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In social choice theory, the domain of single-peaked preference relations
has proven invaluable for obtaining positive results as the phantom median
rules of Moulin (1980) satisfy numerous desirable properties. However, when
we extend this domain to allow voters to vote for more than one alternative,
it is no longer clear which voting rule to use. We will thus study voting
rules on the interval domain, where the alternatives are arranged according
to an externally given strict total order and voters indicate their preferences
by reporting subintervals of this order. In more detail, in this paper we
introduce and characterize the class of position-threshold rules, which roughly
compute a collective position of the voters with respect to every alternative
and choose the left-most alternative such that the collective position of the
alternative exceeds its threshold value. Our characterization mainly relies on
reinforcement, a well-known population consistency condition, and robustness,
a new axiom that requires that small changes in the voters’ intervals only
result in small changes in the outcome. Our main result can thus be seen as an
extension of Moulin’s (1980) influential characterization of phantom median
rules to the interval domain. Furthermore, we characterize an generalization
of the median rule to the interval domain, and we give an extension of our
main result for the case of selecting a fixed-sized multiset of alternatives.

1. Introduction

A ubiquitous phenomenon in today’s societies is collective decision-making: given the
possibly conflicting preferences of multiple agents, a joint decision should be reached
in a fair and principled way. Such processes of group decision making are formally
investigated in the field of social choice theory, where researchers study voting rules from
a mathematical perspective. However, despite significant advances in the understanding of
voting rules (e.g., Arrow et al., 2011; Brandt et al., 2016), social choice theory fails to give
a clear recommendation on which method to use because strong impossibility theorems
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(e.g., Arrow, 1951; Gibbard, 1973; Satterthwaite, 1975; Moulin, 1988) demonstrate that
there are invariable tradeoffs between voting rules.
One of the most successful escape routes to such impossibility theorems is to impose

more structure on the voters’ preferences. In particular, the notion of single-peaked
preferences, which goes back to Black (1948), has turned out very fruitful. The basic idea
of single-peaked preferences is that there is a strict total order ▷ over the alternatives
and that the preference relation of every voter specifies an ideal alternative p such that
alternatives become less preferred when moving further away from p with respect to ▷.
For single-peaked preferences, it is known that most impossibility theorems vanish and
there is large consensus on which voting rules to use (e.g., Border and Jordan, 1983;
Sprumont, 1995; Ching, 1997; Ehlers and Storcken, 2008; Weymark, 2011): the median
rule and, more generally, the phantom median rules introduced by Moulin (1980) have
superior axiomatic properties. Roughly, the median rule sorts the voters with respect to
their top-ranked alternatives according to ▷ and then returns the favorite alternative
of the median voter. Moreover, phantom median rules generalize the median rule by
computing the median rule for the n original voters and n − 1 phantom voters which
always report a fixed single-peaked preference relation.

The appeal of these phantom median rules lies in the fact that they are the only voting
rules on the domain of single-peaked preferences that satisfy anonymity (i.e., all voters
are treated equally), unanimity (i.e., an alternative is guaranteed to be chosen if it is the
favorite alternative of all voters), and strategyproofness (i.e., voters cannot benefit by
lying about their true preferences) (Moulin, 1980; Weymark, 2011). This combination of
axioms is remarkable because no voting rule satisfies all three properties on the domain
of all preference relations (Gibbard, 1973; Satterthwaite, 1975). Moreover, phantom
median rules atisfy numerous further desirable properties such as tops-onlyness (i.e.,
voters only need to report their favorite alternative), reinforcement (i.e., when combining
two elections with the same winner, the winner remains the same), and participation
(i.e., voters cannot benefit by abstaining) (Moulin, 1984; Jennings et al., 2024).

Given the success of phantom median rules on the domain of single-peaked preferences,
it is surprising that rather little is known about voting rules when slightly modifying
the setting. In particular, in this paper, we are interested in the case that voters report
intervals (i.e., sets of consecutive alternatives with respect to ▷). We refer to this problem
as voting on the interval domain and we see at least three convincing explanations of why
voters may want to report such intervals instead of single-peaked preference relations.

(1) If there are several identical (or close to identical) alternatives, it seems plausible that
voters may be indifferent between such alternatives. When the voters’ preferences are
moreover consistent with an externally given order ▷, this results in variants of single-
peaked preferences that allow for ties between alternatives, such as single-plateaued
or weakly single-peaked preferences (e.g., Moulin, 1984; Berga, 1998; Austen-Smith
and Banks, 1999). In particular, for all of these models, the set of most preferred
alternatives of each voter is an interval, so we may interpret the reported intervals as
the sets of the voters’ favorite alternatives.
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(2) Another motivation for intervals is that, in many settings with single-peaked pref-
erences, it may be cognitively demanding for agents to identify a uniquely most
preferred alternative even if it exists. For instance, when voting on budget proposals
for an event, it is reasonable to assume that the voters’ preferences are single-peaked
in the proposed amounts of money. However, it is for voters often hard to grasp the
consequences of each budget proposal and they may thus not be able to identify their
most preferred proposal. It then seems desirable to ask voters for a budget range
instead of a single budget proposal to alleviate their cognitive burden.

(3) Lastly, we believe that there are situations where voters know their most-preferred
alternative but are willing to report a larger set of alternatives to reach a socially
more acceptable consensus. For instance, when voting for a meeting time, it is
frequently the case that the voters have a most-preferred option but are willing to
accept other outcomes for the sake of a unanimous compromise.1 Hence, by reporting
larger intervals, voters may hope to arrive at a socially more desirable outcome.

Importantly, in both the second and third example, voters are not necessarily indifferent
between the alternatives in their reported interval, but they are either not aware about
their own preferences or willingly ignore them. We will thus treat the interval domain as
a strategy space instead of the set of the voters’ preferences: we assume that the interval
of each voter contains the alternatives he likes, but we do not assume that a voter’s
interval fully describes his preferences.

Contribution. In this paper, we will study voting rules on the interval domain and,
in particular, we will introduce and characterize the class of position-threshold rules.
Roughly, these rules determine for every alternative a collective position, which quantifies
the voters’ relative position regarding this alternative, and then choose the left-most
alternative whose collective position exceeds its threshold value. In more detail, position-
threshold rules are defined by a weight vector α ∈ [0, 1]m and a threshold vector θ ∈ (0, 1)m.
The weight vector α is used to quantify the relative position of the voters with respect
to the alternatives: a voter’s relative position to an alternative xi is 0 if all alternatives
in his interval are right of xi, 1 if all alternatives in his interval are left of or equal to
xi, and αi otherwise. Then, a position-threshold rule computes the collective position
of an alternative by summing up the voters’ individual positions to this alternative,
and it returns the left-most alternative whose collective position divided by the number
of voters exceeds its threshold value. While it may not be clear from this description,
position-threshold rules generalize phantom median rules because phantom median rules
can also be formulated via collective positions of alternatives and threshold values.

As our main contribution, we characterize position-threshold rules based on a robustness
notion, a consistency condition for variable electorates, and some basic auxiliary conditions.
In more detail, the main axioms of our characterization are robustness and reinforcement.
Robustness formalizes that a small change in the interval of a voter should only result in a

1One may argue that such concerns should be incorporated in the voters’ preference relation rather than
claiming that voters do not exclusively vote for their favorite alternative. We reject this argument
because we believe that, in practice, voters often willingly accept alternatives they find less desirable.
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small change in the output: if a voter removes his left-most (resp. right-most) alternative
from his interval, the outcome is not allowed to change at all or to only change from the
old left-most (resp. right-most) alternative of the voter to his new left-most (resp. right-
most) alternative. While this axiom is new, it is conceptually related to many prominent
conditions such as localizedness (Gibbard, 1977), Maskin-monotonicity (Maskin, 1999),
and uncompromisingness (Border and Jordan, 1983). Moreover, to further motivate
this axiom, we show in Proposition 1 that robustness is closely related to incentive
properties when the voters have weakly single-peaked preference relations because it, e.g.,
implies strategyproofness. Our second main condition, reinforcement, requires that if
an alternative is chosen in two disjoint elections, it should be also chosen in a combined
election. Variants of this axiom feature in numerous influential works in social choice
theory (e.g., Smith, 1973; Young, 1975; Young and Levenglick, 1978; Fishburn, 1978;
Brandl et al., 2016; Lackner and Skowron, 2021; Brandl and Peters, 2022). In our main
result, we then show that a voting rule on the interval domain is a position-threshold
rule if and only if it satisfies robustness, reinforcement, and three auxiliary conditions
called anonymity, unanimity, and right-biased continuity (Theorem 1).
Based on this result, we furthermore aim to extend the median rule to the interval

domain. To this end, we note that the median rule is the only phantom median rule that
guarantees to select an alternative that is top-ranked by a strict majority of the voters. In
the context of intervals, we call this condition the majority criterion and formalize it by
requiring that an alternative is chosen if it is uniquely reported by more than half of the
voters. We then show that there is only a single position-threshold rule that satisfies the
majority criterion and the natural condition of strong unanimity (if the intersection of the
intervals of all voters is non-empty, an alternative in this intersection needs to be chosen):
the endpoint-median rule (Theorem 2). Intuitively, this rule replaces the interval of each
voter with two singleton ballots corresponding to the left-most and right-most alternative
in the interval, and then executes the median rule. In combination with Theorem 1, we
derive that the endpoint-median rule is the only voting rule on the interval domain that
satisfies anonymity, strong unanimity, the majority criterion, robustness, reinforcement,
and right-biased continuity.
Finally, we also extend our main result to multi-winner elections, where we need to

assign a fixed number of seats to the alternatives instead of choosing a single alternative.
When interpreting our alternatives as parties, this model captures the elections of city
councils and parliaments and it is thus closely related to apportionment (see, e.g., Balinski
and Young, 2001; Pukelsheim, 2014). However, in apportionment, it is commonly assumed
that voters only vote for a single party, whereas we allow them to report intervals. We
then demonstrate that effectively all our results carry over to this interval-apportionment
setting by suitably adapting our axioms. In more detail, based on natural extensions
of our axioms, we show that every multi-winner voting rule that satisfies anonymity,
unanimity, robustness, right-biased continuity, and a strong form of reinforcement can be
decomposed into position-threshold rules (Theorem 3): each such rule assigns each seat
of the committee independently based on a position-threshold rule.
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Related work. Our paper is closely related to the study of strategyproof voting rules on
the domain of single-peaked preference relations, which has garnered significant attention.
In particular, Moulin’s characterization of phantom median rules (Moulin, 1980) has
inspired a large body of follow-up works, including extensions to multi-dimensional
variants of single-peakedness (Border and Jordan, 1983; Zhou, 1991; Barberà et al.,
1993), non-anonymous variants of phantom median rules (Ching, 1997), and randomized
versions of this result (Ehlers et al., 2002; Peters et al., 2014; Pycia and Ünver, 2015).
For comprehensive overviews of these early studies on strategyproof voting rules for
single-peaked preferences, we refer readers to the surveys by Sprumont (1995) and
Weymark (2011). More recent research (e.g., Chatterji et al., 2013; Reffgen, 2015;
Chatterji et al., 2016; Chatterji and Massó, 2018; Chatterji and Zeng, 2023) focuses on
strategyproof voting rules for somewhat technical extensions of the single-peaked domain,
such as semi-single-peaked preferences or lattice single-peaked preferences. In addition
to demonstrating the existence of attractive strategyproof voting rules on these domains,
these works show that, under various side conditions, the corresponding domains are
necessary for the existence of non-dictatorial strategyproof voting rules.

In contrast to the aforementioned papers, we focus on a setting where voters may report
an interval of alternatives rather than a single favorite alternative or a ranking of the
alternatives. To the best of our knowledge, comparable settings have only been studied by
Moulin (1984), Berga (1998), and Berga and Moreno (2009), who investigate voting rules
for single-plateaued preference relations, a generalization of single-peaked preferences
that allows for indifferences. In more detail, Moulin (1984) characterizes the class of
generalized Condorcet winner rules, which roughly compute the median rule with respect
to the endpoints of the voters’ intervals and some additional parameters depending on the
profile, based on two axioms similar to Arrow’s independence of irrelevant alternatives. By
contrast, Berga (1998) and Berga and Moreno (2009) focus on strategyproof voting rules
for the single-plateaued domain but do not provide a closed-form characterization of such
rules. Our results differ from these works as we focus on robustness and reinforcement
and characterize the class of position-threshold rules based on these axioms.
Furthermore, our paper is related to the problem of facility location, where a public-

good facility needs to be placed on the real line based on the voter’s preferences over
the possible positions. In particular, in facility location it is typically assumed that
the voters report their ideal positions for the facility and that their cost for a location
is its distance to their ideal position. Put differently, facility location can be seen as
voting on the real line with single-peaked preferences. The goal of facility location is to
identify strategyproof voting rules that optimize some objective such as the utilitarian or
egalitarian social welfare (e.g., Procaccia and Tennenholtz, 2013; Feldman et al., 2016;
Chan et al., 2021), a problem for which Moulin’s (1980) characterization has proven
invaluable. Since recent works on facility location also investigate scenarios where the
voters report intervals instead of a single location (Elkind et al., 2022; Zhou et al., 2023),
we believe that our results can also provide valuable insights for this setting.

Finally, voting on the interval domain is loosely connected to the problem of interval
aggregation (e.g., Farfel and Conitzer, 2011; Klaus and Protopapas, 2020; Endriss et al.,
2022), where multiple input intervals need to be aggregated into an output interval.
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However, as we aim to choose a single single alternative based on the voters’ intervals,
we end up with rather different axioms that those considered in interval aggregation.

2. The Model

We will use a variable-electorate framework in this paper and thus let N = {1, 2, . . . }
denote an infinite set of voters and A = {x1, . . . , xm} a finite set of m ≥ 2 alternatives.
Intuitively, N is the set of all possible voters and a concrete electorate N is a finite and
non-empty subset of N. The set of all electorates is therefore defined by F(N) = {N ⊆
N : N is non-empty and finite}. The central assumption in this paper is that there is an
externally given strict total order ▷ over the alternatives. Throughout the paper, we will
assume that ▷ is given by x1 ▷ x2 ▷ · · · ▷ xm, and we define the relation ⊵ by xi ⊵ xj
if and only if xi = xj or xi ▷ xj for all xi, xj ∈ A. Given an electorate N ∈ F(N), the
voters are asked to report intervals of ▷ to indicate the alternatives they like. Formally,
a set of alternatives I is an interval (with respect to ▷) if xi ∈ I and xk ∈ I imply xj ∈ I
for all alternatives xi, xj , xk ∈ A with xi ▷ xj ▷ xk. Since intervals are fully specified by
their endpoints, we define [xi, xk] = {xj ∈ A : xi ⊵ xj ⊵ xk} as the interval from xi to xk.
The set of all intervals, or the interval domain, is given by Λ = {[xi, xj ] ⊆ A : xi ⊵ xj}.

An interval profile I = (Ii1 , . . . , Iin) for a given electorate N = {i1, . . . , in} contains
the interval of every voter i ∈ N , i.e., it is a function from N to Λ. Next, the set of
all interval profiles for a fixed electorate N is defined by ΛN and the set of all possible
interval profiles is Λ∗ =

⋃
N∈F(N) Λ

N . Given an interval profile I, we will denote by NI
the set of voters that report an interval for this profile and by nI = |NI | the size of this
set. Our primary goal in this paper is to select a single winning alternative based on such
interval profiles. To this end, we will study voting rules which are formally functions that
map every interval profile I ∈ Λ∗ to a single alternative x ∈ A.

2.1. Relation to Single-peaked Preferences

To relate the interval domain to existing works, we will next introduce the domains of
single-peaked and weakly single-peaked preference relations. To this end, we first define
(weak) preference relations ≿ as complete and transitive binary relations on A, where
x ≿ y means that the respective voter weakly prefers x to y. As usual, a preference relation
is called strict if it is additionally anti-symmetric, i.e., if no ties between alternatives are
permitted. We denote by R the set of all preference relations and by P the set of all
strict preference relations. Now, the idea of (weak) single-peakedness is that preference
relations should be consistent with ▷: there is an ideal alternative x and, as we move
away from x with respect to ▷, the alternatives become worse. In more detail a preference
relation ≿ ∈ P (resp. ≿ ∈ R) is called single-peaked (resp. weakly single-peaked) if there
is an alternative x such that x ≿ y ≿ z for all y, z ∈ A with x ▷ y ▷ z or z ▷ y ▷ x.
We note that, since single-peaked preference relations are by definition strict, the ideal
alternative x is unique. By contrast, weakly single-peaked preference relations allow for
indifferences, so there may be multiple favorite alternatives. The sets of single-peaked
and weakly single-peaked preference relations are given by P▷ and R▷, respectively.
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Moreover, we define by PN
▷ and RN

▷ the sets of (weakly) single-peaked preference profiles
for a fixed electorate N , and by P∗

▷ =
⋃

N∈F(N) PN
▷ and R∗

▷ =
⋃

N∈F(N)RN
▷ the sets of

all (weakly) single-peaked preference profiles.
If we assume that the voters’ true preferences are single-peaked or weakly single-peaked,

there are at least three plausible ways how they may infer their interval.

(1) Maybe the most direct approach is that each voter reports the the set of his most-
preferred alternatives T (≿) = {x ∈ A : ∀y ∈ A : x ≿ y}, which is known to be an
interval when ≿ is weakly single-peaked (e.g., Puppe, 2018). We note that this
approach has been considered before (e.g., Moulin, 1984; Berga, 1998) and it entails
that voters are indifferent between all alternatives in their interval. As a consequence,
it may not accurately describe situations where voters are not fully aware of their
own preferences or take social considerations into account.

(2) Another method to transform a weakly single-peaked preference relation into an
interval is to assume that the reported interval is the set of alternatives that exceed
some utility threshold. To make this more precise, let U(≿, x) = {y ∈ A : y ≿ x}
denote the upper contour set of alternative x with respect to the preference relation ≿.
Then, we say that an interval I is consistent with a weakly single-peaked preference
relation ≿ if I = U(≿, x) for some alternative x ∈ A. This approach has been studied
in the context of approval voting for general preferences (e.g., Brams and Fishburn,
1978; Niemi, 1984; Brams and Fishburn, 2007; Endriss, 2013), and it can be used to
describe voters who are not fully aware of their own preferences as only a limited
information is needed to infer the set U(≿, x).

(3) We believe that even consistency may be too strong for practical purposes. In
particular, when voters take additional considerations such as the acceptability of the
outcome into account, a voter’s interval may not be consistent with his preference
relation. We will thus consider an even weaker form of consistency, which only
requires that the reported interval contains the voter’s most preferred alternatives.
More formally, we say an interval I is top-consistent with a weakly single-peaked
preference relation ≿ if T (≿) ⊆ I.

2.2. Robustness

We will next introduce the central axiom for our analysis called robustness. The rough
idea of this axiom is that small changes in the voters’ intervals should only cause small
changes in the outcome. In more detail, robustness requires of a voting rule that, if a voter
removes the left-most (resp. right-most) alternative from his interval, then the winner
cannot change at all or the winner changes from the old left-most (resp. right-most)
alternative to the new left-most (resp. right-most) alternative. To formalize this, let Ii↓x

denote the interval profile derived from another profile I by removing alternative x from
the interval of voter i, and note that Ii↓x is a valid interval profile only if |Ii| ≥ 2 and x
is the left-most or right-most alternative in Ii. Then, robustness is defined as follows.
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Definition 1 (Robustness). A voting rule f is robust if, for all interval profiles I ∈ Λ∗,
voters i ∈ NI , and alternatives xℓ, xr such that Ii = [xℓ, xr] and xℓ ▷ xr, it holds that

(i) f(I) = f(Ii↓xℓ), or f(I) = xℓ and f(Ii↓xℓ) = xℓ+1, and

(ii) f(I) = f(Ii↓xr), or f(I) = xr and f(Ii↓xr) = xr−1.

Robustness can equivalently be formulated in terms of adding an alternative to a
voter’s interval: if we, e.g, add a new left-most alternative to the voter’s interval, the
winner cannot change or the winner changes from the voter’s old left-most alternative to
his new left-most alternative. Moreover, we note that similar invariance notions have
been studied before (e.g., Gibbard, 1977; Saijo, 1987; Maskin, 1999; Muto and Sato,
2017; Bredereck et al., 2021), with the most prominent examples being localizedness and
Maskin-monotonicity. We thus believe that robustness in itself is a desirable property as
it prohibits that the outcome changes in an unexpected way. To further motivate this
axiom, we will next analyze the relation of robustness to various incentive properties.

Relation to uncompromisingness. First, we explain how robustness relates to a
condition called uncompromisingness, which is commonly studied in the context of single-
peaked preference relations (e.g., Border and Jordan, 1983; Sprumont, 1995; Ehlers et al.,
2002). Uncompromisingness requires of a voting rule on PN

▷ that the outcome is not
allowed to change if the voter’s favorite alternative stays on the same side of the current
winner. More formally, a voting rule f on PN

▷ is uncompromising if f(R) = f(R′) for all
preference profiles R,R′ ∈ PN

▷ and voters i ∈ N such that (i) ≿j = ≿′
j for all j ∈ N \ {i}

and (ii) T (≿i) ▷ f(R) and T (≿′
i) ⊵ f(R), or f(R) ▷ T (≿i) and f(R) ⊵ T (≿′

i) (while
slightly abusing notation, T (≿i) denotes here the favorite alternative of voter i instead
of the corresponding singleton set). Equivalently, uncompromisingness can be formulated
by requiring that, if a voter changes his favorite alternative from xi to xi+1 (resp. xi−1),
the outcome is not allowed to change or to change from xi to xi+1 (resp. xi−1). It is
then easy to see that robustness generalizes this formulation of uncompromisingness from
the domain of single-peaked preference relations to the interval domain.

Relation to strategyproofness. Next, we observe that robustness is closely related to
strategyproofness when assuming that voters have weakly single-peaked preferences. The
rough idea of strategyproofness is that voters cannot benefit by lying about their true
preferences. Following Moulin (1980) and Berga (1998), we formalize this by requiring
that it is always in the best interest of voters to report their favorite alternatives T (≿i)
truthfully: a voting rule f is strategyproof if f(I) ≿i f(I ′) for all interval profiles
I, I ′ ∈ Λ∗ with NI = NI′ , voters i ∈ NI , and weakly single-peaked preference relation
≿i such that and Ii = T (≿i) and Ij = I ′j for all j ∈ N \ {i}. As we show in Proposition 1,
robustness implies strategyproofness when voters have weakly single-peaked preferences.

Relation to sincerity. While strategyproofness is the most common incentive property
in social choice theory, it may not be the right axiom for our setting. Specificallly,
strategyproofness assumes that voters fully adhere to their preference relation ≿i, whereas
one of our motivations for studying intervals was that voters may not be fully aware of
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≿i or willingly ignore some preferences. To address such settings, we introduce another
incentive property that we call sincerity. For this condition, we assume that every voter
has a true interval Ii that is top-consistent with his weakly single-peaked preference
relation ≿i ∈ R▷. Then, we say that a voting rule f is sincere if, for all electorates
N ∈ F(N), voters i ∈ N , interval profiles I, I ′ ∈ ΛN , and weakly single-peaked preference
relations ≿i ∈ R▷ such that Ij = I ′j for all j ∈ N \ {i} and Ii is top-consistent with ≿i, it
holds that (i) f(I) ≿i f(I ′) if f(I) ̸∈ Ii, and (ii) f(I) ≿i f(I ′) if Ii ⊆ I ′i. Put differently,
the first condition ensures that a voter cannot manipulate unless an alternative in his
interval is chosen. This is reasonable as we assume that voters view Ii as their truthful
interval and thus ignore possible preferences within this set. Moreover, it is impossible to
prohibit voters from manipulating when taking the preferences between the alternatives
in Ii into account. The second condition states that it is never beneficial for a voter to
report larger intervals than necessary. Hence, sincerity also incentivizes voters to explore
their own preferences to derive the most desirable outcome. As we show in the next
proposition, robustness is mathematically equivalent to sincerity.

Proposition 1. If the voters infer their intervals from weakly single-peaked preference
relations, it holds that

(i) every robust voting rule on Λ∗ is strategyproof, and

(ii) a voting rule on Λ∗ is robust if and only if it satisfies sincerity.

Proof. For the proof of Claim (i), we observe that sincerity implies strategyproofness by
assuming that the true interval Ii of a voter i coincides with his set of most preferred
alternatives, i.e., Ii = T (≿i). If f(I) ∈ Ii for some profile I, this means that voter i
cannot manipulate as one of his most preferred alternatives is chosen. On the other hand,
if f(I) ̸∈ Ii, sincerity requires that f(I) ≿i f(I ′) for all interval profiles I ′ such that
NI = NI′ and Ij = I ′j for all j ∈ N \ {i}. Hence, we focus on proving that robustness is
equivalent to sincerity, which also shows that robustness implies strategyproofness. We
will prove both directions of this equivalence separately.

( =⇒ ) We first assume that f is a robust voting rule on Λ∗ and will show that it is
also sincere. To this end, let N ∈ F(N) denote an electorate, i ∈ N a voter, I, I ′ ∈ ΛN

two interval profiles with Ij = I ′j for all j ∈ N \ {i}, and ≿i ∈ R▷ a weakly single-peaked
preference relation that is consistent with Ii. For the ease of presentation, we furthermore
define the alternatives xℓ, xr, xℓ′ , xr′ such that Ii = [xℓ, xr] and I ′i = [xℓ′ , xr′ ]. We first
assume that f(I) ̸∈ Ii and will show that f(I) ≿i f(I ′). To this end, we suppose that
f(I) ▷ xℓ and note that the case that xr ▷ f(I) is symmetric. Now, if f(I) ⊵ xℓ′ , we
infer from robustness that f(I) = f(I ′). In more detail, let y denote the alternative
that is directly right of f(I), i.e., f(I) ▷ y and there is no other alternative z with
f(I) ▷ z ▷ y. We first blow up Ii to the interval [y, xm] by one after another adding
alternatives to voter i’s interval. Robustness implies for every step that the winner does
not change, so f(I1) = f(I) for the profile I1 where voter i reports [y, xm]. Next, if
y ⊵ xℓ′ , we remove alternatives from the interval to arrive at I ′i and robustness implies
again that the winner is not allowed to change because voter i does not remove the
current winner from his interval. If, by contrast, xℓ′ ▷ y, then xℓ′ = f(I). In this case,
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we also add xℓ′ to the interval of voter i and note that robustness shows that the winner
is not allowed to change for this step. Finally, we remove alternatives on the right end of
the voters interval to infer I ′i and robustness shows that the outcome does not change
because we again do not remove the current winner f(I) from voter i’s interval. Hence,
we have that f(I) = f(I ′), and our claim holds in this case.

Next, suppose that xℓ′ ▷ f(I). We use a second case distinction and assume additionally
that f(I) ⊵ xr′ . In this case, consider the profile I2 where voter i reports I2i = [f(I), xr′ ].
By the reasoning in the last paragraph, it holds that f(I2) = f(I). Now, we one
after another add alternatives to the left of f(I) to voter i’s interval until he reports I ′i.
Robustness implies for all of these steps that the winner can only move to the left, i.e., that
f(I ′) ⊵ f(I). However, weak single-peakedness then shows that f(I) ≿i f(I ′) because
T (≿i) ⊆ Ii by top-consistency. In more detail, it holds that f(I ′) ⊵ f(I) ▷ xℓ ⊵ x for all
x ∈ T (≿i), so f(I) ≿i f(I ′) by weak single-peakedness. As the second subcase, suppose
that xr′ ▷ f(I) and let I3 denote the profile where voter i reports [xℓ′ , xr] and I3j = Ij
for all other voters j ∈ N \ {i}. By our previous argument, we have that f(I3) ⊵ f(I).
If f(I3) ⊵ xr′ , we can remove the alternatives right of xr′ from voter i’s interval and
robustness implies that f(I ′) = f(I3) as we do not touch the current winner. On the
other hand, if xr′ ▷ f(I3), robustness shows that f(I ′) ⊵ f(I3) as the winner can only
move to the left when we remove the right-most alternatives from voter i’s interval. In
both cases, we have again that f(I ′) ⊵ f(I), so weak single-peakedness implies again
that f(I) ≿i f(I ′). Hence, f satisfies the first condition of sincerity.
Lastly, to prove the second condition of sincerity, we assume that Ii ⊆ I ′i and we will

show that f(I) ≿i f(I ′). If f(I ′) ̸∈ I ′i, a repeated application of robustness directly
shows that f(I ′) = f(I) and the claim holds. Similarly, if f(I ′) ∈ Ii ⊆ I ′i, it again holds
that f(I ′) = f(I) due to robustness. Hence, we assume that f(I ′) ∈ I ′i \ Ii. To make
this more precise, we define xℓ, xr, xℓ′ , xr′ as before and suppose that xℓ′ ⊵ f(I ′) ▷ xℓ.
We first note that robustness implies that f(I ′) = f(I4) for the profile I4 where voter
i reports [xℓ′ , xr] and I4j = Ij for all j ∈ N \ {i}. Next, by one after another removing
the alternatives left of xℓ from voter i’s interval, we infer that f(I ′) ⊵ f(I) ⊵ xℓ due
to robustness. The weak single-peakedness of ≿i then shows that f(I ′) ≿i f(I) since
T (≿i) ⊆ Ii and f(I) is thus closer to voter i’s favorite alternatives than f(I ′).

( ⇐= ) Next we will show that, if f fails robustness, then it also fails sincerity. To
this end, let N denote an electorate, I ∈ ΛN an interval profile, i ∈ N a voter, and
xℓ, xr ∈ A two alternatives such that xℓ ▷ xr and Ii = [xℓ, xr]. Without loss of generality,
we assume that f fails robustness when voter i changes his interval to I ′i = [xℓ+1, xr] as
the case that Ii = [xℓ, xr−1] is symmetric. First, we consider the case that f(I) ̸∈ Ii.
Then, violating robustness means that f(I) ̸= f(I ′), where I ′ is the profile where voter i
reports I ′i and all voters j ∈ N \ {i} report Ij . To show that f fails sincerity, let ≿i ∈ P▷

denote a single-peaked preference relation such that T (≿i) = {xℓ+1}, which means that
≿i is top-consistent with both Ii and I ′i. Now, if voter i strictly prefers f(I ′) to f(I),
sincerity is violated because f(I) ̸∈ Ii and not f(I) ≿i f(I ′). Conversely, if voter i
strictly prefers f(I) to f(I ′), sincerity is violated since I ′i ⊊ Ii and f(I ′) ≿i f(I) fails.
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Since single-peaked preference relations are strict and f(I) ̸= f(I ′), one of these cases
must apply, so sincerity is violated if f(I) ̸∈ Ii.
Next, suppose that f(I) ∈ Ii \ {xℓ} = I ′i. In this case, a failure of robustness again

implies that f(I) ̸= f(I ′). In this case, let ≿i ∈ P▷ denote a single-peaked preference
relation such that T (≿i) = {f(I)}. Since f(I) ∈ I ′i, it follows that ≿i is top-consistent
with I ′i. In turn, the second condition of sincerity requires that f(I ′) ≿i f(I) since
I ′i ⊊ Ii. However, since f(I) ̸= f(I ′), f(I) is voter i’s favorite alternative in ≿i, and ≿i

is strict, voter i strictly prefers f(I) to f(I ′), which contradicts sincerity.
Finally, assume that f(I) = xℓ. In this case, a violation of robustness entails that

f(I ′) ̸∈ {xℓ, xℓ+1}. Now, consider a single-peaked preference relation ≿i ∈ P▷ with
xℓ+1 ≿i xℓ ≿i x for all x ∈ A \ {xℓ, xℓ+1}, which is top-consistent with I ′i since xℓ+1 ∈ I ′i.
However, since f(I ′) ̸∈ {xℓ, xℓ+1}, voter i strictly prefers f(I) to f(I ′). This contradicts
sincerity as I ′i ⊊ Ii. Since we have covered all cases, it follows that if f fails robustness,
it also fails sincerity.

2.3. Further axioms

In this section, we will introduce four standard axioms, namely unanimity, anonymity,
reinforcement, and right-biased continuity. Variants of these axioms feature prominently
in the analysis of various types of scoring rules (e.g., Smith, 1973; Young, 1975; Young
and Levenglick, 1978; Fishburn, 1978; Brandl et al., 2016; Lackner and Skowron, 2021).

Unanimity. A basic requirement of voting rules is that, if all voters agree on a favorite
alternative, this alternative is selected. This is formalized by unanimity, which requires
of a voting rule f on Λ∗ that f(I) = xj for all interval profiles I ∈ Λ∗ and alternatives
xj ∈ A such that Ii = {xj} for all i ∈ NI .

Anonymity. Anonymity postulates that the selected outcome is invariant under re-
naming the voters. More formally, a voting rule f is anonymous if f(I) = f(τ(I)) for all
interval profiles I ∈ Λ∗ and bijections τ : N → N. Here, I ′ = τ(I) denotes the profile
defined by NI′ = {τ(i) : i ∈ NI} and I ′τ(i) = Ii for all i ∈ NI .

Reinforcement. The idea of reinforcement is that, if a common outcome is chosen
for two disjoint elections, then it should also be chosen for a combined election. The
reason for this is that, if an alternative is the “best” outcome for two disjoint profiles, it
should also be the “best” outcome for the combined profile. To formalize this, we let
I ′′ = I + I ′ denote the profile derived from two profiles I, I ′ ∈ Λ∗ with NI ∩NI′ = ∅
by setting NI′′ = NI ∪NI′ , I ′′i = Ii for all i ∈ NI , and I ′′i = I ′i for all i ∈ NI′ . Then, a
voting rule f is reinforcing if f(I + I ′) = f(I) for all interval profiles I, I ′ ∈ Λ∗ such
that NI ∩NI′ = ∅ and f(I) = f(I ′).

Right-biased continuity. As our last axiom, we will introduce a variant of an axiom
known as continuity or overwhelming-majority property (Young, 1975; Myerson, 1995).
The rough idea of this axiom is that, if we are given two profiles, we can marginalize
the effect of one profile on the outcome by sufficiently often cloning the other profile.
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More formally, continuity typically requires that, for all profiles I, I ′ ∈ Λ∗, there is λ ∈ N
such that f(λI + I ′) ⊆ f(I) (where λI denotes a profile that consists of λ copies of
I). However, this formulation is incompatible with our model because resolute voting
rules require tie-breaking, which is not continuous. We will thus weaken this axiom and,
moreover, use it to specify the tie-breaking used in our voting rules. In more detail,
we say that a voting rule f on Λ∗ satisfies right-biased continuity if it holds for all
profiles I, I ′ ∈ Λ∗ with NI ∩NI′ = ∅ that (i) if f(I ′) ⊵ f(I), there is λ ∈ N such that
f(λI + I ′) = f(I) and (ii) if f(I) ▷ f(I ′), there is an alternative xj ∈

⋃
i∈NI

Ii and
λ ∈ N such that f(I) ⊵ f(λI + I ′) ⊵ xj . Less formally, right-biased continuity ensures
full continuity if f(I) is right of f(I ′) and otherwise only guarantees that we cannot
completely ignore I when duplicating this profile sufficiently often. We note, however,
that the second condition becomes close to full continuity when the set

⋃
i∈NI

Ii is small.

2.4. Position-Threshold Rules

We will now introduce the central class of voting rules in this paper, which we call
position-threshold rules. Since these rules can be seen as a generalization of Moulin’s
phantom median rules (1980), we will first discuss these rules.

Phantom median rules. Phantom median rules are typically defined on the domain
of single-peaked preference profiles for a fixed electorate N and work as follows: given a
single-peaked profile R ∈ PN

▷ , we first add |N | − 1 phantom voters with fixed preference
relations, then order all 2|N |−1 voters with respect to their favorite alternatives according
to ▷, and finally return the favorite alternative of |N |-th voter in this list. To make this
more formal, let pi denote the number of phantom voters that top-rank alternative xi and
let qi(R) be the number of regular voters that top-rank alternative xi in the profile R.
Then, a phantom median rule chooses for every profile R the alternative xi with minimal
index i such that

∑i
j=1 pj + qj(R) ≥ |N |.

We will next reformulate this definition and hence introduce the (individual) peak
position function πSP (≿i, xj) which states the relative position of a voter i with respect
to each alternative xj : πSP (≿i, xj) = 1 if voter i’s favorite alternative xi is weakly
left of xj (i.e., xi ⊵ xj) and πSP (≿i, xj) = 0 otherwise. Moreover, we define the
(collective) peak position function ΠSP of an alternative xj in a single-peaked profile
R by ΠSP (R, xj) =

∑
i∈NR

πSP (≿i, xj). Put differently, the collective peak position
function ΠSP counts how many voters in R report a favorite alternative that is weakly
left of xj . Next, we define by max▷X the left-most alternative x in a given set X, i.e.,
x = max▷X satisfies that x ∈ X and x ▷ y for all y ∈ X \ {x}. Then, a voting rule f is
a phantom median rule if there are integers p1, . . . , pm ∈ N0 such that

∑m
j=1 pj = |N | − 1

and f(R) = max▷{xi ∈ A : ΠSP (R, xi) ≥ |N | −
∑i

j=1 pj} for all profiles R ∈ PN
▷ .

Finally, to extend the definition of phantom median rules from a fixed electorate to
all feasible electorates, we will replace the values pi with a threshold vector θ, which is
formally a vector in (0, 1)m such that θ1 ≥ θ2 ≥ · · · ≥ θm. The intuition is that for every
electorate N , the value θi · |N | is equal to |N | −

∑i
j=1 pj , i.e., θi states the fraction of
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the voters that need to report an alternative left of xi to make xi an eligible outcome.2

Based on this notation, we end up with our final definition of phantom median rule for
variable electorates.

Definition 2 (Phantom median rules). A voting rule f on P∗
▷ is a phantom median rule

if there is a threshold vector θ ∈ (0, 1)m with θ1 ≥ · · · ≥ θm such that f(R) = max▷{xi ∈
A : ΠSP (R, xi) ≥ θi|NR|} for all profiles R ∈ P∗

▷.

We note that, in this definition, the value θm is irrelevant since ΠSP (R, xm) = |NR| for
all profiles R. Moreover, the restriction that θi > 0 for i ∈ {1, . . . ,m− 1} is necessary to
ensure unanimity as ΠSP (R, xi) ≥ 0 for all i ∈ {1, . . . ,m}, and the condition that θi < 1
for all i ∈ {1, . . . ,m− 1} is necessary to satisfy right-biased continuity.

Position-threshold rules. Position-threshold rules aim to extend phantom median
rules to the interval domain by generalizing the peak position function πSP to intervals.
The central problem for this is that a voter’s position with respect to some alternatives is
unclear if his interval contains more than one alternative. For instance, if a voter reports
[x1, x2, x3], his relative position with respect to x1 and x2 is ambiguous. In this paper,
we will solve this issue by using a weight vector α ∈ [0, 1]m which quantifies the relative
position of every voter with respect to the alternatives in his interval. In more detail, if
an alternative xk is in the interval Ii of voter i (but it is not the right-most alternative in
Ii), then the relative position of voter i with respect to xk is αk. By contrast, just as for
the peak position function, a voter’s position with respect to xk is 1 if every alternative
in his interval is weakly left of xk and 0 if every alternative in his interval is strictly right
of xk. We formalize this idea with individual position functions πα : Λ×A → R, which
depend on a weight vector α and are defined as follows:

πα([xi, xj ], xk) =


0 if xk ▷ xi

αk if xi ⊵ xk ▷i xj

1 if xj ⊵ xk.

We note that every individual position function πα generalizes the individual peak
position function πSP to the interval domain because πSP (≿, xj) = πα(T (≿), xj) for all
single-peaked preference relations ≿ ∈ P▷, alternatives xj ∈ A, and weight vectors α.

Given a weight vector α, we define the (collective) position function Πα of an alternative
xj in an interval profile I as Πα(I, xj) =

∑
i∈NI

πα(Ii, xj). Based on a weight vector α
and a threshold vector θ, we can now define position-threshold rules: we simply chose
the alternative with the smallest index whose collective position exceeds its threshold.
However, while all such rules are well-defined (as Πα(I, xm) = nI), we need to impose
additional constraints on the weight vector to guarantee robustness. In particular, we say
that a weight vector α is compatible with a threshold vector θ if, for all i ∈ {1, . . . ,m−2},

2As we require that θi < 1, it is not possible that θi|N | = |N | −
∑i

j=1 pj if
∑i

j=1 pj = 0. However, for

every fixed N , it is easy to check that setting θi =
2(|N|−

∑i
j=1 pj)−1

2|N| results in the same rule.
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it holds that

αi+1 − αi ≥ (θi+1 − θi) ·max

(
αi

θi
,
1− αi

1− θi

)
.

Since θi ≥ θi+1 by the definition of threshold vectors, the right side of this inequality
is always less or equal to 0, so this constraint only forbids that αi is significantly larger
than αi+1. Consequently, all weight vectors α with α1 ≤ α2 ≤ . . . αm are compatible
with all threshold vectors θ. These are the most natural weight vectors because the
inequality αi+1 ≥ αi intuitively captures that a voter is “at least as much left” of xi+1

as of xi. Moreover, as we will show in our proofs, the above inequality is sufficient and
necessary to ensure that Πα(I, xi) ≥ θi implies Πα(I, xi+1) ≥ θi+1 for all profiles I ∈ Λ∗

and alternatives xi ∈ A \ {xm}. This condition is naturally satisfied by the peak position
function and turns out to be crucial for defining robust voting rules.
We are now ready to state our formal definition of position-threshold rules.

Definition 3 (Position-threshold rules). A voting rule f on Λ∗ is a position-threshold
rule if there are a threshold vector θ ∈ (0, 1)m with θ1 ≥ · · · ≥ θm and a compatible
weight vector α ∈ [0, 1]m such that f(I) = max▷{xi ∈ A : Πα(I, xi) ≥ θinI} for all
interval profiles I ∈ Λ∗.

To provide further intuition for these rules, we discuss the roles of the threshold vector
θ and the weight vector α in more detail. Moreover, we display in Figure 1 an example
illustrating how position-threshold rules work. Now, we first note that the threshold
vector θ can be interpreted just as for phantom median rules: for every i ∈ {1, . . . ,m−1},
θi states the fraction of the phantom voters that report an alternative right of xi. For
instance, if θi =

3
4 for all i ∈ {1, . . . ,m}, we may imagine that 1

4nI phantom voters
report {x1} and 3

4nI phantom voters report {xm}. As a second example, if θi =
m−i
m

for all i ∈ {1, . . . ,m− 1} and θm = 1
m , each alternative xi is reported by a 1

m share of
the phantom voters. We note here that, even though our voters are allowed to report
intervals, it suffices that the phantom voters report single alternatives.
Next, the weight vector can be interpreted as a way of decomposing intervals into

singleton ballots: if a voter reports an interval [xℓ, xr], we may replace this voter with
αℓ voters reporting {xℓ}, αi − αi−1 voters reporting {xi} for every alternative xi ∈
{xℓ+1, . . . , xr−1}, and 1− αr voters reporting {xr}. When applying this transformation
to the interval of every voter, the outcome of the given position-threshold rule for the
input profile is the same as for the simplified profile where all (fractional) voters only
report singleton ballots. For instance, for the weight vector α = (1, . . . , 1), this means
that every interval is represented by a voter that reports only the left-most alternative of
the interval. As a second example, if α = (12 , . . . ,

1
2), every interval [xi, xj ] is represented

by 1
2 voters reporting {xi} and 1

2 voters reporting xj . Moreover, since position-threshold
rules satisfy reinforcement, we can scale these numbers and, e.g., equivalently assume
that every interval is represented by one voter reporting {xi} and one voter reporting
{xj}. Since position-threshold rules effectively reduce to phantom median rules when all
voters report intervals of size 1, this gives a direct relation between position-threshold
rules and phantom median rules.
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I: 1: [x1, x2]

2: [x1, x3]

3: [x2, x4]

1
2

3

x1 x2 x3 x4

Figure 1: Example of position-threshold rules. The interval profile I contains 3 voters
and 4 alternatives, and it is graphically represented on the right. First, let f1
denote the position-threshold rule given by the threshold vector θ = (12 ,

1
2 ,

1
2 ,

1
2)

and the weight vector α = (1, 1, 1, 1). This rule selects the median of the voters’
left endpoints and it holds that f1(I) = x1 since Πα(I, x1) = 2 > 1

2nI . By
contrast, for the position-threshold rule f2 defined by the same threshold vector
θ and the weight vector β = (12 ,

1
2 ,

1
2 ,

1
2), it holds that Πβ(I, x1) = 1 < 1

2nI
and Πβ(I, x2) = 3

2 ≥ 1
2nI , so f2(I) = x2. As a third example, consider the

position-threshold rule induced by the threshold vector vector ϕ = (34 ,
3
4 ,

1
4 ,

1
4)

and the weight vector γ = (14 ,
1
4 ,

3
4 ,

3
4). It holds that Πγ(I, x1) = 1

2 < 3
4nI ,

Πγ(I, x2) = 1 + 1
4 < 3

4nI , and Πγ(I, x3) = 2 + 3
4 > 1

4nI , so f3(I) = x3.

3. Results

We are now ready to state our results: in Section 3.1 we discuss our characterization of
position-threshold rules, in Section 3.2 we characterize a particular position-threshold
rule called the endpoint-median rule, and in Section 3.3 we extend our characterization
of position-threshold rules to the case of choosing a multiset of alternatives.

3.1. A Characterization of Position-Threshold Rules

In this section, we discuss our main result, the characterization of position-threshold rule.
In more detail, we will prove that position-threshold rules are the only voting rules on Λ∗

that satisfy robustness, anonymity, unanimity, reinforcement, and right-biased continuity.
We note that it is an easy consequence of Moulin’s work (1980) that phantom median
rules, as defined in Definition 2, are the only single-winner voting rules on the domain of
single-peaked preference relations that satisfy the given axioms when suitably adapting
robustness. Hence, our characterization can be seen as an extension of Moulin’s result to
the interval domain. Since the proof of the subsequent theorem is lengthy, we will only
provide a proof sketch in the main body and defer the full proof to the appendix.

Theorem 1. A single-winner voting rule on Λ∗ is robust, anonymous, unanimous,
reinforcing, and right-biased continuous if and only if it is a position-threshold rule.

Proof Sketch. ( ⇐= ) For the direction from right to left, we fix a position-threshold
rule f and let θ and α denote the its threshold and weight vectors. Note that, by
definition, θ and α are compatible. Now, it is easy to see that f is anonymous as
the collective position function Πα is invariant under renaming the voters. Moreover,
f is unanimous as Πα(I, xj) = nI and Πα(I, xh) = 0 for all xh with xh ▷ xi if
Ii = {xj} for all i ∈ NI . Thirdly, our position-threshold rule f is reinforcing as

15



Πα(I+I ′, xi) = Πα(I, xi)+Πα(I ′, xi). Hence, if Πα(I, xi) ≥ θinI and Πα(I ′, xi) ≥ θinI′ ,
then Πα(I+I ′, xi) ≥ θinI+I′ . Moreover, it follows analogously that Πα(I, xi) < θinI and
Πα(I ′, xi) < θinI′ imply that Πα(I+I ′, xi) < θinI+I′ . Now, if f(I) = f(I ′) = xj for two
profiles I, I ′ ∈ Λ∗ with NI∩NI′ = ∅, then it holds for Î ∈ {I, I ′} that Πα(Î, xj) ≥ θj |NÎ |
and Πα(Î, xh) < θh|NÎ | for all xh ∈ A with xh ▷ xj . Our previous insights thus entail
that f(I + I ′) = xj .
Next, for robustness and right-biased continuity, we show in the appendix that, if θ

and α are compatible, then Πα(I, xi) ≥ θinI implies that Πα(I, xi+1) ≥ θi+1nI for all
profiles I ∈ Λ∗ and alternatives xi ∈ A\{xm}. Now, to prove that f is robust, let I be an
interval profile, i ∈ NI a voter, and xℓ, xr ∈ A the two alternatives such that xℓ ▷ xr and
Ii = [xℓ, xr]. We will show that f(I) = f(Ii↓xℓ) or f(I) = xℓ and f(Ii↓xℓ) = xℓ+1 and
observe that similar arguments also apply for Ii↓xr . By the definition of Πα, it holds that
Πα(I, xj) = Πα(Ii↓xℓ , xj) for all alternatives xj ∈ A \ {xℓ} and Πα(I, xℓ) ≥ Πα(Ii↓xℓ , xℓ).
If f(I) ̸= xℓ, this implies that f(I) = f(Ii↓xℓ). On the other hand, if f(I) = xℓ, it
follows that Πα(Ii↓xℓ , xj) = Πα(I, xj) < θjnI for all alternatives xj with xj ▷ xi and
our auxiliary claim in the appendix shows that Πα(Ii↓xℓ , xℓ+1) = Πα(I, xℓ+1) ≥ θℓ+1nI .
In combination, this proves that f(Ii↓xℓ) ∈ {xℓ, xℓ1} and f thus is robust.
Finally, to prove that f satisfies right-biased continuity, we consider two profiles I

and I ′ and we make a case distinction with respect to the relative position of xi = f(I)
and xj = f(I ′). For instance, if xj ▷ xi, we infer that Πα(I, xh) < θhnI for all xh with
xh ▷ xi. By copying I sufficiently often, we can make the absolute difference in this
inequality arbitrarily big, so there is λ ∈ N such that Πα(λI + I ′, xh) < θh|NλI+I′ | for
all xh with xh ▷ xi. Furthermore, it holds that Πα(I, xi) ≥ θinI as f(I) = xi and that
Πα(I ′, xi) ≥ θinI′ as f(I ′) = xj and xj ▷ xi. This implies that Πα(λI+I ′, xi) ≥ θinλI+I′ ,
so f(λI + I ′) = xi and right-biased continuity is satisfied in this case.

( =⇒ ) For the direction from left to right, we assume that f is a voting rule on Λ∗ that
satisfies anonymity, unanimity, robustness, reinforcement, and right-biased continuity.
As the first step, we investigate f on the subset D∗

1 of Λ∗ where voters only report a
single alternative. This domain is related to the domain of single-peaked preferences by
associating the reported alternative with the top-ranked alternative of a single-peaked
preference relation. We hence show that f induces a voting rule f ′ on the domain of single-
peaked preference profiles that satisfies anonymity, unanimity, and strategyproofness.
The characterization of Moulin (1980) thus shows that f ′ is a phantom median rule. By
using the connection between f and f ′, we then derive that there is a threshold vector
θ ∈ (0, 1)m such that θ1 ≥ θ2 ≥ · · · ≥ θm and f(I) = max▷{xi ∈ A : Πα(I, xi) ≥ θinI}
for all profiles I ∈ D∗

1. (Note that the choice of the weight vector α does not matter here
as all voters only report a single alternative.)

Next, we will apply the geometric techniques initially developed by Young (1975) in the
context of scoring rules. To this end, we define q = |Λ| as the number of intervals over ▷
and assume that the intervals in Λ are enumerated in an arbitrary order I1, . . . , Iq. Based
on this enumeration, we can represent each interval profile I by a vector v ∈ Nq \ {0},
where the entry vi states how often the interval Ii is reported in I. Moreover, since
f is anonymous, it can be computed based on the vectors v, i.e., we may interpret f
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as function from Nq \ {0} to A. Next, we show based on reinforcement that f can be
extended to a function ĝ : Qq

≥0 \ {0} → A while preserving its desirable properties. We
then define the sets Qi = {v ∈ Qq

≥0 \ {0} : ĝ(v) = xi} and note that these sets are
Q-convex (i.e., for all v, v′ ∈ Qi and λ ∈ [0, 1] ∩Q, it holds that λv + (1− λ)v′ ∈ Qi) as
ĝ is reinforcing. This implies that the closure of Qi with respect to Rq, denoted by Q̄i,
is convex. We then show that the interiors of these sets are non-empty and pairwise
disjoint. The separating hyperplane theorem for convex sets hence implies that, for all
distinct xi, xj ∈ A, there is a non-zero vector ui,j ∈ R such that vui,j ≥ 0 for all v ∈ Q̄i

and vui,j ≤ 0 for all v ∈ Q̄j (vui,j denotes here the standard scalar product between
vectors). Moreover, we show that the sets Q̄i are fully described the these vectors ui,j

because Q̄i = {v ∈ Rq
≥0 : ∀xj ∈ A \ {xi} : vui,j ≥ 0} for all xi ∈ A.

As the next step, we investigate the vectors ui,j in more detail. In particular, we will
prove that vui,i+1 ≥ 0 implies vui+1,i+2 ≥ 0 for all i ∈ {1, . . . ,m − 2} and v ∈ Rq

≥0.

Based on this insight, we derive a simplified representation of the sets Q̄i: it holds
that Q̄1 = {v ∈ Rq : vu1,2 ≥ 0}, Q̄i = {v ∈ Rq : vui−1,i ≤ 0 ∧ vui,i+1 ≥ 0} for all
i ∈ {2, . . . ,m − 1}, and Q̄m = {v ∈ Rq : vum−1,m ≤ 0}. Thus, it suffices to study the
vectors ui,i+1 for all i ∈ {1, . . . ,m − 1}. To do so, we denote by ui,jX the entry in ui,j

that corresponds to the interval X and we recall that θ is the threshold vector of f
for the domain D∗

1. Then, we show that we can scale each vector ui,i+1 such that (i)
ui,i+1
X = 1 − θi for all X ∈ Λ such that x ⊵ xi for all x ∈ X, (ii) ui,i+1

X = −θi for

all X ∈ Λ such that xi ▷ x for all x ∈ X, and (iii) ui,i+1
X = ui,i+1

{xi,xi+1} for all X ∈ Λ

such that {xi, xi+1} ⊆ X. We next derive a weight vector α from the vectors ui,i+1 by
defining αi = ui,i+1

{xi,xi+1} + θi for all i ∈ {i, . . . ,m − 1} and αm = αm−1. Moreover, we

define the individual position function πα based on this weight vector and we show that∑
X∈Λ vXπα(X,xi) = vui,j + θi

∑
X∈Λ vX . By combining our insights, we then conclude

that Q̄i = {v ∈ Rq :
∑

X∈Λ vXπα(X,xi−1) ≤ θi−1
∑

X∈Λ vX ∧
∑

X∈Λ vXπα(X,xi) ≥
θi
∑

X∈Λ vX}.
Now, fix a profile I and let v denote the vector such that vX states how often the

interval X is reported in I. It is easy to check that
∑

X∈Λ vXπα(X,xi) is equal to
Πα(I, xi). We hence conclude for every profile I ∈ Λ∗ with corresponding vector v that

f(I) = g(v)

= {xi ∈ A : v ∈ Qi}
⊆ {xi ∈ A : v ∈ Q̄i}
= {xi ∈ A : Πα(I, xi−1) ≤ θi−1nI ∧Πα(I, xi) ≥ θinI}.

Based on right-based continuity, we then show that f picks the alternatives with
the smallest index in the final set, i.e., f(I) = max▷{xi ∈ A : Πα(I, xi−1) ≤ θi−1nI ∧
Πα(I, xi) ≥ θinI} = max▷{xi ∈ A : Πα(I, xi) ≥ θinI}. As our last step, we infer based
on robustness that θ and α are compatible, which means that f is the position-threshold
rule defined by θ and α.

Remark 1. All axioms of Theorem 1 are necessary for our characterization: if we only
drop anonymity, position-threshold rules that weight “even” voters i ∈ 2N twice and
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“odd” voters i ∈ 2N+ 1 only once satisfy all given axioms. If we only omit right-biased
continuity, we can, for instance, define position-threshold rules that select the left-most
alternative xi such that Πα(I, xi) > θinI . When omitting unanimity, every constant
voting rule satisfies the given axioms. When omitting robustness or weakening robustness
to strategyproofness, one can extend the class of position-threshold rules by allowing for
arbitrary individual position functions (i.e., no consistency between different intervals is
required anymore). Finally, if we only drop reinforcement, position-threshold rules that
use different weight and threshold vectors depending on nI satisfy all remaining axioms.
For instance, the following rule satisfies all conditions except for reinforcement and it is
no position-threshold rule: if ⌈log2 nI⌉ is odd, we choose the median with respect to the
left endpoints of the voters’ intervals, and if it is even, we we choose the median with
respect to the right endpoints of the voters’ intervals.

Remark 2. The variable-electorate framework is required for Theorem 1 because we
can use profile-dependent weight vectors otherwise. To make this more precise, we define
the (profile-dependent) weight vector α(I) by α1(I) = 1

2 − |i∈NI : x1 ̸∈Ii}|
2nI

, and αj(I) = 1
for all j ∈ {2, . . . ,m}. Then, consider the position-threshold rule f defined by this
profile-dependent weight vector α and the threshold vector θ = (12 , . . . ,

1
2). We first note

that this rule is robust: if the number of voters with x1 ̸∈ Ii does not change, this is true
as f behaves like a position-threshold rule. By contrast, if some voter changes his interval
by removing x1, the collective position of x1 only decreases while the collective position of
all other alternatives remains the same. This means that the winner either changes from
x1 to x2 or not at all, so robustness is satisfied. However, even when the electorate N is
fixed, this rule is no position-threshold rule. In more detail, we suppose subsequently that
there are n = 100 voters and we assume for contradiction that f is a position-threshold
rule. This means that f is defined by a threshold vector ϕ and a weight vector β. Now,
first consider the profile I where 50 voters report {x1} and 50 voters report {x2}. By
its original definition, it holds that f(I) = x1, so ϕ1 ≤ Πβ(I,x1)

100 = 1
2 . Next, consider

the profile I ′ where all 100 voters report {x1, x2}. Using again the definition of f , we
derive that f(I ′) = x1 which implies that β1 ≥ ϕ1. Finally, consider the profile I ′′ where
50 voters report {x1, x2}, 25 voters report {x1}, and 25 voters report {x2}. By the
definition of f , it follows that f(I ′′) = x2 because πα(I′′)({x1, x2}, x1) < 1

2 . However,
Πβ(I ′′, x1) = 25 + 50β1 ≥ 100ϕ1, so f cannot be a position-threshold rule.

Remark 3. We can simplify Theorem 1 when replacing unanimity with weak efficiency,
which requires of a voting rule f that an alternative can only be chosen if it is contained
in the interval of at least one voter. In particular, this axiom implies for the threshold
vector θ of a position-threshold rule that θi = θj for all i, j ∈ {1, . . . ,m}. In turn, the
compatibility condition between the threshold vector θ and the weight vector α then
requires that α1 ≤ α2 ≤ · · · ≤ αm. Since it is easy to verify that all position-threshold
rules that satisfy these additional constraints on the threshold and weight vectors are
weakly efficient, this results in a simplified variant of Theorem 1.

18



3.2. Characterization of the Endpoint-Median Rule

A natural follow-up question to Theorem 1 is which position-threshold rule to use
in practice. We will give one possible answer to this question by characterizing the
endpoint-median rule fEM , which is the position-threshold rule defined by the weight
vector α = (12 , . . . ,

1
2) and the threshold vector θ = (12 , · · · ,

1
2) for all i ∈ {1, . . . ,m}. We

note that the endpoint-median rule has a much simpler formulation when avoiding the
formalism of position-threshold rules: we substitute the interval [xℓ, xr] of every voter
with the intervals {xℓ} and {xr} and compute the median rule on this simplified profile.
For our characterization of the endpoint-median rule, we will rely on two axioms which
we call the majority criterion and strong unanimity.

Majority criterion. The majority criterion states that an alternative should be chosen
if it is uniquely reported by a strict majority of the voters. More formally, a voting rule f
on Λ∗ satisfies the majority criterion if f(I) = xj for all profiles I ∈ Λ∗ and alternatives
xj ∈ A such that |{i ∈ NI : Ii = {xj}}| > nI

2 . We note that the majority criterion can
be seen as a weak variant of Condorcet-consistency for the interval domain.

Strong unanimity. Strong unanimity strengthens unanimity by requiring that, if an
alternative is reported by all voters, it should be chosen even if some voters approve
additional alternatives. Since multiple alternatives can be reported by all voters in such
cases, strong unanimity formally postulates of a voting rule f on Λ∗ that f(I) ∈

⋂
i∈NI

Ii
for all interval profiles I ∈ Λ∗ with

⋂
i∈NI

Ii ̸= ∅.

We are now ready to prove our characterization of the endpoint-median rule.

Theorem 2. The endpoint-median rule is the only position-threshold rule that satisfies
the majority criterion and strong unanimity.

Proof. We will prove both directions of the theorem separately.

( =⇒ ) We start by showing that fEM satisfies our two axioms and thus define α and
θ as the weight and threshold vector of this rule. First, we analyze the majority criterion.
For this, consider an interval profile I and an alternative xj such that more than nI

2
voters in I report {xj}. It is straightforward to check that Πα(I, xj) > nI

2 = θjnI .
Moreover, since πα({xj}, xh) = 0 for all alternatives xh with xh ▷ xj , it holds for all
such alternatives that Πα(I, xh) < nI

2 = θhnI . It thus follows that fEM (I) = xj , so the
endpoint-median rule satisfies the majority criterion.
For proving that fEM also satisfies strong unanimity, let I denote a profile such

that
⋂

i∈NI
Ii ̸= ∅. Moreover, we define xj as the left-most alternative in

⋂
i∈NI

Ii, i.e.,

xj = max▷
⋂

i∈NI
Ii. By the definition of the weight vector α, we have that πα(I, xj) ≥ 1

2
for every interval I ∈ Λ with xj ∈ I. Since xj ∈ Ii for all i ∈ NI , it thus follows
that Πα(I, xj) ≥ 1

2nI = θjnI . Next, let xh denote an alternative with xh ▷ xj . Since
xj ∈ Ii for all voters i ∈ NI , xh is not the right-most approved alternative of any voter.
We infer from this insight that π(Ii, xh) ≤ 1

2 for all voters i ∈ NI . Next, as xj is the
left-most alternative that is reported by all voters, there is a voter i with xh ̸∈ Ii and
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thus πα(Ii, xh) = 0. Combining these insights shows that Πα(I, xh) < 1
2nI = θhnI . Since

this analysis holds for all alternatives xh with xh ▷ xj , we derive now that fEM (I) = xj .
This proves that the endpoint-median rule satisfies strong unanimity.

( ⇐= ) Let f denote a position-threshold rule that satisfies the majority criterion and
strong unanimity. Moreover, we let α and θ denote the weight and threshold vector of f .
We will prove that α and θ are the vectors of the endpoint-median rule as this implies
that f = fEM . Hence, we first show that θi =

1
2 for all alternatives xi ∈ A. To this end,

we observe that θm has no influence on the outcome of f , so we can always assume that
θm = 1

2 . Next, we assume for contradiction that θi <
1
2 for some i ∈ {1, . . . ,m− 1}. In

this case, let w1, w2 ∈ N denote two integers such that θi <
w1

w1+w2
< 1

2 . Such integers

exist because every rational value q ∈ Q ∩ (0, 1) can be written as q =
w′

1
w′

1+w′
2
for two

integers w′
1, w

′
2 ∈ N. Now, consider the profile I where w1 voters report {xi} and w2

voters report {xm}. It holds that f(I) = xi because Πα(I, xh) = 0 for all xh ∈ A with
xh ▷ xi and Πα(I, xh) = w1 > θinI . However, w1

w1+w2
< 1

2 implies that w1 < w2, so a
strict majority of the voters report {xm}. The majority criterion thus postulates that
f(I) = xm, which contradicts that f(I) = xi. As the second case, suppose that θi >

1
2

for some i ∈ {1, . . . ,m− 1}. In this case, we can find two integers w1, w2 ∈ N such that
1
2 < w1

w1+w2
< θi and we consider again the profile I where w1 voters report {xi} and w2

voters report {xm}. This time, it can be checked that xi ▷ f(I) as Π(I, xh) = 0 for all
xh ∈ A with xh ▷ xi and Π(I, xi) = w1 < θinI . However, since

1
2 < w1

w1+w2
, the majority

criterion postulates that f(I) = xi, so we have again a contradiction. Thus, the majority
criterion necessitates that θi =

1
2 for all i ∈ {1, . . . ,m− 1}.

Next, we will show that αi =
1
2 for all i ∈ {1, . . . ,m− 1} and note that αm is irrelevant

for the definition of f . We use again a case distinction for this and first suppose that
αi <

1
2 for some i ∈ {1, . . . ,m − 1}. In this case we define δ = 1

2 − αi and choose an
integer t ∈ N such tδ > 1. Now, consider the profile I where t voters report {xi, xi+1}
and a single voter reports {xi}. It holds that Πα(I, xi) = 1 + tαi = 1 + 1

2 t− δt < 1
2nI

because πα({xi, xi+1}, xi) = αi =
1
2 − δ. Since θi =

1
2 by our previous analysis, this

then means that f(I) ̸= xi. However, xi is the only alternative that is reported by
all voters in I, so strong unanimity requires that f(I) = xi, a contradiction. For the
second case, we suppose that αi >

1
2 and we define δ = αi − 1

2 . Now, we choose t ∈ N
such that tδ > 1

2 and we consider this time the profile I where t voters report {xi, xi+1}
and a single voter reports {xi+1}. Analogous to the last case, it can be checked that
Πα(I, xi) = tαi =

1
2 t + δt > 1

2nI . This means that f(I) ⊵ xi. However, xi+1 is the
only alternative that is reported by all voters in I, so strong unanimity requires that
f(I) = xi+1. Because we have a contradiction in both cases, we conclude that the
assumption that αi ̸= 1

2 is wrong, i.e., it holds for all i ∈ {1, . . . ,m − 1} that αi =
1
2 .

This means that α and θ are the weight and threshold vectors of the endpoint-median
rule, so f is fEM .

Remark 4. On the domain of single-peaked preference relations, the median rule is the
only phantom median rule that satisfies the majority criterion. Therefore, we interpret
Theorem 2 as demonstrating that the endpoint-median rule is the “correct” extension of
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the median rule to the interval domain. Moreover, in combination, Theorems 1 and 2 show
that the endpoint-median rule is the only voting rule on Λ∗ that preserves all desirable
properties of the median rule because fEM is the unique voting rule on the interval
domain that satisfies anonymity, strong unanimity, the majority criterion, robustness,
reinforcement, and right-biased continuity.

Remark 5. The endpoint-median rule can also be characterized as the most neutral
position-threshold rule. In more detail, this rule is the only position-threshold rule that
is shift-symmetric (if we move the interval of every voter one position to the right, the
winner will also move one position to the right) and orientation-symmetric (if we exchange
xi with xm+1−i for all i ∈ {1, . . . ,m} in the interval of every voter, the winner will change
from aj to am+1−j unless there is an alternative xi with Πα(I, xi) = θinI). This again
mirrors the behavior of the median rule for single-peaked preference relations because
this is the only phantom median rule that satisfies these conditions.

3.3. Characterization of Multi-winner Position-Threshold Rules

As our last contribution, we will extend Theorem 1 to the case of selecting a multiset
of size k > 1 instead of a single winner. For instance, this model may be interpreted
as a variant of apportionment, where we need to distribute the seats of a committee of
size k to the alternatives based on the voters’ preferences over the alternatives. Similar
models have been studied by, e.g., Speroni di Fenizio and Gewurz (2019) and Brill et al.
(2022). Furthermore, our model is also closely related to the problem of locating multiple
facilities on the real line based on the voters’ single-peaked preference relations over the
real line (see, e.g., Miyagawa, 2001; Barberà and Beviá, 2005; Procaccia and Tennenholtz,
2013), or, more generally, the provision of multiple public goods based on the voters’
single-peaked preferences over these public goods (see, e.g., Ehlers, 2003; Bochet and
Gordon, 2012; Heo, 2013).

Now, to formalize our multi-winner setting, we define a size-k committee as a function
from A to N0 such that

∑
xi∈AW (xi) = k. Less formally, a size-k committee is a multiset

over A and we interpret W (xi) as the number of seats that are assigned to alternative
xi in the committee W . The set of all size-k committees is given by Wk. Then, a
multi-winner voting rule F (for a target committee size k) is a function that maps every
profile I ∈ Λ∗ to a committee W ∈ Wk and we define by F (I, xi) the number of seats
that a multi-winner voting rule F assigns to an alternative xi in a profile I. Moreover,
we extend this notation to intervals X ∈ Λ by defining F (I, X) =

∑
xi∈X F (I, xi). We

note that we will denote multi-winner voting rules by capital letters to clearly distinguish
them from single-winner voting rules.
In this section, we will characterize the class of multi-winner position-threshold rules.

The rough idea of these rules it to assign each seat si of the committee independently
by using a single-winner position-threshold rule fi. Hence, a multi-winner position-
threshold rule is specified by k single-winner position-threshold rules f1, . . . , fk and, due
to technical reasons, we will require that fi(I) ⊵ fj(I) for all i, j ∈ {1, . . . ,m} with
i ≤ j and profiles I ∈ Λ∗. Formally, a multi-winner voting rule F is thus a multi-winner
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position-threshold rule if there are k single-winner position-threshold rules f1, . . . , fk such
that f1(I) ⊵ f2(I) ⊵ · · · ⊵ fk(I) and F (I, xi) = |{j ∈ {1, . . . , k} : fj(I) = xi}| for all
profiles I ∈ Λ∗. As a simple example, we can define a multi-winner position-threshold rule
F for the target committee size k = 2 by taking the union of the single-winner position-
threshold rule rules induced by the threshold vectors θ1 = (13 , . . . ,

1
3) and θ2 = (23 , . . . ,

2
3)

and the weight vectors α1 = α2 = (1, · · · , 1).
Next, we will generalize our axioms to the case of multi-winner voting rules. For

anonymity, unanimity, and robustness, the given definitions directly extend the corre-
sponding notions for single-winner voting rules and thus have the same motivation as the
original conditions. By contrast, for reinforcement and right-biased continuity, we need
to carefully adapt the definitions to account for the larger number of winners.

Anonymity. Just as for single-winner rules, anonymity demands that multi-winner
voting rules do not depend on the identities of the voters. Formally, we say a multi-
winner voting rule F is anonymous if F (I) = F (π(I)) for all interval profiles I ∈ Λ∗ and
permutations π : N → N.

Unanimity. The idea of unanimity is that an alternatives should get all seats in the
committee if it is unanimously and exclusively reported by all voters. We thus say that a
multi-winner voting rule F is unanimous if F (I, xi) = k for all interval profiles I ∈ Λ∗

and alternatives xi ∈ A such that Ii = {xi} for all voters i ∈ NI .

Robustness. Robustness requires for multi-winner voting rules that if a voter removes
his left-most (resp. right-most) alternative from his interval, we can only reallocate
seats from his old-left most (resp. right-most) alternative to his new left-most (resp.
right-most) alternative. More formally, a multi-winner voting rule F is robust if, for all
interval profiles I ∈ Λ∗, voters i ∈ NI , and intervals Ii = [xℓ, xr] with xℓ ▷ xr, it holds
that (i) F (Ii↓xℓ , xj) = F (I, xj) for all xj ∈ A \ {xℓ, xℓ+1} and F (Ii↓xℓ , xℓ) ≤ F (I, xℓ),
and (ii) F (Ii↓xr , xj) = F (I, xj) for all xj ∈ A \ {xr, xr−1} and F (Ii↓xr , xr) ≤ F (I, xr).

Range-reinforcement. Next, we extend the concept of reinforcement to multi-winner
voting rules. Perhaps the most direct approach for this is to require that F (I + I ′) =
F (I) for all profiles I, I ′ ∈ Λ∗ with NI ∩ NI′ = ∅ and F (I) = F (I ′). However, this
notion is intuitively much weaker than reinforcement for single-winner voting rules
because the precondition of choosing the exact same outcome for two distinct profiles
becomes more demanding when multiple winners are chosen. As a result, this variant
of reinforcement fails to address situations where we would expect reinforcement to
apply: for instance, if F (I) and F (I ′) only differ in the allocation of a single seat of
the committee, it seems desirable that F (I + I ′) should be similar to the initial two
committees. However, our previous notion does not allow for this conclusion. We will
thus introduce a stronger reinforcement condition called range-reinforcement. The idea
of this condition is that, for every alternative xi ∈ A, the number of seats assigned
to [x1, xi] in the joint election is bounded by the number of seats assigned to this
interval in each of the disjoint subelections. More formally, a multi-winnner voting
rule F on Λ∗ is range-reinforcing if, for all profiles I, I ′ ∈ Λ∗ with NI ∩ NI′ = ∅ and
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alternatives xi ∈ A, it holds that min(F (I, [x1, xi]), F (I ′, [x1, xi])) ≤ F (I +I ′, [x1, xi]) ≤
max(F (I, [x1, xi]), F (I ′, [x1, xi])). By its definition, range-reinforcement guarantees that
the committee F (I + I ′) resembles F (I) and F (I ′), especially if the committees F (I)
and F (I ′) are similar. For instance, if F (I) coincides with F (I ′) except for the fact that
F (I, xi) = F (I ′, xi) + 1 and F (I, xi+1) = F (I, xi+1)− 1, range-reinforcement requires
that F (I + I ′) = F (I) or F (I + I ′) = F (I ′).

Right-biased continuity. For defining right-biased continuity for multi-winner voting
rules, we face the problem that it is not clear when a committee F (I) is right of
another committee F (I ′). Just as for range-reinforcing, we will address this issue by
considering the intervals [x1, xi] for all alternatives xi ∈ A separately. In more detail,
we say that F (I) is at least as right as F (I ′) with respect to an alternative xi if
F (I, [x1, xi]) ≤ F (I ′, [x1, xi]). We can then directly extend the original idea of right-
biased continuity to multiwinner rules: if F (I) is at least as right as F (I ′) with respect
to an alternative xi, we can marginalize the effect of I ′ on the number of seats assigned
to [x1, xi] by cloning I sufficiently often. On the other hand, if F (I) is left of F (I ′) with
respect to xi, we can only ensure that the seats in [x1, xi] do not move too much to the
right by cloning I. More formally, we say a multi-winner voting rule F is right-biased
continuous if, for all interval profiles I, I ′ ∈ Λ∗ and alternatives xi ∈ A, it holds that (i) if
F (I, [x1, xi]) ≤ F (I ′, [x1, xi]), there is λ ∈ N such that F (λI+I ′, [x1, xi]) = F (I, [x1, xi])
and (ii) if F (I, [x1, xi]) > F (I ′, [x1, xi]), there are λ ∈ N and an alternative xj ∈

⋃
i∈NI

Ii
such that F (λI + I ′, [x1, xj ]) ≥ F (I, [x1, xi]).

Based on these axioms, we now present our characterization of multi-winner position-
threshold rules.

Theorem 3. A multi-winner voting rule on Λ∗ is robust, anonymous, unanimous,
range-reinforcing, and right-biased continuous if and only if it is a multi-winner position-
threshold rule.

Proof. We will show both directions of the theorem separately.

( =⇒ ) We will first prove the direction from left to right and hence assume that F is
a multi-winner position-threshold rule for a target committee size k ≥ 1. Let f1, . . . , fk
denote the single-winner position-threshold rules of F . By Theorem 1, each rule fi is
anonymous, robust, unanimous, reinforcing, and right-biased continuous. Based on this
observation, it is straightforward to verify that F is also anonymous, unanimous, and
robust. We will hence focus on range-reinforcement and right-biased continuity.
First, to show that F satisfies range-reinforcement, we consider two interval profiles

I1, I2 ∈ Λ∗ with NI1∩NI2 = ∅ and an alternative xi. Moreover, let r denote the maximal
index such that fr(I1) ∈ [x1, xi] and r′ the maximal index such that fr′(I2) ∈ [x1, xi].
If no such indices exist for I1 or I2, we define r = 0 and r′ = 0, respectively. By
the assumption that f1(I) ⊵ f2(I) ⊵ . . . fk(I) for all profiles I ∈ Λ∗, it holds that
F (I1, [x1, xi]) = r and F (I2, [x1, xi]) = r′. We will next assume that r ≤ r′ and we will
prove that r ≤ F (I1 + I2, [x1, xi]) ≤ r′. The case that r > r′ follows by exchanging the
role of I1 and I2 in our proof.
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We start by proving that r ≤ F (I1 + I2, [x1, xi]). If r = 0, there is nothing to
show. We hence suppose that r ≥ 1, and we will show that fr(I1 + I2) ⊵ xi. To this
end, we define xj = fr(I1) and xj′ = fr(I2), and we note that xj ⊵ xi and xj′ ⊵ xi
since r = F (I1, [x1, xi]) ≤ F (I2, [x1, xi]). Next, let α denote the weight vector and θ
the threshold vector of fr. By the definition of position-threshold rules, we infer that
Πα(I1, xj) ≥ θjnI1 and Πα(I2, xj′) ≥ θj′nI2 . We moreover prove in Step 1 of Lemma 1 (in
the appendix) that Πα(I, xh) ≥ θhnI implies Πα(I, xh+1) ≥ θh+1nI for all profiles I and
alternatives xh ∈ A \ {xm}. This means that Πα(I1, xi) ≥ θinI1 and Πα(I2, xi) ≥ θinI2 .
In turn, we infer that Πα(I1 + I2, xi) = Πα(I1, xi) + Πα(I2, xi) ≥ θinI1 + θinI2 =
θinI1+I2 . This proves that fr(I1 + I2) ⊵ xi, which means r ≤ F (I1 + I2, [x1, xi])
because fi(I1 + I2) ⊵ fr(I1 + I2) for all i ∈ {1, . . . , r}.
Next, we will show that F (I1 + I2, [x1, xi]) ≤ r′. If r′ = k, this is again trivial,

so we suppose that r′ ≤ k − 1. We will prove that xi ▷ fr′+1(I1 + I2) to show
our claim. This time, let α denote the weight vector and θ denote the threshold
vector of fr′+1. By the definition of r and r′, we have that xi ▷ fr+1(I1) ⊵ fr′+1(I1)
and xi ▷ fr′+1(I2). Consequently, it holds for all alternative xh with xh ⊵ xi that
Πα(I1, xh) < θhnI1 and Πα(I2, xh) < θhnI1 . Using again the linearity of Πα, it thus
follows that Πα(I1 + I2, xh) < θhnI1+I2 for all such alternatives xh. This shows that
xi ▷ fr′+1(I1 + I2). Since f1(I1 + I2) ⊵ · · · ⊵ fk(I1 + I2), we now conclude that
F (I1 + I2, [x1, xi]) ≤ r′. This proves that F is indeed range-reinforcing.
As our last point, we show that F is right-biased continuous and thus consider two

profiles I1, I2 ∈ Λ∗ and an alternative xi ∈ A. Moreover, we define r = F (I1, [x1, xi]) and
r′ = F (I2, [x1, xi]) and first assume that r ≤ r′. Since F is range-reinforcing, we derive
for every λ ∈ N that F (λI1, [x1, xi]) = F (I1, [x1, xi]) and r ≤ F (λI1 + I2, [x1, xi]) ≤ r′.
If r = r′, this completes the proof, so assume that r < r′. In this case, we consider
the single-winner rule fr+1 and we note that fr+1(I1) ̸∈ [x1, xi] and fr+1(I2) ∈ [x1, xi]
since F (I1, [x1, xi]) < r + 1 and F (I2, [x1, xi]) ≥ r + 1. This means that fr+1(I2) ▷
fr+1(I1), so the right-biased continuity of fr+1 implies that there is λ∗ ∈ N such that
fr+1(λ

∗I1 + I2) = f(I1). Consequently, F (λ∗I1 + I2, [x1, xi]) ≤ r. Combined with our
previous insights, this means that F (λ∗I1 + I2, [x1, xi]) = r and right-biased continuity
holds in this case.
Next, we suppose that r′ < r. In this case, we consider the single-winner position-

threshold rule fr and note that fr(I1) ∈ [x1, xi] and fr(I2) ̸∈ [x1, xi] since F (I1, [x1, xi]) =
r and F (I2, [x1, xi]) < r. Hence, fr(I1) ▷ fr(I2) and the right-biased continuity of
fr implies that there is a value λ∗ ∈ N and alternative xj ∈

⋃
s∈NI1

I1s such that

fr(λ
∗I1 + I2) ⊵ xj . This means that F (λ∗I1 + I2, [x1, xj ]) ≥ r = F (I1, [x1, xi]), so

right-biased continuity holds also in this case.

( ⇐= ) Let F denote a multi-winner voting rule on Λ∗ that satisfies anonymity,
robustness, unanimity, range-reinforcement, and right-biased continuity. We need to
prove that there are k singe-winner position-threshold rules f1, f2, . . . , fk such that
f1(I) ⊵ f2(I) ⊵ · · · ⊵ fk(I) and F (I, xi) = |{j ∈ {1, . . . , k} : fj(I) = xi}| for all
profiles I ∈ Λ∗ and alternatives xj ∈ A. To this end, we define fi for i ∈ {1, . . . , k} as
the single-winner voting rule that returns the i-th left-most alternative in F (I). More
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formally, fi returns the alternative x1 if F (I, x1) ≥ i and the alternative xj ∈ A \ {xi}
such that F (I, [x1, xj−1]) < i and F (I, [x1, xj ]) ≥ i otherwise. By this definition, it
immediately follows that f1(I) ⊵ f2(I) ⊵ · · · ⊵ fk(I) for all profiles I ∈ Λ∗. We
will subsequently show that each rule fi satisfies anonymity, robustness, unanimity,
reinforcement, and right-biased continuity because Theorem 1 then implies that fi is a
single-winner position-threshold rule.
To this end, we fix an index i and focus on the single-winner voting rule fi. First, we

note that fi is unanimous because F satisfies this axiom. In more detail, it holds that
F (I, xj) = k for all profiles I ∈ Λ∗ and alternatives xj ∈ A such that Ii = {xj} for all
i ∈ NI . This implies that fi(I) = xj because fi picks an alternative in F (I). It is also
easy to see that fi inherits anonymity from F : we have that F (I) = F (π(I)) for all
profiles I ∈ Λ∗ and all permutations π : N → N, so fi(I) = fi(π(I)).
As the third point, we demonstrate that fi is robust. To this end, consider a profile

I ∈ Λ∗, two alternatives xℓ, xr ∈ A with xℓ ▷ xr, and a voter j ∈ NI with Ij = [xℓ, xr].
We focus here on the profile Ij↓xℓ because the analysis for Ij↓xr is symmetric. Now, the
robustness of F shows that F (I, xℓ) ≥ F (Ij↓xℓ , xℓ), F (I, xℓ+1) ≤ F (Ij↓xℓ , xℓ+1), and
F (I, xh) = F (Ij↓xℓ , xh) for all xh ∈ A \ {xℓ, xℓ+1}. This implies that F (I, [x1, xℓ]) ≥
F (Ij↓xℓ , [x1, xℓ]) and F (I, [x1, xh]) = F (Ij↓xh , [x1, xℓ]) for all xh ∈ A\{xℓ}. Consequently,
fi(I) = fi(Ij↓xℓ) if fi(I) ̸= xℓ. On the other hand, if fi(I) = xℓ, then fi(Ij↓xℓ) ∈
{xℓ, xℓ+1} because F (Ij↓xℓ , [x1, xℓ−1]) = F (I, [x1, xℓ−1]) < i and F (Ij↓xℓ , [x1, xℓ+1]) =
F (I, [x1, xℓ+1]) ≥ F (I, [x1, xℓ]) ≥ i. This proves that fi is robust.
As our fourth condition, we turn to reinforcement. To this end, consider two profiles

I1 and I2 such that NI1 ∩ NI2 = ∅ and fi(I1) = fi(I2) = xj for some alternative
xj ∈ A. First assume that xj = x1. By the definition of fi, this means that F (I1, x1) ≥ i
and F (I2, x1) ≥ i. Hence, range-reinforcement implies that F (I1 + I2, [x1, x1]) ≥ i,
thus proving that fi(I1 + I2) = x1, too. Next, assume that x1 ▷ xj . In this case,
we note that F (I1, [x1, xj ]) ≥ i and F (I2, [x1, xj ]) ≥ i, so F (I1 + I2, [x1, xj ]) ≥ i by
range-reinforcement. Put differently, this means that fi(I + I ′) ⊵ xj . Next, it holds that
F (I1, [x1, xj−1]) < i and F (I2, [x1, xj−1]) < i because fi(I1) = fi(I2) = xi, so range-
reinforcement requires that f(I1 + I2, [x1, xj−1]) < i. Consequently, xj−1 ▷ fi(I1 + I2),
so we conclude that f(I1 + I2) = xj . This proves that fi is reinforcing.

Finally, we show that fi is right-biased continuous. To this end, fix two profiles I1, I2 ∈
Λ∗ and let xj = fi(I1) and xj′ = fi(I2). First, if xj = xj′ , the reinforcement of fi implies
that fi(I1 + I2) = xj and right-biased continuity holds. Next, if xj′ ▷ xj , we have that
F (I1, [x1, xj−1]) < i ≤ F (I2, [x1, xj−1]), so the right-biased continuity of F implies that
there is λ ∈ N such that F (λI1 + I2, [x1xj−1]) = F (I1, [x1, xj−1]) < i. This means that
xj−1 ▷ fi(λI1 + I2). Next, we observe that min(F (I1, [x1, xj ]), F (I2, [x1, xj ])) ≥ i. In
more detail, it holds that F (I1, [x1, xj ]) ≥ i since fi(I1) = xj and that F (I2, [x1, xj ]) ≥ i
since fi(I2) = xj′ ▷ xj . Hence, range-reinforcement implies that F (λI1+I2, [x1, xj ]) ≥ i,
so fi(λI1 + I2) ⊵ xj . Combining our observations shows that fi(λI1 + I2) = xj , so
right-biased continuity holds in this case.
Lastly, suppose that xj ▷ xj′ , which means that F (I1, [x1, xj ]) ≥ i > F (I2, [x1, xj ]).

By the right-biased continuity of F , there exists λ ∈ N and an alternative xr ∈
⋃

s∈NI1
I1s

25



such that F (λI1 + I2, [x1, xr]) ≥ F (I1, [x1, xj ]), which means that fi(λI1 + I2) ⊵ xr.
Now, if fi(I1) ⊵ fi(λI1 + I2), fi satisfies right-biased continuity. If this was not the
case, we have that fi(λI1 + I2) ▷ fi(I1) = xj and thus F (I1, [x1, xj−1]) < F (λI1 +
I2, [x1, xj−1]). Hence, the right-biased continuity of F implies that there is λ′ ∈ N such
that F (λ′I1 + λI1 + I2, [x1, xj−1]) = F (I1, [x1, xj−1]) < i. On the other hand, we have
that F (λI1 + I2, [x1, xj ]) ≥ i and F (λ′I1, [x1, xj ]) ≥ i since fi(λI1 + I2) ▷ fi(I1) = xj .
Range-reinforcement hence implies that F (λ′I1 + λI1 + I2, [x1, xj ]) ≥ i, so we derive
fi(λ

′I1 + λI1 + I2) = xj . This proves that fi satisfies right-biased continuity for λ+ λ′.
Finally, since all rules fi satisfy the axioms of Theorem 1, they are single-winner

position-threshold rules. This shows that F is a multi-winner position-threshold rule.

Remark 6. Theorem 3 does not hold if we use standard notion of reinforcement instead
of range-reinforcement. To make this more explicit, let f1 denote the single-winner
position-threshold rule induced by the weight vector α1 = (0, . . . , 0) and the threshold
vector θ1 = (13 , . . . ,

1
3), and let f2 denote the single-winner position-threshold rule induced

by the weight vector α2 = (1, . . . , 1) and the threshold vector θ2 = (23 , . . . ,
2
3). Then,

the multi-winner voting rule F : Λ∗ → W2, which returns the committee consisting
of f1(I) and f2(I) if f1(I) ▷ f2(I) and the committee containing f1(I) twice if
f2(I) ⊵ f1(I), satisfies anonymity, robustness, reinforcement, right-biased continuity,
and unanimity, but it is no multi-winner position-threshold rule. On the other hand,
we note that many position-threshold rules fail the more demanding condition that
min(F (I, xi), F (I ′, xi)) ≤ F (I + I ′, xi) ≤ max(F (I, xi), F (I ′, xi)) for all alternatives
xi ∈ A and profiles I, I ′ ∈ Λ∗ with NI ∩NI′ = ∅.

Remark 7. When generalizing the idea of the majority criterion to committees, we can
extend the characterization of the endpoint-median rule to multi-winner elections. More
specifically, we define the proportionality criterion for multi-winner rules by requiring
that F (I, x) > 0 if more than nI

k+1 voters report {xi}. This notion is in its spirit similar
to Droop proportionality, which is a commonly studied fairness notion for multi-winner
voting rules with strict preferences (Tideman, 1995; Woodall, 1997; Aziz and Lee, 2022).
Then, it can be shown that only one multi-winner position-threshold rule satisfies the
proportionality criterion and strong unanimity (which requires that F (I,

⋂
i∈NI

Ii) = k if⋂
i∈NI

Ii ≠ ∅): this rule is defined by the single-winner position-threshold rules f1, . . . , fk
such that, for all i ∈ {1, . . . , k}, fi is defined by the threshold vector θi = ( i

k+1 , . . . ,
i

k+1)

and the weight vector αi = ( i
k+1 , . . . ,

i
k+1).

4. Conclusion

In this paper, we study voting rule for the interval domain, where voters report subintervals
of a set of linearly ordered alternatives to indicate their preferences. As our main
contribution, we propose and characterize the class of position-threshold rules, which
generalize Moulin’s phantom median rules (Moulin, 1980) to the interval domain. In
essence, position-threshold rules compute for each alternative a collective position, which
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quantifies the voters’ relative positions with respect to this alternative, and then choose
the left-most alternative whose collective position exceeds its threshold value. As our
main result, we characterize these rules based on robustness (which demands that small
changes to the voters’ intervals result in small changes in the outcome), reinforcement
(which demands that, if an alternative is chosen for two disjoint elections, it is also chosen
when combining these elections), and three mild auxiliary conditions called anonymity,
unanimity, and right-biased continuity. Moreover, we propose and characterize the
endpoint-median rule, which replaces the interval of each voter with two singleton ballots
corresponding to the endpoints of the interval and then computes the median rule. In
more detail, we show that his rule is the only position-threshold rule that satisfies the
majority criterion (an alternative is guaranteed to be chosen if it is uniquely reported by
more than half of the voters) and strong unanimity (if some alternatives are reported by
all voters, one such alternative is chosen). Since the median rule is the only phantom
median rule that satisfies these conditions, our result suggests that the endpoint-median
rule is the “correct” extension of the median rule to the interval domain. Lastly, we
extend our characterization of position-threshold rules to the case of selecting multiple
alternatives: we prove that every multi-winner rule satisfying variants of our original
axioms returns the union of multiple single-winner position-threshold rules.
We note that our paper offers several directions for future work. Firstly, we believe

that it is interesting to further analyze the axiomatic properties of position-threshold
rules. This may help to identify new desirable voting rules on the interval domain or to
strengthen the argument for the endpoint-median rule. Moreover, it may be fruitful to
analyze position-threshold rules also in the context of facility location on the real line:
an interesting question regarding this is, e.g., how much social welfare position-threshold
rules can guarantee. Finally, it seems worthwhile to study voting rules on the interval
domain that fail robustness but, e.g., satisfy strategyproofness to give a more complete
pictures about the possibilities arising from this domain.
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A. Proof of Theorem 1

In this appendix, we will prove Theorem 1: position-threshold rules are the only single-
winner voting rules on Λ∗ that satisfy anonymity, unanimity, robustness, reinforcement,
and right-biased continuity. More specifically, we will show in Appendix A.1 that position-
threshold rules satisfy all desired properties and in Appendix A.2 that these properties
indeed characterize position-threshold rules. Since a proof sketch for these claims has
been discussed in the main body, we will focus here on the details.

A.1. Axiomatics of Position−Threshold Rules

We start by showing that all position-threshold rules satisfy the five axioms of Theorem 1.
To this end, we first discuss an auxiliary claim stating that such rules are robust if and
only if the threshold vector θ and the weight vector α are compatible. Recall here that
threshold vectors θ ∈ (0, 1)m satisfy that θ1 ≥ θ2 ≥ . . . θm and that a weight vector α
is compatible with a threshold vector θ if αi+1 − αi ≥ (θi+1 − θi)max(αi

θi
, 1−αi
1−θi

) for all
i ∈ {1, . . . ,m− 2}.

Lemma 1. Let θ ∈ (0, 1)m denote a threshold vector and α ∈ [0, 1]m a weight vector.
The rule f given by f(I) = max▷{xi ∈ A : Πα(I, xi) ≥ θi} is robust if and only if α and
θ are compatible.

Proof. Fix a threshold vector θ and a weight vector α, and let f be defined as in the
lemma. We will show both directions independently.

( ⇐= ) We first assume that α and θ are compatible and we will show that f is robust.
To this end, we will proceed in two steps. First, we will show that, for all profiles I ∈ Λ∗

and all alternatives xi ∈ A\{xm}, it holds that Πα(I, xi+1) ≥ θi+1nI if Πα(I, xi) ≥ θinI .
Based on this insight, we then show that f is robust.

Step 1: Consider an arbitrary interval profile I ∈ Λ∗ and an alternative xi ∈ A \ {xm}
such that Πα(I, xi) ≥ θinI . We will show that Πα(I, xi+1) ≥ θi+1nI . For this, we first
observe that this implication holds trivially for xm−1 since Πα(I, xm) = nI for all profiles
I. We thus assume that xi ̸= xm−1 and we partition the voters in three sets regarding
their position with respect to xi: L = {j ∈ NI : ∀x ∈ Ij : x ⊵ xi} are the voters that are
weakly left of xi, R = {j ∈ NI : ∀x ∈ Ij : xi ▷ x} are the voters that are fully right of xi,
and Z = N \ (L∪R) is the set of voters who report an interval [xℓ, xr] with xℓ ⊵ xi ▷ xr
By the definition of these sets, we have that πα(Ij , xi) = 1 for all j ∈ L, πα(Ij , xi) = 0
for all j ∈ R, and πα(Ij , xi) = αi for all j ∈ Z. Moreover, it holds that πα(Ij , xi+1) = 1
for all j ∈ L, πα(Ij , xi+1) ≥ αi+1 for all j ∈ Z, and πα(Ij , xi+1) ≥ 0 for all j ∈ R.

Now, we define ℓI = |L|
nI

, rI = |R|
nI

, and zI = |Z|
nI

. Since Πα(I, xi) ≥ θinI , it holds that
ℓI + zIαi ≥ θi and we aim to show that ℓI + zIαi+1 ≥ θi+1 because this implies that
Πα(I, xi+1) ≥ θi+1nI . First, if αi+1 ≥ αi, this follows immediately as θi ≥ θi+1. We
hence assume that αi+1 < αi. Since αi+1 ≥ 0 by the definition of a weight vector, this
further implies that αi > 0.
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Next, we proceed with a case distinction with respect to whether αi
θi

≥ 1−αi
1−θi

.

Case 1: We first assume that αi
θi

≥ 1−αi
1−θi

. In this case, we will minimize the term
ℓ+ zαi+1 subject to ℓ+ zαi ≥ θi, ℓ ≥ 0, and z ≥ 0. To this end, we observe that we can
set ℓ = 0: if ℓ > 0, we define z′ = z + ℓ

αi
and ℓ′ = 0. It is easy to see that our constraints

are still satisfied. Moreover, since αi+1 < αi, it holds that

ℓ+ zαi+1 − ℓ′ − z′αi+1 = ℓ+ zαi+1 −
(
z +

ℓ

αi

)
αi+1

= ℓ

(
1− αi+1

αi

)
> 0.

Hence, we need to set ℓ = 0 to minimize ℓ+ zαi+1. In turn, to satisfy that ℓ+ zαi ≥ θi,
we set z = θi

αi
, i.e., as the minimal value such that zαi ≥ θi is satisfied. As a consequence

of this analysis, the optimal value our linear program is θiαi+1

αi
. Since ℓI and zI are a

feasible solution to this linear program, it follows that ℓI + zIαi+1 ≥ θiαi+1

αi
. Finally,

because α and θ are compatible and αi
θi

≥ 1−αi
1−θi

by assumption, we have that αi+1 − αi ≥
(θi+1− θi)max(αi

θi
, 1−αi
1−θi

) = (θi+1− θi)
αi
θi
. We now conclude that Πα(I, xi+1) ≥ θi+1nI as

Πα(I, xi+1)

nI
≥ ℓI + zIαi+1 ≥

θiαi+1

αi
= θi + (αi+1 − αi)

θi
αi

≥ θi + (θi+1 − θi) = θi+1.

Case 2: For our second case, we suppose that αi
θi

< 1−αi
1−θi

. Equivalently, this means
that θi > αi, which implies that 1 − αi > 0. We will use a similar approach as in the
first case here and minimize the term ℓ + zαi+1 subject to ℓ + zαi ≥ θi, ℓ ≥ 0, z ≥ 0,
and ℓ+ z ≤ 1. Just as in Case 1, it can be shown that the objective value of this linear
program is minimal if ℓ is chosen to be minimal. However, since θi > αi and we require
that ℓ+ z ≤ 1, we cannot set ℓ to 0 without violating that ℓ+ zαi ≥ θi. Instead, by using
a similar reasoning as in the first case, one can compute that the values of ℓ and z that
minimize ℓ+ zαi+1 subject to our constraints are ℓ = 1− 1−θi

1−αi
and z = 1− ℓ. For these

values, our objective value is

1− 1− θi
1− αi

+
1− θi
1− αi

αi+1 = 1− (1− αi)
1− θi
1− αi

+
1− θi
1− αi

(αi+1 − αi)

= θi +
1− θi
1− αi

(αi+1 − αi).

In particular, since ℓI and zI form a feasible solution to our linear program, we infer
that Πα(I,xi+1)

nI
is lower-bounded by this expression. Finally, since α and θ are compatible

and αi
θi

< 1−αi
1−θi

, we derive that αi+1 − αi ≥ (θi+1 − θi)max(αi
θi
, 1−αi
1−θi

) = (θi+1 − θi)
1−αi
1−θi

.
Combined with our previous insight, this means that

Πα(I, xi+1)

nI
≥ θi +

1− θi
1− αi

(αi+1 − αi) ≥ θi + (θi+1 − θi) ·
1− αi

1− θi
· 1− θi
1− αi

= θi+1.
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Step 2: We will now show that f is robust. To this end, consider an arbitrary
interval profile I, let i denote a voter in NI , and let xℓ and xr denote the alternatives
such that xℓ ▷ xr and Ii = [xℓ, xr]. First, we analyze the profile Ii↓xℓ and note
that Πα(Ii↓xℓ , xℓ) ≤ Πα(I, xℓ) because πα(I, xℓ) = αi ≥ 0 = πα(Ii↓xℓ , xℓ). Moreover,
Πα(Ii↓xℓ , xh) = Πα(I, xh) for all xh ∈ A \ {xℓ} because the relative position of no voter
changed with respect to xh. Now, if f(I) = xj for some alternative xj ̸= xℓ, it is easy
to show that f(Ii↓xℓ) = xj , too. In more detail, if xj ▷ xℓ, then the value Πα(I, xℓ)
does not matter as Πα(Ii↓xℓ , xj) = Πα(I, xj) ≥ θjnI and xj ▷ xℓ. On the other hand, if
xℓ ▷ xj , then Πα(Ii↓xℓ , xℓ) ≤ Πα(I, xℓ) < θℓnI and the outcome again remains the same.
Finally, if f(I) = xℓ, then Πα(Ii↓xℓ , xh) = Πα(Ii↓xℓ , xh) < θhnI for all xh ▷ xℓ and
xℓ ⊵ f(Ii↓xℓ). Moreover, it holds by Step 1 that Πα(Ii↓xℓ , xℓ+1) = Πα(I, xℓ+1) ≥ θi+1nI
because f(I) = xℓ implies that Πα(I, xi) ≥ θinI . This means that f(Ii↓xℓ) ⊵ xi+1, so
f(Ii↓xℓ) ∈ {xℓ, xℓ+1}. This proves that f is robust in this case.
Next, consider the profile Ii↓xr , for which πα(Ii↓xr , xr−1) = 1 ≥ πα(I, xr−1) and

πα(Ii↓xr , xr) = 1 = πα(I, xr). This means that Πα(Ii↓xr , xr−1) ≥ Πα(I, xr−1) and
Πα(Ii↓xr , xh) = Πα(I, xh) for all xh ∈ A \ {xr−1}. We first assume that f(I) = xj ̸= xr.
If xj ▷ xr, then f(Ii↓xr) = f(I) because Πα(Ii↓xr , xh) = Πα(I, xh) for all xh with
xh ▷ xr−1 and Πα(Ii↓xr , xr−1) ≥ Πα(I, xr−1). On the other hand, if xr ▷ xj , we infer
that Πα(Ii↓xr , xr) = Πα(I, xr) < θrnI . By the contrapositive of Step 1, this means also
that Πα(Ii↓xr , xr−1) < θr−1nI . Hence, it is now easy to derive that f(I) = f(Ii↓xr)
since Πα(Ii↓xr , xh) = Πα(I, xh) for all alternatives xh ∈ A \ {xr−1}. Finally, assume
that f(I) = xr. This means that Πα(Ii↓xr , xh) = Πα(I, xh) < θhnI for all xh with
xh ▷ xr−1 and Πα(Ii↓xr , xr) = Πα(I, xr) ≥ θrnI . It follows that f(Ii↓xr) ∈ {xr−1, xr}
and robustness holds again.

( =⇒ ) Next, we will show that f fails robustness if α and θ are not compatible.
To this end, we assume that there is an index i ∈ {1, . . . ,m − 2} with αi+1 − αi <
(θi+1−θi)max(αi

θi
, 1−αi
1−θi

). We proceed with a case distinction depending on max(αi
θi
, 1−αi
1−θi

).

Case 1: First assume that αi
θi

≥ 1−αi
1−θi

. Equivalently, this assumption means that
αi ≥ θi, so it follows that αi > 0. We define δ = (θi+1 − θi) · αi

θi
− (αi+1 − αi) and we

choose a value ϵ > 0 such that δ θi
αi

> ϵαi+1. Moreover, let v ∈ Q∩ (0, 1] denote a rational

value such that θi
αi

≤ v ≤ θi
αi

+ ϵ. Finally, let w1, w2 ∈ N0 denote two integers such that
v = w1

w1+w2
and we consider the interval profile I where w1 voters report {xi, xi+1, xi+2}

and w2 voters report {xm}. It can be easily computed that

Πα(I, xi) = w1 · αi = v · nI · αi ≥
θi
αi

· nI · αi = θinI .

Since Πα(I, xh) = 0 for all xh with xh ▷ xi, we conclude that f(I) = xi.
Next, let I ′ denote the profile where w1 voters report {xi+1, xi+2} and w2 voters report

{xm}. Robustness from I to I ′ postulates that f(I ′) ∈ {xi, xi+1}. Moreover, it holds
that Πα(I ′, xi) = 0 as no voter approves an alternative left of xi+1 in I ′, so f(I ′) ̸= xi.
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However, the subsequent computations show that Πα(I ′, xi+1) = Πα(I, xi+1) < θi+1nI .
This means that f(I ′) ̸= xi+1 and robustness is violated.

Πα(I ′, xi+1) = v · nI · αi+1

≤
(
θi
αi

+ ϵ

)
· nI · αi+1

= θi · nI + (αi+1 − αi) ·
θinI
αi

+ ϵ · nI · αi+1

= θi · nI +

(
(θi+1 − θi) ·

αi

θi
− δ

)
· θinI

αi
+ ϵ · nI · αi+1

= nI

(
θi + θi+1 − θi − δ

θi
αi

+ ϵ · αi+1

)
< θi+1nI .

Here, the second line uses the definition of v, the third one rearranges the terms, and
the fourth one applies the definition of δ. The fifth line is again simple calculus, and the
last inequality follows because δ θi

αi
> ϵαi+1.

Case 2: As the second case, we assume that αi
θi

< 1−αi
1−θi

. This is equivalent to θi > αi,

so we derive that 0 < 1− θi < 1−αi. Next, we define δ = (θi+1 − θi) · 1−αi
1−θi

− (αi+1 −αi)

and we choose ϵ > 0 such that δ 1−θi
1−αi

> ϵ(1− αi+1). Moreover, we observe that 1−θi
1−αi

> 0

since 0 < θi < 1 and 1 − αi > 0, and that 1−θi
1−αi

< 1 since 0 < 1 − θi < 1 − αi. Hence,

there is a rational value v ∈ Q ∩ (0, 1) with 1−θi
1−αi

− ϵ ≤ v ≤ 1−θi
1−αi

. Finally, let w1, w2 ∈ N
denote two integers such that v = w1

w1+w2
and consider the profile I where w1 voters

report {xi, xi+1, xi+2} and w2 voters report {xi}. We first compute that

Πα(I, xi) = w2 + w1αi = nI(1− v + vαi) ≥ nI

(
1− (1− αi)

1− θi
1− αi

)
= θinI .

Here, the inequity in the third step follows because v ≤ 1−θi
1−αi

and (1− αi) ≥ 0. Since
no voter reports an alternative left of xi, this shows that f(I) = xi.

Next, let I ′ denote the profile where w1 voters report {xi+1, xi+2} and w2 voters report
{xi+1}. First, repeatedly applying robustness from I to I ′ shows that f(I ′) ∈ {xi, xi+1}.
In particular, for the voters deviating from {xi} to {xi+1}, we can make an intermediate
step by expanding the interval to {xi, xi+1}. On the other hand, we derive that f(I ′) ̸= xi
because no voter reports an alternative xh with xh ⊵ xi. Finally, as the following
inequality shows, it holds Πα(I ′, xi+1) < θi+1nI′ . This proves that f(I) ̸= xi+1, so f
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fails robustness.

Πα(I ′, xi+1) = w2 + w1αi+1

= nI(1− v + vαi+1)

≤ nI

(
1− (1− αi+1)

(
1− θi
1− αi

− ϵ

))
= nI

(
1− (1− αi) ·

1− θi
1− αi

+ (αi+1 − αi) ·
1− θi
1− αi

+ (1− αi+1)ϵ

)
= nI

(
θi +

(
(θi+1 − θi) ·

1− αi

1− θi
− δ

)
· 1− θi
1− αi

+ (1− αi+1)ϵ

)
= nI

(
θi+1 − δ · 1− θi

1− αi
+ (1− αi+1)ϵ

)
< θi+1nI .

The first line uses the definition of Πα, the second the definition of w1 and w2, and the
third inequality that 1−θi

1−αi
− ϵ < v. Next, we rearrange our formula and substitute the

definition of δ in the fifth line. The remaining two lines follow from simple calculus and
the definition of ϵ.

Based on Lemma 1, it is now easy to check that position-threshold rules indeed satisfy
all required axioms.

Lemma 2. Every position-threshold rule satisfies anonymity, unanimity, robustness,
reinforcement, and right-biased continuity.

Proof. Fix a threshold vector θ ∈ (0, 1)m and a compatible weight vector α = (α1, . . . , αm)
and let f denote the position-threshold rule induced by these vectors. We first note that
Πα is anonymous, so f also satisfies this property. Moreover, if Ii = {xj} for all voters
in a profile I, then Πα(I, xj) = nI ≥ θj |NI | and Πα(I, xh) = 0 < θhnI for all xh ▷ xj .
This means that f(I) = xj , so f is unanimous. Next, Lemma 1 implies that f is robust
since α and θ are compatible.
As the fourth axiom, we will show that f is reinforcing. For this, let I1 and I2

denote two profiles in Λ∗ such that f(I1) = f(I2) = xi for some alternative xi ∈ A and
NI1 ∩NI2 = ∅. By definition of f , it holds for I ∈ {I1, I2} that Πα(I, xi) ≥ θinI and
Πα(I, xh) < θhnI for all xh ∈ A with xh ▷ xi. Moreover, we have for all x ∈ A that
Πα(I1+I2, x) = Πα(I1, x)+Πα(I2, x). Hence, it follows that Πα(I1+I2, xh) < θhnI1 +
θhnI2 = θhnI1+I2 for all xh with xh ▷ xi and Πα(I1+I2, xi) ≥ θinI1 +θinI2 = θinI1+I2 .
This means that f(I1 + I2) = xi and f thus is reinforcing.

Finally, we will prove that f satisfies right-biased continuity. For this, we consider
two profiles I1, I2 ∈ Λ∗. First, if f(I2) = f(I1), it follows by reinforcement that
f(I1 + I2) = f(I1) and right-biased continuity is satisfied. Next, we assume that
f(I2) ▷ f(I1) and we will show that there is λ ∈ N such that f(λI1 + I2) = f(I1).
By the definition of f , we derive that Πα(I1, xh) < θhnI1 for all xh ∈ A with xh ▷ xi
and Πα(I1, xi) ≥ θi|NI1 |. Moreover, it holds that Πα(I2, xj) ≥ θjnI2 for the alternative
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xj = f(I2). We have shown in the proof of Lemma 1 (see Step 1) that Πα(I, xh) ≥ θhnI
implies Πα(I, xh+1) ≥ θh+1nI for all interval profiles I and all alternatives xh ∈ A\{xm}
if α and θ are compatible. Based on this insight, we infer that Πα(I2, xi) ≥ θinI2 as
xj ▷ xi. Now, let δh = θhnI1 −Πα(I1, xh) for all h ∈ {1, . . . , i− 1} and let λ ∈ N denote
an integer such that λδh > Πα(I2, xh) for all such h. By the definition of λ, we derive
for all xh with xh ▷ xi that

Πα(λI1 + I2, xh) = λΠα(I1, xh) + Πα(I2, xh)

= λ(θhnI1 − δh) + Πα(I2, xh)

< θhnλI1+I2

This then implies that xi ⊵ f(λI1 + I2). On the other hand, it is holds that

Πα(λI1 + I2, xi) = λΠα(I1, xi) + Πα(I2, xi)

≥ λθinI1 + θinI2

= θinλI1+I2 .

Hence, f(λI1 + I2) = xi and right-biased continuity is satisfied.
For the second case, suppose that f(I1) ▷ f(I2) and let xr denote the right-most

alternative that is reported by some voter in I1. We moreover let xi = f(I1), and we will
show that there is λ ∈ N such that xi ⊵ f(λI1 + I2) ⊵ xr. To this end, we first observe
that Πα(I, xj) < θjnI for all j < i and I ∈ {I1, I2}, so analogous arguments as before

show that xi ⊵ f(λI1 + I2) for all λ ∈ N. Next, we choose λ such that θr ≤
λnI1

λnI1+nI2
.

We note that such a λ exists as θr < 1 and
λnI1

λnI1+nI2
converges to 1 as λ increases. By

the choice of xr, we have that Πα(I1, xr) = nI1 . Hence, we compute that

Πα(λI1 + I2, xr) = λΠα(I1, xr) + Πα(I2, xr)

≥ λnI1

≥ θr(λnI1 + nI2)

= θrnλI1+I2 .

This proves that f(λI1 + I2) ⊵ xr and thus completes the proof that f satisfies
right-biased continuity.

A.2. Derivation of Weight and Threshold Vectors

We will next show that every voting rule on Λ∗ that satisfies anonymity, unanimity,
robustness, reinforcement, and right-biased continuity is a position-threshold rule. To
this end, we suppose throughout this section that f is a voting rule on Λ∗ that satisfies
all considered axioms, and we aim to represent f as a position-threshold rule by deriving
the weight and threshold vectors that induce f .
As a first step, we will show that f coincides with a phantom median rule on the

domain DN
1 where all voters of a fixed electorate N report a single alternative. More
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formally, the domain DN
1 is the subset of Λ∗ given by DN

1 = {I ∈ ΛN : ∀i ∈ N : |Ii| = 1}.
We will prove our claim by showing that f induces a voting rule on the domain of
single-peaked preferences PN

▷ that satisfies anonymity, unanimity, and strategyproofness.
By the characterization of Moulin (1980), we then infer that f is a phantom median
rule for PN

▷ (see also Border and Jordan (1983) or Weymark (2011) as Moulin uses
slightly stronger axioms than we do), which will then imply the desired representation of
f on DN

1 . To make our proof precise, we will next present the definitions of anonymity,
unanimity, and strategyproofness for the domain of single-peaked preferences PN

▷ . We
say that a voting rule f on PN

▷ is

• anonymous if f(π(R)) = f(R) for all preference profiles PN
▷ and permutations N → N .

• unanimous if f(R) = xi for all preference profiles R ∈ PN
▷ and alternatives xi ∈ A

such that all voters in R report xi as their favorite alternative.

• strategyproof if f(R) ≿ f(R′) for all profiles R,R′ ∈ RN
▷ and voters i ∈ N such that

≿j = ≿′
j for all j ∈ N \ {i}.

Then, the characterization of Moulin (1980) states that a voting rule f on PN
▷ satisfies

anonymity, unanimity, and strategyproofness if and only if it is a phantom median rule,
i.e., there is a threshold vector θ ∈ (0, 1)m such that θ1 ≥ · · · ≥ θm and f(R) = max▷{xi ∈
A : ΠSP (R, xi) ≥ θi|NR|} for all profiles R ∈ PN

▷ .3 We are now ready to show our first
lemma. For this lemma, we extend the definition of the individual and collective peak
position functions to interval profiles I ∈ DN

1 by defining πSP ({xi}, xj) = 1 if xi ⊵ xj
and πSP ({xi}, xj) = 0 if xj ▷ xi for all xi, xj ∈ A, and ΠSP (I, xj) =

∑
i∈NI

πSP (Ii, xj)

for all xj ∈ A and I ∈ DN
1 .

Lemma 3. For every electorate N ∈ F(N), there is a threshold vector θ = (θ1, . . . , θm) ∈
(0, 1)m such that θ1 ≥ · · · ≥ θm and f(I) = max▷{xi ∈ A : ΠSP (I, xi) ≥ θinI} for all
interval profiles I ∈ DN

1 .

Proof. We will show the lemma by reducing f to a voting rule f ′ on PN
▷ that is strate-

gyproof, anonymous, and unanimous. Then, the characterization of Moulin (1980) shows
that there is a vector θ ∈ (0, 1)m such that θ1 ≥ · · · ≥ θm and f ′(R) = max▷{xi ∈
A : ΠSP (R, xi) ≥ θi|NR|} for all profiles R ∈ PN

▷ . We thus define the interval profile I(R)
given a single-peaked profile R ∈ PN

▷ by I(R)i = {x ∈ A : ∀y ∈ A \ {x} : x ≻i y} for all
i ∈ N , i.e., the interval of each voter only contains his favorite alternative in R. Then,
we set f ′(R) = f(I(R)) for all profiles R ∈ PN

▷ . We first note that it is straightforward
to check that f ′ is anonymous and unanimous as f satisfies these axioms.

3The standard way to state Moulin’s result is that a voting rule f on PN
▷ satisfies anonymity, unanimity,

and strategyproofness if and only if there are |N | − 1 phantom voters who report fixed single-peaked
preference relations and that f chooses the top-ranked alternative of the median voter with respect to
our |N | original voters and the |N | − 1 phantom voters. To arrive at our representation, we define pi
as the number of phantom voters that top-rank alternative xi. Then, it can be checked that, for all
profiles R ∈ PN

▷ , it holds that f(R) = max▷{xi ∈ A : ΠSP (R, xi) ≥ θi|NR|} for the threshold vector θ

given by θk =
1+2

∑m
i=k+1 pi

2|N| for all k ∈ {1, . . . ,m}.
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We hence focus on showing that f ′ is strategyproof. For this, we consider two preference
profiles R,R′ ∈ PN

▷ and a voter i ∈ N such that ≿j = ≿′
j for all j ∈ N \ {i}. We will

show that, f ′(R) ≿i f ′(R′). To this end, let xi denote voter i’s favorite alternative
in R and x′i denote his favorite alternative in R′. First, if f ′(R) = xi, voter i cannot
manipulate as his favorite alternative is chosen in R. Without loss of generality, we
will hence assume that xi ▷ f ′(R). Now, if x′i ⊵ xi, it follows from the robustness of f
that f ′(R) = f ′(R′). In more detail, let I∗ ∈ ΛN denote the interval profile such that
I∗i = [x′i, xi] and I∗j = {x ∈ A : ∀y ∈ A \ x : x ≻i y} for all j ∈ N \ {i}. First, we note
that we can transform I(R) to I∗ by one after another adding alternatives left of xi to
voter i’s interval. Since xi ▷ f ′(R) = f(I(R)), robustness implies for all of these steps
that the outcome does not change. Hence, we have that f(I∗) = f(I(R)). Finally, we
can then transform I∗ to I(R′) by one after another deleting the alternatives right of x′i
from voter i’s interval. Since f(I∗) ̸∈ I∗i , robustness implies that the outcome is again
not allowed to change, so we now conclude that f ′(R) = f(I∗) = f ′(R′).
Next, if xi ▷ x′i ⊵ f ′(R), we can use an analogous argument based on the interval

I∗i = [xi, x
′
i] as robustness still implies that the winner is not allowed to change. Finally,

if f ′(R) ▷ x′i, it follows from robustness that f ′(R) ⊵ f ′(R′). To see this, we consider
first the profile I1 where voter i reports [xi, f

′(R)] and every other voter only reports
his favorite alternative in R. Repeatedly applying robustness from I1 to I(R) shows
that f(I(R)) = f(I1). Next, let I2 denote the profile derived from I1 by assigning
voter i the interval [xi, x

′
i]. We can transform I1 to I2 by adding one after another

the alternatives right of f ′(R) to voter i’s interval. Robustness implies that the winner
can only move to the right, i.e., that f(I1) ⊵ f(I2). As the last step, we transform
I2 to I(R′) by one after another deleting alternatives left of x′i from voter i’s interval.
Robustness implies for such actions again that the winner can only move to the right, so
f(I2) ⊵ f(I(R′)). By chaining these insights and using the definition of f ′, it follows
now that f ′(R) ⊵ f ′(R′). Finally, since xi ▷ f ′(R) ⊵ f ′(R′), the single-peakedness of ≿i

implies that f ′(R) ≿i f
′(R′), so f ′ is indeed strategyproof.

By applying Moulin’s characterization, we now derive that there is a threshold vector
θ ∈ (0, 1)m such that θ1 ≥ · · · ≥ θm and f ′(R) = max▷{xi ∈ A : ΠSP (R, xi) ≥ θi|NR|}
for all profiles R ∈ PN

▷ . Due to the relation between f and f ′, it then follows that
f(I) = max▷{xi ∈ A : ΠSP (I, xi) ≥ θinI} for all interval profiles I ∈ DN

1 because there
is a profile R ∈ PN

▷ such that I = I(R).

Next, we will generalize Lemma 3 from a fixed electorate N to the domain of all
electorates. To this end, we set D∗

1 =
⋃

N∈F(N)DN
1 .

Lemma 4. There is a threshold vector θ ∈ (0, 1)m such that θ1 ≥ · · · ≥ θm and
f(I) = max▷{xi ∈ A : ΠSP (I, xi) ≥ θinI} for all interval profiles I ∈ D∗

1.

Proof. To prove this lemma, we denote by N(z) an arbitrary electorate with z voters.
Because of the anonymity of f , the choice of N(z) does not matter. By Lemma 3, there
is for every electorate N(z) a threshold vector θz ∈ (0, 1)m such that θz1 ≥ · · · ≥ θzm
and f(I) = max▷{xi ∈ A : ΠSP (I, xi) ≥ θzi nI} for all profiles I ∈ DN(z)

1 . We note,
however, that these vectors are not unique: instead of θz, we can represent f on
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DN(z)
1 by every vector q ∈ (0, 1]m such that qm = qm−1 and qi ∈ (

vzi
z ,

vzi +1
z ] for all

i ∈ {1 . . . ,m− 1}, where vzi ∈ N0 is chosen such
vzi
z < θzi ≤ vzi +1

z . The reason for this is

that, ΠSP (I, xi) ∈ {0, . . . , z} for every alternative xi ∈ A and profile I ∈ DN(z)
1 . Also,

the exact choice of qm has no influence as ΠSP (I, xm) = nI for all I ∈ DN(z)
1 . We hence

define the interval Izi = (
vzi
z ,

vzi +1
z ] for all z ∈ N and i ∈ {1, . . . ,m − 1} and emphasize

that f(I) = max▷{xi ∈ A : ΠSP (I, xi) ≥ qinI} for for all I ∈ DN(z)
1 and every vector q

with qi ∈ Izi for all i ∈ {1, . . . ,m}.
We next define Īzi =

⋂
s∈{1,...,z} I

z
i as the intersection of the first z intervals Isi for some

alternative xi ∈ A, and we will show that Īzi ̸= ∅ for all z ∈ N. Assume for contradiction
that there are z ∈ N and i ∈ {1, . . . ,m− 1} such that Īzi = ∅, and moreover suppose that
z is chosen minimal, i.e., Īz−1

i ̸= ∅ but Īzi = ∅. Since Īz−1
i is the non-empty intersection

of intervals that are all closed to the right, it is itself an interval that is closed to the right.
Next, we denote every interval Isi by Isi = (ℓsi , r

s
i ] and define r̄z−1

i = mins∈{1,...,z−1} r
s
i

and ℓ̄z−1
i = maxs∈{1,...,z−1} ℓ

s
i . It holds that Ī

z−1
i = (ℓ̄z−1

i , r̄z−1
i ] since every point left of

ℓ̄z−1
i and right of r̄z−1

i is not included in some interval Isi . Because Īzi = ∅, it either holds
that rzi ≤ ℓ̄z−1

i or r̄z−1
i ≤ ℓzi . We subsequently assume that rzi ≤ ℓ̄z−1

i as both cases are
symmetric. Now, let s ∈ {1, . . . , z − 1} denote the index of an interval Isi with rsi = r̄z−1

i ,
which means that r̄z−1

i = c
s for some c ∈ {1, . . . , s}.

We consider the profile I where s · r̄z−1
i voters report xi and s · (1− r̄z−1

i ) voters report
xi+1. By the definition of Isi , we have that f(I) = max▷{xj ∈ A : ΠSP (I, xj) ≥ θsj ·s) = xi

since ΠSP (I, xj) = 0 for all xj ∈ A with xj ▷ xi and ΠSP (I, xi) = s · r̄z−1
i ≥ θsinI .

Moreover, by reinforcement, it also holds that f(zI) = xi for the profile zI that consists
of z copies of I. Next, consider the profile I ′, which consists of z · ℓzi voters reporting
xi and z · (1 − ℓzi ) voters reporting xi+1 (note that z · ℓzi and z · (1 − ℓzi ) are integers
since ℓzi = c

z for some c ∈ {0, . . . , z − 1}). Using the definition of ℓzi , it follows that
f(I ′) = max▷{xj ∈ A : ΠSP (I ′, xj) ≥ θzj · z} = xi+1 since Π(I ′, xi) = z · ℓzi < θzi · nI
and Π(I ′, xi) = z ≥ θzi+1nI . By reinforcement, it then follows for the profile sI ′, which
consists of s copies of I ′, that f(sI ′) = xi+1. Finally, there is also a threshold vector

θsz such that f(Î) = max▷{xj ∈ A : ΠSP (Î, xj) ≥ θszj · s · z} for all profiles I ∈ DN(sz)
1 .

Now, since f(sI ′) = xi+1 and there are z · s · ℓzi voters reporting xi in zI, we infer that

θszi > ΠSP (sI′,xi)
sz = ℓzi . Analogously, it holds that θszi ≤ r̄z−1

i since s · z · r̄z−1
i voters

report xi in zI and f(zI) = xi. However, this means that θszi ≤ r̄z−1
i ≤ ℓsi < θszi . This

contradiction proves that our assumption that Īzi = ∅ is wrong.
We now define the threshold vector θ. To this end, we observe that Īzi ⊆ Īz+1

i for all
z ∈ N and i ∈ {1, . . . ,m− 1}. Finally, since r̄zi − ℓ̄zi ≤ rz − ℓz = 1

z for all z ∈ N, the series
r̄1i , r̄

2
i , . . . is guaranteed to converge for all i ∈ {1, . . . ,m− 1}. We hence define the vector

θ by θ = limz→∞ r̄zi for all i ∈ {1, . . . ,m− 1} and θm = θm−1.
We will first show that θi ≥ θi+1 for all i ∈ {1, . . . ,m− 1}. For i = m− 1, this is clear

from the definition. For i < m − 1, we have by definition that θzi ≥ θzi+1 for all z ∈ N.
This implies that rzi ≥ rzi+1 for all z ∈ N and consequently also that r̄zi ≥ r̄zi+1. This then
shows that θi = limz→∞ r̄zi ≥ limz→∞ r̄zi+1 = θi+1.
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Next, we will prove that θi ∈ (0, 1) for all i ∈ {1, . . . ,m− 1}. To this end, assume for
contradiction that θi ̸∈ (0, 1) for some i ∈ {1, . . . ,m−1}. This means that θi = 0 or θi = 1.
We first consider the case that θi = 0 for some alternative xi and we assume that xi is
the alternative with minimal index such that xi = 0, i.e., xj > 0 for all j ∈ {1, . . . , i− 1}.
Since θi = 0, we infer that ℓ̄zi = 0 for all z ∈ N because ℓ̄zi < r̄zi for all z ∈ N. In
particular, this means that f(I) = xi for all profiles I ∈ D∗

1 where {xi} is reported by
one voter and all other voters report {xm}. Now, consider the profile I that consists of
one voter reporting {xm}, and the profile I ′ that consists of one voter reporting {xi}.
By unanimity, we have that f(I) = xm and f(I ′) = xi. Hence, right-biased continuity
requires that there is a λ ∈ N such that f(λI + I ′) = {xm}. However, this contradicts
with our previous insight, so the assumption that θi = 0 must have been wrong. Next,
consider the case that θi = 1. This is only possible if r̄zi = 1 for all z ∈ N, so f(I) = xi
requires for all profiles I ∈ D∗

1 that no voter reports {xm}. Now, consider again the
profiles I and I ′ where one voter reports {xm} and one voter reports {xi}, respectively.
By right-biased continuity, there must be a λ ∈ N such that f(λI ′ + I) ⊵ xi. However,
this contradicts with the our previous observation, so we conclude that θi ̸= 1.
As our last point, we will verify that f(I) = max▷{xi ∈ A : ΠSP (I, xj) ≥ θjnI} for all

profiles I ∈ D∗
1. To this end, fix a set of voters N(z). By the definition of θ, it holds that

θi ∈ [ℓ̄zi , r̄
z
i ] ⊆ [ℓzi , r

z
i ] for all i ∈ {1, . . . ,m− 1}. If θi ∈ (ℓzi , r

z
i ] for all i ∈ {1, . . . ,m− 1},

then f(I) = max▷{xi ∈ A : ΠSP (I, xi) ≥ θinI} because all values in (ℓzi , r
z
i ] result in

the same rule. We hence will show that θi ̸= ℓzi for all i ∈ {1, . . . ,m − 1} and assume
for contradiction that θi = ℓzi for some i ∈ {1, . . . ,m − 1}. Since ℓsi < rsi for all s ∈ N,
this is only possible if ℓzi ≥ ℓsi for all s ∈ N. Now, consider the profile I with z · ℓzi
voters reporting {xi} and z · (1 − ℓzi ) voters reporting {xm}. By the definition of ℓiz,
we have that f(I) ̸= xi. Moreover, because θzj > 0 for all j ∈ {1, . . . ,m}, we conclude
that xi ▷ f(I). Next, let I ′ denote the profile where a single voter reports {x1}. By
unanimity, we have that f(I ′) = x1. Finally, by right-biased continuity, we infer that
there is a value λ ∈ N such that f(λI + I ′) = f(I). However, for each λ ∈ N, it holds
that ΠSP (λI ′ + I, xi) = 1 + λ · z · ℓzi > (1 + λ · z)ℓzi ≥ (1 + λ · z)ℓ1+λ·z

i . By the definition
of ℓ1+λz

i , this means that f(λI ′ + I) ⊵ xi for all λ ∈ N, which contradicts right-biased
continuity. Hence, we conclude that θi ̸= ℓzi , which completes the proof of this lemma.

As it will turn out, the threshold vector θ derived in Lemma 4 is the threshold
vector that defines f . We will hence focus next on deriving the weight vector of f , for
which we will mainly rely on reinforcement. In more detail, to employ the full power
of reinforcement, we will change the domain of f . To this end, we define q = |Λ| as
the number of intervals with respect to ▷ and we enumerate the intervals by I1, . . . , Iq.
This allows us to represent each interval profile I by a vector v ∈ Nq

0 \ {0}: the i-th
entry of v states how often the interval Ii is reported. For the ease of notation, we
write v(I) to indicate the vector corresponding to the profile I, and vI to indicate the
entry in v corresponding to an interval I. Because f is anonymous, there is a function
g from Nq \ {0} to X such that f(I) = g(v(I)) for all profiles I ∈ Λ∗. We moreover
note that g inherits all desirable properties of f . We will next generalize g to a function
ĝ : Qq

≥0 \ {0} → X while preserving the desirable properties of f . In particular, we
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will show that ĝ extends f (i.e., f(I) = ĝ(v(I)) for all profiles I ∈ Λ∗) and satisfies
reinforcement (i.e., g(v + v′) = g(v) for all v, v′ ∈ Qq

≥0 \ {0} with g(v) = g(v′)).

Lemma 5. There is a functions ĝ : Qq
≥0 \ {0} → C that extends f and satisfies

reinforcement.

Proof. Let g denote the function from Nq\{0} → A that computes f based on anonymized
profiles. We first note that g clearly satisfies both conditions of the lemma as it is only
a different representation of f . Next, we define the function ĝ by ĝ(v) = g(λv) for all
v ∈ Qq

≥0 \ {0}, where λ ∈ N is an arbitrary scalar such that λv ∈ Nq
0 \ {0}.

We first show that ĝ is well-defined despite not fully specifying the parameter λ. To
this end, let v ∈ Qq

≥0 denote an arbitrary vector and let λ1, λ2 ∈ N denote two scalars
such that λ1v, λ2v ∈ Nq

0 \ {0}. We will show that g(λ1v) = g(λ2v) as this implies that ĝ
is well-defined. For this, we note that reinforcement implies that g(λ1v) = g(λ1λ2v) and
that g(λ2v) = g(λ1λ2v). Hence, g(λ1v) = g(λ2v) as desired. Moreover, observe that this
proves that ĝ(v(I)) = g(1 · v(I)) = f(I) for all profiles I ∈ Λ∗, so ĝ indeed extends f .

Next, we show that ĝ is reinforcing. To this end, consider two vectors v1, v2 ∈ Qq
≥0 \{0}

and let λ1, λ2 ∈ N denote scalars such that λ1v
1, λ2v

2 ∈ Nq
0 \ {0}. We suppose that

ĝ(v1) = ĝ(v2) as there is otherwise nothing to show. By the definition of ĝ and the
reinforcement of g, it holds that ĝ(v1) = g(λ1v

1) = g(λ1λ2v
1) and ĝ(v2) = g(λ1v

2) =
g(λ1λ2v

2). Because of the reinforcement of g, we next conclude that ĝ(v1 + v2) =
g(λ1λ2(v

1 + v2)) = g(λ1λ2v
1) = ĝ(v1). This proves that ĝ is reinforcing, too.

Next, we define for every alternative xi ∈ A the set Qi = {v ∈ Qq
≥0 \ {0} : ĝ(v) = xi}

as the subset of Qq
≥0 \ {0} such that ĝ chooses xi for every point in Qi. We note that

Qi∩Qj = ∅ for all i ̸= j as ĝ returns for every point in Qq
≥0 \{0} only a single alternative

and that
⋃

xi∈AQi = Qq
≥0 \ {0}. Moreover, Qi is Q-convex (i.e., for all v1, v2 ∈ Qi and

λ ∈ Q ∩ [0, 1], it holds that λv1 + (1 − λ)v2 ∈ Qi) because ĝ is reinforcing. Next, we
let Q̄i denote the closure of Qi with respect to Rq. Using standard arguments from
Young (1975), it can be shown that Q̄i is convex for all xi ∈ A and that

⋃
xi∈A Q̄i = Rq

≥0.

We will next show that the sets Q̄i are polytopes. In the following, uv will denote the
standard scalar product between two vectors u, v ∈ Rq, i.e., uv =

∑q
i=1 uivi.

Lemma 6. For every alternative xi ∈ A, the following claims hold:

(1) Q̄i is fully dimensional.

(2) For every alternative xj ∈ A \ {xi}, there is a non-zero vector ui,j ∈ Rq such that
vui,j ≥ 0 for all v ∈ Q̄i and vui,j ≤ 0 for all v ∈ Q̄j.

(3) For every xj ∈ A\{xi}, let ui,j denote a non-zero vector such that vui,j ≥ 0 if v ∈ Q̄i

and vui,j ≤ 0 if v ∈ Q̄j. It holds that Q̄i = {v ∈ Rq
≥0 : ∀xj ∈ A \ {xi} : vui,j ≥ 0}.

Proof. Fix an alternative xi and consider the corresponding set Q̄i. We will prove each
of the three claims separately.
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Claim (1): We will first show that Q̄i is fully dimensional by studying f in more
detail. Thus, let θ ∈ (0, 1)m denote the threshold vector such that f(I) = max▷{xi ∈
A : ΠSP (I, xi) ≥ θinI} for all I ∈ D∗

1; such a vector exists due to Lemma 4. Moreover,

we define δ = min(θi, 1− θi) and we choose w ∈ N such that 2(q−1)
w < δ. We claim that

f(I) = xi for all profiles I such that each interval I ∈ Λ \ {{xi}} is reported by at most
two voters and at least w voters report the interval {xi}. Assume for contradiction that
this is not the case, i.e., that f(I) = xj for such a profile I and some alternative xj ̸= xi.
Next, let nX denote the number of voters who report the interval X in the profile I
and recall that nI is the total number of voters in I. We consider the profile I ′ where∑

X∈Λ\{{xi}} nX voters report {xj} and w voters report {xi}. A repeated application

of robustness shows that if f(I) = xj , then f(I ′) = xj . In more detail, for each voter
k with xj ̸∈ Ik, we can first extend his interval to include xj and then delete the other
alternatives. For each of these steps, robustness implies that the winner is not allowed
to change. Similarly, if xj ∈ Ik, we can one after another remove all alternatives but
xj from the voter’s interval, and robustness again demands that the outcome does not
change. Next, we observe that I ′ ∈ D∗

1, so f(I ′) = max▷{xi ∈ A : ΠSP (I, xi) ≥ θinI}.
Now, if xj ▷ xi, it holds that

ΠSP (I ′, xj) ≤
∑

X∈Λ\{{xi}}

nX ≤ 2(q − 1) < δw ≤ θinI′ .

Since xj ▷ xi, it holds that θj ≥ θi, so f(I ′) ̸= xj . On the other hand, if xi ▷ xj , then

ΠSP (I ′, xi) = w ≥ nI(1−
2(q − 1)

nI
) > nI(1− δ) ≥ nI(1− (1− θi)) = θinI .

Hence, we derive that f(I) ⊵ xi, which means again that f(I) ̸= xj . Since we have a
contradiction in both cases, it follows that f(I) = xi for all profiles I where at least
w voters report {xi} and every other interval is reported by at most 2 voters. Since
f(I) = ĝ(v(I)), we conclude that v ∈ Qi ⊆ Q̄x for all vectors v ∈ Qq

≥0 such that v{xi} ≥ w

and vI ≤ 2 for all other intervals I ∈ Λ \ {{xi}}. Combined with the convexity of Q̄i,
this shows that this set is indeed fully dimensional.

Claim (2): We next let xj ∈ A\{xi} denote a second alternative, and we aim to apply
the separating hyperplane theorem for convex sets to infer a non-zero vector ui,j such that
vui,j ≥ 0 for all v ∈ Q̄i and vui,j ≤ 0 for all v ∈ Q̄j . To this end, we need to show that the
interiors of Q̄i and Q̄j are disjoint, i.e., that int Q̄i∩ int Q̄j = ∅. Assume for contradiction
that this is not the case, i.e., int Q̄i ∩ int Q̄j ̸= ∅. Since int Q̄i and int Q̄j are open and
convex, this means that there is a point v such that v ∈ int Q̄i ∩ int Q̄j ∩Qq

≥0. We will
show that this implies that v ∈ Qi ∩Qj , which is a contradiction as these sets are disjoint
by definition. We will focus subsequently on showing that v ∈ Qi as the argument for Qj

is symmetric. Now, because Qi ⊆ Q̄i and the latter set is convex, it holds that the convex
hull of Qi, i.e., Conv(Qi), is a subset of Q̄i. Since Qi ⊆ Conv(Qi) ⊆ Q̄i, this means that

Q̄i ⊆ Conv(Qi) ⊆ Q̄i, so Conv(Qi) = Q̄i. Next, it holds for convex sets Y with non-empty
interior that int Y = int Ȳ , so int Q̄i = int Conv(Qi) = int Conv(Qi). Finally, Lemma
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1 of Young (1975) shows that Conv(Qi)∩Qq is the same as Qi due to the Q-convexity of
this set. Hence, we have that int Q̄i ∩Qq = int Conv(Qi) ∩Qq ⊆ Conv(Qi) ∩Qq = Qi.
This means that, if v ∈ int Q̄i ∩Qq, then v ∈ Qi. Since an analogous argument works for
Qj , this gives the desired contradiction.
We next apply the separation theorem for convex sets to infer that there is a non-zero

vector ui,j ∈ Rq and a constant c ∈ R such that vui,j > c for all v ∈ int Q̄i and vui,j < c
for all v ∈ Q̄j . By taking the closure, it then follows that vui,j ≥ c for all v ∈ Q̄i and
vui,j ≤ c for all v ∈ Q̄j . Moreover, since these sets are closed under multiplication with a
scalar, it is easy to infer that c must be 0. This completes the proof of this step.

Claim (3): For all xj ∈ A \ {xi}, let ui,j ∈ Rq denote a non-zero vector such that
vui,j ≥ 0 if v ∈ Q̄i and vui,j ≤ 0 if v ∈ Q̄j . Moreover, we define define Si = {v ∈
Rq
≥0 : ∀xj ∈ A \ {xi} : vui,j ≥ 0}, and we will show that Q̄i = Si by considering the two

set inclusions between these sets. First, by the definition of the vectors ui,j , it follows
immediately that if v ∈ Q̄i, then vui,j ≥ 0 for all xj ∈ A \ {xi}, so Q̄i ⊆ Si. For the other
direction, we first observe that int Si ̸= ∅ as int Q̄i ≠ ∅. Now, it holds by the definition
of the interior that, if v ∈ int Si, then vui,j > 0 for all xj ∈ A \ {xi}. By the definition of
these vectors, this means that v ̸∈ Q̄j for all xj ∈ A \ {xi} since this would imply that
vui,j ≤ 0. Because

⋃
xk∈A Q̄k = Rq

≥0, we conclude that v ∈ Q̄i. Hence int Si ⊆ Q̄i, and

taking the closure of both sets then implies that Si ⊆ Q̄i.

Motivated by Lemma 6, we will next study the vector ui,j in more detail. To this end,
we define the relation ▷∗ by xi ▷∗ xj if and only if xi ▷ xj and there is no alternative
xk such that xi ▷ xk ▷ xj . By our assumption that ▷ is given by x1 ▷ x2 ▷ · · · ▷ xk,
this means that xi ▷∗ xj if and only if j = i + 1. For the next lemmas, we denote
by θ ∈ (0, 1)m the threshold vector inferred in Lemma 4. We will next show that the
robustness of f severely restricts the vectors ui,j when xi ▷∗ xj .

Lemma 7. Fix two alternatives xi, xj ∈ A such that xi ▷∗ xj and let ui,j ∈ Rq denote a
non-zero vector such that vui,j ≥ 0 for all v ∈ Q̄i and vui,j ≤ 0 for all v ∈ Q̄j. It holds
that

(1) θi · ui,j{xi} = −(1− θi) · ui,j{xj} > 0,

(2) ui,j{xi} ≥ ui,jX ≥ ui,j{xj} for all intervals X ⊆ Λ, and

(3) ui,jX = ui,jY for all intervals X = [ℓ, r], Y = [ℓ′, r′] such that either (i) r ⊵ xi and
r′ ⊵ xi, (ii) xj ⊵ ℓ and xj ⊵ ℓ′, or (iii) {xi, xj} ⊆ X.

Proof. Fix two alternatives xi, xj ∈ A with xi ▷∗ xj and let ui,j denote the non-zero
vector derived in Lemma 6 that satisfies that vui,j ≥ 0 for all v ∈ Q̄i and vui,j ≤ 0 for all
v ∈ Q̄j . We will prove each claim separately, but we will always use the same strategy: if
the given equation is violated, we will construct a profile I such that v(I)ui,j > 0 (or
v(I)ui,j < 0) but f(I) = xj (or f(I) = xi). This is a contradiction since f(I) = xj
implies that v(I) ∈ Q̄i and therefore v(I)ui,j ≥ 0.
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Claim (1): We will first show that ui,j{xi} > 0. To this end, we first observe that, by

Claim (1) of Lemma 6, both Q̄i and Q̄j are fully dimensional. In particular, this implies
for Q̄i that int Q̄i ̸= ∅. Hence, there is a vector v such that vui,j > 0. This requires that
there is an interval X such that ui,jX > 0. Moreover, if it was the case that ui,jY ≥ 0 for all
Y ∈ Λ, then Q̄j would not be fully dimensional because vui,j > 0 if vX > 0 and therefore

v ̸∈ Q̄j . This proves that there is also an interval Z ∈ Λ such that ui,jZ < 0.
Now, let δ = min(θi, 1 − θi) and define w ∈ N such that 1

w+1 < δ. We consider the
profile I where a single voter reports Z and w voters report {xi}, and we will show that
f(I) = xi. Assume for contradiction that this is not the case and let xk = f(I) denote
the chosen alternative. We consider next the profile I ′ derived from I by assigning the
interval {xk} to the voter who initially reported Z. Since this voter does not remove xk
from his interval (but he may add it), robustness implies that f(I ′) = f(I) = xk. Next,
since I ′ ∈ D∗

1, it holds that f(I ′) = max▷{xt ∈ A : ΠSP (I ′, xt) ≥ θtnI′} by Lemma 4.
However, if xk ▷ xi, we compute that

Π(I ′, xk) = 1 < δ(w + 1) ≤ θinI ≤ θknI .

Here, the last inequality uses that θk ≥ θi as xk ▷ xi, and the second to last one uses the
definition of δ. This contradicts that max▷{xi ∈ A : ΠSP (I ′, xi) ≥ θinI′} = xk if xk ▷ xi.
As the second case, suppose that xi ▷ xk. We observe that

ΠSP (I ′, xi) = w = nI′(1− 1

w + 1
) > nI′(1− δ) ≥ nI′(1− (1− θi)) ≥ θinI′ .

This shows that max▷{xi ∈ A : ΠSP (I ′, xi) ≥ θinI′} ⊵ xi, which contradicts f(I ′) =
xk. Since we have a contradiction in both cases, it follows that the assumption that
f(I) = xk ̸= xi is wrong, i.e., it holds that f(I) = xi. This implies that v(I) ∈ Q̄i, so
v(I)ui,j = wui,j{xi} + ui,jZ ≥ 0. From this, we finally infer that ui,j{xi} > 0 because ui,jZ < 0.

Next, we note that ui,j{xi} > 0 implies that ui,j{xj} < 0. To see this, we can consider

a profile I ′′ where a single voter reports {xi} and w′ voters report {xj}. Just as
before, if w′ is large enough, then f(I ′′) = xj . This implies that I ′′ ∈ Q̄j and thus

v(I ′′)ui,j = ui,j{xi} + w′ui,j{xj} ≤ 0, which is only possible if ui,j{xj} < 0.

Next, we will prove that θiu
i,j
{xi} = −(1− θi)u

i,j
{xj} and we assume for contradiction that

this is not the case. We subsequently focus on the case that θiu
i,j
{xi} < −(1 − θi)u

i,j
{xj};

the case that θiu
i,j
{xi} > −(1− θi)u

i,j
{xj} follows analogously by exchanging the role of xi

and xj . By reformulating our assumption, we obtain that θi <
−ui,j

{xj}

ui,j
{xi}

−ui,j
{xj}

, so there is a

value λ ∈ (θi,
−ui,j

{xj}

ui,j
{xi}

−ui,j
{xj}

) ∩Q ⊆ (0, 1) ∩Q. Moreover, there are two integers w1, w2 ∈ N

such that λ = w1
w1+w2

. Now, consider the profile I such that w1 voters report {xi} and
w2 voters report {xj}. Since I ∈ D∗

1, ΠSP (I, xi) = w1 > θinI , and ΠSP (I, xk) = 0 for
all xk with xk ▷ xi, we derive f(I) = max▷{xi ∈ A : ΠSP (I, xi) ≥ θinI} = xi and thus
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v(I) ∈ Q̄i. On the other hand, it holds that

v(I)ui,j = w1u
i,j
{xi} + w2u

i,j
{xj}

= (w1 + w2)
(
λui,j{xi} + (1− λ)ui,j{xj}

)
< (w1 + w2)

 −ui,j{xj}

ui,j{xi} − ui,j{xj}
· ui,j{xi} + (1 +

ui,j{xj}

ui,j{xi} − ui,j{xj}
) · ui,j{xj}


= (w1 + w2)

 −ui,j{xj}

ui,j{xi} − ui,j{xj}
· ui,j{xi} +

ui,j{xi}

ui,j{xi} − ui,j{xj}
· ui,j{xj}


= 0.

This contradicts that v(I) ∈ Q̄i and the assumption that θiu
i,j
{xi} < −(1 − θi)u

i,j
{xj}

hence is wrong. Since the case that θiu
i,j
{xi} > −(1− θi)u

i,j
{xj} is symmetric, we conclude

that θiu
i,j
{xi} = −(1− θi)u

i,j
{xj} > 0, which completes the proof of our first claim.

Claim (2): Consider an arbitrary interval X and assume for contradiction that ui,jX ̸∈
[ui,j{xj}, u

i,j
{xi}]. We will assume here that ui,jX > ui,j{xi} since our cases are again symmetric.

Moreover, we let δ = ui,jX −ui,j{xi} and choose t ∈ N such that t ·δ > ui,j{xi}. Next, we choose

integers j1, j2 ∈ N such that j2 > j1 ≥ t, t
j2

< 1− θi, and
j1
j2

< θi ≤ j1+1
j2

. Moreover, we
define w1 = j1 and w2 = j2 − j1 and consider the profile I in which w1 voters report
{xi} and w2 voters report {xj}. It holds that f(I) = max▷{xk ∈ A : ΠSP (I, xk) ≥ θknI}
since I ∈ D∗

1. We thus conclude that f(I) = xj because ΠSP (I, xk) = 0 for all xk with
xk ▷ xi, ΠSP (I, xi) = w1 < θinI , and ΠSP (I, xj) = nI . Note that we use here also that
xi ▷∗ xj as otherwise some alternative xk with xi ▷ xk ▷ xj could be chosen.

Next, let I ′ denote the profile where w1 − t voters report {xi}, t voters report X, and
w2 voters report {xj}. We claim that f(I ′) = xj due to robustness. To this end, let
X = [ℓ, r]. Now, if r ▷ xj , we can transform the interval {xi} to X by sequentially adding
and removing alternatives without touching xj . Hence, robustness implies immediately
that f(I ′) = xj in this case. On the other hand, if xj ⊵ r and thus xi ▷ r, we first
expand the interval {xi} to the right until our t voters report [xi, r]. Repeatedly applying
robustness during this process shows that these steps can only move the winner to the
right, i.e., that an alternative y with xj ⊵ y is now chosen. Finally, we transform the
intervals [xi, r] into [ℓ, r] by either adding more alternatives to the left of xi (if ℓ ▷ xi) or
by deleting alternatives from the interval (if xi ▷ ℓ). In the first case, robustness implies
that the winner cannot change as the current winner is right of xi, and in the second case,
robustness only allows the winner to move further to the right. Hence, it follows that
xj ⊵ f(I ′). Finally, assume for contradiction that f(I ′) = xk for some xk with xj ▷ xk.
In this case, we consider the profile I ′′ where w1−t voters report {xi}, t voters report {xk},
and w2 voters report {xj}. For this profile, robustness from I ′ implies that f(I ′′) = xk.
However, I ′′ ∈ D∗

1, so f(I ′′) = max▷{xt ∈ A : ΠSP (I ′′, xt) ≥ θtnI′′}. Hence, we compute
that ΠSP (I ′′, xj) = w1 − t + w2 = nI′′(1 − t

nI′′
) > nI′′(1 − (1 − θi)) ≥ θinI′′ ≥ θjnI′′ .
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The strict inequality here uses that t
nI′′

= t
j2

< 1− θi and the last inequality that θi ≥ θj

as xi ▷ xj . This contradicts that xj ▷ f(I ′′), so we conclude that f(I ′) = xj .
Finally, we will next compute vui,j for the vector v = v(I ′).

vui,j = (w1 − t)ui,j{xi} + tui,jX + w2u
i,j
{xj}

= w1u
i,j
{xi} + w2u

i,j
{xj} + tδ

> (w1 + 1)ui,j{xi} + w2u
i,j
{xj}

= (w1 + w2)

(
w1 + 1

w1 + w2
ui,j{xi} +

w2

w1 + w2
ui,j{xj}

)
= (w1 + w2)

(
j1 + 1

j2
ui,j{xi} + (1− j1

j2
)ui,j{xj}

)
> (w1 + w2)

(
θiu

i,j
{xi} + (1− θi)u

i,j
{xj}

)
= 0

The first equality here uses the definition of v (resp. I ′), the second one uses that
δ = ui,jX − ui,j{xi}, and the third one that we choose t such that tδ > ui,j{xi}. The fourth line
is a simple transformation, and the fifth one uses the definition of w1 and w2. The sixth
inequality uses that, by definition, j1+1

j2
> θi and ui,j{xi} > 0, as well as 1− j1

j2
> 1− θi > 0

and ui,j{xj} < 0 and the last step follows from Claim (1). However, the observation that

vui,j > 0 contradicts that f(I ′) = xj as the latter implies that v ∈ Q̄j and thus vui,j ≤ 0.

This is the desired contradiction and we thus infer that ui,j{xi} ≥ ui,jX . Finally, a symmetric

argument shows that ui,jX ≥ ui,j{xj}, thus completing the proof of Claim 2).

Claim (3): Finally, we will show that ui,jX = ui,jY for all intervals X = [ℓ, r], Y = [ℓ′, r′]
such that either r ⊵ xi and r′ ⊵ x′i, xj ⊵ ℓ and rj ⊵ ℓ′, or {xi, xj} ⊆ X ∩ Y . We focus
here on the last case, i.e., we assume that {x, y} ⊆ X ∩ Y , and note that all three cases
follow from analogous arguments. Moreover, we suppose that Y \X = {xk}, i.e., Y arises
from X by adding one more alternative xk. This assumption is without loss of generality,
because for all intervals X ′, Y ′ with {x, y} ⊆ X ′ ∩ Y ′, we can transform X ′ to Y ′ by one
after another adding and deleting alternatives. Finally, we will assume that xj ▷ xk; the
case that xk ▷ xi is symmetric.

Now, assume for contradiction that ui,jX ̸= ui,jY and first consider the case that ui,jX < ui,jY .

We define δ = ui,jY − ui,jX and let t ∈ N denote an integer such that δt > 2ui,j{xi}.

Moreover, let w1, w2 ∈ N denote integers such that t
w1+w2+t < min(θi, 1 − θi) and

w1u
i,j
{xi} + w2u

i,j
{xj} + tui,jX < 0 < w1u

i,j
{xi} + w2u

i,j
{xj} + tui,jY . Such integers exist because

we can first set w2 to an arbitrarily large number such that tui,jX + w2u
i,j
{xj} < 0 and

then choose w1 such that −ui,j{xi} ≤ w1u
i,j
{xi} + w2u

i,j
{xj} + tui,jX < 0. Next, let IX (resp.

IY ) denote the profile where w1 voters report {xi}, w2 voters report {xj}, and t voters
report X (resp. Y ), and let vX = v(IX) and vY = v(IY ). We first observe that, by
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construction, vXui,j < 0, which means that vX ̸∈ Q̄i and hence f(IX) ̸= xi. Similarly,
vY ui,j > 0 and hence vY ̸∈ Q̄j and f(IY ) ̸= xj .

Next, we will show that f(IX) ∈ {xi, xj} and f(IY ) ∈ {xi, xj}. Since the argument for
both profiles is symmetric, we assume for contradiction that f(IX) = xk ̸∈ {xi, xj}. In
this case, let ÎX denote the profile where all voters reporting X change their interval to
{xk}. By repeatedly applying robustness, we infer that f(ÎX) = xk. On the other hand,
ÎX ∈ D∗

1, which implies that f(ÎX) = max▷{xℓ ∈ A : ΠSP (ÎX , xℓ) ≥ θℓnÎX}. Now, if

xk ▷ xi, this results in a contradiction as ΠSP (ÎX , xk) = t < θi(w1 + w2 + t) ≤ θknÎX .
For the last inequality, we recall that θk ≥ θi if xk ▷ xi. By contrast, if xj ▷ xk, we
derive a similar contradiction because ΠSP (ÎX , xj) = w1 + w2 = nÎX (1 − t

w1+w2+t) >

nÎX (1− (1− θi)) ≥ θjnÎX . Hence, the assumption that f(IX) ̸∈ {xi, xj} is wrong and an
analogous argument shows that f(IY ) ∈ {xi, xj}. Combined with our previous insights,
this means that f(IX) = xj and f(IY ) = xi. However, robustness rules out such a
deviation because, if f(IX) = xj and we add an alternative to the right (recall that
Y = X ∪ {xk} and xj ▷ xk), then the winner can only move to the right. Hence, our

assumption that ui,jX < ui,jY must have been wrong.

As second case suppose that ui,jX > ui,jY . In this case, we define δ = ui,jX − ui,jY and

let t ∈ N again denote an integer such that δt > 2ui,j{xi}. Moreover, we choose two

integers w1, w2 ∈ N such that t
w1+w2+t < min(θi, 1− θi) and w1u

i,j
{xi} + w2u

i,j
{xj} + tui,jX >

0 > w1u
i,j
{xi} + w2u

i,j
{xj} + tui,jY , and define the profiles IX and IY as before. Analogous

arguments as before show that f(IX) = xi and f(IY ) = xj . However, as we only
made changes to the right of xj , this contradicts with robustness and we infer also that

ui,jX > ui,jY is not possible. This means that ui,jX = ui,jY . Finally, we note that we never
used the fact that xi, xj ∈ X ∩ Y , but only that the modifications from X to Y does
not affect xi or xj . As a consequence, it is straightforward to extend the analysis to the
remaining cases.

Motivated by Claim (1) of Lemma 7, we will assume from now on that ui,j{xi} = (1− θi)

and ui,j{xj} = −θi for all xi, xj ∈ A with xi ▷∗ xj . This is without loss of generality

because we can scale the vector ui,j arbitrarily and it still separates Q̄i from Q̄j . We will
next use our insights to severely simplify the representation of Q̄i as polytopes.

Lemma 8. The following claims are true:

(1) Q̄1 = {v ∈ Rq : vu1,2 ≥ 0}.

(2) Q̄i = {v ∈ Rq : vui−1,i ≤ 0 ∧ vui,i+1 ≥ 0} for all i ∈ {2, . . . ,m− 1}.

(3) Q̄m = {v ∈ Rq : vum−1,m ≤ 0}.

Proof. For proving this claim, we will first show an auxiliary claim: for all alternatives
xi, xj , xk ∈ A with xi ▷∗ xj ▷∗ xk, the vectors ui,j and uj,k given by Lemmas 6 and 7,
and all vectors v ∈ Rq

≥0, it holds that vu
i,j ≥ 0 implies that vuj,k ≥ 0. In a second step,

we then prove the lemma.
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Step 1: Let xi, xj , xk ∈ A denote alternatives such that xi ▷∗ xj ▷∗ xk and assume
for contradiction that there is a vector v ∈ Rq

≥0 such that vui,j ≥ 0 and vuj,k < 0. Now,

if such a vector v exists, there is also a vector v′ such that v′ui,j > 0 and vuj,k < 0. In
more detail, since ui,j{xi} > 0, we can derive v′ from v by marginally increasing v{xi}. This

shows that the set {x ∈ Rq
≥0 : xu

i,j > 0 ∧ xuj,k < 0} is non-empty, so there also is a

vector v0 ∈ Qq
≥0 \ {0} such that v0ui,j > 0 and v0uj,k < 0.

We will next simplify the presentation of v0 by employing the insights of Lemma 7.
To this end, we first define the vector v1 by v1{xj} = 0 and v1X = v0X for all intervals

X ∈ Λ \ {{xj}}. Since ui,j{xj} < 0 and uj,k{xj} > 0 by Claim (1) of Lemma 7, it holds for

this vector that v1ui,j ≥ v0ui,j > 0 and that v1uj,k ≤ v0uj,k < 0.
Next, let Λ1 = {I ∈ Λ: ∀xℓ ∈ I : xℓ ⊵ xi} denote the set of intervals that contain only

alternatives weakly left of xi, Λ2 = {I ∈ Λ: ∀xℓ ∈ I : xk ⊵ xℓ} denote the set of intervals
that are weakly right of xk, and Λ3 = {I ∈ Λ: {xi, xj , xk} ⊆ I} denote the set of intervals

that contain xi, xj , and xk. By Claim (3) of Lemma 7, we have that (i) ui,jX = ui,j{xi}

and uj,kX = uj,k{xi} for all X ∈ Λ1, (ii) ui,jX = ui,j{xk} and uj,kX = uj,k{xk} for all X ∈ Λ2, and

(iii) ui,jX = ui,j{xi,xj ,xk} and uj,kX = uj,k{xi,xj ,xk} for all X ∈ Λ3. We hence define the vector

v2 by (i) v2{xi} =
∑

X∈Λ1
v1X and v2X = 0 for all X ∈ Λ1 \ {{xi}}, (ii) v2{xk} =

∑
X∈Λ2

v1X
and v2X = 0 for all X ∈ Λ2 \ {{xk}}, (iii) v2{xi,xj ,xk} =

∑
X∈Λ3

v1X and v2X = 0 for all

X ∈ Λ3 \ {{xi, xj , xk}}, and (iv) v2X = v1X for all X ∈ Λ \ (Λ1∪Λ2∪Λ3). By our previous
insights, it holds that v2ui,j = v1ui,j > 0 and v2uj,k = v1uj,k < 0.

For our third modification, let Λ4 = {I ∈ Λ: {xi, xj} ⊆ I, xk ̸∈ I} denote the intervals
that contain xi and xj but not xk, and let Λ5 = {I ∈ Λ: {xj , xk} ⊆ I, xi ̸∈ I} denote the
intervals that contain xj and xk but not xi. By Claim (2) of Lemma 7, it holds that

ui,j{xi} ≥ ui,jX for all X ∈ Λ4 and uj,k{xk} ≤ uj,kX for all X ∈ Λ5. Moreover, Claim (3) of

this lemma shows that uj,k{xi} = uj,kX for all X ∈ Λ4 and ui,j{xk} = ui,jX for all X ∈ Λ5. We

now define our final vector v3: v3{xi} = v2{xi} +
∑

X∈Λ4
v2X , v3{xk} = v2{xk} +

∑
X∈Λ5

v2X ,

and v3X = v2X for all X ∈ Λ \ (Λ4 ∪ Λ5). Based on our insights from Lemma 7, it
holds that v3ui,j ≥ v2ui,j > 0 and v3uj,k ≤ v2uj,k < 0. Moreover, it can be checked
that Λ = {{xj}} ∪

⋃
ℓ∈{1,...,5}Λℓ, so we have by construction that v3X = 0 for all X ̸∈

{{xi}, {xk}, {xi, xj , xk}}. Finally, we note that v3 ∈ Qq
≥0 since v0 ∈ Qq

≥0.

Because v3 ∈ Qq
≥0 (and v3 ̸= 0 as v3ui,j > 0), there is a scalar λ ∈ N such that λv3 ∈

Nq
0 \ {0}. Since λv3ui,j > 0, λv3uj,k < 0 and v3X = 0 for all X ̸∈ {{xi}, {xk}, {xi, xj , xk}},

this shows that there are integers w1, w2, t ∈ N0 such that such that w1u
i,j
{xi} +w2u

i,j
{xk} +

tui,j{xi,xj ,xk} > 0 and w1u
j,k
{xi} + w2u

j,k
{xk} + tuj,k{xi,xj ,xk} < 0. Now, let I denote the profile

where w1 voters report {xi}, w2 voters report {xk}, and t voters report {xi, xj , xk}, and let
v∗ = v(I) denote the corresponding vector. First, it is easy to see that f(I) ∈ {xi, xj , xk}.
Indeed, if f(I) ̸∈ {xi, xj , xk}, then all our voter can deviate to report, e.g., {xi} and
robustness implies that the outcome is not allowed to change. However, for the resulting
profile Ī, unanimity requires that f(Ī) = xi, a contradiction. Next, since v∗ui,j > 0
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and v∗uj,k < 0, we conclude that f(I) ∈ {xi, xk}. If f(I) = xk, we consider the profile
I ′ derived from I by changing the intervals of the t voters who report {xi, xj , xk} to
{xi, xj} and the intervals of the w2 voters reporting {xk} to {xj}. The conjunction of
unanimity and robustness implies that f(I ′) = xj . On the other hand, Claim (3) of
Lemma 7 shows that

v(I ′)ui,j = w1u
i,j
{xi} + w2u

i,j
{xj} + tui,j{xi,xj} = w1u

i,j
{xi} + w2u

i,j
{xk} + tui,j{xi,xj ,xk} > 0.

This implies that f(I ′) ̸= xj . However, then there is no feasible choice left for this
profile, so the assumption that vui,k < 0 must have been wrong.
Conversely, f(I) = xi, we derive a contradiction by considering the profile I ′′ where

w1 voters report {xj}, w2 voters report {xk}, and t voters report {xj , xk}. In particular,
unanimity and robustness imply for this profile that f(I ′′) = xj but v(I ′′)uj,k < 0, thus
yielding the desired contradiction. Since we have a contradiction in both cases, we finally
conclude that if vui,j ≥ 0 for some vector v ∈ Rq

≥0, then vuj,k ≥ 0.

Step 2: Next, we will prove the lemma. To this end, fix an arbitrary alternative xi ∈ A,
let Si = {v ∈ Rq : ∀xj ∈ A\{xi} : vui,j ≥ 0} and Ti = {v ∈ Rq : vui−1,i ≤ 0∧vui,i+1 ≥ 0}.
Note that, for Ti, we define the vectors u0,1 (if i = 1) and um,m+1 (if i = m) by
u0,1X = um,m+1

X = 0 for all X ∈ Λ. First, by Lemma 6, it holds that Q̄i = Si, so it suffices
to show that Si = Ti. To this end, we first note that we can suppose that ui,i−1 = −ui−1,i

because Claim (3) of Lemma 6 allows to replace the vector ui,i−1 with any non-zero
vector u ∈ Rq such that vu ≥ 0 if v ∈ Q̄i and vu ≤ 0 if v ∈ Q̄i−1. Since −ui−1,i satisfies
this condition, we derive that Ti = {v ∈ Rq : vui,i−1 ≥ 0 ∧ vui,i+1 ≥ 0}. By this insight,
it is clear that Si ⊆ Ti because we only remove constraints to infer Ti from Si.

Now, assume for contradiction that there is an point v ∈ Ti \ Si. Since v ∈ Ti, we have
that vui,i−1 ≥ 0 and vui,i+1 ≥ 0. On the other hand, because v ̸∈ Si, there is an index
k ̸∈ {i− 1, i, i+ 1} such that vui,k < 0. Next, let v′ denote the vector such that v′{xi} = 1

and v′X = 0 for all X ∈ Λ \ {{xi}}. Moreover, we define v∗ = v + ϵv′, where ϵ > 0 is
so small that v∗ui,k < 0 still holds, and observe that v∗ui,i−1 > 0 and v∗ui,i+1 > 0 by
Claim (1) of Lemma 7. By Step 1, we derive from v∗ui,i+1 > 0 that v∗ui+1,i+2 ≥ 0,
too. Moreover, if v∗ui+1,i+2 = 0, it we could marginally increase the value of v∗{xi+2} to

construct a vector v̄ with v̄ui,i+1 > 0 and v̄ui+1,i+2 < 0, which contradicts Step 1. Hence,
we derive from v∗ui,i+1 > 0 also that v∗ui+1,i+2 > 0. Moreover, by repeatedly applying
this reasoning, we conclude that v∗uj,j+1 > 0 for all j ∈ {i+ 1, . . . ,m− 1}, which means
that v∗ ̸∈ Q̄j+1 for all such j ∈ {i, . . . ,m − 1}. Next, we observe that v∗ui,i−1 > 0
means that v∗ui−1,i < 0. By the contraposition of Step 1, we infer that if v∗ui−1,i < 0,
then v∗ui−2,i−1 < 0. Moreover, by repeating this argument, it follows that for all
j ∈ {2, . . . , i} that v∗uj−1,j < 0, so v∗ ̸∈ Q̄j−1. Finally, since v∗ui,k < 0, we also have
that v∗ ̸∈ Q̄i. However, this means that v∗ ̸∈ Q̄j for any j ∈ {1, . . . ,m}. This contradicts
that

⋃
xj∈A Q̄j = Rq

≥0 (which is implied by the basic insight that
⋃

xj∈AQj = Qq
≥0 \ {0}).

Hence, we have now a contradiction, so there is no point v ∈ Ti \ Si. Put differently, it
holds that Ti ⊆ Si, which completes the proof of the lemma.
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Based on our observations so far, we will now define a weight vector α such that its
induced collective position function Πα satisfies that Πα(v, xi) ≥ θi if and only if vui,i+1 ≥
0. For the sake of completeness, we extend here the definition of collective position
functions from interval profiles to vectors v ∈ Rq

≥0: Πα(v, xi) =
∑

X∈Λ vXπα(X,xi).

Recall for the subsequent lemma that we scale our vectors ui,i+1 such that ui,i+1
{xi} = 1− θi

and ui,i+1
{xi+1} = −θi.

Lemma 9. There is a weight vector α ∈ [0, 1]m and a collective position function Πα

such that Πα(v, xi) = vui,i+1 + θi
∑

X∈Λ vX for all v ∈ Rq
≥0 and xi ∈ A.

Proof. We define the weight vector α = (α1, . . . , αm) by αi = ui,i+1
{xi,xi+1} + θi for all

i ∈ {1, . . . ,m− 1} and αm = 1. We moreover note that the value αm does not matter as
πα(X,xm) = 1 for all intervals X ∈ Λ. First, we note that, since −θi ≤ ui,i+1

{xi,xi+1} ≤ 1− θ

by Claim (2) of Lemma 7, it holds that αi ∈ [0, 1]. Next, let v ∈ Rq
≥0 denote an arbitrary

vector and fix an alternative xi ̸= xm. We next partition the set of intervals Λ with
respect to xi: the set L = {X ∈ Λ: X ⊆ [x1, xi]} contains all intervals X = [ℓ, r] that are
(weakly) left of xi, M = {X ∈ Λ: {xi, xi+1} ⊆ X} is the set of intervals containing both
xi and xi+1, and R = {X ∈ Λ: X ⊆ [xi+1, xm]} are the intervals that are (weakly) right
of xi+1. By Claim (3) in Lemma 7, we have that ui,i+1

X = ui,i+1
{xi} = 1− θi for all X ∈ L,

ui,i+1
X = ui,i+1

{xi,xi+1} = αi − θi for all X ∈ M , and ui,i+1
X = ui,i+1

{xi+1} = −θi for all X ∈ R.

Moreover, for the individual position function induced by α, it holds that πα(X,xi) = 1
if X ∈ L, πα(X,xi) = αi if X ∈ M , and πα(X,xi) = 0 if X ∈ R. We thus compute that

Πα(v, xi) =
∑
X∈L

vX + αi

∑
X∈M

vX

= (1− θi)
∑
X∈L

vX + ui,i+1
{xi,xi+1}

∑
x∈M

vX − θi
∑
X∈R

vX + θi
∑
X∈Λ

vX

= vui,i+1
{xi,xi+1} + θi

∑
X∈Λ

vX .

This completes the proof of this lemma.

We are finally ready to prove Theorem 1.

Theorem 1. A single-winner voting rule on Λ∗ is robust, anonymous, unanimous,
reinforcing, and right-biased continuous if and only if it is a position-threshold rule.

Proof. We hae shown the direction from left to right in Lemma 2, so we focus here on
the converse. Thus, let f denote a single winner voting rule on Λ∗ that satisfies our
five axioms. Now, by Lemmas 3 and 4, there is a threshold vector θ ∈ (0, 1)m such
that θ1 ≥ θ2 ≥ · · · ≥ θm and f(I) = max▷{xi ∈ A : ΠSP (I, xi) ≥ θinI} for all profiles
I ∈ D∗

1. Next, we note that we can represent interval profiles I as vectors v ∈ Nq
0 \ {0},

where the entry vi states how often the i-th interval is submitted. Moreover, there is
a (unique) function g : Nq

0 \ {0} → A such that f(I) = g(v(I)) for all I ∈ Λ∗. In
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Lemma 5, we extend this function to the domain Qq
≥0 \ {0}, i.e., we show that there is a

function ĝ : Qq
≥0 \ {0} → C that is reinforcing and satisfies that f(I) = ĝ(v(I)) for all

I ∈ Λ∗. Based on this function, we then define the sets Qi = {v ∈ Qq
≥0 \ {0} : ĝ(v) = x}

and let Q̄i denote the closure of Qi with respect to Rq. In a sequence of lemmas
(Lemmas 6 to 8), we then derive that there are non-zero vectors u1,2, u2,3, . . . , um−1,m ∈ Rq

such that Q̄i = {v ∈ Rq
≥0 : vu

i−1,i ≤ 0 ∧ vui,i+1 ≥ 0} for all i ∈ {1, . . . ,m} (where

u0,1 = um,m+1 = 0 for notational simplicity). Finally, we show in Lemma 9 that there is
a weight vector α such that the corresponding collective position function Πα satisfies for
all i ∈ {1, . . . ,m− 1} and v ∈ Rq

≥0 that Πα(v, xi) = vuxi,xi+1 + θi
∑

X∈Λ vX . We derive

from this that Q̄i = {v ∈ Rq
≥0 : Πα(v, xi−1) ≤ θi−1 ·

∑
X∈Λ vX ∧Πα(v, xi) ≥ θi ·

∑
X∈Λ vX}

for all i ∈ {1, . . . ,m} (where we define θ0 = Πα(I, x0) = 0 for notational simplicity).
Since Πα(I, xi) = Πα(v(I), xi) and

∑
X∈Λ v(I)X = nI , this shows for all interval profiles

I ∈ Λ∗ that

f(I) = ĝ(v(I))
= {xi ∈ A : v(I) ∈ Qi}
⊆ {xi ∈ A : v(I) ∈ Q̄i}
= {xi ∈ A : Πα(I, xi−1) ≤ θi−1nI ∧Πα(I, xi) ≥ θinI}.

Now, we define O(I) = {xi ∈ A : Πα(I, xi−1) ≤ θi−1nI ∧ Πα(I, xi) ≥ θinI} as the
set of possible winners of f at the profile I and we note that max▷O(I) = max▷{xi ∈
A : Πα(I, xi) ≥ θinI}. To see this, let xj = max▷O(I). By definition, we have that
Πα(I, xj) ≥ θjnI , so xj ∈ {xi ∈ A : Πα(I, xi) ≥ θinI}. This proves that max▷{xi ∈
A : Πα(I, xi) ≥ θinI} ⊵ max▷O(I). Next, let xj = max▷{xi ∈ A : Πα(I, xi) ≥ θinI}. If
xj = x1, the xj ∈ O(I) as the condition on θ0 is trivial. Otherwise, it holds xj−1 ̸∈ {xi ∈
A : Πα(I, xi) ≥ θinI}, so Πα(I, xj−1) < θj−1nI . This proves again that xj ∈ O(I) and
we thus conclude that max▷O(I) ⊵ max▷{xi ∈ A : Πα(I, xi) ≥ θinI}. Combining these
two observations then gives the desired equality.
Based on our last insight, we will next show that f(I) = max▷O(I) for all profiles

I ∈ Λ∗. To this end, we assume for contradiction that there is a profile I such that
f(I) = xj ̸= xi = max▷O(I). Because f(I) ⊆ O(I), this means that xi ▷ xj . Next, we
partition the voters in NI into three sets: L = {k ∈ NI : ∀x ∈ Ik : x ▷ xj} contains all
voters whose interval is fully left of xj , M = {k ∈ NI : {xi, xj} ⊆ Ik} contains all voters
who report both xi and xj , and R = NI \ (L∪M) contains all voters who do not approve
xi but an alternative that is weakly right of xj . Now, consider the profile I1 where all
voters in L report {xi}, all voters in M report [xi, xj ], and all voters in R report {xj}.
Repeatedly applying robustness shows that f(I1) = xj because we can transform I to I1

without removing xj of the interval of any voter. Now, assume that j ≥ i+ 2; otherwise,
we can skip the next step. In this case, we consider the profile I2 where all voters in L
report {xi}, all voters in M report [xi, xj−1], and all voters in R report {xj−1}. Using
robustness from I1, we infer that f(I2) ∈ {xj−1, xj}. Moreover, if f(I2) = xj , our voters
can deviate to, e.g., unanimously report {xi}. Since none of these modifications touches
on xj , this alternative has to remain the winner by robustness, but unanimity postulates
that xi is now chosen. This contradiction proves that f(I2) = xj−1. Furthermore, by
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repeating this argument, we derive a profile I∗ such that all voters in L report {xi}, all
voters in M report {xi, xi+1}, all voters in R report {xi+1}, and f(I∗) = xi+1.

Next, we compute that Πα(I∗, xi) = L+αiM ≥ Πα(I, xi) ≥ θinI∗ because πα(Ik, xi) ≤
1 for all k ∈ L, πα(Ik, xi) ≤ αi for all k ∈ M (as xj ∈ Ik), and πα(Ik, xi) = 0 for all k ∈ R
(as all these voters report intervals fully right of xi). On the other hand, since f(Ī) ∈ O(Ī)
for all interval profiles Ī and f(I∗) = xi+1, we conclude that Πα(I∗, xi) ≤ θinI∗ . This
proves that Πα(I∗, xi) = θinI∗ . Now, let I ′ denote the profile where a single voter
report {xi}. By unanimity, we have that f(I ′) = xi and, in turn, right-biased continuity
implies that there must be a λ ∈ N such that f(λI∗ + I ′) = xi+1. However, it holds
for every λ ∈ N that Πα(λI∗ + I ′, xi) = λθinI∗ + 1 > θi(λnI∗ + 1) = θinλI∗+I′ . This
shows that xi+1 ̸∈ O(λI∗ + I ′) because the membership of xi+1 in this set requires that
Πα(λI∗ + I ′, xi) ≤ θinλI∗+λI′ . This is the desired contradiction, so we conclude that
f(I) = max▷O(I) = max▷{xi ∈ A : Πα(I, xi) ≥ θinI} for all profiles I ∈ Λ∗. Hence,
f is induced by the weight vector α and the threshold vector θ and, since f is robust,
Lemma 1 shows that these vectors must be compatible. This proves that f is indeed the
position-threshold rule defined by α and θ.
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