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ABSTRACT
Social decision schemes (SDSs) map the preferences of a group
of voters over some set of 𝑚 alternatives to a probability distri-
bution over the alternatives. A seminal characterization of strate-
gyproof SDSs by Gibbard implies that there are no strategyproof
Condorcet extensions and that only random dictatorships satisfy
ex post efficiency and strategyproofness. The latter is known as the
random dictatorship theorem. We relax Condorcet-consistency and
ex post efficiency by introducing a lower bound on the probability
of Condorcet winners and an upper bound on the probability of
Pareto-dominated alternatives, respectively. We then show that the
SDS that assigns probabilities proportional to Copeland scores is
the only anonymous, neutral, and strategyproof SDS that can guar-
antee the Condorcet winner a probability of at least 2/𝑚. Moreover,
no strategyproof SDS can exceed this bound, even when drop-
ping anonymity and neutrality. Secondly, we prove a continuous
strengthening of Gibbard’s random dictatorship theorem: the less
probability we put on Pareto-dominated alternatives, the closer to
a random dictatorship is the resulting SDS. Finally, we show that
the only anonymous, neutral, and strategyproof SDSs that maxi-
mize the probability of Condorcet winners while minimizing the
probability of Pareto-dominated alternatives are mixtures of the
uniform random dictatorship and the randomized Copeland rule.
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1 INTRODUCTION
Multi-agent systems are often faced with problems of collective
decision making: how to find a group decision given the preferences
of multiple individual agents. These problems, which have been
traditionally studied by economists and mathematicians, are of in-
creasing interest to computer scientists who employ the formalisms
of social choice theory to analyze computational multi-agent sys-
tems [see, e.g., 8, 9, 26, 30].

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

A pervasive phenomenon in collective decision making is strate-
gic manipulation: voters may be better off by lying about their
preferences than reporting them truthfully. This is problematic
since all desirable properties of a voting rule are in doubt when
voters act dishonestly. Thus, it is important that voting rules in-
centivize voters to report their true preferences. Unfortunately,
Gibbard [19] and Satterthwaite [28] have shown independently
that dictatorships are the only non-imposing voting rules that are
immune to strategic manipulations. However, these voting rules are
unacceptable for most applications because they invariably return
the most preferred alternative of a fixed voter. A natural question
is whether more positive results can be obtained when allowing
for randomization. Gibbard [20] hence introduced social decision
schemes (SDSs), which map the preferences of the voters to a lottery
over the alternatives and defined SDSs to be strategyproof if no
voter can obtain more expected utility for any utility representa-
tion that is consistent with his ordinal preference relation. He then
gave a complete characterization of strategyproof SDSs in terms
of convex combinations of two types of restricted SDSs, so-called
unilaterals and duples. An important consequence of this result is
the random dictatorship theorem: random dictatorships are the only
ex post efficient and strategyproof SDSs. Random dictatorships are
convex combinations of dictatorships, i.e., each voter is selected
with some fixed probability and the top choice of the chosen voter
is returned. In contrast to deterministic dictatorships, the uniform
random dictatorship, in which every agent is picked with the same
probability, enjoys a high degree of fairness and is in fact used
in many subdomains of social choice [see, e.g., 1, 12]. As a con-
sequence of these observations, Gibbard’s theorem has been the
point of departure for a lot of follow-up work. In addition to several
alternative proofs of the theorem [e.g., 14, 24, 31], there have been
extensions with respect to manipulations by groups [4], cardinal
preferences [e.g., 16, 23, 25], weaker notions of strategyproofness
[e.g., 2, 5, 7, 29], and restricted domains of preference [e.g., 11, 15].

Random dictatorships suffer from the disadvantage that they do
not allow for compromise. For instance, suppose that voters strongly
disagree on the best alternative, but have a common second best
alternative. In such a scenario, it seems reasonable to choose the
second best alternative but random dictatorships do not allow for
this compromise. On a formal level, this observation is related to
the fact that random dictatorships violate Condorcet-consistency,
which demands that an alternatives that beats all other alternatives
in pairwise majority comparisons should be selected. Motivated by
this observation, we analyze the limitations of strategyproof SDSs
by relaxing two classic conditions: Condorcet-consistency and ex
post efficiency. To this end, we say that an SDS is 𝛼-Condorcet-
consistent if a Condorcet winner always receives a probability of
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at least 𝛼 and 𝛽-ex post efficient if a Pareto-dominated alternative
always receives a probability of at most 𝛽 . Moreover, we say a
strategyproof SDS is 𝛾-randomly dictatorial if it can be represented
as a convex combination of two strategyproof SDSs, one of which
is a random dictatorship that will be selected with probability 𝛾 . All
of these axioms are discussed in more detail in Section 2.2.

Building on an alternative characterization of strategyproof SDSs
by Barberà [3], we then show the following results (𝑚 is the number
of alternatives and 𝑛 the number of voters):

• Let 𝑚,𝑛 ≥ 3. There is no strategyproof SDS that satisfies
𝛼-Condorcet-consistency for𝛼 > 2/𝑚. Moreover, the random-
ized Copeland rule, which assigns probabilities proportional
to Copeland scores, is the only strategyproof SDS that satis-
fies anonymity, neutrality, and 2/𝑚-Condorcet-consistency.

• Let 0 ≤ 𝜖 ≤ 1 and𝑚 ≥ 3. Every strategyproof SDS that is
1−𝜖
𝑚 -ex post efficient is 𝛾-randomly dictatorial for 𝛾 ≥ 𝜖 . If
we additionally require anonymity, neutrality, and𝑚 ≥ 4,
then only mixtures of the uniform random dictatorship and
the uniform lottery satisfy this bound tightly.

• Let 𝑚 ≥ 4 and 𝑛 ≥ 5. No strategyproof SDS that is 𝛼-
Condorcet-consistent is 𝛽-ex post efficient for 𝛽 < 𝑚−2

𝑚−1𝛼 .
If we additionally require anonymity and neutrality, then
only mixtures of the uniform random dictatorship and the
randomized Copeland rule satisfy 𝛽 = 𝑚−2

𝑚−1𝛼 .
The first statement characterizes the randomized Copeland rule

as the “most Condorcet-consistent” SDS that satisfies strategyproof-
ness, anonymity, and neutrality. In fact, no strategyproof SDS can
guarantee more than 2/𝑚 probability to the Condorcet winner, even
when dropping anonymity and neutrality. The second point can be
interpreted as a continuous strengthening of Gibbard’s random dic-
tatorship theorem: the less probability we put on Pareto-dominated
alternatives, the more randomly dictatorial is the resulting SDS. In
particular, this theorem indicates that we cannot find appealing
strategyproof SDSs by allowing that Pareto-dominated alternatives
gain a small probability since the resulting SDS will be very similar
to random dictatorships. The last statement identifies a tradeoff
between 𝛼-Condorcet-consistency and 𝛽-ex post efficiency: the
more probability a strategyproof SDS guarantees to the Condorcet
winner, the less efficient it is. Thus, we can either maximize 𝛼 for
𝛼-Condorcet-consistency or minimize 𝛽 for 𝛽-ex post efficiency of
a strategyproof SDS, which again highlights the central roles of the
randomized Copeland rule and random dictatorships.

2 THE MODEL
Let 𝑁 = {1, 2, . . . , 𝑛} be a finite set of voters and let 𝐴 = {𝑎, 𝑏, . . . }
be a finite set of 𝑚 alternatives. Every voter 𝑖 has a preference
relation ≻𝑖 , which is an anti-symmetric, complete, and transitive
binary relation on 𝐴. We write 𝑥 ≻𝑖 𝑦 if voter 𝑖 prefers 𝑥 strictly to
𝑦 and 𝑥 ⪰𝑖 𝑦 if 𝑥 ≻𝑖 𝑦 or 𝑥 = 𝑦. The set of all preference relations is
denoted by R. A preference profile 𝑅 ∈ R𝑛 contains the preference
relation of each voter 𝑖 ∈ 𝑁 . We define the supporting size for 𝑥
against 𝑦 in the preference profile 𝑅 by 𝑛𝑥𝑦 (𝑅) = |{𝑖 ∈ 𝑁 : 𝑥 ≻𝑖 𝑦}|.

Given a preference profile, we are interested in the winning
chance of each alternative. We therefore analyze social decision
schemes (SDSs), which map each preference profile to a lottery over
the alternatives. A lottery 𝑝 is a probability distribution over the

set of alternatives 𝐴, i.e., it assigns each alternative 𝑥 a probability
𝑝 (𝑥) ≥ 0 such that

∑
𝑥 ∈𝐴 𝑝 (𝑥) = 1. The set of all lotteries over 𝐴

is denoted by Δ(𝐴). Formally, a social decision scheme (SDS) is a
function 𝑓 : R𝑛 → Δ(𝐴). We denote with 𝑓 (𝑅, 𝑥) the probability
assigned to alternative 𝑥 by 𝑓 for the preference profile 𝑅.

Since there is a huge number of SDSs, we now discuss ax-
ioms formalizing desirable properties of these functions. Two basic
fairness conditions are anonymity and neutrality. Anonymity re-
quires that voters are treated equally. Formally, an SDS 𝑓 is anony-
mous if 𝑓 (𝑅) = 𝑓 (𝜋 (𝑅)) for all preference profiles 𝑅 and permu-
tations 𝜋 : 𝑁 → 𝑁 . Here, 𝑅′ = 𝜋 (𝑅) denotes the profile with
≻′
𝜋 (𝑖) = ≻𝑖 for all voters 𝑖 ∈ 𝑁 . Neutrality guarantees that alterna-

tives are treated equally and formally requires for an SDS 𝑓 that
𝑓 (𝑅, 𝑥) = 𝑓 (𝜏 (𝑅), 𝜏 (𝑥)) for all preference profiles 𝑅 and permuta-
tions 𝜏 : 𝐴 → 𝐴. This time, 𝑅′ = 𝜏 (𝑅) is the profile derived by
permuting the alternatives in 𝑅 according to 𝜏 , i.e., 𝜏 (𝑥) ≻′

𝑖
𝜏 (𝑦) if

and only if 𝑥 ≻𝑖 𝑦 for all alternatives 𝑥,𝑦 ∈ 𝐴 and voters 𝑖 ∈ 𝑁 .

2.1 Stochastic Dominance and
Strategyproofness

This paper is concerned with strategyproof SDSs, i.e., social deci-
sion schemes in which voters cannot benefit by lying about their
preferences. In order to make this formally precise, we need to
specify how voters compare lotteries. To this end, we leverage the
well-known notion of stochastic dominance: a voter 𝑖 (weakly)
prefers a lottery 𝑝 to another lottery 𝑞, written as 𝑝 ⪰𝑖 𝑞, if∑

𝑦∈𝐴:𝑦≻𝑖𝑥 𝑝 (𝑦) ≥ ∑
𝑦∈𝐴:𝑦≻𝑖𝑥 𝑞(𝑦) for every alternative 𝑥 ∈ 𝐴.

Less formally, a voter prefers a lottery 𝑝 weakly to a lottery 𝑞 if,
for every alternative 𝑥 ∈ 𝐴, 𝑝 returns a better alternative than 𝑥

with as least as much probability as 𝑞. Stochastic dominance does
not induce a complete order on the set of lotteries, i.e., there are
lotteries 𝑝 and 𝑞 such that a voter 𝑖 neither prefers 𝑝 to 𝑞 nor 𝑞 to 𝑝 .

Based on stochastic dominance, we can now formalize strate-
gyproofness. An SDS 𝑓 is strategyproof if 𝑓 (𝑅) ⪰𝑖 𝑓 (𝑅′) for all
preference profiles 𝑅 and 𝑅′ and voters 𝑖 ∈ 𝑁 such that ≻𝑗 = ≻′

𝑗
for

all 𝑗 ∈ 𝑁 \ {𝑖}. Less formally, strategyproofness requires that every
voter prefers the lottery obtained by voting truthfully to any lottery
that he could obtain by voting dishonestly. Conversely, we call an
SDS 𝑓 manipulable if it is not strategyproof. While there are other
ways to compare lotteries with each other, stochastic dominance is
the most common one [see, e.g, 2, 3, 6, 17, 20]. This is mainly due to
the fact that 𝑝 ⪰𝑖 𝑞 implies that the expected utility of 𝑝 is at least
as high as the expected utility of 𝑞 for every vNM utility function
that is ordinally consistent with voter 𝑖’s preferences. Hence, if an
SDS is strategyproof, no voter can manipulate regardless of his
exact utility function [see, e.g., 7, 29]. This observation immediately
implies that the convex combination ℎ = 𝜆𝑓 + (1 − 𝜆)𝑔 (for some
𝜆 ∈ [0, 1]) of two strategyproof SDSs 𝑓 and 𝑔 is again strategyproof:
a manipulator who obtains more expected utility from ℎ(𝑅′) than
ℎ(𝑅) prefers 𝑓 (𝑅′) to 𝑓 (𝑅) or 𝑔(𝑅′) to 𝑔(𝑅).

Gibbard [20] shows that every strategyproof SDS can be rep-
resented as convex combinations of unilaterals and duples.1 The
terms “unilaterals” and “duples” refer here to special classes of
SDSs: a unilateral is a strategyproof SDS that only depends on the
1In order to simplify the exposition, we slightly modified Gibbard’s terminology by
requiring that duples and unilaterals have to be strategyproof.
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preferences of a single voter 𝑖 , i.e., 𝑓 (𝑅) = 𝑓 (𝑅′) for all preference
profiles 𝑅 and 𝑅′ such that ≻𝑖 = ≻′

𝑖
. A duple, on other hand, is a

strategyproof SDS that only chooses between two alternatives 𝑥
and 𝑦, i.e., 𝑓 (𝑅, 𝑧) = 0 for all preference profiles 𝑅 and alternatives
𝑧 ∈ 𝐴 \ {𝑥,𝑦}.
Theorem 1 (Gibbard [20]). An SDS is strategyproof if and only if it
can be represented as a convex combination of unilaterals and duples.

Since duples and unilaterals are by definition strategyproof, The-
orem 1 only states that strategyproof SDSs can be decomposed
into a mixture of strategyproof SDSs, each of which must be of a
special type. In order to circumvent this restriction, Gibbard proves
another characterization of strategyproof SDSs.
Theorem 2 (Gibbard [20]). An SDS is strategyproof if and only if it
is non-perverse and localized.

Non-perversity and localizedness are two axioms describing the
behavior of an SDS. For defining these axioms, we denote with
𝑅𝑖:𝑦𝑥 the profile derived from 𝑅 by only reinforcing 𝑦 against 𝑥 in
voter 𝑖’s preference relation. Note that this requires that 𝑥 ≻𝑖 𝑦
and that there is no alternative 𝑧 ∈ 𝐴 such that 𝑥 ≻𝑖 𝑧 ≻𝑖 𝑦. Then,
an SDS 𝑓 is non-perverse if 𝑓 (𝑅𝑖:𝑦𝑥 , 𝑦) ≥ 𝑓 (𝑅,𝑦) for all preference
profiles 𝑅, voters 𝑖 ∈ 𝑁 , and alternatives 𝑥,𝑦 ∈ 𝐴. Moreover, an
SDS is localized if 𝑓 (𝑅𝑖:𝑦𝑥 , 𝑧) = 𝑓 (𝑅, 𝑧) for all preference profiles
𝑅, voters 𝑖 ∈ 𝑁 , and distinct alternatives 𝑥,𝑦, 𝑧 ∈ 𝐴. Intuitively,
non-perversity—which is now often referred to as monotonicity—
requires that the probability of an alternative only increases if it is
reinforced, and localizedness that the probability of an alternative
does not depend on the order of the other alternatives. Together,
Theorem 1 and Theorem 2 show that each strategyproof SDS can
be represented as a mixture of unilaterals and duples, each of which
is non-perverse and localized.

Since Gibbard’s results can be quite difficult to work with, we
now state another characterization of strategyproof SDSs due to
Barberà [3]. Barberà has shown that every strategyproof SDS that
satisfies anonymity and neutrality can be represented as a convex
combination of a supporting size SDS and a point voting SDS. A
point voting SDS is defined by a scoring vector (𝑎1, 𝑎2, . . . , 𝑎𝑚) that
satisfies 𝑎1 ≥ 𝑎2 ≥ · · · ≥ 𝑎𝑚 ≥ 0 and

∑
𝑖∈{1,...,𝑚} 𝑎𝑖 = 1

𝑛 . The
probability assigned to an alternative 𝑥 by a point voting SDS 𝑓 is
𝑓 (𝑅, 𝑥) = ∑

𝑖∈𝑁 𝑎 | {𝑦∈𝐴:𝑦⪰𝑖𝑥 } | . Furthermore, supporting size SDSs
also rely on a scoring vector (𝑏𝑛, 𝑏𝑛−1, . . . , 𝑏0) with 𝑏𝑛 ≥ 𝑏𝑛−1 ≥
· · · ≥ 𝑏0 ≥ 0 and 𝑏𝑖 + 𝑏𝑛−𝑖 = 2

𝑚 (𝑚−1) for all 𝑖 ∈ {0, . . . , 𝑛} to
compute the outcome. The probability assigned to an alternative
𝑥 by a supporting size SDS 𝑓 is then 𝑓 (𝑅, 𝑥) = ∑

𝑦∈𝐴\{𝑥 } 𝑏𝑛𝑥𝑦 (𝑅) .
Note that point voting SDSs can be seen as a generalization of
(deterministic) positional scoring rules and supporting size SDSs
can be seen as a variant of Fishburn’s C2 functions [18].
Theorem 3 (Barberà [3]). An SDS is anonymous, neutral, and strat-
egyproof if and only if it can be represented as a convex combination
of a point voting SDS and a supporting size SDS.

Many well-known SDSs can be represented as point voting SDSs
or supporting size SDSs. For example, the uniform random dictator-
ship 𝑓RD , which chooses one voter uniformly at random and returns
his best alternative, is the point voting SDS defined by the scoring
vector

(
1
𝑛 , 0, . . . , 0

)
. An instance of a supporting size SDS is the

randomized Copeland rule 𝑓𝐶 , which assigns probabilities propor-
tional to the Copeland scores 𝑐 (𝑥, 𝑅) = |{𝑦 ∈ 𝐴 \ {𝑥} : 𝑛𝑥𝑦 (𝑅) >

𝑛𝑦𝑥 (𝑅)}| + 1
2 |{𝑦 ∈ 𝐴 \ {𝑥} : 𝑛𝑥𝑦 (𝑅) = 𝑛𝑦𝑥 (𝑅)}|. This SDS is the

supporting size SDS defined by the vector 𝑏 = (𝑏𝑛, 𝑏𝑛−1, . . . , 𝑏0),
where 𝑏𝑖 = 2

𝑚 (𝑚−1) if 𝑖 > 𝑛
2 , 𝑏𝑖 = 1

𝑚 (𝑚−1) if 𝑖 = 𝑛
2 , and 𝑏𝑖 = 0

otherwise. Furthermore, there are SDSs that can be represented
both as point voting SDSs and supporting size SDSs. An example is
the randomized Borda rule 𝑓𝐵 , which randomizes proportional to
the Borda scores of the alternatives. This SDS is the point voting
SDS defined by the vector

(
2(𝑚−1)

𝑛𝑚 (𝑚−1) ,
2(𝑚−2)

𝑛𝑚 (𝑚−1) , · · · ,
2

𝑛𝑚 (𝑚−1) , 0
)

and equivalently the supporting size SDS defined by the vec-
tor

(
2𝑛

𝑛𝑚 (𝑚−1) ,
2(𝑛−1)

𝑛𝑚 (𝑚−1) , · · · ,
2

𝑛𝑚 (𝑚−1) , 0
)
. Both the randomized

Copeland rule and the randomized Borda rule were rediscovered
several times by authors who were apparently unaware of Barberà’s
work [see 13, 21, 22, 27].

2.2 Relaxing Classic Axioms
The goal of this paper is to identify attractive strategyproof SDSs
other than random dictatorships by relaxing classic axioms from
social choice theory. In more detail, we investigate how much prob-
ability can be guaranteed to Condorcet winners and how little
probability must be assigned to Pareto-dominated alternatives by
strategyproof SDSs. In the following we formalize these ideas using
𝛼-Condorcet-consistency and 𝛽-ex post efficiency.

Let us first consider 𝛽-ex post efficiency, which is based on Pareto-
dominance. An alternative 𝑥 Pareto-dominates another alternative
𝑦 in a preference profile 𝑅 if 𝑥 ≻𝑖 𝑦 for all 𝑖 ∈ 𝑁 . The standard
notion of ex post efficiency then formalizes that Pareto-dominated
alternatives should have no winning chance, i.e., 𝑓 (𝑅, 𝑥) = 0 for all
preference profiles 𝑅 and alternatives 𝑥 that are Pareto-dominated
in 𝑅. As first shown by Gibbard, random dictatorships are the only
strategyproof SDSs that satisfy ex post efficiency. These SDSs choose
each voter with a fixed probability and return his best alternative as
winner. However, this result breaks down once we allow that Pareto-
dominated alternatives can have a non-zero chance of winning
𝛽 > 0. For illustrating this point, consider a random dictatorship 𝑑
and another strategyproof SDS𝑔. Then, the SDS 𝑓 ∗ = (1−𝛽)𝑑+𝛽𝑔 is
strategyproof for every 𝛽 ∈ (0, 1] and no random dictatorship, but
assigns a probability of at most 𝛽 to Pareto-dominated alternatives.
We call the last property 𝛽-ex post efficiency: an SDS 𝑓 is 𝛽-ex post
efficient if 𝑓 (𝑅, 𝑥) ≤ 𝛽 for all preference profiles 𝑅 and alternatives
𝑥 that are Pareto-dominated in 𝑅.

A natural generalization of the random dictatorship theorem
is to ask which strategyproof SDSs satisfy 𝛽-ex post efficiency for
small values of 𝛽 . If 𝛽 is sufficiently small, 𝛽-ex post efficiency
may be quite acceptable. As we show, the random dictatorship
theorem is quite robust in the sense that all SDSs that satisfy 𝛽-
ex post efficiency for 𝛽 < 1

𝑚 are similar to random dictatorships.
In order to formalize this observation, we introduce 𝛾-randomly
dictatorial SDSs: a strategyproof SDS 𝑓 is 𝛾-randomly dictatorial if
𝛾 ∈ [0, 1] is the maximal value such that 𝑓 can be represented as
𝑓 = 𝛾𝑑 + (1−𝛾)𝑔, where 𝑑 is a random dictatorship and 𝑔 is another
strategyproof SDS. In particular, we require that 𝑔 is strategyproof
as otherwise, SDSs that seem “non-randomly dictatorial” are not
0-randomly dictatorial. For instance, the uniform lottery 𝑓𝑈 , which
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1 1 1
𝑎 𝑏 𝑐

𝑐 𝑐 𝑎

𝑏 𝑎 𝑏

𝑅

1 1 1
𝑎 𝑏 𝑐

𝑏 𝑐 𝑎

𝑐 𝑎 𝑏

𝑅′

Figure 1: Condorcet-consistent SDSs violate strategyproof-
ness when 𝑚 = 𝑛 = 3. Due to the symmetry of 𝑅′, we may
assume without loss of generality that 𝑓 (𝑅′, 𝑎) > 0. Since 𝑓 is
Condorcet-consistent, it holds that 𝑓 (𝑅, 𝑐) = 1. Thus, voter 1
can manipulate by swapping 𝑐 and 𝑏 in 𝑅.

always assigns probability 1
𝑚 to all alternatives, is not 0-randomly

dictatorial if 𝑔 is not required to be strategyproof because it can
be represented as 𝑓𝑈 = 1

𝑚𝑑𝑖 + 𝑚−1
𝑚 𝑔, where 𝑑𝑖 is the dictatorial

SDS of voter 𝑖 and 𝑔 is the SDS that randomizes uniformly over
all alternatives but voter 𝑖’s favorite one. Moreover, it should be
mentioned that the maximality of 𝛾 implies that 𝑔 is 0-randomly
dictatorial if 𝛾 < 1. Otherwise, we could also represent 𝑔 as a
mixture of a random dictatorship and some other strategyproof
SDS ℎ, which means that 𝑓 is 𝛾 ′-randomly dictatorial for 𝛾 ′ > 𝛾 .

For a better understanding of 𝛾-randomly dictatorial SDSs, we
provide next a characterization of these SDSs. Recall for the follow-
ing lemma that 𝑅𝑖:𝑦𝑥 denotes the profile derived from 𝑅 by only
reinforcing 𝑦 against 𝑥 in voter 𝑖’s preference relation.

Lemma 1. A strategyproof SDS 𝑓 is 𝛾-randomly dictatorial if and
only if there are non-negative values 𝛾1, . . . , 𝛾𝑛 such that:

i)
∑
𝑖∈𝑁 𝛾𝑖 = 𝛾 .

ii) 𝑓 (𝑅𝑖:𝑦𝑥 , 𝑦) − 𝑓 (𝑅,𝑦) ≥ 𝛾𝑖 for all alternatives 𝑥,𝑦 ∈ 𝐴, voters
𝑖 ∈ 𝑁 , and preference profiles 𝑅 in which voter 𝑖 prefers 𝑥 the
most and 𝑦 the second most.

iii) for every voter 𝑖 ∈ 𝑁 , there are alternatives 𝑥,𝑦 ∈ 𝐴 and a
profile 𝑅 such that voter 𝑖 prefers 𝑥 the most and 𝑦 the second
most in 𝑅, and 𝑓 (𝑅𝑖:𝑦𝑥 , 𝑦) − 𝑓 (𝑅,𝑦) = 𝛾𝑖 .

The proof of this lemma can be found in the extended version
[10]. Lemma 1 gives an intuitive interpretation of 𝛾-randomly dic-
tatorial SDSs: this axiom only requires that there are voters who
always increase the winning probability of an alternative by at least
𝛾𝑖 if they reinforce it to the first place. Hence, for small values of 𝛾 ,
this axiom is desirable as it only formulates a variant of strict mono-
tonicity. However, for larger values of 𝛾 , 𝛾-randomly dictatorial
SDSs become more similar to random dictatorships. Furthermore,
the proof of Lemma 1 shows that the decomposition of 𝛾-randomly
dictatorial SDSs is completely determined by the values 𝛾1, . . . , 𝛾𝑛 :
given these values for an strategyproof SDS 𝑓 , it can be represented
as 𝑓 =

∑
𝑖∈𝑁 𝛾𝑖𝑑𝑖 + (1 −∑

𝑖∈𝑁 𝛾𝑖 )𝑔, where 𝑔 is a strategyproof SDS
and 𝑑𝑖 the dictatorial SDS of voter 𝑖 .

Finally, we introduce 𝛼-Condorcet-consistency. To this end, we
first define the notion of a Condorcet winner. A Condorcet winner
is an alternative 𝑥 that wins every majority comparison according
to preference profile 𝑅, i.e., 𝑛𝑥𝑦 (𝑅) > 𝑛𝑦𝑥 (𝑅) for all 𝑦 ∈ 𝐴 \ {𝑥}.
Condorcet-consistency demands that 𝑓 (𝑅, 𝑥) = 1 for all preference
profiles 𝑅 and alternatives 𝑥 such that 𝑥 is the Condorcet winner

Table 1: Values of 𝛼 , 𝛽 , and 𝛾 for which specific SDSs are
𝛼-Condorcet-consistent, 𝛽-ex post efficient, and 𝛾-randomly
dictatorial. Each row shows the values of 𝛼 , 𝛽 , and 𝛾 for
which a specific SDS satisfies the corresponding axioms. 𝑓RD
abbreviates the uniform random dictatorship, 𝑓𝑈 the uni-
form lottery, 𝑓𝐵 the randomized Borda rule, and 𝑓𝐶 the ran-
domized Copeland rule.

SDS 𝛼-Condorcet
-consistency

𝛽-ex post
efficiency

𝛾-random
dictatorship

𝑓RD 0 0 1
𝑓U

1
𝑚

1
𝑚 0

𝑓B
1
𝑚 + 2−(𝑛 mod 2)

𝑚𝑛
2(𝑚−2)
𝑚 (𝑚−1)

2
𝑚 (𝑚−1)

𝑓C
2
𝑚

2(𝑚−2)
𝑚 (𝑚−1) 0

in 𝑅. Unfortunately, Condorcet-consistency is in conflict with strat-
egyproofness, which can easily be derived from Gibbard’s random
dictatorship theorem. A simple two-profile proof for this fact when
𝑚 = 𝑛 = 3 is given in Figure 1. To circumvent this impossibility,
we relax Condorcet-consistency: instead of requiring that the Con-
dorcet winner always obtains probability 1, we only require that it
receives a probability of at least 𝛼 . This idea leads to 𝛼-Condorcet-
consistency: an SDS 𝑓 satisfies this axiom if 𝑓 (𝑅, 𝑥) ≥ 𝛼 for all
profiles 𝑅 and alternatives 𝑥 ∈ 𝐴 such that 𝑥 is the Condorcet win-
ner in 𝑅. For small values of 𝛼 , this axiom is clearly compatible
with strategyproofness and therefore, we are interested in the max-
imum value of 𝛼 such that there are 𝛼-Condorcet-consistent and
strategyproof SDSs.

For a better understanding of 𝛼-Condorcet-consistency, 𝛽-ex
post efficiency, and 𝛾-random dictatorships, we discuss some of
the values in Table 1 as examples. The uniform random dictator-
ship is 1-randomly dictatorial and 0-ex post efficient by definition.
Moreover, it is 0-Condorcet-consistent because a Condorcet win-
ner may not be top-ranked by any voter. The randomized Borda
rule is 2(𝑚−2)

𝑚 (𝑚−1) -ex post efficient because it assigns this probabil-
ity to an alternative that is second-ranked by every voter. More-
over, it is 2

𝑚 (𝑚−1) -randomly dictatorial as we can represent it as
2

𝑚 (𝑚−1) 𝑓RD+
(
1 − 2

𝑚 (𝑚−1)

)
𝑔, where 𝑓RD is the uniform random dic-

tatorship and𝑔 is the point voting SDS defined by the scoring vector(
2(𝑚−2)

𝑛 (𝑚 (𝑚−1)−2) ,
2(𝑚−2)

𝑛 (𝑚 (𝑚−1)−2) ,
2(𝑚−3)

𝑛 (𝑚 (𝑚−1)−2) , . . . , 0
)
. Finally, the ran-

domized Copeland rule is 0-randomly dictatorial because there is
for every voter a profile in which he can swap his two best alterna-
tives without affecting the outcome. Moreover, it is 2

𝑚 -Condorcet-
consistent because a Condorcet winner 𝑥 satisfies that 𝑛𝑥𝑦 (𝑅) > 𝑛

2
for all 𝑦 ∈ 𝐴 \ {𝑥} and hence, 𝑓𝐶 (𝑅, 𝑥) =

∑
𝑦∈𝐴\{𝑥 } 𝑏𝑛𝑥𝑦 (𝑅) =

(𝑚 − 1) 2
𝑚 (𝑚−1) = 2

𝑚 . Note that Table 1 also contains a row corre-
sponding to the uniform lottery.We consider this SDS as a threshold
with respect to 𝛼-Condorcet-consistency and 𝛽-ex post efficiency
because we can compute the uniform lottery without knowledge
about the voters’ preferences. Hence, if an SDS performs worse
than the uniform lottery with respect to 𝛼-Condorcet-consistency
or 𝛽-ex post efficiency, we could also dismiss the voters’ preferences.
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3 RESULTS
In this section, we present our results about the 𝛼-Condorcet-
consistency and the 𝛽-ex post efficiency of strategyproof SDSs.
First, we prove that no strategyproof SDS satisfies 𝛼-Condorcet-
consistency for 𝛼 > 2

𝑚 and that the randomized Copeland rule 𝑓𝐶
is the only anonymous, neutral, and strategyproof SDS that satis-
fies 𝛼-Condorcet-consistency for 𝛼 = 2

𝑚 . Moreover, we show that
every 1−𝜖

𝑚 -ex post efficient and strategyproof SDS is 𝛾-randomly
dictatorial for 𝛾 ≥ 𝜖 . This statement can be seen as a continuous
generalization of the random dictatorship theorem and implies, for
instance, that every 0-randomly dictatorial and strategyproof SDS
can only satisfy 𝛽-ex post efficiency for 𝛽 ≥ 1

𝑚 , i.e., such SDSs
are at least as inefficient as the uniform lottery. Even more, when
additionally imposing anonymity and neutrality, we prove that
only mixtures of the uniform random dictatorship and the uniform
lottery satisfy this bound tightly, which shows that relaxing ex post
efficiency does not allow for appealing SDSs. In the last theorem,
we identify a tradeoff between Condorcet-consistency and ex post
efficiency: no strategyproof SDS that satisfies 𝛼-Condorcet consis-
tency is 𝛽-ex post efficient for 𝛽 < 𝑚−2

𝑚−1𝛼 . We derive these results
through a series of lemmas. Because of space restrictions, the proofs
of all lemmas and Theorem 5 are deferred to an extended version
of this paper [10] and we only present short proof sketches instead.

3.1 𝛼-Condorcet-consistency
As discussed in Section 2.2, Condorcet-consistent SDSs violate strat-
egyproofness. Therefore, we analyze the maximal 𝛼 such that 𝛼-
Condorcet-consistency and strategyproofness are compatible. Our
results show that strategyproofness only allows for a small degree
of Condorcet-consistency: we prove that no strategyproof SDS sat-
isfies 𝛼-Condorcet-consistency for 𝛼 > 2

𝑚 . This bound is tight
as the randomized Copeland rule 𝑓𝐶 is 2

𝑚 -Condorcet-consistent,
which means that it is one of the “most Condorcet-consistent” strat-
egyproof SDSs. Even more, we can turn this observation in a charac-
terization of 𝑓𝐶 by additionally requiring anonymity and neutrality:
the randomized Copeland rule is the only strategyproof SDS that
satisfies 2

𝑚 -Condorcet-consistency, anonymity, and neutrality.
For proving these results, we derive next a number of lem-

mas. As first step, we show in Lemma 2 that we can use a strate-
gyproof and 𝛼-Condorcet-consistent SDS to construct another strat-
egyproof SDS that satisfies anonymity, neutrality, and 𝛼-Condorcet-
consistency for the same 𝛼 .

Lemma 2. If a strategyproof SDS satisfies 𝛼-Condorcet-consistency
for some 𝛼 ∈ [0, 1], there is also a strategyproof SDS that satisfies
anonymity, neutrality, and 𝛼-Condorcet-consistency for the same 𝛼 .

The central idea in the proof of Lemma 2 is the following: if
there is a strategyproof and 𝛼-Condorcet-consistent SDS 𝑓 , then
the SDS 𝑓 𝜋𝜏 (𝑅, 𝑥) = 𝑓 (𝜏 (𝜋 (𝑅)), 𝜏 (𝑥)) is also strategyproof and
𝛼-Condorcet-consistent for all permutations 𝜋 : 𝑁 → 𝑁 and
𝜏 : 𝐴 → 𝐴. Since mixtures of strategyproof and 𝛼-Condorcet-
consistent SDSs are also strategyproof and 𝛼-Condorcet-consistent,
we can therefore construct an SDS that satisfies all requirements of
the lemma by averaging over all permutations on 𝑁 and 𝐴. More
formally, the SDS 𝑓 ∗ = 1

𝑚!𝑛!
∑
𝜋 ∈Π

∑
𝜏 ∈T 𝑓 𝜋𝜏 (where Π denotes the

set of all permutations on 𝑁 and T the set of all permutations on
𝐴) meets all criteria of the lemma.

Due to Lemma 2, we investigate next the 𝛼-Condorcet-
consistency of strategyproof SDSs that satisfy anonymity and neu-
trality. The reason for this is that this lemma turns an upper bound
on 𝛼 for these SDSs into an upper bound for all strategyproof SDSs.
Since Theorem 3 shows that every strategyproof, anonymous, and
neutral SDS can be decomposed in a point voting SDS and a support-
ing size SDS, we investigate these two classes separately in the fol-
lowing two lemmas. First, we bound the 𝛼-Condorcet-consistency
of point voting SDSs.

Lemma 3. No point voting SDS is 𝛼-Condorcet-consistent for 𝛼 ≥ 2
𝑚

if 𝑛 ≥ 3 and𝑚 ≥ 3.

The proof of this lemma relies on the observation that there
can be ⌈𝑚2 ⌉ Condorcet winner candidates, i.e., alternatives 𝑥 that
can be made into the Condorcet winner by keeping 𝑥 at the same
position in the preferences of every voter and only reordering the
other alternatives. Since reordering the other alternatives does not
affect the probability of 𝑥 in a point voting SDS, it follows that
every Condorcet winner candidate has a probability of at least 𝛼 .
Hence, we derive that 𝛼 ≤ 1

⌈𝑚2 ⌉ ≤ 2
𝑚 and a slightly more involved

argument shows that the inequality is strict.
The last ingredient for the proof of Theorem 4 is that no sup-

porting size SDS can assign a probability of more than 2
𝑚 to any

alternative. This immediately implies that no supporting size SDS
satisfies 𝛼-Condorcet-consistency for 𝛼 > 2

𝑚 .

Lemma 4. No supporting size SDS can assign more than 2
𝑚 proba-

bility to an alternative.

The proof of this lemma follows straightforwardly from the
definition of supporting size SDSs. Each such SDS is defined by
a scoring vector (𝑏𝑛, . . . , 𝑏0) such that 𝑏𝑖 + 𝑏𝑛−𝑖 = 2

𝑚 (𝑚−1) for all
𝑖 ∈ {0, . . . , 𝑛} and 𝑏𝑛 ≥ 𝑏𝑛−1 ≥ · · · ≥ 𝑏0 ≥ 0. The probability of an
alternative 𝑥 in a supporting size SDS 𝑓 is therefore bounded by
𝑓 (𝑅, 𝑥) = ∑

𝑦∈𝐴\{𝑥 } 𝑏𝑛𝑥𝑦 (𝑅) ≤ (𝑚 − 1) 2
𝑚 (𝑚−1) = 2

𝑚 .
Finally, we have all necessary lemmas for the proof of our first

theorem.

Theorem 4. The randomized Copeland rule is the only strate-
gyproof SDS that satisfies anonymity, neutrality, and 2

𝑚 -Condorcet-
consistency if 𝑚 ≥ 3 and 𝑛 ≥ 3. Moreover, no strategyproof SDS
satisfies 𝛼-Condorcet-consistency for 𝛼 > 2

𝑚 if 𝑛 ≥ 3.

Proof. The theorem consists of two claims: the characterization
of the randomized Condorcet rule 𝑓𝐶 and the fact that no other
strategyproof SDS can attain 𝛼-Condorcet-consistency for a larger
𝛼 than 𝑓𝐶 . We prove these claims separately.

Claim 1: The randomized Copeland rule is the only
strategyproof SDS that satisfies 2

𝑚 -Condorcet-consistency,
anonymity, and neutrality if𝑚,𝑛 ≥ 3.

The randomized Copeland rule 𝑓𝐶 is a supporting size SDS and
satisfies therefore anonymity, neutrality, and strategyproofness.
Furthermore, it satisfies also 2

𝑚 -Condorcet-consistency because
a Condorcet winner 𝑥 wins every pairwise majority comparison
in 𝑅. Hence, 𝑛𝑥𝑦 (𝑅) > 𝑛

2 for all 𝑦 ∈ 𝐴 \ {𝑥}, which implies that
𝑓𝐶 (𝑅, 𝑥) =

∑
𝑦∈𝐴\{𝑥 } 𝑏𝑛𝑥𝑦 (𝑅) = (𝑚 − 1) 2

𝑚 (𝑚−1) = 2
𝑚 .
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Next, let 𝑓 be an SDS satisfying anonymity, neutrality, strate-
gyproofness, and 2

𝑚 -Condorcet-consistency. We show that 𝑓 is
the randomized Copeland rule. Since 𝑓 is anonymous, neutral,
and strategyproof, we can apply Theorem 3 to represent 𝑓 as
𝑓 = 𝜆𝑓point + (1 − 𝜆) 𝑓sup , where 𝜆 ∈ [0, 1], 𝑓point is a point voting
SDS, and 𝑓sup is a supporting size SDS. Lemma 3 states that there
is a profile 𝑅 with Condorcet winner 𝑥 such that 𝑓point (𝑅, 𝑥) < 2

𝑚 ,
and it follows from Lemma 4 that 𝑓sup (𝑅, 𝑥) ≤ 2

𝑚 . Hence, 𝑓 (𝑅, 𝑥) =
𝜆𝑓point (𝑅, 𝑥) + 𝑓sup (𝑅, 𝑥) < 2

𝑚 if 𝜆 > 0. Therefore, 𝑓 is a supporting
size SDS as it satisfies 2

𝑚 -Condorcet-consistency.
Next, we show that 𝑓 has the same scoring vector as the ran-

domized Copeland rule. Since 𝑓 is a supporting size SDS, there
is a scoring vector 𝑏 = (𝑏𝑛, . . . , 𝑏0) with 𝑏𝑛 ≥ 𝑏𝑛−1 ≥ · · · ≥
𝑏0 ≥ 0 and 𝑏𝑖 + 𝑏𝑛−𝑖 = 2

𝑚 (𝑚−1) for all 𝑖 ∈ {1, . . . , 𝑛} such that
𝑓 (𝑅, 𝑥) =

∑
𝑦∈𝐴\{𝑥 } 𝑏𝑛𝑥𝑦 (𝑅) . Moreover, 𝑓 (𝑅, 𝑥) = 2

𝑚 if 𝑥 is the
Condorcet winner in 𝑅 because of 2

𝑚 -Condorcet-consistency and
Lemma 4. We derive from the definition of supporting size SDSs
that the Condorcet winner 𝑥 can only achieve this probability if
𝑏𝑛𝑥𝑦 (𝑅) =

2
𝑚 (𝑚−1) for every other alternatives 𝑦 ∈ 𝐴 \ {𝑥}. More-

over, observe that the Condorcet winner needs to win every major-
ity comparison but is indifferent about the exact supporting sizes.
Hence, it follows that 𝑏𝑖 = 2

𝑚 (𝑚−1) for all 𝑖 > 𝑛
2 as otherwise,

there is a profile in which the Condorcet winner does not receive a
probability of 2

𝑚 . We also know that 𝑏𝑖 + 𝑏𝑛−𝑖 = 2
𝑚 (𝑚−1) , so 𝑏𝑖 = 0

for all 𝑖 < 𝑛
2 . If 𝑛 is even, then 𝑏 𝑛

2
= 1

𝑚 (𝑚−1) is required by the
definition of supporting size SDSs as 𝑛

2 = 𝑛 − 𝑛
2 . Hence, the scoring

vector of 𝑓 is equivalent to the scoring vector of the randomized
Copeland rule, which proves that 𝑓 is 𝑓𝐶 .

Claim 2: No strategyproof SDS satisfies 𝛼-Condorcet-
consistency for 𝛼 > 2

𝑚 if 𝑛 ≥ 3.
The claim is trivially true if𝑚 ≤ 2 because 𝛼-Condorcet consis-

tency for 𝛼 > 1 is impossible. Hence, let 𝑓 denote a strategyproof
SDS for 𝑚 ≥ 3 alternatives. We show in the sequel that 𝑓 can-
not satisfy 𝛼-Condorcet-consistency for 𝛼 > 2

𝑚 . As a first step,
we use Lemma 2 to construct a strategyproof SDS 𝑓 ∗ that satis-
fies anonymity, neutrality, and 𝛼-Condorcet-consistency for the
same 𝛼 as 𝑓 . Since 𝑓 ∗ is anonymous, neutral, and strategyproof, it
follows from Theorem 3 that 𝑓 ∗ can be represented as a mixture
of a point voting SDS 𝑓point and a supporting size SDS 𝑓sup , i.e.,
𝑓 ∗ = 𝜆𝑓point + (1 − 𝜆) 𝑓sup for some 𝜆 ∈ [0, 1].

Next, we consider 𝑓point and 𝑓sup separately. Lemma 3 implies for
𝑓point that there is a profile 𝑅 with a Condorcet winner 𝑎 such that
𝑓point (𝑅, 𝑎) < 2

𝑚 . Moreover, Lemma 4 shows that 𝑓sup (𝑅, 𝑎) ≤ 2
𝑚

because supporting size SDSs never return a larger probability than
2
𝑚 . Thus, we derive the following inequality. w

𝛼 ≤ 𝑓 ∗ (𝑅, 𝑎) = 𝜆𝑓point (𝑅, 𝑎)+(1−𝜆) 𝑓sup (𝑅, 𝑎) ≤ 𝜆
2
𝑚
+(1−𝜆) 2

𝑚
=

2
𝑚

This proves that 𝑓 ∗, and therefore every strategyproof SDS, fails
𝛼-Condorcet-consistency for 𝛼 ≥ 2

𝑚 □

Remark 1. Lemma 2 can be applied to properties other than 𝛼-
Condorcet-consistency, too. For example, given a strategyproof and
𝛽-ex post efficient SDS, we can construct another SDS that satisfies
these axioms as well as anonymity and neutrality.

Remark 2. All axioms in the characterization of the randomized
Copeland rule are independent of each other. The SDS that picks the
Condorcet winner with probability 2

𝑚 if one exists and distributes
the remaining probability uniformly between the other alternatives
only violates strategyproofness. The randomized Borda rule sat-
isfies all axioms of Theorem 4 but 2

𝑚 -Condorcet-consistency. An
SDS that satisfies anonymity, strategyproofness, and 2

𝑚 -Condorcet-
consistency can be defined based on an arbitrary order of alter-
natives 𝑥0, . . . , 𝑥𝑚−1. Then, we pick an index 𝑖 ∈ {0, . . . ,𝑚 − 1}
uniformly at random and return the winner of the majority com-
parison between 𝑥𝑖 and 𝑥𝑖+1 mod𝑚 (if there is a majority tie, a fair
coin toss decides the winner). Finally, we can use the randomized
Copeland rule 𝑓𝐶 to construct an SDS that fails only anonymity for
even 𝑛: we just ignore one voter when computing the outcome of
𝑓𝐶 . Note here that for even 𝑛, an alternative 𝑥 is a Condorcet winner
in profile 𝑅 if 𝑛𝑥𝑦 (𝑅) ≥ 𝑛+2

2 for all 𝑦 ∈ 𝑁 \ {𝑥}, which means that
𝑥 remains the Condorcet winner after removing a single voter.

Moreover, the impossibility in Theorem 4 does not hold when
there are only 𝑛 = 2 voters because random dictatorships are strate-
gyproof and Condorcet-consistent in this case. The reason for this is
that a Condorcet winner needs to be the most preferred alternative
of both voters and is therefore chosen with probability 1.

Remark 3. The randomized Copeland rule has multiple appealing
interpretations. Firstly, it can be defined as a supporting size SDS
as shown in Section 2.1. Alternatively, it can be defined as the SDS
that picks two alternatives uniformly at random and then picks the
majority winner between them; majority ties are broken by a fair
coin toss. Next, Theorem 4 shows that the randomized Copeland
rule is the SDS that maximizes the value of 𝛼 for 𝛼-Condorcet-
consistency among all anonymous, neutral, and strategyproof SDSs.
Finally, the randomized Copeland rule is the only strategyproof
SDS that satisfies anonymity, neutrality, and assigns 0 probability
to a Condorcet loser whenever it exists.

3.2 𝛽-ex post Efficiency
According to Gibbard’s random dictatorship theorem, random dic-
tatorships are the only strategyproof SDSs that satisfy ex post effi-
ciency. In this section, we show that this result is rather robust by
identifying a tradeoff between 𝛽-ex post efficiency and 𝛾-random
dictatorships. More formally, we prove that for every 𝜖 ∈ [0, 1], all
strategyproof and 1−𝜖

𝑚 -ex post efficient SDSs are 𝛾-randomly dicta-
torial for 𝛾 ≥ 𝜖 . If we set 𝜖 = 1, we obtain the random dictatorship
theorem. On the other hand, we derive from this theorem that every
0-randomly dictatorial and strategyproof SDS is 𝛽-ex post efficient
for 𝛽 ≥ 1

𝑚 , i.e., every such SDS is at least as inefficient as the uni-
form lottery. Moreover, we prove for every 𝜖 ∈ [0, 1] that mixtures
of the uniform random dictatorship and the uniform lottery are
the only 𝜖-randomly dictatorial SDSs that satisfy anonymity, neu-
trality, strategyproofness, and 1−𝜖

𝑚 -ex post efficiency. In summary,
these results demonstrate that relaxing ex post efficiency does not
lead to particularly appealing strategyproof SDSs. Furthermore, we
also identify a tradeoff between 𝛼-Condorcet-consistency and 𝛽-ex
post efficiency: every 𝛼-Condorcet consistent and strategyproof
SDS fails 𝛽-ex post efficiency for 𝛽 < 𝑚−1

𝑚−2𝛼 . Under the additional
assumption of anonymity and neutrality, we characterize the strat-
egyproof SDSs that maximize the ratio between 𝛼 and 𝛽 : all these
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SDSs are mixtures of the randomized Copeland rule and the uniform
random dictatorship.

For proving the tradeoff between 𝛽-ex post efficiency and 𝛾-
random dictatorships, we first investigate the efficiency of 0-
randomly dictatorial strategyproof SDSs. In more detail, we prove
next that every such SDS fails 𝛽-ex post efficiency for 𝛽 < 1

𝑚 .

Lemma 5. No strategyproof SDS that is 0-randomly dictatorial sat-
isfies 𝛽-ex post efficiency for 𝛽 < 1

𝑚 if𝑚 ≥ 3.

The proof of this result is quite similar to the one for the upper
bound on 𝛼-Condorcet-consistency in Theorem 4. In particular, we
first show that all 0-randomlymixtures of duples and all 0-randomly
dictatorial mixtures of unilaterals violate 𝛽-ex post efficiency for
𝛽 < 1

𝑚 . Next, we consider an arbitrary 0-randomly dictatorial
SDS 𝑓 and aim to show that there are a profile 𝑅 and a Pareto-
dominated alternative 𝑥 ∈ 𝐴 such that 𝑓 (𝑅, 𝑥) ≥ 𝛽 . Even though
Theorem 1 allows us to represent 𝑓 as the convex combination of
a 0-randomly dictatorial mixture of unilaterals 𝑓uni and a mixture
of duples 𝑓duple , our previous observations have unfortunately no
direct consequences for the 𝛽-ex post efficiency of 𝑓 . The reason
for this is that 𝑓uni and 𝑓duple might violate 𝛽-ex post efficiency for
different profiles or alternatives. We solve this problem by trans-
forming 𝑓 into a 0-randomly dictatorial SDS 𝑓 ∗ that is 𝛽-ex post
efficient for the same 𝛽 as 𝑓 and satisfies additional properties. In
particular, 𝑓 ∗ can be represented as a convex combination of a 0-
randomly dictatorial mixture of unilaterals 𝑓 ∗uni and a 0-randomly
dictatorial mixture of duples 𝑓 ∗duple such that 𝑓 ∗uni (𝑅, 𝑥) ≥ 1

𝑚 and
𝑓 ∗duple (𝑅, 𝑥) ≥

1
𝑚 for some profile 𝑅 in which alternative 𝑥 is Pareto-

dominated. Consequently, 𝑓 ∗ fails 𝛽-ex post efficiency for 𝛽 < 1
𝑚 ,

which implies that also 𝑓 violates this axiom.
Based on Lemma 5, we can now show the tradeoff between ex

post efficiency and the similarity to a random dictatorship.

Theorem 5. For every 𝜖 ∈ [0, 1], every strategyproof and 1−𝜖
𝑚 -

ex post efficient SDS is 𝛾-randomly dictatorial for 𝛾 ≥ 𝜖 if 𝑚 ≥
3. Moreover, if 𝛾 = 𝜖 , 𝑚 ≥ 4, and the SDS satisfies additionally
anonymity and neutrality, it is a mixture of the uniform random
dictatorship and the uniform lottery.

The proof of the first claim follows easily from Lemma 5: we
consider a strategyproof SDS 𝑓 and use the definition of𝛾-randomly
dictatorial SDSs to represent 𝑓 as a mixture of a random dictatorship
and another strategyproof SDS 𝑔. Unless 𝑓 is a random dictator-
ship, the maximality of 𝛾 entails that 𝑔 is 0-randomly dictatorial.
Hence, Lemma 5 implies that 𝑔 can only be 𝛽-ex post efficient for
𝛽 ≥ 1

𝑚 . Consequently, 𝛾 ≥ 𝜖 must be true if 𝑓 satisfies 1−𝜖
𝑚 -ex

post efficiency. For the second claim, we observe first that every
anonymous, neutral, and strategyproof SDS 𝑓 can be represented
as a mixture of the uniform random dictatorship and another strat-
egyproof, anonymous, and neutral SDS 𝑔. Moreover, unless 𝑓 is
1-randomly dictatorial, 𝑔 is 0-randomly dictatorial. Thus, Lemma 5
and the assumption that 𝛾 = 𝜖 require that 𝑔 is exactly 1

𝑚 -ex post
efficient. Finally, the claim follows by proving that the uniform lot-
tery is the only 0-randomly dictatorial and strategyproof SDS that
satisfies anonymity, neutrality, and 1

𝑚 -ex post efficiency if𝑚 ≥ 4.
For𝑚 = 3 the randomized Copeland rule also satisfies all required
axioms and the uniform rule is thus not the unique choice.

Theorem 5 represents a continuous strengthening of Gibbard’s
random dictatorship theorem: themore ex post efficiency is required,
the closer a strategyproof SDS gets to a random dictatorship. Con-
versely, our result also entails that 𝛾-randomly dictatorial SDSs can
only satisfy 1−𝜖

𝑚 -ex post efficiency for 𝜖 ≤ 𝛾 . Moreover, the second
part of the theorem indicates that relaxing ex post efficiency does
not allow for particularly appealing strategyproof SDSs.

The correlation between 𝛽-ex post efficiency and 𝛾-randomly
dictatorships also suggests a tradeoff between 𝛼-Condorcet-
consistency and 𝛽-ex post efficiency because all random dictator-
ships are 0-Condorcet-consistent for sufficiently large𝑚 and 𝑛. Per-
haps surprisingly, we show next that 𝛼-Condorcet consistency and
𝛽-ex post efficiency are in relation with each other for strategyproof
SDSs. As a consequence of this insight, two strategyproof SDSs
are particularly interesting: random dictatorships because they are
the most ex post efficient SDSs, and the randomized Copeland rule
because it is the most Condorcet-consistent SDS.
Theorem 6. Every strategyproof SDS that satisfies anonymity,
neutrality, 𝛼-Condorcet consistency, and 𝛽-ex post efficiency with
𝛽 = 𝑚−2

𝑚−1𝛼 is a mixture of the uniform random dictatorship and the
randomized Copeland rule if𝑚 ≥ 4, 𝑛 ≥ 5. Furthermore, there is no
strategyproof SDS with 𝛽 < 𝑚−2

𝑚−1𝛼 if𝑚 ≥ 4, 𝑛 ≥ 5.
Proof. Let 𝑓 be a strategyproof SDS that satisfies 𝛼-Condorcet

consistency for some 𝛼 ∈ [0, 2
𝑚 ] and let 𝛽 ∈ [0, 1] denote the

minimal value such that 𝑓 is 𝛽-ex post efficient. We first show that
𝛽 ≥ 𝑚−2

𝑚−1𝛼 and hence apply Lemma 2 to construct an SDS 𝑓 ′ that
satisfies strategyproofness, anonymity, neutrality, 𝛼 ′-Condorcet
consistency for 𝛼 ′ ≥ 𝛼 , and 𝛽 ′-ex post efficiency for 𝛽 ′ ≤ 𝛽 . In
particular, if 𝑓 ′ is only 𝛽 ′-ex post efficient for 𝛽 ′ ≥ 𝑚−2

𝑚−1𝛼
′, then 𝑓

can only satisfy 𝛽-ex post efficiency for 𝛽 ≥ 𝛽 ′ ≥ 𝑚−2
𝑚−1𝛼

′ ≥ 𝑚−2
𝑚−1𝛼 .

Since 𝑓 ′ satisfies anonymity, neutrality, and strategyproofness,
we can apply Theorem 3 to represent it as a mixture of a supporting
size SDS and a point voting SDS, i.e., 𝑓 ′ = 𝜆𝑓point + (1 − 𝜆) 𝑓sup
for some 𝜆 ∈ [0, 1]. Let (𝑎1, . . . , 𝑎𝑚) and (𝑏0, . . . , 𝑏𝑛) denote the
scoring vectors describing 𝑓point and 𝑓sup , respectively. Next, we a
derive lower bound for 𝛼 ′ and an upper bound for 𝛽 ′ by considering
specific profiles. First, consider the profile 𝑅 in which every voter
reports 𝑎 as his best alternative and 𝑏 as his second best alternative;
the remaining alternatives can be ordered arbitrarily. It follows
from the definition of point voting SDSs that 𝑓point (𝑅,𝑏) = 𝑛𝑎2
and from the definition of supporting size SDS that 𝑓sup (𝑅,𝑏) =

(𝑚 − 2)𝑏𝑛 + 𝑏0. Since 𝑎 Pareto-dominates 𝑏 in 𝑅, it follows that
𝛽 ′ ≥ 𝑓 (𝑅,𝑏) = 𝜆𝑛𝑎2 + (1 − 𝜆) ((𝑚 − 2)𝑏𝑛 + 𝑏0).

For the upper bound on 𝛼 , consider the following profile 𝑅′

where alternative 𝑥 is never ranked first, but it is the Condorcet
winner and wins every pairwise comparison only with minimal
margin. We denote for the definition of 𝑅′ the alternatives as
𝐴 = {𝑥, 𝑥1, . . . , 𝑥𝑚−1}. In 𝑅′, the voters 𝑖 ∈ {1, 2, 3} ranks alter-
natives 𝑋𝑖 := {𝑥𝑘 ∈ 𝐴 \ {𝑥} : 𝑘 mod 3 = 𝑖 − 1} above 𝑥 and
all other alternatives below. Since 𝑚 ≥ 4, none of them ranks 𝑥
first. If the number of voters 𝑛 is even, we duplicate voters 1, 2,
and 3. As last step, we add pairs of voters with inverse prefer-
ences such that no voter prefers 𝑥 the most until 𝑅′ consists of
𝑛 voters. Since alternative 𝑥 is never top-ranked in 𝑅′, it follows
that 𝑓point (𝑅′, 𝑥) ≤ 𝑛𝑎2. Furthermore, 𝑛𝑥𝑦 (𝑅′) = ⌈𝑛+12 ⌉ for all
𝑦 ∈ 𝐴 \ {𝑥} and therefore 𝑓sup (𝑅′, 𝑥) = (𝑚 − 1)𝑏 ⌈𝑛+12 ⌉ . Finally, we
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derive that 𝛼 ′ ≤ 𝑓 (𝑅′, 𝑥) ≤ 𝜆𝑛𝑎2 + (1 − 𝜆) (𝑚 − 1)𝑏 ⌈𝑛+12 ⌉ because 𝑥
is by construction the Condorcet winner in 𝑅′.

Using these bounds, we show next that 𝑓 ′ is only 𝛽 ′-ex post
efficiency for 𝛽 ′ ≥ 𝑚−2

𝑚−1𝛼
′, which proves the second claim of the

theorem. In the subsequent calculation, the first and last inequality
follow from our previous analysis. The second inequality is true
since 𝑚−2

𝑚−1 ≤ 1 and 𝑚−2
𝑚−1 (𝑚 − 1) = (𝑚 − 2). The third inequality

uses the definition of supporting size SDSs.

𝛽 ′ ≥ 𝜆𝑛𝑎2 + (1 − 𝜆) ((𝑚 − 2)𝑏𝑛 + 𝑏0)

≥ 𝑚 − 2
𝑚 − 1𝜆𝑛𝑎2 +

𝑚 − 2
𝑚 − 1 (1 − 𝜆) ((𝑚 − 1)𝑏𝑛 + 𝑏0)

≥ 𝑚 − 2
𝑚 − 1𝜆𝑛𝑎2 +

𝑚 − 2
𝑚 − 1 (1 − 𝜆) (𝑚 − 1)𝑏 ⌈𝑛+12 ⌉

≥ 𝑚 − 2
𝑚 − 1𝛼

′

Finally, note that, if 𝛽 ′ = 𝑚−2
𝑚−1𝛼

′, all inequalities must be tight.
If the second inequality is tight 𝑎2 = 0 and 𝑏0 = 0, and when
the third inequality is tight 𝑏𝑛 = 𝑏 ⌈𝑛+12 ⌉ . These observations fully
specify the scoring vectors of 𝑓point and 𝑓sup . For the point voting
SDS, 𝑎2 = 0 implies 𝑎𝑖 = 0 for all 𝑖 ≥ 2 and 𝑎1 = 1

𝑛 , i.e., 𝑓point is
the uniform random dictatorship. Next, 𝑏0 = 0 and 𝑏𝑛 = 𝑏 ⌈𝑛+12 ⌉
imply that 𝑏𝑖 = 2

𝑚 (𝑚−1) for all 𝑖 ∈ {⌈𝑛+12 ⌉, . . . , 𝑏𝑛} and 𝑏𝑖 = 0
for all 𝑖 ∈ {0, . . . , ⌊𝑛−12 ⌋}. Moreover, if 𝑛 is even, the definition of
supporting size SDSs requires that 𝑏 𝑛

2
= 1

𝑚 (𝑚−1) . This shows that
𝑓sup is the randomized Copeland rule. Consequently, the SDS 𝑓 ′ is
a mixture of the uniform random dictatorship and the randomized
Copeland rule if 𝛽 ′ = 𝑚−2

𝑚−1𝛼
′. This proves that every strategyproof

SDS that satisfies anonymity, neutrality, 𝛼-Condorcet consistency,
and 𝛽-ex post efficiency with 𝛽 = 𝑚−2

𝑚−1𝛼 is a mixture of the uniform
random dictatorship and the randomized Copeland rule. □

Remark 4. All axioms of the characterization in Theorem 6 are
independent of each other. Every mixture of random dictatorships
other than the uniform one and the randomized Copeland rule only
violates anonymity. An SDS that violates only neutrality can be
constructed by using a variant of the randomized Copeland rule
that does not split the probability equally if there is a majority tie.
Finally, the correlation between 𝛼-Condorcet-consistency and 𝛽-ex
post efficiency is required since the uniform lottery satisfies all
other axioms. Moreover, all bounds on𝑚 and 𝑛 in Theorem 6 are
tight. If there are only 𝑛 = 2 voters,𝑚 = 3 alternatives, or𝑚 = 4
alternatives and 𝑛 = 4 voters, the uniform random dictatorship
is not 0-Condorcet consistent since a Condorcet winner is always
ranked first by at least one voter. Hence, the bound on 𝛽 does not
hold in these cases. In contrast, our proof shows that Theorem 6 is
also true when 𝑛 = 3.

4 CONCLUSION
In this paper, we analyzed strategyproof SDSs by considering relax-
ations of Condorcet-consistency and ex post efficiency. Our findings,
which are summarized in Figure 2, show that two strategyproof
SDSs perform particularly well with respect to these axioms: the
uniform random dictatorship (and random dictatorships in general),
and the randomized Copeland rule. In more detail, we prove that

𝛽

𝛼

0 1
𝑚

2(𝑚−2)
𝑚 (𝑚−1)

1
𝑚

2
𝑚

𝑑

𝑐

𝑏
𝑢

𝛽

𝛾

0 1
𝑚

2(𝑚−2)
𝑚 (𝑚−1)

1

1 𝑑

𝑐
𝑏

𝑢

Figure 2: Graphical summary of our results. Points in the fig-
ures correspond to SDSs and the horizontal axis indicates in
both figures the value of 𝛽 for which the considered SDS is 𝛽-
ex post efficient. In the left figure, the vertical axis states the
𝛼 for which the considered SDSs are 𝛼-Condorcet-consistent,
and in the right figure, it shows the 𝛾 for which SDSs are 𝛾-
randomly dictatorial. Theorems 4 and 6 show that no strat-
egyproof SDS lies in the grey area of the left figure. Theo-
rem 5 shows that no strategyproof SDS lies in the grey area
below the diagonal in the right figure. Furthermore, no SDS
lies in the grey area above the diagonal since a 𝛾-randomly
dictatorial SDS can put no more than 1 − 𝛾 probability on
Pareto-dominated alternatives. Finally, the following SDS
are marked in the figures: 𝑑 corresponds to all random dic-
tatorships, 𝑐 to the randomized Copeland rule, 𝑏 to the ran-
domized Borda rule, and 𝑢 to the uniform lottery.

the randomized Copeland rule is the only strategyproof, anony-
mous, and neutral SDS which guarantees a probability of 2

𝑚 to
the Condorcet winner. Since no other strategyproof SDS can guar-
antee more probability to the Condorcet winner (even if we drop
anonymity and neutrality), this characterization identifies the ran-
domized Copeland rule as one of the most Condorcet-consistent
strategyproof SDSs. On the other hand, Gibbard’s random dictator-
ship theorem shows that random dictatorships are the only ex post
efficient and strategyproof SDSs. We present a continuous general-
ization of this result: for every 𝜖 ∈ [0, 1], every 1−𝜖

𝑚 -ex post efficient
and strategyproof SDS is 𝛾-randomly dictatorial for 𝛾 ≥ 𝜖 . This
means informally that, even if we allow that Pareto-dominated al-
ternatives can get a small amount of probability, we end up with an
SDS similar to a random dictatorship. Finally, we derive a tradeoff
between 𝛼-Condorcet-consistency and 𝛽-ex post efficiency for strat-
egyproof SDSs: every strategyproof and 𝛼-Condorcet-consistent
SDS fails 𝛽-ex post efficiency for 𝛽 < 𝑚−2

𝑚−1𝛼 . This theorem entails
that it is not possible to jointly optimize both notions, which again
highlights the special role of the randomized Copeland rule and
random dictatorships.
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