈ 𝑓 (𝐴 + 𝐵, 𝑘 + 1). By the definition of sequential

Thiele rules, there is a committee𝑊 ′ ∈ 𝑓 (𝐴 + 𝐵, 𝑘) and a candidate
𝑐 ∈ C \𝑊 ′

such that𝑊 = 𝑊 ′ ∪ {𝑐} and 𝑠ℎ (𝐴 + 𝐵,𝑊 ′ ∪ {𝑐}) ≥
𝑠ℎ (𝐴+𝐵,𝑊 ′∪{𝑥}) for every 𝑥 ∈ C\𝑊 ′

. Subsequently, we suppose

that 𝑐 ∈ 𝐶𝐴; the case that 𝑐 ∈ 𝐶𝐵 is symmetric. Now, our induction

hypothesis shows that𝑊 ′ ∩𝐶𝐴 ∈ 𝑓 (𝐴, |𝑊 ′ ∩𝐶𝐴 |) and𝑊 ′ ∩𝐶𝐵 ∈
𝑓 (𝐵, |𝑊 ′∩𝐶𝐵 |). Our goal is to prove that𝑊∩𝐶𝐴 = (𝑊 ′∪{𝑐})∩𝐶𝐴 ∈
𝑓 (𝐴, |𝑊 ∩𝐶𝐴 |). Since𝑊 ∩𝐶𝐵 =𝑊 ′ ∩𝐶𝐵 ∈ 𝑓 (𝐵, |𝑊 ∩𝐶𝐵 |), this
proves our claim. Hence, assume for contradiction that𝑊 ∩𝐶𝐴 ∉

𝑓 (𝐴, |𝑊 ∩𝐶𝐴 |), whichmeans that there is𝑑 ∈ C\(𝑊 ∩𝐶𝐴) such that
𝑠ℎ (𝐴, (𝑊 ′ ∩𝐶𝐴) ∪ {𝑑}) > 𝑠ℎ (𝐴,𝑊 ∩𝐶𝐴). In particular, this means

that 𝑑 ∈ 𝐶𝐴 because ℎ is non-decreasing and thus 𝑠ℎ (𝐴,𝑊 ∩𝐶𝐴) ≥
𝑠ℎ (𝐴,𝑊 ′ ∩𝐶𝐴) = 𝑠ℎ (𝐴, (𝑊 ′ ∩𝐶𝐴) ∪ {𝑥}) if 𝑥 ∉ 𝐶𝐴 . In turn, this

implies that 𝑠ℎ (𝐵,𝑊 ′ ∪ {𝑐}) = 𝑠ℎ (𝐵,𝑊 ′ ∩𝐶𝐵) = 𝑠ℎ (𝐵,𝑊 ′ ∪ {𝑑})
because no voter in 𝐵 approves 𝑐 or 𝑑 . However, we thus infer that

𝑠ℎ (𝐴 + 𝐵,𝑊 ′ ∪ {𝑑}) > 𝑠ℎ (𝐴 + 𝐵,𝑊 ′ ∪ {𝑐}) since
𝑠ℎ (𝐴 + 𝐵,𝑊 ′ ∪ {𝑑}) = 𝑠ℎ (𝐴,𝑊 ′ ∪ {𝑑}) + 𝑠ℎ (𝐵,𝑊 ′ ∪ {𝑑})

= 𝑠ℎ (𝐴,𝑊 ′ ∩𝐶𝐴 ∪ {𝑑}) + 𝑠ℎ (𝐵,𝑊 ′ ∩𝐶𝐵)



> 𝑠ℎ (𝐴,𝑊 ′ ∩𝐶𝐴{𝑐}) + 𝑠ℎ (𝐵,𝑊 ′ ∩𝐶𝐵)
= 𝑠ℎ (𝐴,𝑊 ′ ∪ {𝑐}) + 𝑠ℎ (𝐵,𝑊 ′ ∪ {𝑐})
= 𝑠ℎ (𝐴 + 𝐵,𝑊 ′ ∪ {𝑐}) .

This contradicts our assumptions on𝑊 ′
and 𝑐 . Hence,𝑊𝐴 =

𝑊 ′
𝐴
∪{𝑐} ∈ 𝑓 (𝐴, |𝑊𝐴 |),𝑊𝐵 =𝑊 ′

𝐵
∈ 𝑓 (𝐵, |𝑊𝐵 |),𝑊 =𝑊𝐴 ∪𝑊𝐵 , and

𝑊𝐴 ∩𝑊𝐵 = ∅, which proves the induction step for this case.

Claim 2: Every step-dependent sequential Thiele rule that
satisfies committee separability is a sequential Thiele rule.

Let 𝑓 denote a step-dependent sequential Thiele rule that satisfies

committee separability and let ℎ(𝑥,𝑦) denote its step-dependent
Thiele counting function. For proving that 𝑓 is a sequential Thiele

rule, we proceed in several steps: firstly, we will derive another

step-dependent Thiele counting function ℎ′ such that ℎ′ (0, 𝑦) = 0

and ℎ′ (1, 𝑦) = 1 for all 𝑦 ∈ {1, . . . ,𝑚 − 1} that also induces 𝑓 . Based
on ℎ′, we will then show that the function

¯ℎ with
¯ℎ(0) = 0 and

¯ℎ(𝑥) = ¯ℎ(𝑥 − 1) + ℎ′ (𝑥, 𝑥) − ℎ′ (𝑥 − 1, 𝑥) for 𝑥 > 0 also induces 𝑓 .

Finally, we prove that
¯ℎ is a Thiele counting function, which proves

that 𝑓 is a sequential Thiele rule.

Step 1: First, we derive a step-dependent Thiele counting function
ℎ′ such that ℎ′ (0, 𝑦) = 0 and ℎ′ (1, 𝑦) = 1 for all 𝑦 that induces 𝑓 .

For this, we first prove that ℎ(1, 𝑦) > ℎ(0, 𝑦) for all 𝑦 ∈ {1, . . . ,𝑚 −
1}. Thus, note that ℎ(1, 1) > ℎ(0, 1) due to the assumption that

for every 𝑦 ∈ {1, . . . ,𝑚 − 1}, there is 𝑥 ∈ {1, . . . .𝑦} such that

ℎ(𝑥,𝑦) > ℎ(𝑥 − 1, 𝑦). Next, consider an arbitrary 𝑘 ∈ {1, . . . ,𝑚 − 2},
let𝑊1, . . . ,𝑊𝑘 denote a sequence of committees and let 𝐴 denote

a profile such that 𝑓 (𝐴, ℓ) = {𝑊ℓ } for all ℓ ∈ {1, . . . , 𝑘}; such a

profile exists due to Lemma 2. Now, consider the profile 𝐴′
derived

from 𝐴 by assigning all voters the ballot 𝐴𝑖 ∩𝑊𝑘 . It still holds

that 𝑓 (𝐴′, ℓ) = {𝑊ℓ } for all ℓ ∈ {1, . . . , 𝑘} because ℎ(𝑥,𝑦) is non-
decreasing in 𝑥 and independent of the size of the ballot. In more

detail, it holds for every ballot𝐴𝑖 and committees𝑊,𝑊 ′
with |𝑊 | =

|𝑊 ′ | and𝑊 ⊆𝑊𝑘 thatℎ( |𝐴𝑖∩𝑊𝑘∩𝑊 |, |𝑊 |) = ℎ( |𝐴𝑖∩𝑊 |, |𝑊 |) and
ℎ( |𝐴𝑖∩𝑊𝑘∩𝑊 ′ |, |𝑊 ′ |) ≤ ℎ( |𝐴𝑖∩𝑊 ′ |, |𝑊 ′ |). Hence, if a subset of𝑊𝑘

has maximal score in 𝐴, it also has maximal score in 𝐴′
. Moreover,

note that all candidates in C\𝑊𝑘 are disapproved by all voters in𝐴′

and thus, neutrality requires that 𝑓 (𝐴′, 𝑘 + 1) = {𝑊 𝑥
𝑘

: 𝑥 ∈ C \𝑊𝑘 }.
Next, let 𝐵 denote the profile in which a candidate 𝑐 ∈ C \𝑊𝑘

is uniquely approved by two voters and every other candidate 𝑑 ∈
C \𝑊𝑘 , 𝑑 ≠ 𝑐 , is approved by by a single voter. It is straightforward

that 𝑓 (𝐵, 1) = {{𝑐}}. Finally, Lemma 3 shows that there is an integer

𝑗 such that 𝑓 ( 𝑗𝐴′ + 𝐵, 𝑘) = {𝑊𝑘 }. Thus, committee monotonicity

requires that 𝑓 ( 𝑗𝐴′ + 𝐵, 𝑘 + 1) ⊆ {𝑊𝑘 ∪ {𝑥} : 𝑥 ∈ C \𝑊𝑘 }. In turn,

committee separability requires for every𝑊 ∈ 𝑓 ( 𝑗𝐴′ + 𝐵, 𝑘 + 1)
that𝑊 \𝑊𝑘 ∈ 𝑓 (𝐵, |𝑊 \𝑊𝑘 |) = 𝑓 (𝐵, 1). Since 𝑓 (𝐵, 1) = {{𝑐}}, this
means that 𝑓 ( 𝑗𝐴′ + 𝐵, 𝑘 + 1) = {𝑊𝑘 ∪ {𝑐}}. We infer from this now

that ℎ(1, 𝑘 + 1) > ℎ(0, 𝑘 + 1) as otherwise ℎ(1, 𝑘 + 1) = ℎ(0, 𝑘 + 1)
and 𝑓 ( 𝑗𝐴′ + 𝐵, 𝑘 + 1) = {𝑊𝑘 ∪ {𝑥} : 𝑥 ∈ C \𝑊𝑘 }.

It is now easy to see that the function ℎ′ defined by ℎ′ (𝑥,𝑦) =
ℎ (𝑥,𝑦)−ℎ (0,𝑦)
ℎ (1,𝑦)−ℎ (0,𝑦) is a step-dependent Thiele counting function with

ℎ′ (0, 𝑦) = 0 and ℎ′ (1, 𝑦) = 1. In particular, it immediately follows

that 𝑠ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴,𝑊 𝑑 ) if and only if 𝑠ℎ′ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ′ (𝐴,𝑊 𝑑 )
for all profiles 𝐴, committees𝑊 , and candidates 𝑐, 𝑑 ∈ C \𝑊 . Thus,

ℎ′ also induces 𝑓 .

Step 2: Our next goal is to show that the function
¯ℎ(𝑥) defined

by
¯ℎ(0) = 0 and

¯ℎ(𝑥) = ¯ℎ(𝑥 − 1) + ℎ′ (𝑥, 𝑥) + ℎ′ (𝑥 − 1, 𝑥) induces
𝑓 . For doing so, we show that 𝑠ℎ′ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ′ (𝐴,𝑊 𝑑 ) if and only

if 𝑠 ¯ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠 ¯ℎ (𝐴,𝑊 𝑑 ) for all profiles 𝐴, a committees𝑊 and

candidates 𝑐, 𝑑 ∈ C \𝑊 . This is equivalent to proving that ℎ′ ( |𝐴𝑖 ∩
𝑊 𝑐 |, |𝑊 𝑐 |) − ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑑 |) = ¯ℎ( |𝐴𝑖 ∩𝑊 𝑐 |) − ¯ℎ( |𝐴𝑖 ∩𝑊 𝑑 |)
for all committees𝑊 , ballots 𝐴𝑖 , and candidates 𝑐, 𝑑 ∈ C \𝑊 . Now,

first observe that if |𝑊 𝑐 ∩𝐴𝑖 | = |𝑊 𝑑 ∩𝐴𝑖 |, then

ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |) − ℎ′ ( |𝐴𝑖 ∩𝑊 𝑑 |, |𝑊 𝑑 |)

= ¯ℎ( |𝐴𝑖 ∩𝑊 𝑐 |) − ¯ℎ( |𝐴𝑖 ∩𝑊 𝑑 |) = 0.

Hence, our equality holds in this case, and we subsequently

suppose that 𝑐 ∈ 𝐴𝑖 , 𝑑 ∉ 𝐴𝑖 ; the case that 𝑑 ∈ 𝐴𝑖 , 𝑐 ∉ 𝐴𝑖 is

symmetric. This assumption means that |𝑊 𝑑 ∩𝐴𝑖 | = |𝑊 𝑐 ∩𝐴𝑖 | − 1

and we thus need to show that

ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |) − ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 | − 1, |𝑊 𝑐 |)
= ¯ℎ( |𝐴𝑖 ∩𝑊 𝑐 |) − ¯ℎ( |𝐴𝑖 ∩𝑊 𝑐 | − 1)
= ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝐴𝑖 ∩𝑊 𝑐 |) − ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 | − 1, |𝐴𝑖 ∩𝑊 𝑐 |).

Now, assume for contradiction that this equality is not true, i.e.,

ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |) −ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 | − 1, |𝑊 𝑐 |) ≠ ℎ′ ( |𝐴′
𝑖
∩𝑊 𝑐 |, |𝐴𝑖 ∩

𝑊 𝑐 |) − ℎ( |𝐴′
𝑖
∩𝑊 𝑐 | − 1, |𝐴𝑖 ∩𝑊 𝑐 |) for some ballot 𝐴𝑖 , committee

𝑊 with |𝑊 | ≤ 𝑚 − 2, and 𝑐 ∈ C \𝑊 . For a simpler notation, we

define Δ1 = ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |) − ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 | − 1, |𝑊 𝑐 |) and
Δ2 = ℎ′ ( |𝐴′

𝑖
∩𝑊 𝑐 |, |𝐴𝑖 ∩𝑊 𝑐 |) −ℎ( |𝐴′

𝑖
∩𝑊 𝑐 | − 1, |𝐴𝑖 ∩𝑊 𝑐 |). Now,

since Δ1 ≠ Δ2, either Δ1 > Δ2 or Δ1 < Δ2. We first suppose

the former, which implies that there are integers 𝑗1, 𝑗2 such that

𝑗1Δ1 > 𝑗2 > 𝑗1Δ2 and 𝑗2 > 1. Note here also that Δ1 ≥ 0, Δ2 ≥ 0

since ℎ′ is non-decreasing in the first argument.

For deriving a contradiction, we construct a profile𝐴∗
in multiple

steps. First, let 𝑊̄ = 𝐴𝑖 ∩𝑊 and let 𝑊̄1, . . . ,𝑊̄ℓ denote a sequence

of committees such that 𝑊̄ℓ = 𝑊̄ . By Lemma 2, there is a profile 𝐴1

such that 𝑓 (𝐴1, 𝑘) = {𝑊̄𝑘 } for all 𝑘 ∈ {1, . . . , ℓ} and 𝑓 (𝐴1, ℓ + 1) =
{𝑊̄ℓ ∪ {𝑥} : 𝑥 ∈ C \ 𝑊̄ℓ }. Also, we suppose that no voter in 𝐴1

approves a candidate in C \ 𝑊̄ ; we can enforce this as ℎ is non-

decreasing in the first argument and independent of the size of the

ballots.

Furthermore, let 𝐴2
denote the profile such that 𝑗1 voters report

𝑊̄ ∪ {𝑐}, 𝑗2 voters report {𝑑} for some candidate 𝑑 ∈ C \𝑊 𝑐
, and

for each candidate 𝑥 ∈ C \ (𝑊 ∪ {𝑐, 𝑑}), there is a single voter

who uniquely approves 𝑥 . Now, by continuity, there is an integer 𝑗

such that ( 𝑗𝐴1 +𝐴2, ℓ) = {𝑊̄ℓ }. On the other hand, 𝑠ℎ′ (𝐴1,𝑊̄ 𝑥
ℓ
) =

𝑠ℎ′ (𝐴1,𝑊̄
𝑦

ℓ
) for all 𝑥,𝑦 ∈ C \ 𝑊̄ℓ since 𝑓 (𝐴1, 𝑘 + 1) = {𝑊̄ 𝑥

ℓ
: 𝑥 ∈

C \ 𝑊̄ℓ }. It thus follows that 𝑓 ( 𝑗𝐴1 +𝐴2, ℓ + 1) = {𝑊̄ ∪ {𝑑}} since
𝑠ℎ′ (𝐴2,𝑊̄ 𝑑 ) = 𝑗1ℎ

′ ( |𝐴𝑖 ∩𝑊 𝑐 | − 1, |𝐴𝑖 ∩𝑊 𝑐 |) + 𝑗2 > 𝑗1ℎ
′ ( |𝐴𝑖 ∩

𝑊 𝑐 | − 1, |𝐴𝑖 ∩𝑊 𝑐 |) + 𝑗1Δ2 = 𝑠ℎ′ (𝐴,𝑊̄ 𝑐 ).
Next, let 𝑊̂ = 𝑊 \ 𝐴𝑖 and let 𝑊̂1, . . .𝑊̂ℓ ′ denote a sequence of

committees such that 𝑊̂ = 𝑊̂ℓ ′ . By Lemma 2, we can again con-

struct a profile 𝐴3
such that 𝑓 (𝐴3, 𝑘) = {𝑊̂𝑘 } for all 𝑘 ∈ {1, . . . , ℓ′}

and 𝑓 (𝐴3, ℓ′ + 1) = {𝑊̂ℓ ′ ∪ {𝑥} : 𝑥 ∈ C \ 𝑊̂ℓ ′ }. Moreover, we

suppose that the voters in 𝐴3
only approve candidates in 𝑊̂ as

we can push down all other candidates without affecting the out-

comes. Now, by continuity, we can find an integer 𝑗 ′ such that

𝑓 ( 𝑗 ′𝐴3 + 𝑗𝐴1 + 𝐴2, ℓ′) = {𝑊̂ }. Our goal is to show that 𝑓 fails

committee separability for the profile 𝐴∗ = 𝑗 ′𝐴3 + 𝑗𝐴1 + 𝐴2
. For



this, note that committee monotonicity and committee separabil-

ity imply that 𝑓 (𝐴∗, ℓ′ + 𝑘) = {𝑊̂ ∪ 𝑊̄𝑘 } for all 𝑘 ∈ {1, . . . , ℓ}
since 𝑓 ( 𝑗𝐴1 + 𝐴2, 𝑘) = {𝑊𝑘 }. These axioms also imply that

𝑓 (𝐴∗, |𝑊 𝑐 |) = {𝑊̂ ∪ 𝑊̄ ∪ {𝑑}} = {𝑊 𝑑 }. However, it holds that
𝑠ℎ′ (𝐴∗,𝑊 𝑐 ) > 𝑠ℎ′ (𝐴∗,𝑊 𝑑 ) because 𝑠ℎ′ (𝐴3,𝑊 𝑑 ) = 𝑠ℎ′ (𝐴3,𝑊 𝑐 ),
𝑠ℎ′ (𝐴1,𝑊 𝑑 ) = 𝑠ℎ′ (𝐴1,𝑊 𝑐 ), and 𝑠ℎ′ (𝐴2,𝑊 𝑐 ) > 𝑠ℎ′ (𝐴2,𝑊 𝑑 ). In
particular, the last claim holds since 𝑠ℎ′ (𝐴2,𝑊 𝑐 ) = 𝑗1ℎ

′ ( |𝐴𝑖 ∩
𝑊 |, |𝑊 𝑐 |) + 𝑗1Δ1 > 𝑗1ℎ

′ ( |𝐴𝑖 ∩𝑊 |, |𝑊 𝑐 |) + 𝑗2 = 𝑠ℎ′ (𝐴2,𝑊 𝑑 ). Hence,
𝑓 (𝐴∗, |𝑊 𝑐 |) ≠ {𝑊 𝑑 }, which shows that 𝑓 fails committee separa-

bility.

As last point, note that this construction also works if Δ1 <

Δ2; then, we choose 𝑗1 and 𝑗2 such that 𝑗1Δ1 < 𝑗2 < 𝑗1Δ2. As a

consequence, 𝑓 ( 𝑗𝐴1 +𝐴2, ℓ + 1) = {𝑊̄ 𝑐 } and 𝑓 (𝐴∗, |𝑊 𝑐 |) = {𝑊 𝑑 },
which also violates committee separability. Finally, this implies that

our initial assumption that ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 |, |𝑊 𝑐 |) − ℎ′ ( |𝐴𝑖 ∩𝑊 𝑐 | −
1, |𝑊 𝑐 |) ≠ ¯ℎ( |𝐴𝑖 ∩𝑊 𝑐 |) − ¯ℎ( |𝐴𝑖 ∩𝑊 𝑐 | − 1) is wrong. We derive

from this that
¯ℎ indeed induces 𝑓 .

Step 3: Finally, we need to show that
¯ℎ is a Thiele counting

function. For doing so, note first that
¯ℎ(𝑥) is non-decreasing since

ℎ′ (𝑥,𝑦) is non-decreasing in the first argument. In more detail, we

have that
¯ℎ(𝑥) − ¯ℎ(𝑥 − 1) = ℎ′ (𝑥, 𝑥) − ℎ′ (𝑥 − 1, 𝑥) ≥ 0 for every

𝑥 ∈ {1, . . . ,𝑚}. Since ¯ℎ(𝑥) = 0 by definition, this alsomeans that
¯ℎ is

non-negative. Finally, observe that
¯ℎ(1)− ¯ℎ(0) = ℎ′ (1, 1)−ℎ′ (0, 1) >

0, so
¯ℎ indeed satisfies all conditions. □

A.4 Proofs of Theorems 3 and 4
Finally, we discuss the proofs of Theorem 3 and Theorem 4 in more

detail.

Theorem 3. seqAV is the only sequential Thiele rule that is clone-
accepting and distrusting if𝑚 ≥ 3.

Proof. It is not hard to show that seqAV is clone-accepting and

distrusting. For doing so, define the approval score 𝑠𝐴𝑉 (𝐴, 𝑥) =

|{𝑖 ∈ 𝑁𝐴 : 𝑥 ∈ 𝐴𝑖 }| of a candidate 𝑥 in a profile 𝐴 as the number of

voters who approve 𝑥 in 𝐴. The key observation for showing that

seqAV satisfies the given axioms is that this rule simply chooses the

candidates in order of their approval scores. For proving this, let

ℎ(𝑥) = 𝑥 denote the Thiele counting function of seqAV and note

that for every profile 𝐴, committee𝑊 , and candidate 𝑐 ∈ C \𝑊 ,

it holds that 𝑠ℎ (𝐴,𝑊 𝑐 ) =
∑
𝑖∈𝑁𝐴

ℎ( |𝐴𝑖 ∩𝑊 𝑐 |) =
∑
𝑖∈𝑁𝐴

|𝐴𝑖 ∩
𝑊 𝑐 | = 𝑠ℎ (𝐴,𝑊 ) + 𝑠𝐴𝑉 (𝐴, 𝑐). Hence, if 𝑠𝐴𝑉 (𝐴, 𝑐) ≥ 𝑠𝐴𝑉 (𝐴,𝑑), then
𝑠ℎ (𝐴,𝑊 𝑐 ) ≥ 𝑠ℎ (𝐴,𝑊 𝑑 ).

Clearly, this insight implies that seqAV is distrusting: if more

voters uniquely approve 𝑐 than there are voters that approve 𝑏

among other candidates, it hold that 𝑠𝐴𝑉 (𝐴, 𝑐) > 𝑠𝐴𝑉 (𝐴,𝑏). Hence,
the previous argument shows that 𝑠ℎ (𝐴,𝑊 ∪{𝑐}) > 𝑠ℎ (𝐴,𝑊 ∪{𝑑})
and thus 𝑏 cannot be chosen before 𝑐 . For showing that seqAV
satisfies clone-acceptance, consider a profile 𝐴 with clones 𝑐, 𝑑

anda committee𝑊 ⊆ C \ {𝑐, 𝑑} such that𝑊 𝑐
is chosen by seqAV

for the committee size |𝑊 𝑐 |. Since 𝑐 ∈ 𝑊 𝑐
and seqAV chooses

the candidates in order of their approval scores, it follows that

𝑠𝐴𝑉 (𝐴, 𝑐) ≥ 𝑠𝐴𝑉 (𝐴, 𝑥) for all 𝑥 ∈ C \𝑊 𝑐
. On the other hand, we

have that 𝑠𝐴𝑉 (𝐴, 𝑐) = 𝑠𝐴𝑉 (𝐴,𝑑) and thus, 𝑑 has the maximal ap-

proval scores among all unchosen candidates. Therefore, it follows

from our previous insights that 𝑠ℎ (𝐴,𝑊 ∪{𝑐, 𝑑}) ≥ 𝑠ℎ (𝐴,𝑊 ∪{𝑐, 𝑥})

for every 𝑥 ∈ C \𝑊 𝑐
. Consequently,𝑊 ∪ {𝑐, 𝑑} is chosen for the

committee size |𝑊 ∪ {𝑐, 𝑑}| and seqAV is clone-accepting.
For the other direction, let 𝑓 denote a sequential Thiele rule that

is not seqAV and let ℎ denote its Thiele counting function. Since the

sequential Thiele function is invariant under scaling and shifting

ℎ, we suppose that ℎ(0) = 0 and ℎ(1) = 1. Because 𝑓 is not seqAV,
there is an integer𝑘 ∈ {2, . . . ,𝑚−1} such thatℎ(𝑘) ≠ 𝑘 butℎ( 𝑗) = 𝑗

for all 𝑗 < 𝑘 .

First, we suppose that ℎ(𝑘) > 𝑘 and derive that 𝑓 is not distrust-

ing. For doing so, let Δ = ℎ(𝑘) − 𝑘 and let ℓ be an integer such that

ℓΔ > 1. Now, let𝑊 denote a committee of 𝑘 − 1 ≤ 𝑚− 2 candidates,

let 𝑐, 𝑑 ∈ C \𝑊 denote two candidates, and consider the following

profile 𝐴: ℓ voters report𝑊 ∪ {𝑐}, ℓ + 1 voters report {𝑑}, and two

voters report𝑊 . Since 𝑓 agrees up to committees of size 𝑘 − 1 with

sequential approval voting, we have that 𝑓 (𝐴,𝑘 − 1) = {𝑊 }. More-

over,𝑊 𝑑
obtains a score of (𝑘−1) · (ℓ+2)+ℓ+1, whereas𝑊 𝑐

obtains

a score of (𝑘 −1) · (ℓ +2) + (ℎ(𝑘) − (𝑘 −1))ℓ > (𝑘 −1) · (ℓ +2) + ℓ +1.

Hence, we have that 𝑓 (𝐴,𝑘) = {𝑊 𝑐 }, which violates distrust since

more voters report {𝑑} than there are voters who approve 𝑐 .

As second case, we suppose that ℎ(𝑘) < 𝑘 and show that 𝑓 is

not clone-accepting. We define Δ = 𝑘 − ℎ(𝑘) and choose ℓ ∈ N
again such that ℓΔ > 1. Moreover, let𝑊 denote a committee of size

𝑘 − 2 ≤ 𝑚 − 3, let 𝑏, 𝑐, 𝑑 ∈ C \𝑊 denote candidates outside of𝑊 ,

and consider the following profile 𝐴: ℓ voters report𝑊 ∪ {𝑐, 𝑑} and
ℓ − 1 voters report {𝑏}. Since 𝑓 agrees with seqAV in the first 𝑘 − 1

steps, we have that 𝑓 (𝐴,𝑘 − 1) = {𝑊 ∪ {𝑐},𝑊 ∪ {𝑑}}. Furthermore,

𝑠ℎ (𝐴,𝑊 ∪ {𝑏, 𝑐}) = 𝑠ℎ (𝐴,𝑊 ∪ {𝑏, 𝑑}) = (𝑘 − 1) · ℓ + ℓ − 1 and

𝑠ℎ (𝐴,𝑊 ∪{𝑐, 𝑑}) = (𝑘 −1) · ℓ + (ℎ(𝑘) − (𝑘 −1)) · ℓ < (𝑘 −1) · ℓ + ℓ −1.

This implies that 𝑊 ∪ {𝑐, 𝑑} ∉ 𝑓 (𝐴,𝑘), which shows that 𝑓 is

not clone-accepting. Hence, we must have that ℎ(𝑘) = 𝑘 for all

𝑘 ∈ {0, . . . ,𝑚 − 1} and 𝑓 is therefore seqAV. □

Theorem 4. seqPAV is the only sequential Thiele rule that satisfies
clone-proportionality if𝑚 ≥ 3.

Proof. First, it is not difficult to see that seqPAV is clone-

proportional. For this, consider a profile𝐴 in which 𝑛1 voters report

a common ballot 𝐴1 = {𝑐1, . . . , 𝑐ℓ } and 𝑛2 voters approve a single

candidate 𝑐 ∉ 𝐴1. Finally, let 𝑘 ≤ ℓ denote the target committee

size and ℎ the Thiele counting function of seqPAV. Now, if 𝑛1

𝑘
> 𝑛2,

then it holds for every 𝑗 ∈ {1, . . . , 𝑘} that

𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐 𝑗 }) − 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐 𝑗−1}) =
𝑛1

𝑗
≥ 𝑛1

𝑘

> 𝑛2 = 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐 𝑗−1, 𝑐}) − 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐 𝑗−1}).

This equation shows that candidate 𝑐 is not chosen and thus,

clone-proportionality is in this case satisfied. Moreover, the case

that
𝑛1

𝑘
< 𝑛2 follows by an analogous argument as there must

be a round 𝑗 ≤ 𝑘 such that
𝑛1

𝑗 < 𝑛2. Hence, seqPAV is indeed

clone-proportional.

For the other direction, let 𝑓 denote a sequential Thiele rule other

than seqPAV and let ℎ denote its corresponding Thiele counting

function. Again, we assume without loss of generality that ℎ(0) = 0

and ℎ(1) = 1. Because 𝑓 is not seqPAV, there is an integer 𝑘 ∈
{2, . . . ,𝑚 − 1} such that ℎ(𝑘) ≠ ∑𝑘

𝑖=1

1

𝑖 . Moreover, we suppose that

𝑘 is the minimal such integer, i.e., ℎ( 𝑗) = ∑𝑗

𝑖=1

1

𝑖 for all 𝑗 < 𝑘 .



We proceed with a case distinction and first assume that ℎ(𝑘) >∑𝑘
𝑖=1

1

𝑖 . For this case, let Δ = ℎ(𝑘) − ∑𝑘
𝑖=1

1

𝑖 and ℓ ∈ N such that

ℓ𝑘 · Δ > 1 and ℓ > 𝑘 − 1. Now, consider the profile 𝐴 in which 𝑘ℓ

voters report {𝑐1, . . . , 𝑐𝑘 } and ℓ+1 voters report 𝑐 . For every 𝑗 < 𝑘 , it

holds that
𝑘ℓ
𝑗 = ℓ+ (𝑘− 𝑗 )ℓ

𝑗 > ℓ+1 = 𝑛2. Since seqPAV and 𝑓 agree on

the first 𝑘−1 steps, this means that 𝑓 (𝐴,𝑘−1) contains all subsets of
size 𝑘 − 1 of {𝑐1, . . . , 𝑐𝑘 }. For choosing the 𝑘-th candidate, note that

𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑘 }) = 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑘−1
}) + ℓ𝑘 (ℎ(𝑘) − ℎ(𝑘 − 1)) =

𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑘−1
}) + ℓ𝑘 (Δ+ 1

𝑘
) > 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑘−1

}) + ℓ +1. On

the other hand, 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑘−1
, 𝑐}) = 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑘−1

}) +
ℓ + 1. Thus, 𝑓 (𝐴,𝑘) = {{𝑐1, . . . , 𝑐𝑘 }}. However, this violates clone-
proportionality since

ℓ𝑘
𝑘

< ℓ + 1 and thus, 𝑐 needs to be elected.

For the second case, assume that ℎ(𝑘) <
∑𝑘
𝑖=1

1

𝑖 and define

Δ =
∑𝑘
𝑖=1

1

𝑖 − ℎ(𝑘). Moreover, let ℓ ∈ N such that ℓ𝑘 · Δ > 1 and

ℓ > 𝑘 − 1. In this case, we consider the profile 𝐴 in which 𝑘ℓ + 1

voters report {𝑐1, . . . , 𝑐𝑘 } and ℓ voters report 𝑐 . By an analogous

argument as in the last case, we infer that 𝑓 (𝐴,𝑘 − 1) consists of
all subsets of size 𝑘 − 1 of {𝑐1, . . . , 𝑐𝑘 }. By computing the scores of

{𝑐1, . . . , 𝑐𝑘 } and {𝑐1, . . . , 𝑐𝑘−1
, 𝑐}, we infer that

𝑠ℎ (𝐴,{𝑐1, . . . , 𝑐𝑘 })
= 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑘−1

}) + (ℓ𝑘 + 1) (ℎ(𝑘) − ℎ(𝑘 − 1))

= 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑘−1
}) + (ℓ𝑘 + 1) ( 1

𝑘
− Δ)

< 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑘−1
}) + ℓ

= 𝑠ℎ (𝐴, {𝑐1, . . . , 𝑐𝑘−1
, 𝑐}) .

As desired, this means that every committee in 𝑓 (𝐴,𝑘) contains
𝑐 , which violates clone-proportionality since

ℓ𝑘+1

𝑘
> ℓ .

□
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