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Abstract

We study a portioning setting in which a public resource such as time or money is to be divided
among a given set of candidates, and each agent proposes a division of the resource. We consider two
families of aggregation rules for this setting—those based on coordinate-wise aggregation and those
that optimize some notion of welfare—as well as the recently proposed independent markets rule.
We provide a detailed analysis of these rules from an axiomatic perspective, both for classic axioms,
such as strategyproofness and Pareto-optimality, and for novel axioms, some of which aim to capture
proportionality in this setting. Our results indicate that a simple rule that computes the average of
the proposals satisfies many of our axioms and fares better than all other considered rules in terms
of fairness properties. In addition, we complement these results by presenting two characterizations
of the average rule.

1 Introduction

A town council has just received its annual funding from the government, and it needs to determine
how to split the budget among constructing new facilities, maintaining clean streets, and ensuring public
safety. The mayor is in favor of making decisions democratically, so she asks each resident of the town
to propose a division of the budget. After collecting the proposals, how should the council aggregate
them into an actual allocation?

In the problem of portioning, the aim is to divide a homogeneous resource among a given set of
candidates. Besides dividing money, another important application of portioning is the division of
time—for example, a conference needs to distribute its time among research talks, panels, and social
gatherings. Several prior works on portioning assumed that each agent submits her preferences in the
form of either an approval ballot [Bogomolnaia et al., 2005, Duddy, 2015, Aziz et al., 2020] or an ordi-
nal ranking [Airiau et al., 2023]. However, in many portioning scenarios, these preference formats are
not expressive enough to fully describe agents’ intentions. For instance, if a citizen wants the budget to
be used both for constructing new facilities and for cleaning the streets, but with twice as much money
spent on the former than the latter, her preference cannot be captured by a ranking or an approval set.
Likewise, a conference attendee who would like 75% of the time to be spent on research talks, 15% on
panels, and 10% on social gatherings ranks these activities in the same way as another attendee who
prefers a 40%–35%–25% split, but the actual preferences of these two attendees are quite different.

*A preliminary version of this paper appeared in Proceedings of the 26th European Conference on Artificial Intelligence
[Elkind et al., 2023]. This version is substantially enhanced: it fills in all missing results (Table 1) and improves the organization
of the results, strengthens the case for using the average rule by providing characterizations of the rule (Section 7), expands the
discussion of related work (Section 1.2), and includes all proofs omitted from the conference version.
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In an important recent work, Freeman et al. [2021] studied portioning with cardinal preferences,
where every agent is asked to propose a division of the resource. This input format allows each agent to
specify what she views as the ideal portioning outcome, and is therefore much more descriptive than the
two formats discussed earlier. Assuming that an agent’s disutility is given by the ℓ1 distance between
her ideal distribution and the actual outcome,1 Freeman et al. observed that even though the rule that
maximizes the utilitarian social welfare is known to be strategyproof (for a specific tie-breaking conven-
tion) [Lindner et al., 2008, Goel et al., 2019], it tends to put too much weight on majority preferences. In
light of this observation, they introduced the independent markets (IM) rule, which is strategyproof and,
in some sense, more proportional. Their work inspired a number of follow-up papers in this fundamen-
tal social choice setting, mostly focusing on strategyproofness [Caragiannis et al., 2022, Brandt et al.,
2024, de Berg et al., 2024, Freeman and Schmidt-Kraepelin, 2024]. However, while strategyproofness
is an important consideration, there may be scenarios where other features of aggregation rules are just
as—if not more—desirable. Thus, to help decision-makers identify suitable aggregation rules for their
applications, it would be useful to (a) build catalogues of axioms and popular aggregation rules for the
portioning setting, (b) determine which of these axioms are satisfied by each of the aggregation rules,
and (c) characterize some of the most important rules in terms of these axioms.

1.1 Overview of Contributions

We consider a diverse set of axioms for portioning with cardinal preferences. Besides classic axioms
such as strategyproofness and Pareto optimality, we put forward new axioms including score-unanimity
and score-representation (see Section 2 for definitions). Several of our axioms are independent of the
underlying utility functions; for those where the utility functions matter, following most prior works in
this domain, we assume ℓ1 utilities. We then conduct a systematic study of aggregation rules with respect
to these axioms. We focus on two families of portioning rules—those that are based on coordinate-
wise aggregation and those that optimize some notion of welfare—as well as the recently proposed IM
rule [Freeman et al., 2021]. We also include observations regarding relationships between the axioms.
Table 1 summarizes our results.

Our findings offer several insights on portioning rules. As shown in Table 1, the most promising
rules with respect to the axioms that we study are the average rule (AVG), which simply returns the
average of all the proposals, and the utilitarian welfare-maximizing rule (UTIL), with the trade-off be-
ing that AVG fails strategyproofness and Pareto optimality whereas UTIL fails fairness and consistency
notions such as single-minded proportionality,2 score-representation, and independence. While IM sat-
isfies both strategyproofness and single-minded proportionality, it fails other intuitive properties such as
score-unanimity and score-representation; these failures can lead to highly counterintuitive outcomes.
The axiomatic properties of various rules can be used to inform decision-making in a wide range of
settings. For instance, consider again the scenario where a conference organizer needs to divide time
among different activities at a conference. In this case, it is likely difficult for an attendee to accurately
predict what other attendees’ preferences are, making strategyproofness arguably less relevant as a con-
sideration. On the other hand, strategyproofness could be more important in smaller-scale settings where
agents know each other well, e.g., portioning within a family or a small organization. Moreover, intu-
itive properties such as score-unanimity and range-respect may be essential in settings where votes are
revealed: for example, if all agents allocate 80% of the budget to a certain activity, but the rule allocates
60% to it, this may well lead to dissatisfaction among agents regarding the use of that rule.

1Freeman et al. [2021] noted that ℓ1 preferences arise naturally when agents are endowed with separable uniform utilities
over candidates together with a funding cap.

2This property was simply called “proportionality” by Freeman et al. [2021]. However, the property only applies to in-
stances in which all agents are “single-minded”, thereby making it rather weak compared to proportionality notions in other
settings (e.g., fair division [Procaccia, 2016]). Hence, in this paper we call this property “single-minded proportionality”.
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Coordinate-wise Welfare-based Other

F AVG MAX MIN MED GEO UTIL EGAL IM

Pareto-optimality X‡ X† X† X‡ X† ✓ ✓ X†

Range-respect ✓ X† X† X‡ X† ✓ ✓ X†

Score-unanimity ✓ X† X† X‡ X† ✓ ✓ X†

Score-representation ✓ X X X∗ X X X∗ X†

Single-minded Proportionality ✓ X∗ X X∗ X X∗ X∗ ✓

Independence ✓ X† X† X‡ X† X† X‡ X†

Score-monotonicity ✓ ✓ ✓ ✓ ✓ ✓ X‡ ✓

Reinforcement ✓ ✓ ✓ X ✓ ✓ ✓ ✓

Strategyproofness X X X X X ✓ X ✓

Participation ✓ ✓ ✓ X ✓ ✓ ✓ ✓

Table 1: Summary of our results. The asterisk symbol (∗) means that the axiom is satisfied for n = 2, but may
fail when n ≥ 3 (even if m = 2). The dagger symbol (†) indicates that the axiom is satisfied for m = 2, but
may fail when m ≥ 3 (even if n = 2). The double dagger symbol (‡) indicates that the axiom is satisfied when
min(n,m) = 2. Some of the results on UTIL and IM were obtained by Freeman et al. [2021].

In addition to fulfilling several axioms, the average rule is intuitive and easy to explain to laypeople.
We further strengthen the case for using this rule by providing two characterizations of it. Specifically,
we show that the average rule is the only aggregation rule satisfying score-unanimity (i.e., if all agents
allocate a γ fraction of the resource to a candidate, then the rule also assigns a γ fraction of the resource
to it), independence (i.e., the fraction allocated to a candidate only depends on the fractions that the
agents allocate to this candidate), and a mild fairness condition called anonymity, when there are at least
three candidates. We also prove that, within the class of coordinate-wise rules, the average rule is the
unique rule that satisfies score-unanimity, anonymity, and continuity whenever the number of candidates
is at least four.

1.2 Further Related Work

Portioning can be viewed as a variant of participatory budgeting, a framework that allows citizens to
democratically decide how the public budget should be spent. Participatory budgeting has been used
in over 7,000 cities around the world [Participatory Budgeting Project, 2024] and received much recent
interest in computational social choice—see, for example, the surveys by Aziz and Shah [2021] and Rey
and Maly [2023]. Nevertheless, most of the participatory budgeting literature focuses on the discrete
setting, where each project is either implemented in full or not implemented at all, and projects may
have varying costs (see, however, recent work of Goyal et al. [2023]). This makes the nature of the
problem quite different from that of portioning.

As mentioned earlier, Freeman et al. [2021] investigated portioning with cardinal preferences and
introduced IM, which is strategyproof and single-minded proportional under ℓ1 utilities. In fact, IM
belongs to a class of moving phantoms mechanisms, all of which are strategyproof.3 Caragiannis et al.
[2022] followed up on their work by examining the deviation of moving phantoms mechanisms from
the average rule according to the ℓ1 distance, while Freeman and Schmidt-Kraepelin [2024] explored a

3However, not all strategyproof rules are moving phantoms mechanisms [de Berg et al., 2024].
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similar question using the ℓ∞ distance. Brandt et al. [2024] showed that no rule can simultaneously be
strategyproof, single-minded proportional, and Pareto-optimal under ℓ1 or ℓ∞ utilities, but such a rule
exists for an alternative utility model that they called “minimal quotient” utilities.

Portioning also bears similarity to the domain of probabilistic social choice, where the output is
likewise a fractional allocation. However, unlike in portioning, in probabilistic social choice the fraction
allocated to each candidate is interpreted as the probability of eventually choosing this candidate as the
unique winner. As a consequence, it is usually desirable for a rule to minimize the use of randomness,
thereby making notions of fairness and proportionality less important. Moreover, much of the work
in probabilistic social choice assumes that agents’ preferences are given as ordinal rankings (see, e.g.,
the survey by Brandt [2017]). A notable exception is the work of Intriligator [1973], which postulates
that each agent has an ideal distribution over the candidates, but does not consider utility functions of
agents. While Intriligator gives a characterization of the average rule, his characterization relies on a
rather esoteric axiom regarding the sensitivity to probability changes.4

Finally, another related topic is probabilistic opinion pooling, which aims to aggregate probabilistic
beliefs representing, for example, weather forecasts [Genest and Zidek, 1986, Clemen, 1989]. The focus
of probabilistic opinion pooling is mainly to preserve epistemic and stochastic properties, which again
leads to different axioms being considered.

2 Preliminaries

We present the model of portioning with cardinal preferences, and introduce the rules and axioms that
we will study.

2.1 Model

Let [t] := {1, . . . , t} for any positive integer t. Assume that there is a set of n ≥ 2 agents, N = [n], who
report their preferences as ideal distributions of a homogeneous resource among a set C = {c1, . . . , cm}
of m ≥ 2 candidates. Specifically, letting ∆m := {x ∈ Rm

≥0 |
∑

j∈[m] xj = 1} denote the set of
probability distributions over C, we assume that each agent i ∈ N reports her preferences as a dis-
tribution si ∈ ∆m. We typically refer to si as agent i’s score vector, and write si = (si,1, . . . , si,m)
to specify this vector. An instance I of our problem is the collection of the preferences of all agents,
i.e., I = (s1, . . . , sn). For each vector x = (x1, . . . , xm), agent i’s disutility is defined as di(x) :=∑

j∈[m] |si,j − xj |, which is the ℓ1 distance between the agent’s score vector si and x. Given an in-
stance I, we aim to find a vector x ∈ ∆m that reflects the agents’ collective preferences. To this end,
we use aggregation rules, which are defined as follows.

Definition 2.1 (Aggregation rule). An aggregation rule F is a function F : ∆m×n → ∆m that maps
every instance I ∈ ∆m×n to an outcome vector x ∈ ∆m.

We will frequently use the notation F (I)j to denote the probability that the aggregation rule F
assigns to candidate cj on instance I.

2.2 Aggregation Rules

In this paper, we will focus on two natural classes of aggregation rules, namely, coordinate-wise rules
and welfare-optimizing rules. In addition, we will also consider the independent markets rule of Freeman
et al. [2021].

4Rice [1977] later pointed out that Intriligator’s characterization was wrong, and proposed a fix.
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2.2.1 Coordinate-wise Aggregation Rules

We first introduce the class of coordinate-wise aggregation rules. The idea behind these rules is to
aggregate the reported scores for each candidate individually and then normalize the aggregated scores
so that they sum up to 1.

Definition 2.2. An aggregation rule F is coordinate-wise if, for each n and each j ∈ [m] there exist

coordinate-aggregation functions fn
j : (R≥0)

n → R≥0 such that F (I)j =
fn
j (s1,j ,...,sn,j)∑

k∈[m] f
n
k (s1,k,...,sn,k)

for all

instances I and all j ∈ [m].

We extend Definition 2.2 to allow for the possibility that, for certain instances, fn
j (s1,j , . . . , sn,j) =

0 for all j ∈ [m]: in this case, we assign each candidate the same probability, i.e., we interpret 0
0 as 1

m .
We remark that our negative results do not depend on this tie-breaking convention. When fn

j is the same
for all j ∈ [m], we omit the subscript j and write fn. Furthermore, we may omit the superscript n when
it is clear from the context, and simply write fj or f .

We will focus on five natural coordinate-wise aggregation rules, where f is the average, maximum,
minimum, median (if the number of agents is even, we take the average of the two middle scores), or
geometric mean function. For brevity, we refer to these rules as AVG, MAX, MIN, MED, and GEO,
respectively. The advantage of these rules is that they are intuitive and easily computable.

2.2.2 Welfare-based Aggregation Rules

For our second class, we consider rules that are based on welfare optimization. In particular, we fo-
cus on two popular welfare criteria:5 the utilitarian welfare −

∑
i∈N di(x) and the egalitarian wel-

fare mini∈N (−di(x)). The minus sign ensures that these definitions indeed capture the welfare, as di
measures the disutility (rather than the utility) of agent i. The utilitarian rule (UTIL) and the egali-
tarian rule (EGAL) then return an outcome that minimizes the utilitarian and egalitarian welfare, re-
spectively. More formally, for each instance I, UTIL chooses an outcome xUTIL such that xUTIL ∈
argmaxx(−

∑
i∈N di(x)), while EGAL returns xEGAL such that xEGAL ∈ argmaxxmini∈N (−di(x)).

For both of these rules, the tie-breaking is important. Following Freeman et al. [2021], we con-
sider the variant of UTIL that breaks ties in favor of the maximum entropy division. Specifically, we
assume that UTIL outputs the utilitarian welfare-maximizing outcome x that minimizes the quantity∑

j∈[m](xj −
1
m)2, i.e., the ℓ2 distance to the uniform distribution xu = ( 1

m , . . . , 1
m). This tie-breaking

choice is neutral for candidates and ensures strategyproofness [Lindner et al., 2008].
For EGAL, if there are multiple outcomes that maximize the egalitarian welfare, then we break ties

in a “leximin” manner. That is, we minimize the largest disutility, then subject to that, minimize the
second-largest disutility, and so on. This type of leximin tie-breaking is standard when dealing with
egalitarian welfare [e.g., Bogomolnaia and Moulin, 2004, Kurokawa et al., 2018]. However, even after
this tie-breaking process, there may still be multiple EGAL outcomes. We show next that if n = 2, AVG

always returns an EGAL outcome, so we assume that the EGAL rule coincides with AVG in this case. By
contrast, our results for n ≥ 3 will not depend on this choice, and we allow EGAL to break ties in any
consistent manner (i.e., if x and x′ are both EGAL outcomes for two instances I and I ′, then we assume
that if EGAL chooses x for I, it does not choose x′ for I ′).

Proposition 2.3. When n = 2, the output of AVG is an EGAL outcome.

Proof. Let x be the output of AVG for the case n = 2. Then xj =
s1,j+s2,j

2 for each j ∈ [m], so
d1(x) = d2(x), and d1(x)+d2(x) =

∑
j∈[m] |s1,j −s2,j |. Since d1(x′)+d2(x

′) ≥
∑

j∈[m] |s1,j −s2,j |
for any outcome x′, it follows that x is an EGAL outcome.

5There is a third popular welfare criterion called Nash welfare, which is defined based on the product of utilities. However,
this welfare notion is not well-defined in our setting, as we are considering disutilities. For example, it has been observed that
there is no natural equivalent of Nash welfare in the fair allocation of chores [Freeman et al., 2020, Ebadian et al., 2022].
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We also note that both UTIL and EGAL (with the given tie-breaking conventions) can be computed
in polynomial time. For UTIL, this follows from the results of Freeman et al. [2021], and for EGAL, we
prove this claim in the appendix (see Proposition A.1).

2.2.3 Independent Markets Rule

The last aggregation rule that we will study is the independent markets (IM) rule of Freeman et al.
[2021]. This rule belongs to the class of moving phantoms rules, which take for each candidate the
median of the agents’ reports and n + 1 phantom values. However, because the final scores of all
candidates must sum up to 1, the phantom values cannot be constant. Instead, there are n + 1 phan-
tom functions f0, . . . , fn : [0, 1] → [0, 1] that are weakly increasing and satisfy fk(0) = 0 and
fk(1) = 1 for all k ∈ {0, . . . , n}. Then, a moving phantoms rule determines the smallest value
t∗ such that

∑
j∈[m] med(s1,j , . . . , sn,j , f0(t∗), . . . , fn(t∗)) = 1, and returns the vector x given by

xj = med(s1,j , . . . , sn,j , f0(t∗), . . . , fn(t∗)) for each j ∈ [m]. Finally, IM is defined by setting
f IM
k (t) = min(kt, 1) for all k ∈ {0, . . . , n}.

Before proceeding further, let us present a simple example demonstrating how the different aggre-
gation rules work.

Example 2.4. Consider an instance with n = 2 agents and m = 3 candidates. The first agent has a pre-
ferred distribution s1 = (0.8, 0.2, 0) and the second agent has a preferred distribution s2 = (0.8, 0, 0.2).

AVG and MED output (0.8, 0.1, 0.1), MIN and GEO output (1, 0, 0), and MAX outputs (2/3, 1/6, 1/6).
For UTIL, the distribution (0.8, x, 0.2−x) maximizes the utilitarian welfare for any x ∈ [0, 0.2]; among
these distributions, (0.8, 0.1, 0.1) minimizes the ℓ2 distance to the uniform distribution (1/3, 1/3, 1/3),
so UTIL returns this distribution. The same distribution is also returned by EGAL. Finally, for IM,
we have

∑
j∈[m] med(s1,j , s2,j , f IM

0 (t∗), f IM
1 (t∗), f IM

2 (t∗)) = 1 when t∗ = 0.3, and IM returns the
distribution (0.6, 0.2, 0.2).

2.3 Axioms

We next introduce the axioms that we will use to evaluate our aggregation rules. We roughly group the
axioms into four categories: efficiency properties, fairness properties, consistency properties, and incen-
tive properties. However, we note that the boundaries between these categories are fluid, particularly
when considering weak axioms.

2.3.1 Efficiency Properties

We start by introducing efficiency properties, which intuitively require the outcome chosen by an ag-
gregation rule to be guided by the agents’ preferences. Perhaps the most prominent such property is
Pareto-optimality, which postulates that it should not be possible to make one agent better off without
making another agent worse off.

Definition 2.5 (Pareto-optimality). An outcome x is Pareto-optimal in an instance I if there is no other
outcome x′ such that di(x′) ≤ di(x) for all agents i ∈ N and di(x

′) < di(x) for some agent i ∈ N . An
aggregation rule F is Pareto-optimal if F (I) is Pareto-optimal for every instance I.

As it will turn out, Pareto-optimality is a rather restrictive property in our setting, as only UTIL and
EGAL satisfy it among the considered rules. We thus introduce two further axioms based on the agents’
scores, which can be viewed as weaker efficiency axioms. The first axiom is range-respect, previously
studied by Freeman et al. [2021]. This axiom states that the score assigned to a candidate should always
lie between the minimum and the maximum scores that agents assign to this candidate.
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Definition 2.6 (Range-respect). An aggregation rule F is range-respecting if mini∈N si,j ≤ F (I)j ≤
maxi∈N si,j for all instances I and all j ∈ [m].

Next, we introduce a new property which we call score-unanimity. This property demands that if all
agents report the same score for some candidate, then this candidate should receive exactly that score.
Score-unanimity resembles a property called unanimity in single-winner voting, which states that if all
agents agree on a favorite candidate, this candidate should be chosen. In single-winner voting, this
property appears almost indispensable, and we believe that much of its appeal carries over to score-
unanimity.

Definition 2.7 (Score-unanimity). An aggregation rule F is score-unanimous if F (I)j = γ for all
instances I and all j ∈ [m] for which there exists γ ∈ [0, 1] such that si,j = γ for all i ∈ N .

We show that our three efficiency notions are logically related.

Proposition 2.8. The following claims hold.

(1) Pareto-optimality implies range-respect.

(2) Range-respect implies Pareto-optimality if and only if m = 2 or n = 2.

(3) Range-respect implies score-unanimity.

Proof. We prove each of the claims separately.

Claim 1: Suppose for contradiction that there is an outcome x that is Pareto-optimal but not range-
respecting for an instance I. Without loss of generality, this means that there exists some j ∈ [m]
such that xj > maxi∈N si,j (the case that xj < mini∈N si,j allows for a symmetric argument). Since∑

k∈[m] xk =
∑

k∈[m] s1,k = 1, there exists ℓ ∈ [m] such that xℓ < s1,ℓ. Next, we define ε = min(xj −
maxi∈N si,j , s1,ℓ−xℓ) and consider the outcome x′ defined by x′j = xj − ε, x′ℓ = xℓ+ ε, and x′k = xk
for all k ∈ [m] \ {j, ℓ}. Since xj − ε ≥ si,j for all i ∈ N , it holds that |(xj − ε)− si,j | = |xj − si,j | − ε.
By applying the triangle inequality and this observation, we find that for every agent i ∈ N ,

di(x
′) = |(xj − ε)− si,j |+ |(xℓ + ε)− si,ℓ|+

∑
k∈[m]\{j,ℓ}

|xk − si,k|

≤ |xj − si,j | − ε+ |xℓ − si,ℓ|+ ε+
∑

k∈[m]\{j,ℓ}

|xk − si,k| = di(x).

Moreover, for agent 1, it additionally holds that s1,ℓ ≥ xℓ + ε, so we have that |(xℓ + ε) − s1,ℓ| =
|xℓ−s1,ℓ|−ε. Using analogous computations as before, we then infer that d1(x′) = d1(x)−2ε < d1(x).
This means that x is not Pareto-optimal, a contradiction. It follows that Pareto-optimality implies range-
respect.

Claim 2: For our second claim, we show that range-respect implies Pareto-optimality if and only if
m = 2 or n = 2. First, we assume that n = 2 and let s1 and s2 denote the preferences of the agents.
Using the triangle inequality, we derive for every outcome x that d1(x) + d2(x) ≥

∑
j∈[m] |s1,j −

s2,j |. Moreover, if x is range-respecting, it holds that d1(x) + d2(x) =
∑

j∈[m] |s1,j − s2,j | because
min(s1,j , s2,j) ≤ xj ≤ max(s1,j , s2,j) implies that |s1,j − xj |+ |s2,j − xj | = |s1,j − s2,j |. This shows
that every range-respecting outcome is Pareto-optimal, because any outcome that Pareto-dominates a
range-respecting outcome would need to have strictly less total disutility.

Next, consider the case m = 2 and let x denote an outcome that is range-respecting for an instance I.
Furthermore, let x′ denote another outcome and assume without loss of generality that x1 > x′1. Since
m = 2, this means that x2 < x′2. Let i be an agent such that si,1 ≥ x1, which implies that si,2 ≤ x2;
such an agent exists since x is range-respecting. Observe that di(x) = (si,1 − x1) + (x2 − si,2) <

7
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(si,1 − x′1) + (x′2 − si,2) = di(x
′). Consequently, agent i strictly prefers x to every outcome x′ with

x1 > x′1. Since an analogous argument holds if x1 < x′1, we infer that x is Pareto-optimal.
We now show that range-respect does not imply Pareto-optimality if m ≥ 3 and n ≥ 3. We focus

on the case where m = 3, as it is trivial to extend the counterexample to larger m by universally
assigning probability 0 to additional candidates. Now, consider the following instance and the outcome
x = (16 ,

1
3 ,

1
2). It is easy to verify that x is range-respecting for I. However, the outcome (0, 12 ,

1
2)

strictly benefits agent 2 and does not hurt the other agents, so x is not Pareto-optimal.

I si,1 si,2 si,3

1 0 0 1

2 0 1
2

1
2

i ∈ {3, . . . , n} 1
2

1
2 0

Claim 3: Finally, we show that range-respect implies score-unanimity. To this end, let I =
(s1, . . . , sn) denote an instance and j ∈ [m] be such that there exists γ ∈ [0, 1] with si,j = γ for
all i ∈ N . Range-respect of an outcome x implies that γ = mini∈N si,j ≤ xj ≤ maxi∈N si,j = γ, so
xj = γ and score-unanimity is satisfied.

2.3.2 Fairness Properties

For the second type of axioms, we turn to fairness concepts, which intuitively demand that every group of
agents with similar preferences is proportionally represented by the outcome. A rather mild axiom based
on this idea has been formulated by Freeman et al. [2021]. Specifically, these authors call an agent single-
minded if she assigns probability 1 to some candidate. Their proportionality notion then requires that, if
all agents are single-minded, each candidate should receive a probability proportional to the number of
agents that assign probability 1 to it. To formalize this, we define N (I, cj , γ) := |{i ∈ N : si,j ≥ γ}|
as the number of agents who assign a probability of at least γ to candidate cj in the instance I.

Definition 2.9 (Single-minded Proportionality). An aggregation rule F satisfies single-minded propor-
tionality if F (I)j =

N (I,cj ,1)
n for all candidates cj ∈ C and instances I in which all agents are single-

minded.

However, agents are rarely single-minded in several applications of portioning (such as dividing
time between different activities at a conference), so an appropriate notion of proportionality for general
preferences is needed. We formulate one such notion for the cardinal preference setting, and refer to it
as score-representation. The idea of this notion is that if a k

n fraction of the agents assign a portion of at
least γ to a candidate cj , then this candidate should receive a probability of at least γ · k

n .

Definition 2.10 (Score-representation). An aggregation rule F satisfies score-representation if F (I)j ≥
γ · N (I,cj ,γ)

n for all instances I, candidates cj ∈ C, and γ ∈ [0, 1].

It follows directly from the definitions that score-representation is strictly stronger than single-
minded proportionality.

2.3.3 Consistency Properties

As the third type of axioms, we consider consistency properties, which aim to ensure that voting rules
behave, in some sense, consistently across instances. The first such axiom that we examine is indepen-
dence, which has previously been studied by Intriligator [1973]. The idea of this axiom is that the score

8
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assigned to a candidate by an aggregation rule should only depend on the scores that the agents assign
to this candidate, and is therefore independent of the scores assigned to other candidates. We remark
that this axiom is similar in spirit to Arrow’s independence of irrelevant alternatives [Arrow, 1951], as it
postulates that we can compute the outcome for a candidate without taking into account the remaining
candidates. The definition is as follows.

Definition 2.11 (Independence). An aggregation rule F satisfies independence if F (I)j = F (I ′)j for
all instances I and I ′ and all j ∈ [m] such that si,j = s′i,j for all i ∈ N .

Independence is a demanding axiom and, for example, implies that the considered rule must be
coordinate-wise, because we can define the j-th coordinate-aggregation function by fn

j (s1,j , . . . , sn,j) =
F (I)j . Nevertheless, we believe that this axiom is appealing in practice, as it is intuitive and greatly
simplifies the task of aggregating the agents’ score vectors. Moreover, a violation of independence can
lead to complaints from candidates that receive a smaller portion of the resource despite getting the same
score from every agent as before.

Next, we introduce score-monotonicity. This axiom requires that, if an agent increases the score of
some candidate, then the aggregated score of this candidate is also weakly increasing. Score-monotonicity
was previously studied by Freeman et al. [2021],6 and similar monotonicity notions are omnipresent in
social choice theory.

Definition 2.12 (Score-monotonicity). An aggregation rule F is score-monotone if F (I)j ≤ F (I ′)j
for all instances I, I ′ and all j ∈ [m] for which there is an agent i ∈ N such that (i) si′ = s′i′ for all
i′ ∈ N \ {i}, (ii) si,j < s′i,j , and (iii) si,j′ ≥ s′i,j′ for all j′ ∈ [m] \ {j}.

The final consistency notion that we study is reinforcement, which demands that if an aggregation
rule chooses the same outcome for two instances with disjoint sets of agents, then it also chooses that
outcome when combining these two instances. Variants of this axiom feature prominently in numerous
results in social choice theory [e.g., Young, 1975, Fishburn, 1978, Young and Levenglick, 1978, Brandl
et al., 2016].

Definition 2.13 (Reinforcement). An aggregation rule F satisfies reinforcement if, for all instances
I = (s1, . . . , sn) and I ′ = (s′1, . . . , s

′
n′) with F (I) = F (I ′), it holds that F (s1, . . . , sn, s

′
1, . . . , s

′
n′) =

F (I).

Independence, score-monotonicity, and reinforcement are logically unrelated, as they formalize
rather different notions of consistency. However, we emphasize that variants of these three axioms
are well-established in the literature and we therefore believe that it is important to study all of them.

2.3.4 Incentive Properties

Our last category of axioms is concerned with the incentives of agents: aggregation rules should incen-
tivize agents to participate and to report their preferences truthfully. These ideas lead to the well-known
notions of participation and strategyproofness. We start by defining strategyproofness, which stipulates
that agents should not be able to benefit from lying about their true preferences.

Definition 2.14 (Strategyproofness). An aggregation rule F is strategyproof if di(F (I)) ≤ di(F (I ′))
for all instances I and I ′ and agents i ∈ N such that si′ = s′i′ for all i′ ∈ N \ {i}.

While it is known that IM and UTIL satisfy strategyproofness [Goel et al., 2019, Freeman et al.,
2021], this property is in general rather demanding, as demonstrated by the impossibility theorem of

6Freeman et al. [2021] simply called this notion “monotonicity”.

9



Draft – August 31, 2024

Brandt et al. [2024] stating that no aggregation rule simultaneously satisfies strategyproofness, Pareto-
optimality, and single-minded proportionality.

Participation is a property closely related to strategyproofness—it dictates that agents should not be
able to profit by abstaining. Put differently, participation ensures that it is always weakly better for every
agent to express her preference.

Definition 2.15 (Participation). An aggregation rule F satisfies participation if di(F (I)) ≤ di(F (I ′))
for all instances I and I ′ such that I is obtained from I ′ by adding agent i.

We note that participation and strategyproofness are logically independent in general. However,
when imposing reinforcement and the very mild condition that F (x) = x (i.e., if there is a single agent,
we choose her ideal distribution), it can be shown that strategyproofness implies participation.

3 Efficiency Properties

We now analyze our aggregation rules with respect to the axioms defined in Section 2.3. In this section,
we study the three efficiency properties and show that, while UTIL and EGAL satisfy Pareto-optimality,
all other rules except AVG fail even score-unanimity. Recall from Proposition 2.8 that Pareto-optimality
implies range-respect which in turn implies score-unanimity, and that range-respect implies Pareto-
optimality if m = 2 or n = 2.

Theorem 3.1. The following claims hold.

(1) UTIL and EGAL are Pareto-optimal (and thus range-respecting and score-unanimous).

(2) AVG is range-respecting (and thus Pareto-optimal when m = 2 or n = 2, and score-unanimous
for any m,n), but fails Pareto-optimality for all m ≥ 3 and n ≥ 3.

(3) MED is range-respecting when m ≤ 3 or n = 2 (and thus Pareto-optimal when m = 2 or n = 2).
If m = 3, it is Pareto-optimal if n ≥ 3 is odd, but fails Pareto-optimality if n ≥ 4 is even. It fails
score-unanimity for all m ≥ 4 and n ≥ 3.

(4) MAX, MIN, GEO, and IM are Pareto-optimal when m = 2, but fail score-unanimity for all m ≥ 3
and n ≥ 2.

Proof. We prove each of the claims separately.

Claim 1: The claim follows directly from the definitions of UTIL and EGAL, since a Pareto im-
provement would also give rise to an improvement with respect to the welfare measure. In more detail,
for EGAL, we use the fact that its definition lexicographically minimizes the maximum disutility of the
agents. In particular, if an outcome x returned by EGAL was Pareto-dominated by another outcome
x′, then x′ would have a better egalitarian welfare in this leximin optimization, which contradicts the
definition of EGAL. By Proposition 2.8, both rules are range-respecting and score-unanimous as well.

Claim 2: Let x be the output of AVG for some instance I. It holds for all j ∈ [m] that mini∈N si,j ≤
1
n

∑
i∈N si,j ≤ maxi∈N si,j , which shows that AVG is range-respecting. By Claim 2 of Proposition 2.8,

this also means that AVG is Pareto-optimal if m = 2 or n = 2.
To show that AVG fails Pareto-optimality when m ≥ 3 and n ≥ 3, consider the following instance

I1, where all candidates in C \{c1, c2, c3} receive probability 0 from all agents and can thus be ignored.
For this instance, AVG outputs the vector ( 1

2n ,
2
2n , 1−

3
2n). However, the outcome x′ = (0, 3

2n , 1−
3
2n)

decreases the disutility of agent 1 without decreasing the disutility of the other agents, so AVG is not
Pareto-optimal.

10
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I1 si,1 si,2 si,3

1 0 1
2

1
2

2 1
2

1
2 0

i ∈ {3, . . . , n} 0 0 1

Claim 3: Since MED is equivalent to AVG when n = 2, it is range-respecting for n = 2 by Claim 2,
and also Pareto-optimal by Claim 2 of Proposition 2.8. For the case m = 2, consider an instance I
and assume without loss of generality that s1,1 ≤ s2,1 ≤ · · · ≤ sn,1. Since m = 2, we infer that
si,2 = 1 − si,1, so s1,2 ≥ s2,2 ≥ · · · ≥ sn,2. Hence, MED returns x = (s(n+1)/2, 1, s(n+1)/2, 2) if

n is odd, and x = (
sn/2, 1+s(n+2)/2, 1

2 ,
sn/2, 2+s(n+2)/2, 2

2 ) if n is even. This verifies that MED is range-
respecting for m = 2, and Claim 2 of Proposition 2.8 entails that it is also Pareto-optimal.

Now, when m = 3, suppose for contradiction that there exists an instance I such that the outcome
x chosen by MED fails range-respect. Without loss of generality, we assume that x1 < mini∈N si,1
(the choice of the candidate does not matter, and if x1 > maxi∈N si,1, we can reverse all inequalities
in the proof). Moreover, let m1, m2, m3 denote the medians (before normalization) for the candidates
c1, c2, c3, respectively. This means that x =

(
m1

m1+m2+m3
, m2
m1+m2+m3

, m3
m1+m2+m3

)
. Since m1 ≥

mini∈N si,1, we infer from x1 < mini∈N si,1 that m1+m2+m3 > 1. Moreover, it holds that si,2+si,3 =
1−si,1 < 1− m1

m1+m2+m3
for all agents i ∈ N . We will next show that m2+m3 ≤ 1−mini∈N si,1. This

then implies that m1+m2+m3
m1+m2+m3

< m2 +m3 +
m1

m1+m2+m3
< 1, which yields the desired contradiction.

To show that m2 +m3 ≤ 1 −mini∈N si,1, we note that each median by itself is monotone (i.e., if
we increase some value si,j , then mj does not decrease). Hence, we consider modified values ŝi,2 and
ŝi,3 which satisfy ŝi,2 ≥ si,2, ŝi,3 ≥ si,3, and ŝi,2 + ŝi,3 = 1 − mini′∈N si′,1 for all i ∈ N . By the
monotonicity of the medians, we have that the corresponding medians m̂2 and m̂3 satisfy m̂2 ≥ m2 and
m̂3 ≥ m3. Moreover, it holds that ŝi,2 = 1−mini′∈N si′,1 − ŝi,3. This means that, for all agents i and
i′, we have ŝi,2 ≤ ŝi′,2 if and only if ŝi,3 ≥ ŝi′,3. Consequently, the median agent(s) for c2 are also the
median agent(s) for c3, which implies that m̂2 + m̂3 = 1 − mini∈N si,1. This completes the proof of
our auxiliary claim.

Next, we prove that MED satisfies Pareto-optimality for m = 3 and any odd n ≥ 3. Let m1, m2,
m3 again denote the medians (before normalization) for the candidates c1, c2, c3, respectively. Without
loss of generality, assume that m1 + m2 + m3 ≤ 1. For k ∈ {1, 2, 3}, let Tk ⊆ N be the set of
agents i such that si,k ≥ mk and si,k′ ≤ mk′ for all other k′ ̸= k. Fix some k ∈ {1, 2, 3}. We
first show that Tk ̸= ∅. Suppose for contradiction that Tk = ∅, i.e., for every agent i ∈ N such that
si,k ≥ mk, there exists k′ ̸= k with si,k′ > mk′ . Furthermore, for every agent i′ ∈ N with si′,k < mk,
there also exists k′ ̸= k with si′,k′ > mk′ ; otherwise si′,1 + si′,2 + si′,3 < m1 + m2 + m3 ≤ 1,
a contradiction. Thus, for all agents i ∈ N , there exists k′ ̸= k with si,k′ > mk′ . However, since∑

k′ ̸=k |{i ∈ N : si,k′ > mk′}| ≤ n−1
2 + n−1

2 = n− 1, we get a contradiction. Hence, Tk ̸= ∅.
Since m1+m2+m3 ≤ 1, for each j ∈ {1, 2, 3}, we have xj =

mj

m1+m2+m3
≥ mj . This means that

for all i ∈ Tk and k′ ̸= k, it holds that si,k′ ≤ xk′ . Together with the fact that si,1 + si,2 + si,3 = 1, we
must have that si,k ≥ xk. Then, in order to construct an outcome x′ such that di(x′) ≤ di(x) for every
agent i ∈ N , we must have that x′k ≥ xk; otherwise agent i ∈ Tk will have a strictly higher disutility.
However, since this holds for all k ∈ {1, 2, 3}, we get that x′ = x, which means that x is Pareto-optimal.
The argument for the case where m1 + m2 + m3 > 1 is symmetric, by reversing the signs (including
the definition of Tk).

On the other hand, we show that MED fails Pareto-optimality for m = 3 and any even n ≥ 4.
To this end, consider the following instance I2 for an even number of agents n. In this instance, we
have that medi∈Nsi,1 = 9

20 , medi∈Nsi,2 = 3
10 , and medi∈Nsi,3 = 3

8 , so MED returns the outcome

11
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x =
(

4
10 ,

4
15 ,

1
3

)
. However, the outcome

(
4
10 ,

5
20 ,

7
20

)
strictly benefits agent 2 and does not hurt the other

agents, so x is not Pareto-optimal.

I2 si,1 si,2 si,3

1 3
10

7
20

7
20

2 6
10 0 4

10

i ∈ {3, . . . , n2 + 1} 7
10

1
4

1
20

i ∈ {n
2 + 2, . . . , n} 1

4
7
20

4
10

Finally, we show that MED fails even score-unanimity when m ≥ 4 and n ≥ 3. To this end, consider
the following instance I3 for an odd number of agents n, where all candidates cj with 5 ≤ j ≤ m receive
probability 0 from all agents. In this instance, we have that medi∈Nsi,1 = 3

10 , medi∈Nsi,2 = 5
10 , and

medi∈Nsi,3 = medi∈Nsi,4 = 0, so MED assigns probability 3
8 to c1. To obtain a counterexample for

even n, we can duplicate agent 1 to get a similar counterexample.

I3 si,1 si,2 si,3 si,4

1 3
10

5
10 0 2

10

i ∈ {2, . . . , n+1
2 } 3

10
1
10

6
10 0

i ∈ {n+3
2 , . . . , n} 3

10
7
10 0 0

Claim 4: We consider each rule separately.

GEO: First, assume that m = 2. We will show that GEO is range-respecting and hence Pareto-
optimal. To this end, fix some instance I and let x be the outcome returned by GEO. Without loss of
generality, we focus on c1 and show that mini∈N si,1 ≤ x1 ≤ maxi∈N si,1. Let yj = n

√∏
i∈N si,j

and observe that mini∈N si,j ≤ yj ≤ maxi∈N si,j . By multiplying with (1 − maxi∈N si,1) and (1 −
mini∈N si,1), this leads to the following inequalities:

y1 · (1−max
i∈N

si,1) ≤ max
i∈N

si,1 · (1−max
i∈N

si,1);

y1 · (1−min
i∈N

si,1) ≥ min
i∈N

si,1 · (1−min
i∈N

si,1).

Equivalently, this means that

y1
y1 + 1−maxi∈N si,1

≤ max
i∈N

si,1 and
y1

y1 + 1−mini∈N si,1
≥ min

i∈N
si,1.

Since m = 2, it holds that 1−mini∈N si,1 = maxi∈N si,2 and 1−maxi∈N si,1 = mini∈N si,2. Hence,
we derive that

min
i∈N

si,1 ≤
y1

y1 +maxi∈N si,2
≤ y1

y1 + y2
≤ y1

y1 +mini∈N si,2
≤ max

i∈N
si,1.

Because x1 =
y1

y1+y2
, this shows that GEO is range-respecting if m = 2.

To see that GEO fails score-unanimity when m ≥ 3 and n ≥ 2, consider the following instance I4.
For this instance, GEO outputs the vector

x =

(
1

1 + 2
1
n + 2

n−1
n

,
2

1
n

1 + 2
1
n + 2

n−1
n

,
2

n−1
n

1 + 2
1
n + 2

n−1
n

)
.

12
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This outcome fails score-unanimity as 2
1
n + 2

n−1
n < 3 for all n ≥ 2; this follows from the inequality

(2
n−1
n −1)(2

1
n −1) > 0. To extend the counterexample to larger m, one can add candidates that receive

a score of 0 from all agents.

I4 si,1 si,2 si,3

1 1
4

1
2

1
4

i ∈ {2, . . . , n} 1
4

1
4

1
2

MAX: Next, we consider MAX and first show that it is range-respecting (and hence Pareto-optimal)
if m = 2. For this, we fix an instance I and focus on candidate c1. We observe that maxi∈N si,1 +
maxi∈N si,2 ≥ 1, which implies that x1 =

maxi∈N si,1
maxi∈N si,1+maxi∈N si,2

≤ maxi∈N si,1. For the other direc-
tion, we note that

min
i∈N

si,1(1 + max
i∈N

si,1 −min
i∈N

si,1) = min
i∈N

si,1 +min
i∈N

si,1(max
i∈N

si,1 −min
i∈N

si,1)

≤ min
i∈N

si,1 + (max
i∈N

si,1 −min
i∈N

si,1) = max
i∈N

si,1.

Since maxi∈N si,2 = 1−mini∈n si,1 when m = 2, we derive that

min
i∈N

si,1 ≤
maxi∈N si,1

maxi∈N si,1 +maxi∈N si,2
= x1.

This shows that MAX is range-respecting if m = 2.
To show that MAX fails score-unanimity if m ≥ 3 and n ≥ 2, we consider the instance I4 which

was used to show that GEO also fails score-unanimity. For this instance, MAX returns the outcome
x = (15 ,

2
5 ,

2
5), which violates score-unanimity for c1.

MIN: We now turn to MIN and show that it is range-respecting and therefore Pareto-optimal if
m = 2. Hence, we consider an instance I and focus again on candidate c1. We first observe that
mini∈N si,1 +mini∈N si,2 ≤ 1, so mini∈N si,1 ≤ mini∈N si,1

mini∈N si,1+mini∈N si,2
= x1. For the other direction,

we note analogously to MAX that

max
i∈N

si,1(1 + min
i∈N

si,1 −max
i∈N

si,1) = max
i∈N

si,1 +max
i∈N

si,1(min
i∈N

si,1 −max
i∈N

si,1)

≥ max
i∈N

si,1 + (min
i∈N

si,1 −max
i∈N

si,1) = min
i∈N

si,1.

Using that mini∈N si,2 = 1−maxi∈N si,1, we thus have that

max
i∈N

si,1 ≥
mini∈N si,1

mini∈N si,1 +mini∈N si,2
= x1.

This completes the proof that MIN is range-respecting.
Finally, we consider again the instance I4 to prove that MIN fails score-unanimity. MIN chooses for

this instance the outcome x = (13 ,
1
3 ,

1
3), which violates score-unanimity for c1.

IM: As the last rule, we consider IM and first show that it is range-respecting (and Pareto-optimal)
when m = 2. Consider an instance I and let x be the output vector of IM. We first note that xj ≤
maxi∈N si,j for j ∈ {1, 2} as one phantom is always at 0. Next, if xj < mini∈N si,j for some j ∈ {1, 2},
then it holds for j′ ̸= j that xj′ > maxi∈N si,j′ , since si,j = 1 − si,j′ for all i ∈ N and xj = 1 − xj′ .
However, this is impossible due to our previous observation, so we conclude that IM is range-respecting
when m = 2.
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To show that IM fails score-unanimity when m ≥ 3 and n ≥ 2, we consider the instance I5 shown
below, where all candidates cj with j ≥ 4 receive a probability of 0 from all agents. For this instance,
score-unanimity requires that x1 = n+1

n+2 . However, it can be checked that IM assigns probability n
n+2 to

c1 (at t∗ = 1
n+2 ), thus showing that score-unanimity is violated.

I5 si,1 si,2 si,3

1 n+1
n+2

1
n+2 0

i ∈ {2, . . . , n} n+1
n+2 0 1

n+2

This completes the proof.

Remark 3.2. Freeman et al. [2021, p. 22] suggested a variant of IM where the last moving phantom is
fixed to 1, i.e., f IM′

n (t) = 1. This modified rule satisfies range-respect, single-minded proportionality,
and strategyproofness. However, it is unclear whether it inherits other desirable properties of IM such
as reinforcement and participation.

Remark 3.3. In some settings, it is computationally challenging to determine whether an outcome is
efficient [e.g., Aziz et al., 2019]. This is not the case in our context: it is straightforward to check whether
an outcome satisfies score-unanimity and range-respect, and we give a linear programming formulation
for deciding whether an outcome is Pareto-optimal in the appendix (see Proposition A.2).

4 Fairness Properties

We next turn to fairness properties and study our rules with respect to single-minded proportionality and
the more demanding notion of score-representation. In particular, we will show that none of our rules
satisfies score-representation except AVG, thus making a strong case for this rule. Note that some of
our results follow from the work of Freeman et al. [2021]: these authors have shown that IM satisfies
single-minded proportionality and that UTIL fails this property (without specifying the boundaries for
when this is the case).

Theorem 4.1. The following claims hold.

(1) AVG satisfies score-representation (and therefore single-minded proportionality).

(2) IM satisfies score-representation when m = 2 and single-minded proportionality for any m, but
fails score-representation for all n ≥ 2 and m ≥ 3.

(3) MAX and UTIL satisfy score-representation when n = m = 2 and single-minded proportionality
when n = 2. Both rules violate score-representation for all m ≥ 3 and n ≥ 2, and single-minded
proportionality for all m ≥ 2 and n ≥ 3.

(4) MED and EGAL satisfy score-representation when n = 2, but fail single-minded proportionality
for all m ≥ 2 and n ≥ 3.

(5) MIN and GEO satisfy single-minded proportionality when n = m = 2, but fail to do so for all
n ≥ 3 or m ≥ 3. Both rules fail score-representation for all m ≥ 2 and n ≥ 2.

Proof. We prove each of the claims separately.

Claim 1: Consider an instance I, and fix a candidate cj and a value γ ∈ [0, 1]. We need to show
that xj ≥ γ · N (I,cj ,γ)

n for the vector x chosen by AVG. For this, let S := {i ∈ N : si,j ≥ γ} denote
the set of agents that report a score of at least γ for cj . It holds that xj = 1

n

∑
i∈N si,j ≥ 1

n

∑
i∈S si,j ≥

γ · N (I,cj ,γ)
n , which shows that AVG satisfies score-representation.

14
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Claim 2: First, it was shown by Freeman et al. [2021] that IM satisfies single-minded proportion-
ality. Next, we show that IM also satisfies score-representation if m = 2. To this end, consider an
instance I and assume for contradiction that the outcome x of IM fails score-representation. Without
loss of generality, suppose that there exists γ ∈ [0, 1] such that x1 < γ · N (I,c1,γ)

n . Clearly, this means
that γ > x1. Now, consider the instance I ′ such that all agents with si,1 > x1 report s′i,1 = 1. It
holds for the modified instance I ′ still that x′1 = x1 because increasing the score of c1 for agents with
si,1 > x1 (and simultaneously decreasing the score of c2 for agents with si,2 < x2) does not change the
position of the medians. Since γ > x1, we have that x1 < γ · N (I,c1,γ)

n ≤ N (I′,c1,1)
n . Next, let I ′′ denote

the instance derived from I ′ by setting s′′i,1 = 0 for all agents i ∈ N with si,1 ≤ x1. Since IM is known
to be score-monotone [see Freeman et al., 2021, Thm. 3], it follows that x′′1 ≤ x′1. Moreover, it holds
that N (I ′, c1, 1) = N (I ′′, c1, 1), so we can again infer that x′′1 < N (I′′,c1,1)

n . However, in I ′′, all agents
are single-minded, so x′′1 = N (I′′,c1,1)

n because IM satisfies single-minded proportionality. This yields
the desired contradiction, which means that IM satisfies score-representation for m = 2.

Finally, to show that IM fails score-representation for all m ≥ 3 and n ≥ 2, it suffices to consider
the instance I5 in the proof of Theorem 3.1. In this instance, all agents assign probability n+1

n+2 to c1, but
IM only assigns a probability of n

n+2 to this candidate, so score-representation is violated.

Claim 3: We consider MAX and UTIL separately.

MAX: We first prove that MAX satisfies score-representation when n = m = 2. Consider an
instance I and assume without loss of generality that s1,1 ≥ s2,1 and s2,2 ≥ s1,2. Then, score-
representation demands that (i) x1 ≥ s1,1

2 and x2 ≥ s2,2
2 , and (ii) x1 ≥ s2,1 and x2 ≥ s1,2. Property

(ii) follows from the fact that MAX is range-respecting when m = 2 (see Theorem 3.1). On the other
hand, x1 =

s1,1
s1,1+s2,2

≥ s1,1
2 and x2 =

s2,2
s1,1+s2,2

≥ s2,2
2 since si,j ≤ 1 for all i ∈ N , j ∈ [m]. This

demonstrates that (i) also holds.
Next, we show that MAX satisfies single-minded proportionality for n = 2 and m ≥ 3. Let I denote

an instance where both agents are single-minded. If both agents put probability 1 on the same candidate,
then MAX puts probability 1 on this candidate, too. If the two agents put probability 1 on different
candidates, both of these candidates receive a probability of 1

2 from MAX. In both cases, MAX satisfies
single-minded proportionality.

To show that MAX fails score-representation when n ≥ 2 and m ≥ 3, it is sufficient to consider
our counterexample showing that it fails score-unanimity (instance I4 in the proof of Theorem 3.1). In
this instance, all agents assign probability 1

4 to candidate c1, but MAX only assigns probability 1
5 to this

candidate. We now show that MAX fails single-minded proportionality if m ≥ 2 and n ≥ 3. Consider
the following instance I1 (where si,j = 0 for all j ≥ 3 and i ∈ N ). In this instance, MAX assigns
probability 1

2 to both c1 and c2, but single-minded proportionality requires that x2 = n−1
n > 1

2 .

I1 si,1 si,2

1 1 0

i ∈ {2, . . . , n} 0 1

UTIL: We first show that UTIL satisfies score-representation when n = m = 2 and thus consider
an instance I. Just as for MAX, we assume that s1,1 ≥ s2,1 and s2,2 ≥ s1,2, and we will prove that (i)
x1 ≥ s1,1

2 and x2 ≥ s2,2
2 , and (ii) x1 ≥ s2,1 and x2 ≥ s1,2. Property (ii) follows immediately as UTIL is

Pareto-optimal and therefore also range-respecting. As for (i), if s1,1 ≥ 1
2 ≥ s1,2 and s2,2 ≥ 1

2 ≥ s2,1,
then UTIL will pick the vector (12 ,

1
2) and score-representation is satisfied. Now, if s1,1 < 1

2 , then also
s2,1 < 1

2 since s2,1 ≤ s1,1. In this case, UTIL will choose the outcome (s1,1, s1,2), for which it holds
that x1 ≥ s1,1

2 and x2 ≥ s2,2
2 since x2 = s1,2 >

1
2 . Lastly, if s2,2 < 1

2 , a symmetric argument applies, so
UTIL indeed satisfies score-representation if n = m = 2.
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Next, an analogous argument to that for MAX shows that UTIL satisfies single-minded proportion-
ality when n = 2.

Finally, we prove that UTIL fails score-representation when m ≥ 3 and n ≥ 2, and single-minded
proportionality when n ≥ 3. For the latter, it suffices to consider the instance I1 shown for MAX. In
this instance, UTIL will assign probability 1 to c2, which violates single-minded proportionality as c1
deserves probability 1

n . It remains to show that UTIL fails score-representation when n = 2 and m ≥ 3.
To this end, consider the following instance I2, where UTIL chooses the vector (13 ,

1
3 ,

1
3). This vector

fails score-representation since the axiom requires x1 to be at least 1
2 . As usual, the counterexample can

be extended to larger m by adding candidates that receive probability 0 from all agents.

I2 si,1 si,2 si,3

1 1 0 0

2 1
3

1
3

1
3

Claim 4: We note that if n = 2, then MED and EGAL coincide with AVG, so they satisfy score-
representation in this case due to Claim 1. By contrast, if n ≥ 3, we consider the instance I1 used
to show that MAX fails single-minded proportionality. For this instance, MED returns the outcome
x = (0, 1) while EGAL returns the outcome x = (12 ,

1
2). Both of these outcomes fail single-minded

proportionality.

Claim 5: We first prove that MIN and GEO satisfy single-minded proportionality when n = m = 2.
There are two cases to consider. If both agents give a score of 1 to the same candidate, it will be assigned
a score of 1 by both rules. On the other hand, if both agents give a score of 1 to different candidates,
then both rules return x = (12 ,

1
2), which also satisfies single-minded proportionality.

To see that MIN and GEO fail single-minded proportionality for the case where n ≥ 3 or m ≥ 3, we
again consider the instance I1 used to show that MAX fails single-minded proportionality (recall that
all candidates cj with j ≥ 3 receive probability 0 from all agents). In this instance, both rules assign
probability 1

m to all candidates, which fails single-minded proportionality unless m = n = 2. Finally, to
see that these rules also fail score-representation for the case n = m = 2, consider the instance I with
s1 = (1, 0) and s2 = (12 ,

1
2). Then, score-representation mandates that x2 ≥ 1

4 , but both rules return
x = (1, 0).

Remark 4.2. In the instance used for showing that MIN and GEO fail single-minded proportionality,
it holds that mini∈N si,j = 0 for all j ∈ [m]. This is unavoidable due the definition of single-minded
proportionality. Because mini∈N si,j = 0 for all j ∈ [m], both rules assign a probability of 1

m to every
candidate as we defined that 0

0 = 1
m . However, note that single-minded proportionality will be violated

regardless of how we define 0
0 , so it is still true that our negative results do not depend on this particular

assumption.

5 Consistency Properties

In this section, we analyze our aggregation rules with respect to various consistency notions. In partic-
ular, we will show that score-monotonicity and reinforcement are satisfied by almost all of our rules,
whereas AVG is the only one that fulfills independence. We note that Freeman et al. [2021] have already
shown that IM and UTIL satisfy reinforcement and score-monotonicity.

Theorem 5.1. The following claims hold.

(1) AVG satisfies independence. MED and EGAL satisfy independence when m = 2 or n = 2 but fail
this condition for all m ≥ 3 and n ≥ 3. MAX, MIN, GEO, UTIL, and IM satisfy independence
when m = 2 but fail to do so for all m ≥ 3 and n ≥ 2.
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(2) All five coordinate-wise aggregation rules, UTIL, and IM satisfy score-monotonicity. EGAL is
score-monotone when m = 2 or n = 2 but fails to be so for all m ≥ 4 and n ≥ 4.

(3) AVG, MIN, MAX, and GEO as well as UTIL, EGAL, and IM satisfy reinforcement. MED satisfies
reinforcement when m = 2 but fails to do so for all m ≥ 3.

We remark that while the bounds on m and n are tight for almost all results in our paper, it remains
open whether EGAL satisfies score-monotonicity when m = 3 or n = 3.

Proof. We prove each of the claims separately.

Claim 1: We consider independence and first note that this axiom is trivial when m = 2: if si,j = s′i,j
for some candidate cj and all i ∈ N , then I = I ′, which means that every aggregation rule F satisfies
independence. Moreover, if n = 2, then MED and EGAL coincide per definition with AVG. Hence, all
of our positive claims follow by showing that AVG satisfies independence. We show this next and then
explain why the other rules fail independence for the given values of m and n.

AVG: Consider two instances I and I ′ and a candidate cj∗ such that si,j∗ = s′i,j∗ for all i ∈ N . This
clearly means that 1

n

∑
i∈N si,j∗ = 1

n

∑
i∈N s′i,j∗ . Moreover, it holds that

∑
j∈[m]

(
1
n

∑
i∈N si,j

)
=

1
n

∑
i∈N

∑
j∈[m] si,j = 1 and

∑
j∈[m]

(
1
n

∑
i∈N s′i,j

)
= 1

n

∑
i∈N

∑
j∈[m] s

′
i,j = 1. This implies that

AVG returns the same outcome for cj in I and I ′.

MAX, MIN, GEO, and IM: To show that all of these rules fail independence, we observe that they
satisfy score-unanimity in the special case where there are constants γj for j ∈ [m] such that si,j = γj
for all j ∈ [m] and i ∈ N . However, since MAX, MIN, GEO, and IM fail score-unanimity in general
when m ≥ 3 and n ≥ 2 (see Theorem 3.1), this immediately means that independence is violated for
these cases.

UTIL: First, if m ≥ 3 and n ≥ 3 is odd, consider the following instances I and I ′: in I, n−1
2 agents

assign probability 1 to c1, n−1
2 agents assign probability 1 to c2, and 1 agent assigns probability 1 to c3.

In I ′, the same agents assign probability 1 to c1 as in I, but all remaining agents assign probability 1 to
c2. If n = 3, then x = (13 ,

1
3 ,

1
3), while if n ≥ 5, then x = (12 ,

1
2 , 0). On the other hand, x′ = (0, 1, 0),

thus showing that independence fails for c1.
Next, if m ≥ 3 and n ≥ 4 is even, we consider the instance I, where n

2 agents assign probability 1
to c1, n

2 − 1 agents assign probability 1 to c2, and 1 agent assigns probability 1 to c3, and I ′, where the
same n

2 as in I assign probability 1 to c1 and the other n
2 agents assign probability 1 to c2. UTIL put

probability 1 on c1 in I, but probability 1
2 on both c1 and c2 in I ′, so independence is violated for c1.

Finally, if n = 2 and m ≥ 3, we consider the instance I, where agent 1 puts probability 1 on c1
and agent 2 put probability 1 on c2, and I ′, where agent 1 still puts probability 1 on c1 but agent 2 puts
probability 1

2 on both c2 and c3. UTIL assigns a probability of 1
2 to both c1 and c2 in I, and a probability

of 1
3 to each of c1, c2, and c3 in I ′ due to the maximum entropy tie-breaking. Hence, we have again that

independence is violated for c1.

EGAL: To show that EGAL fails independence for all m ≥ 3 and n ≥ 3, we consider the instances
I and I ′ defined as follows: in I, agent 1 assigns probability 1 to c1, agent 2 assigns probability 1 to
c2, and every other agent assigns probability 1 to c3. Furthermore, in I ′, agent 1 assigns probability 1 to
c1 and every other agent assigns probability 1 to c2. It is easy to check that EGAL chooses the outcome
x = (13 ,

1
3 ,

1
3) for I and the outcome x′ = (12 ,

1
2 , 0) for I ′, thus showing that independence is violated

for c1. As usual, we can extend the instances to larger m by adding candidates that are unanimously
assigned probability 0.
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MED: Finally, we turn to MED and consider the following instances I1 and I2, where s1i,j = s2i,j = 0

for all j ≥ 4 and i ∈ N . It holds that medi∈Ns1i,1 =
1
2 , medi∈Ns1i,2 =

1
2 if n is odd and medi∈Ns1i,2 =

1
4

if n is even, and medi∈Ns1i,3 = 1
2 . This means that MED assigns a probability of less than 1

2 to c1 in I.
By contrast, in I2, the medians are medi∈Ns2i,1 = 1

2 , medi∈Ns2i,2 = 0, and medi∈Ns2i,3 = 1
2 . Hence,

MED assigns a probability of 1
2 to c1 in this instance, and independence is violated.

I1 si,1 si,2 si,3

1 1
2

1
2 0

i ∈ {2, . . . , ⌈n+1
2 ⌉} 1

2 0 1
2

i ∈ {⌈n+1
2 ⌉+ 1, . . . , n} 0 1

2
1
2

I2 si,1 si,2 si,3

1 1
2 0 1

2

i ∈ {2, . . . , ⌈n+1
2 ⌉} 1

2 0 1
2

i ∈ {⌈n+1
2 ⌉+ 1, . . . , n} 0 1

2
1
2

Claim 2: We first note that Theorem 3 of Freeman et al. [2021] shows that IM and UTIL are score-
monotone. We next deal with the coordinate-wise aggregation rules and EGAL separately.

Coordinate-wise aggregation rules: To show that our five coordinate-wise aggregation rules satisfy
score-monotonicity, we first prove a more general auxiliary claim: a coordinate-wise aggregation rule
F is score-monotone if all coordinate-aggregation functions fj satisfy that fj(s1,j , . . . , si,j , . . . , sn,j) ≥
fj(s1,j , . . . , s

′
i,j , . . . , sn,j) for all candidates cj ∈ C and scores s1,j , . . . , sn,j , s′i,j such that si,j ≥ s′i,j .

To see this, consider two instances I and I ′, an agent i ∈ N , and a candidate cj such that si′ = s′i′ for
all i′ ∈ N \ {i}, si,j > s′i,j , and si,j′ ≤ s′i,j′ for all cj′ ∈ C \ {cj}. For ease of presentation, we will
slightly abuse notation and write fℓ(I) to mean fℓ(s1,ℓ, . . . , sn,ℓ).

We first consider the case that fj′(I) = 0 for all j′ ∈ [m] or that fj′(I ′) = 0 for all j′ ∈ [m]. If
fj′(I) = fj′(I ′) = 0 for all j′ ∈ [m], then F (I)j = F (I ′)j =

1
m by definition and score-monotonicity

holds. Next, if fj′(I) = 0 for all j′ ∈ [m] but there is some ℓ with fℓ(I ′) > 0, then ℓ ̸= j because
si,j > s′i,j implies that fj(I) ≥ fj(I ′). Hence, we have in this case that F (I)j = 1

m > 0 = F (I ′)j and
score-monotonicity holds. As the third case, assume that fj′(I ′) = 0 for all j′ ∈ [m] but there is some
ℓ with fℓ(I) > 0. Since fj′(I) ≤ fj′(I ′) for all j′ ∈ [m] \ {j}, it must be that ℓ = j. This implies that
F (I)j = 1 > 1

m = F (I ′)j and score-monotonicity holds again. As the last case, suppose that neither
fj′(I) = 0 for all j′ ∈ [m] nor fj′(I ′) = 0 for all j′ ∈ [m]. Our assumptions imply that fj(I) ≥ fj(I ′)
and fj′(I) ≤ fj′(I ′) for all j′ ∈ [m] \ {j}. It follows that

F (I)j =
fj(I)∑

j′∈[m] fj′(I)
≥ fj(I ′)

fj(I ′) +
∑

j′∈[m]\{j} fj′(I)
≥ fj(I ′)∑

j′∈[m] fj′(I ′)
= F (I ′)j .

This shows that our condition indeed implies score-monotonicity. Finally, for each of AVG, MAX,
MIN, GEO, and MED, it is easy to verify that fj(s1,j , . . . , si,j , . . . , sn,j) ≥ fj(s1,j , . . . , s

′
i,j , . . . , sn,j)

for all j ∈ [m] and si,j , s′i,j with si,j ≥ s′i,j , so these rules are indeed score-monotone.

EGAL: When n = 2, EGAL is equivalent to AVG (by Proposition 2.3), for which we have just
shown that it satisfies score-monotonicity. Thus, we only consider the case m = 2 and assume that
n ≥ 3. Let I and I ′ denote instances such that I ′ is identical to I except that si,1 < s′i,1 and si,2 > s′i,2
for some agent i ∈ N . Moreover, suppose that x and x′ are the outcome vectors returned by EGAL for
instances I and I ′, respectively. Without loss of generality, we assume that the agents in I are ordered
such that s1,1 ≤ · · · ≤ sn,1 and s1,2 ≥ · · · ≥ sn,2. Then, EGAL will return x =

(
s1,1+sn,1

2 ,
sn,2+s1,2

2

)
.

For the instance I ′, we have mini∈N s′i,1 ≥ s1,1 and maxi∈N s′i,1 ≥ sn,1. So x1 =
s1,1+sn,1

2 ≤
mini∈N s′i,1+maxi∈N s′i,1

2 = x′1, which means that score-monotonicity is satisfied.
Next, we prove that when m ≥ 4 and n ≥ 4, EGAL fails score-monotonicity. As usual, we will

show our counterexample only for m = 4 candidates as it is straightforward to add dummy candidates.
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Moreover, we focus on the case n = 4 as EGAL is invariant under duplicating agents. Now, consider
the following two instances I3 and I4 with their respective EGAL outcomes x3 and x4. In I3, all agents
get disutility 1 under x3. Thus, to show that EGAL indeed returns x3, it suffices to show that any other
outcome would increase the disutility of at least one agent. If the share of the first candidate decreases,
agent 1 would be worse off. Similarly, if x34 decreases, agent 3 or 4 would be worse off, so x3 is returned
in I3. Turning to I4, note that di(x4) = 4/5 for all agents i. For any distribution x with d1(x) ≤ 4/5,
we have x1 + x4 ≥ 3/5. Analogously, we get x2 + x4 ≥ 3/5 and x3 + x4 ≥ 3/5 from agents 3 and 4,
respectively. Summing up these three inequalities and using the fact that x is a distribution shows that
x4 ≥ 2/5. If x4 > 2/5 then d2(x) > 4/5, so in order to have d2(x) ≤ 4/5, we must have x4 = 2/5.
By the first three inequalities, the remaining probability of 3/5 needs to be distributed uniformly over
the first three candidates, leading to x = x4. Hence, x4 is indeed returned in I4.

We see that x34 =
1
2 > 2

5 = x44 despite the fact that s31,4 < s41,4. It follows that score-monotonicity is
violated.

I3 si,1 si,2 si,3 si,4

1 1 0 0 0

2 1
2

1
4

1
4 0

3 0 1
2 0 1

2

4 0 0 1
2

1
2

x3 1
2 0 0 1

2

I4 si,1 si,2 si,3 si,4

1 1
2 0 0 1

2

2 1
2

1
4

1
4 0

3 0 1
2 0 1

2

4 0 0 1
2

1
2

x4 1
5

1
5

1
5

2
5

Claim 3: We next show that among all the rules considered in this paper, only MED fails rein-
forcement. For this, we first note that Freeman et al. [2021, Thms. 9 and 13] have shown that IM
and UTIL satisfy reinforcement. We hence focus on the remaining rules and consider three instances
I = (s1, . . . , sn) (defined for the electorate N ), I ′ = (s′1, . . . , s

′
n′) (defined for the electorate N ′), and

I ′′ = (s1, . . . , sn, s
′
1, . . . , s

′
n′) (defined for the electorate N ∪ N ′; we suppose that N ∩ N ′ = ∅). We

consider each rule separately.

AVG: Suppose that x, x′, and x′′ are the outcomes chosen by AVG for I, I ′, and I ′′, respectively.
We observe that

∑
j∈[m]

(
1

|N |
∑

i∈N si,j

)
=
∑

j∈[m]

(
1

|N ′|
∑

i∈N ′ s′i,j

)
= 1. Hence, if xj = x′j for

some j ∈ [m], then 1
|N |
∑

i∈N si,j =
1

|N ′|
∑

i∈N ′ s′i,j . Consequently,

x′′j =
1

|N ∪N ′|
∑

i∈N∪N ′

s′′i,j =
|N |

|N ∪N ′|
· 1

|N |
∑
i∈N

si,j +
|N ′|

|N ∪N ′|
· 1

|N ′|
∑
i∈N ′

s′i,j = xj ,

which shows that reinforcement is satisfied.

MAX: Let x, x′, and x′′ denote the outcomes chosen by MAX for the respective instances and
assume that x = x′. This means that there is a constant α > 0 such that maxi∈N si,j = α ·maxi∈N ′ s′i,j
for all j ∈ [m]. Moreover, we assume that α ≥ 1; otherwise we can exchange the roles of x and x′.
Consequently, maxi∈N∪N ′ s′′i,j = maxi∈N si,j for all j ∈ [m], which shows that x′′ = x.

MIN: Denote by x, x′, and x′′ the outcomes chosen by MIN for the respective instances and assume
that x = x′. First, if mini∈N si,j = 0 for all j ∈ [m] or mini∈N ′ s′i,j = 0 for all j ∈ [m], then
mini∈N∪N ′ s′′i,j = 0 for all j ∈ [m] and x′′j = 1

m = xj = x′j for all j ∈ [m]. Next, assume that
mini∈N si,j > 0 and mini∈N ′ s′i,j′ > 0 for some j, j′ ∈ [m]. Then, x = x′ implies that there is a constant
α > 0 such that mini∈N si,j = α ·mini∈N ′ s′i,j for all j ∈ [m]. We assume without loss of generality
that α ≤ 1 as we can otherwise exchange the roles of x and x′ in our argument. This assumption means
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that mini∈N si,j ≤ mini∈N ′ s′i,j for all j ∈ [m] and hence mini∈N∪N ′ s′′i,j = mini∈N si,j for all j ∈ [m].
This proves that x′′ = x and MIN therefore satisfies reinforcement.

GEO: Define x, x′, and x′′ as the outcomes selected by GEO for the respective instances and assume
that x = x′. If mini∈N si,j = 0 for all j ∈ [m] or mini∈N ′ s′i,j = 0 for all j ∈ [m], the same holds for I ′′

and we derive that x′′j = 1
m = xj = x′j for all j ∈ [m]. Hence, suppose that there are indices j, j′ ∈ [m]

such that mini∈N si,j > 0 and mini∈N s′i,j′ > 0. Next, we define Z(I) =
∑

j∈[m](
∏

i∈N si,j)
1/|N | and

Z(I ′) =
∑

j∈[m](
∏

i∈N ′ s′i,j)
1/|N ′|. For each j ∈ [m], we have that( ∏

i∈N∪N ′

s′′i,j

) 1
|N|+|N′|

=

(∏
i∈N

si,j ·
∏
i∈N ′

s′i,j

) 1
|N|+|N′|

=
(
(xj · Z(I))|N | · (x′j · Z(I ′))|N

′|
) 1

|N|+|N′|

= xj ·
(
Z(I)|N | · Z(I ′)|N

′|
) 1

|N|+|N′|
.

Since this holds for all j ∈ [m], GEO satisfies reinforcement because

x′′j =
xj ·

(
Z(I)|N | · Z(I ′)|N

′|
) 1

|N|+|N′|

∑
j′∈[m]

(
xj′ ·

(
Z(I)|N | · Z(I ′)|N ′|

) 1
|N|+|N′|

) = xj .

EGAL: Let x, x′, and x′′ denote the outcomes chosen by EGAL for I, I ′, and I ′′, respectively.
Assume for contradiction that x = x′ but x′′ ̸= x. For a set of agents T , we define vT (y) as the vector
that states the disutilities of all agents i ∈ X for the outcome y in non-increasing order. Moreover, we
write v >lex v′ if there is an integer k such that vℓ = v′ℓ for all ℓ ∈ [k − 1] and vk > v′k. Since x = x′

is chosen for I and I ′, we get that vN (x) <lex vN (x′′) or vN (x) = vN (x′′), and vN ′(x) <lex vN ′(x′′)
or vN ′(x) = vN ′(x′′). On the other hand, vN∪N ′(x) >lex vN∪N ′(x′′) or vN∪N ′(x) = vN∪N ′(x′′) as
x′′ is chosen for I ′′. It is easy to see that these conditions can only be true if vN (x) = vN (x′′) and
vN∪N ′(x) = vN∪N ′(x′′). However, consistent tie-breaking requires that if EGAL returns x for I, then
x′′ is not chosen for I ′′, which contradicts our assumptions.

MED: Finally, we show that MED satisfies reinforcement if m = 2 but fails this property when
m ≥ 3. First, assume that m = 2 and let x, x′, and x′′ denote the outcomes chosen for our instances
I, I ′, and I ′′. As usual, we assume that x = x′. Note that medi∈Nsi,1 = 1 − medi∈Nsi,2 and
medi∈N ′s′i,1 = 1 − medi∈N ′s′i,2 as m = 2, which implies that medi∈Nsi,1 = x1 = x′1 = medi∈N ′s′i,1.
We hence need to show that medi∈N∪N ′s′′i,1 = medi∈Nsi,1. To this end, we make a case distinction with

respect to the parity of |N | and |N |′. First, if both |N | and |N ′| are odd, there are at least |N |+1
2 agents

i ∈ N with si,1 ≤ x1 and at least |N |+1
2 agents i ∈ N with si,1 ≥ x1. Similarly, there are at least |N ′|+1

2

agents i ∈ N ′ with s′i′,1 ≤ x′1 = x1 and at least |N ′|+1
2 agents i ∈ N ′ with s′i′,1 ≥ x′1 = x1. Thus, there

are at least |N |+|N ′|
2 + 1 agents i ∈ N ∪N ′ with s′′i,1 ≤ x1 and at least |N |+|N ′|

2 + 1 agents i ∈ N ∪N ′

with s′′i,1 ≥ x1. This shows that medi∈N∪N ′s′′i,1 = x1 and proves our claim. For the remaining cases,
similar arguments show that the median does not change. In total, this means that medi∈N∪N ′s′′i,1 = x1
(which also implies that medi∈N∪N ′s′′i,2 = x2), so MED satisfies reinforcement if m = 2.

Now, for the case m ≥ 3, consider the following instances I5 (defined for an odd number of agents
n ≥ 5) and I6 (defined for a single agent n+ 1). All candidates but c1, c2, and c3 receive probability 0
from all agents and can be ignored. It holds that medi∈Ns5i,1 = 1

2 , medi∈Ns5i,2 = 1
3 , and medi∈Ns5i,3 =

1
2 , so MED returns the outcome x = (38 ,

2
8 ,

3
8) for I5. On the other hand, I6 consists of a single
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agent with preference (38 ,
2
8 ,

3
8), so MED returns again this vector. However, when combining these two

instances, our new medians are medi∈N∪{n+1}si,1 = 1
2(

1
2 + 3

8) = 7
16 , medi∈N∪{n+1}si,2 = 1

3 , and
medi∈N∪{n+1}si,3 = 1

2(
1
2 + 3

8) =
7
16 . This means that for the new outcome x′, we have x′1 = 21

58 < 3
8

and reinforcement is violated.

I5 si,1 si,2 si,3

i ∈ {1, . . . , n−1
2 } 2

3
1
3 0

i ∈ {n+1
2 , . . . , n− 1} 0 1

3
2
3

n 1
2 0 1

2

I6 si,1 si,2 si,3

n+ 1 3
8

2
8

3
8

This completes the proof.

Remark 5.2. We do not specify the boundary on n for which MED satisfies reinforcement. The reason
for this is that reinforcement is a variable electorate property that is usually studied under the assumption
that there is an infinite set of possible agents. The same reasoning will apply for participation in the next
section.

6 Incentive Properties

As the last evaluation criteria for our rules, we study their incentive properties. To this end, we first note
that Freeman et al. [2021] have shown that both IM and UTIL satisfy strategyproofness and participation.
By contrast, we will show that none of our other rules is strategyproof, whereas all except for MED

satisfy participation.

Theorem 6.1. The following claims hold.

(1) IM and UTIL satisfy strategyproofness and participation.

(2) AVG, MAX, MIN, GEO, and EGAL fail strategyproofness for all n ≥ 2 and m ≥ 2 but satisfy
participation.

(3) MED satisfies strategyproofness when m = 2 and n is odd, but fails this property when m = 2
and n is even, or when m ≥ 3. Moreover, MED satisfies participation if m = 2 but fails it for all
m ≥ 3.

Proof. Claim 1 directly follows from the work of Freeman et al. [2021, Thms. 2, 8, and 12], so we only
prove Claims 2 and 3 here.

Claim 2: We first consider participation and then show that all considered rules fail strategyproof-
ness by giving a common counterexample.

Participation: To show this for AVG, MIN, MAX, and GEO, we first proof an auxiliary claim (the
proof for EGAL will be independent of this claim). Consider two instances I and I ′ such that I ′ is
derived from I by adding an agent i with preference si. Moreover, let x and x′ denote the respective
outcomes chosen by an aggregation rule F , and define X+ = {j ∈ [m] : x′j > xj} and X− = {j ∈
[m] : x′j < xj}. We claim that, if si,j ≥ x′j for all j ∈ X+ or si,j ≤ x′j for all j ∈ X−, then F satisfies
participation on I and I ′. We will prove this claim only for the case that si,j ≥ x′j for all j ∈ X+, as
the case that si,j ≤ x′j for all j ∈ X− is symmetric. Now, if si,j ≥ x′j for all j ∈ X+, then it holds for
these candidates that

|si,j − x′j | − |si,j − xj | = (si,j − x′j)− (si,j − xj) = xj − x′j .
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On the other hand, we observe that∑
j∈[m]\X+

(|si,j − x′j | − |si,j − xj |) ≤
∑

j∈[m]\X+

|xj − x′j | =
∑

j∈[m]\X+

(xj − x′j) =
∑
j∈X+

(x′j − xj).

The first inequality follows from the triangle inequality, the first equality uses the definition of X+, and
the second equality uses that

∑
j∈[m] xj =

∑
j∈[m] x

′
j = 1. Based on these observations, we conclude

that F satisfies participation for I and I ′ since

di(x
′)− di(x) =

∑
j∈[m]

|si,j − x′j | −
∑
j∈[m]

|si,j − xj |

=
∑
j∈X+

(|si,j − x′j | − |si,j − xj |) +
∑

j∈[m]\X+

(|si,j − x′j | − |si,j − xj |)

≤
∑
j∈X+

(xj − x′j) +
∑
j∈X+

(x′j − xj)

= 0.

To show that our rules satisfy participation, it therefore suffices to prove that they satisfy si,j ≥ x′j
for all j ∈ X+ or si,j ≤ x′j for all j ∈ X−. For this, we consider each rule individually.

AVG: For AVG, it is straightforward to reason that si,j ≥ x′j for all j ∈ X+. Indeed, otherwise we
have that x′j > si,j and x′j > xj , which implies that

x′j =
1

n+ 1

∑
i′∈N∪{i}

si′,j =
1

n+ 1
(si,j + nxj) ≤ max(si,j , xj) < x′j .

Since this is a contradiction, we infer that AVG satisfies participation.

MAX: For MAX, it holds that si,j ≥ x′j for all j ∈ X+. To see this, note that si,j > maxi′∈N si′,j
for all j ∈ X+, because otherwise maxi′∈N∪{i} si′,j = maxi′∈N si′,j and hence

x′j =
maxi′∈N∪{i} si′,j∑

j′∈[m]maxi′∈N∪{i} si′,j′
≤

maxi′∈N si′,j∑
j′∈[m]maxi′∈N si′,j′

= xj .

Moreover, since
∑

j′∈[m]maxi′∈N∪{i} si′,j′ ≥ 1 and therefore si,j ≥ si,j∑
j′∈[m] maxi′∈N∪{i} si′,j′

, we con-

clude that si,j ≥ x′j for all j ∈ X+. This proves that MAX satisfies participation.

MIN: For MIN, we first consider the case that mini′∈N si′,j = 0 for all j ∈ [m] or mini′∈N∪{i} si′,j =
0 for all j ∈ [m]. If mini′∈N si′,j = 0 for all j ∈ [m], then the same holds for I ′ and x = x′ =
( 1
m , . . . , 1

m), so participation is satisfied in this case. Next, if mini′∈N si′,j ̸= 0 for some j ∈ [m] but
mini′∈N∪{i} si′,j = 0, then xj > 0 implies si,j = 0, and si,j > 0 implies that xj = 0. Consequently,
di(x) =

∑
j∈[m] |si,j − xj | =

∑
j∈[m](si,j + xj) = 2, which is the largest possible distance between

two score vectors. Hence, di(x′) ≤ di(x) and participation holds again.
Now, if there is a candidate cj such that mini′∈N∪{i} si′,j > 0, we claim that si,j ≤ x′j for all

j ∈ X−. To see this, note that if j ∈ X−, then si,j < mini′∈N si′,j . Indeed, otherwise it holds that
mini′∈N∪{i} si′,j = mini′∈N si′,j and hence

x′j =
mini′∈N∪{i} si′,j∑

j′∈[m]mini′∈N∪{i} si′,j′
≥

mini′∈N si′,j∑
j′∈[m]mini′∈N si′,j′

= xj ,
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contradicting the definition of X−. Since
∑

j′∈[m]mini′∈N∪{i} si′,j′ ≤ 1, we thus derive that si,j ≤
si,j∑

j′∈[m] mini′∈N∪{i} si′,j′
= x′j for all j ∈ X−, which shows that MIN satisfies participation.

GEO: We first note that an analogous analysis as for MIN shows that GEO satisfies participation if
n
√∏

i′∈N si′,j = 0 for all j ∈ [m] or n+1

√∏
i′∈N∪{i} si′,j = 0 for all j ∈ [m]. We hence assume that

there is a candidate cj∗ such that n+1

√∏
i′∈N∪{i} si′,j∗ > 0. Now, let Z(I) =

∑
j∈[m]

n
√∏

i′∈N si′,j

and Z(I ′) =
∑

j∈[m]
n+1

√∏
i′∈N∪{i} si′,j . By the definition of xj , we have for each j ∈ [m] that

∏
i′∈N

si′,j = (xj · Z(I))n.

Consequently, it holds for all j ∈ [m] that

x′j =
(si,j)

1/(n+1) · (xj · Z(I))n/(n+1)

Z(I ′)
= (si,j)

1/(n+1) · (xj)n/(n+1) · Z(I)n/(n+1)

Z(I ′)
.

Next, we use a case distinction with respect to whether Z(I)n/(n+1) ≥ Z(I ′) or Z(I)n/(n+1) ≤
Z(I ′) and start with the case that Z(I)n/(n+1) ≥ Z(I ′). In this case, it holds that si,j ≤ x′j for all
j ∈ X−, as otherwise

x′j ≥ (si,j)
1/(n+1) · (xj)n/(n+1) > (x′j)

1/(n+1) · (x′j)n/(n+1) = x′j ,

a contradiction. On the other hand, if Z(I)n/(n+1) ≤ Z(I ′), we infer for all j ∈ X+ that si,j ≥ x′j , as
otherwise

x′j ≤ (si,j)
1/(n+1) · (xj)n/(n+1) < (x′j)

1/(n+1) · (x′j)n/(n+1) = x′j .

We can thus conclude that GEO satisfies participation based on our auxiliary claim.

EGAL: For EGAL, we will use a direct argument instead of our auxiliary claim to show that it
satisfies participation. Consider two instances I and I ′ such that I ′ is derived from I by adding an
agent i with preference si, and let x and x′ denote the outcome of EGAL for these instances. Assume
for contradiction that di(x) < di(x

′). For a set of agents T , let vT (y) be a vector that contains the
disutilities of all agents i′ ∈ T for a given score vector y in non-increasing order. Moreover, we write
v >lex v′ if there is an integer k such that vℓ = v′ℓ for all ℓ ∈ [k − 1] and vk > v′k. Now, since EGAL

chooses x for I, it either holds that vN (x) = vN (x′) or vN (x′) >lex vN (x). In both cases, it is simple to
derive that vN∪{i}(x

′) >lex vN∪{i}(x) since di(x) < di(x
′). However, this contradicts the assumption

that EGAL chooses x′ for I ′. Hence, our assumption that di(x) < di(x
′) must have been wrong, which

means that EGAL satisfies participation.

Strategyproofness: To prove the claim on strategyproofness, we consider the following instances I
and I ′. All candidates cj with j ≥ 3 receive probability 0 from all agents and are ignored for the rest of
the proof.

I si,1 si,2

1 4
5

1
5

i ∈ {2, . . . , n} 1
5

4
5

I ′ si,1 si,2

1 1 0

i ∈ {2, . . . , n} 1
5

4
5
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AVG chooses for these instances the outcomes x = (15 + 3
5n ,

4
5 − 3

5n) and x′ = (15 + 4
5n ,

4
5 − 4

5n),
MAX chooses x = (12 ,

1
2) and x′ = (59 ,

4
9), MIN chooses x = (12 ,

1
2) and x′ = (1, 0), GEO chooses

x = (
n√16

4+ n√16
, 4
4+ n√16

) and x′ = (1, 0), and EGAL chooses x = (12 ,
1
2) and x′ = (35 ,

2
5). In each case, it

can be checked that agent 1 benefits by deviating from I to I ′, so strategyproofness is violated.

Claim 3: Finally, we turn to MED and again consider participation and strategyproofness separately.

Participation: First, we show that MED satisfies participation when m = 2. Consider two instances
I and I ′ such that I ′ is derived from I by adding an agent i with preference si. Moreover, let x and
x′ denote the vectors returned by MED for these instances, respectively. Without loss of generality,
assume that x′1 > x1. We show that this is only possible if si,1 ≥ x′1. Hence, assume for contradiction
that si,1 < x′1. Since x′1 > x1 and there are at least ⌈n2 ⌉ agents i′ ∈ N with x1 ≥ si′,1, there are
at least ⌈n2 ⌉ + 1 agents i′ in I ′ with x′1 > si′,1. This means that medi′∈N∪{i}si′,1 < x′1. However,
since we have only two candidates, it holds that medi′∈N∪{i}si′,1 + medi′∈N∪{i}si′,2 = 1, so it must be
that x′1 = medi′∈N∪{i}si′,1. This is the desired contradiction and we thus conclude that MED satisfies
participation when m = 2.

Next, to see that MED fails participation when m ≥ 3, we consider the instances I5 and I6 in the
proof of Theorem 5.1 that were used to show that MED fails reinforcement. In this example, I6 consists
of a single agent whose ideal distribution coincides with the outcome of MED for I5. However, in the
combined instance, the outcome changes, which means that participation is violated for this agent.

Strategyproofness: Next, we focus on strategyproofness. First, we will show that, if m = 2 and n is
odd, MED is strategyproof. To this end, we note that MED simply returns the distribution of the agent
who assigns the (n+1

2 )-th highest score to c1. Since di′(x) = |si′,1−x1|+ |si′,2−x2| = 2|si′,1−x1| for
all agents i′, the strategyproofness follows directly from the well-known result by Moulin [1980]. On the
other hand, if m = 2 and n is even, MED returns the average between the outcome of two agents, which
allows agents to benefit by exaggerating their report. For instance, if one agent reports (23 ,

1
3),

n
2 − 1

agents report (1, 0), and n
2 agents report (0, 1), MED chooses the outcome (13 ,

2
3). However, if the first

agent reports (1, 0), MED returns (12 ,
1
2), which constitutes a beneficial manipulation for this agent. This

example can be generalized to m ≥ 3 by adding candidates that receive a score of 0 from every agent, so
we next focus on the case of m ≥ 3 and odd n ≥ 3. In this case, consider the instance I below. One can
check that MED chooses x = (13 ,

1
3 ,

1
3). This means for agent n that dn(x) = (25−

1
3)+(35−

1
3)+

1
3 = 2

3 .
Next, suppose that agent n reports the distribution ( 8

15 ,
7
15 , 0). It can be verified that MED now picks

the distribution (25 ,
3
10 ,

3
10), which means that dn(x′) = 3

5 < 2
3 . Hence, MED is indeed manipulable if

m ≥ 3 and n ≥ 3 is odd.

I si,1 si,2 si,3

i ∈ {1, . . . , n−1
2 } 0 2

5
3
5

i ∈ {n+1
2 , . . . , n− 1} 3

5 0 2
5

n 2
5

3
5 0

I ′ si,1 si,2 si,3

i ∈ {1, . . . , n−1
2 } 0 2

5
3
5

i ∈ {n+1
2 , . . . , n− 1} 3

5 0 2
5

n 8
15

7
15 0

This completes the proof.

7 Characterizations of the Average Rule

Thus far, we have conducted an extensive analysis of specific natural rules with respect to a number of
desirable axioms. In this section, we complement those findings by presenting two characterizations of
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the AVG rule. These results highlight the strong appeal of AVG by showing that it is the only rule within
large classes of rules that, for example, satisfies score-unanimity and independence.

To state these results, we will introduce two more axioms. Firstly, we say an aggregation function F
is anonymous if the identities of the agents do not matter, i.e., if F (I) = F (π(I)) for all instances I
and permutations π : N → N , where I ′ = π(I) is the instance defined by s′π(i) = si for all i ∈ N .
Secondly, an aggregation function F is continuous if it is a continuous function, i.e., F (limt→∞ It) =
limt→∞ F (It) for every sequence of instances I1, I2, . . . such that limt→∞ It exists. We remark that
both of these conditions are very weak: all of the rules considered in this paper are anonymous, and all
except MIN and GEO are continuous.7

Theorem 7.1. The following claims hold.

(1) AVG is the only aggregation rule that satisfies anonymity, score-unanimity, and independence if
m ≥ 3.

(2) AVG is the only coordinate-wise aggregation rule that satisfies anonymity, continuity, and score-
unanimity if m ≥ 4.

Proof. It is easy to verify that AVG satisfies all stated axioms, so we focus on showing that the given
sets of axioms indeed characterize AVG. We will establish the two claims separately.

Claim 1: Let F be an aggregation rule that satisfies anonymity, score-unanimity, and independence.
In particular, this means that F (I)k = γ whenever si,k = γ for all i ∈ N . If n = 1, this already proves
our claim, so we subsequently assume that n ≥ 2. We establish the result in three steps. Firstly, we
will show that for every γ ∈ (0, 1], there is a constant Cγ such that F (I)j = Cγ for all instances I
on n agents and all candidates cj ∈ C such that a single agent puts probability γ on cj and every other
agent puts probability 0 on this candidate. In the second step, we will prove that Cγ = γ

n . Based on this
insight, we will derive that F corresponds to AVG in the last step.

Step 1: Our first goal is to show that, for every γ ∈ (0, 1], there is a constant Cγ such that F (I)j =
Cγ for all instances I and candidates cj such that si,j = γ for a single agent i ∈ N and si′,j = 0 for all
other agents i′ ∈ N \ {i}. To prove this claim, consider two instances I1 and I2 for which there are two
candidates cj1 and cj2 and two agents i1 and i2 such that (i) s1i1,j1 = γ and s1i′,j1 = 0 for all i′ ∈ N \{i1},
and (ii) s2i2,j2 = γ and s2i′,j2 = 0 for all i′ ∈ N \ {i2}. Our goal is to show that F (I1)j1 = F (I2)j2 .
Since I1 and I2 are arbitrarily chosen, this implies that there is a constant Cγ such that F (I)j = Cγ for
all instances I in which a single agent puts probability γ on a candidate cj .

To prove that F (I1)j1 = F (I2)j2 , let Î2 denote the instance which is derived from I2 by exchanging
the preferences of agents i2 and i1. In particular, this means that ŝ2i1,j2 = γ and ŝ2i′,j2 = 0 for all other
agents i′ ∈ N \ {i1}. Clearly, anonymity requires that F (Î2) = F (I2) as we derive Î2 by renaming
the agents in I2. Now, if j1 = j2, it holds that ŝ2i,j1 = s1i,j1 for all i ∈ N , so independence implies that
F (I1)j1 = F (Î2)j2 in this case. Hence, if j1 = j2, it follows that F (I1)j1 = F (I2)j2 .

Next, assume that j1 ̸= j2. In this case, we let cj3 denote an arbitrary candidate in C \ {cj1 , cj2} and
consider the instances Ĩ1 and Ĩ2.

Ĩ1 si,j1 si,j2 si,j3 si,j for j ∈ [m] \ {j1, j2, j3}

i1 γ 1− γ 0 0

i′ ∈ N \ {i1} 0 1− γ γ 0

7MIN and GEO fail continuity because they return the distribution ( 1
m
, . . . , 1

m
) when mini∈N si,j = 0 for all j ∈ [m].

Apart from this corner case, these rules are also continuous.
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Ĩ2 si,j1 si,j2 si,j3 si,j for j ∈ [m] \ {j1, j2, j3}

i1 1− γ γ 0 0

i′ ∈ N \ {i1} 1− γ 0 γ 0

We infer from score-unanimity that F (Ĩ1)j2 = F (Ĩ2)j1 = 1 − γ and F (Ĩ1)j = F (Ĩ2)j = 0 for
all j ∈ [m] \ {j1, j2, j3}. We therefore have F (Ĩ1)j3 = γ − F (Ĩ1)j1 and F (Ĩ2)j3 = γ − F (Ĩ2)j2 .
Moreover, independence implies that F (I1)j1 = F (Ĩ1)j1 and F (Î2)j2 = F (Ĩ2)j2 because s1i,j1 = s̃1i,j1
and ŝ2i,j2 = s̃2i,j2 for all i ∈ N . Now, independence between Ĩ1 and Ĩ2 implies that F (Ĩ1)j3 = F (Ĩ2)j3 .
This means that F (Ĩ1)j1 = F (Ĩ2)j2 and we hence conclude that F (I1)j1 = F (Î2)j2 = F (I2)j2 .

Step 2: For our second step, we fix a value γ ∈ (0, 1] and let Cγ denote the constant derived in
Step 1. The goal of this step is to show that Cγ = γ

n . To prove this claim, let cj1 , cj2 , and cj3 denote
three distinct candidates. We will inductively show that F (Ik)j1 = k · Cγ for the instances Ik shown
below.

Ik si,j1 si,j2 si,j3 si,j for j ∈ [m] \ {j1, j2, j3}

i ∈ {1, . . . , k} γ 0 1− γ 0

i ∈ {k + 1, . . . , n} 0 γ 1− γ 0

In particular, this means that F (In−1)j1 = (n − 1) · Cγ . Moreover, we infer from Step 1 that
F (In−1)j2 = Cγ and score-unanimity shows that F (In−1)j3 = 1 − γ and F (In−1)j = 0 for all
j ∈ [m] \ {j1, j2, j3}. Hence, we can now compute that Cγ = γ

n because
∑

j∈[m] F (In−1)j = 1.
For the proof that F (Ik)j1 = k · Cγ for all k ∈ {1, . . . , n− 1}, we first note that F (I1)j1 = Cγ by

Step 1. Next, we inductively assume that F (Ik)j1 = k · Cγ for some k ∈ {1, . . . , n − 2} and aim to
show that F (Ik+1)j1 = (k + 1) · Cγ . To this end, we consider the instances Îk and Ĩk shown below.

Îk si,j1 si,j2 si,j3 si,j for j ∈ [m] \ {j1, j2, j3}

i ∈ {1, . . . , k} γ 0 1− γ 0

k + 1 0 γ 1− γ 0

i ∈ {k + 2, . . . , n} 0 0 1 0

Ĩk si,j1 si,j2 si,j3 si,j for j ∈ [m] \ {j1, j2, j3}

i ∈ {1, . . . , k + 1} γ 0 1− γ 0

i ∈ {k + 2, . . . , n} 0 0 1 0

By independence and the induction hypothesis, we have that F (Îk)j1 = F (Ik)j1 = k · Cγ .
Moreover, Step 1 shows that F (Îk)j2 = Cγ and score-unanimity requires that F (Îk)j = 0 for all
j ∈ [m] \ {j1, j2, j3}. So we derive that F (Îk)j3 = 1− (k + 1) · Cγ . Next, we turn to the instance Ĩk.
By score-unanimity, we have that F (Ĩk)j = 0 for all j ∈ [m] \ {j1, j3} and independence implies that
F (Ĩk)j3 = F (Îk)j3 = 1− (k + 1) · Cγ . It thus holds that F (Ĩk)j1 = (k + 1) · Cγ as the probabilities
must sum up to 1. Finally, independence implies that F (Ik+1)j1 = F (Ĩk)j1 = (k + 1) · Cγ , which
completes the induction step.

Step 3: For our last step, we will show that F corresponds to AVG. Consider an arbitrary candidate
cj1 and an instance I. Our goal is to show that F (I)j1 = 1

n

∑
i∈N si,j1 . To prove this claim, we

take a candidate cj2 ̸= cj1 , and consider the following instances Ik for k ∈ {1, . . . , n} defined by
(i) ski,j1 = si,j1 and ski,j2 = 1 − si,j1 for all i ∈ {1, . . . , k}, (ii) ski,j1 = 0 and ski,j2 = 1 for all
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i ∈ {k + 1, . . . , n}, and (iii) ski,j = 0 for all i ∈ N and j ∈ [m] \ {j1, j2}. In particular, it holds by
independence that F (I)j1 = F (In)j1 , so our goal is to show that F (In)j1 = 1

n

∑
i∈N si,j1 .

We will prove by induction on k ∈ {1, . . . , n} that F (Ik)j1 = 1
n

∑k
i=1 si,j1 . For the induction base

k = 1, we observe that F (I1)j1 =
s11,j1
n = 1

n

∑1
i=1 si,j1 due to Step 2 (if s1,j1 > 0) or score-unanimity

(if s1,j1 = 0). Next, we inductively assume that F (Ik)j1 = 1
n

∑k
i=1 si,j1 for some k ∈ {1, . . . , n− 1},

and aim to show the same for k + 1. If sk+1, j1 = 0, this follows due to independence as F (Ik+1)j1 =

F (Ik)j1 = 1
n

∑k+1
i=1 si,j1 . We thus assume that sk+1, j1 > 0 and consider the instance Īk derived from

Ik by setting s̄kk+1, j3
= sk+1, j1 for some arbitrary j3 ∈ [m] \ {j1, j2} and s̄kk+1, j2

= 1 − sk+1, j1 .
By independence, it holds that F (Īk)j1 = F (Ik)j1 = 1

n

∑k
i=1 si,j1 . Furthermore, F (Īk)j3 =

sk+1, j1
n

by Step 2. Since F (Īk)j = 0 for all j ∈ [m] \ {j1, j2, j3} due to score-unanimity, we infer that
F (Īk)j2 = 1− F (Īk)j1 − F (Īk)j3 = 1− 1

n

∑k+1
i=1 si,j1 .

Next, we derive from independence between Īk and Ik+1 that F (Ik+1)j2 = F (Īk)j2 = 1 −
1
n

∑k+1
i=1 si,j1 . Since F (Ik+1)j = 0 for all j ∈ [m] \ {j1, j2} due to score-unanimity, it follows that

F (Ik+1)j1 = 1
n

∑k+1
i=1 si,j1 . This completes the induction step, and it thus follows that F (I)j1 =

F (In)j1 = 1
n

∑
i∈N si,j1 . We finally conclude that F is AVG.

Claim 2: Let F be a coordinate-wise aggregation rule that satisfies anonymity, continuity, and
score-unanimity. Moreover, let fj denote the coordinate-aggregation function of F for the j-th coordi-
nate. In slight abuse of notation, we will frequently write fj(I) to mean fj(s1,j , . . . , sn,j). Since F is
invariant under scaling all functions fj with a constant, we can assume without loss of generality that
f1(0.5, . . . , 0.5) = 0.5.

In the remainder of the proof, we will show that fj(I) = 1
n

∑
i∈N si,j for all instances I and

candidates cj . To this end, we first prove this claim for the case where all agents put the same probability
γ ∈ [0, 1) on a candidate cj . In the second step, we then use our first characterization of AVG to show
that fj(I) = 1

n

∑
i∈N si,j for all instances I and candidates cj with maxi∈N si,j < 1. Finally, we infer

using continuity that F corresponds to AVG in the last step.

Step 1: As the first step, we show that fj(γ, . . . , γ) = γ for all j ∈ [m] and γ ∈ [0, 1). To this
end, we first observe that fj(0, . . . , 0) = 0 for all j ∈ [m] because of score-unanimity. To prove Step 1,
we will first show that fj(0.5, . . . , 0.5) = 0.5 for all j ∈ [m]. Thus, fix some candidate cj ̸= c1 and
consider the instance I1 such that s1i,1 = s1i,j = 0.5 for all i ∈ N and si,j′ = 0 for all i ∈ N and
j′ ∈ [m] \ {1, j}. By score-unanimity, we infer that fj′(I1) = 0 for all j′ ∈ [m] \ {1, j}. Moreover,
score-unanimity requires that F (I1)1 = F (I1)j = 0.5. Since we assume that f1(0.5, . . . , 0.5) = 0.5

and F (I1)1 = f1(I1)∑
j′∈[m] fj′ (I1)

, we infer now that
∑

j′∈[m] fj′(I1) = 1. By combining this with our

previous observations, it follows that fj(I1) = 0.5. This proves that fj(0.5, . . . , 0.5) = 0.5 for all
j ∈ [m].

Next, we show that fj(γ, . . . , γ) = γ for all γ ∈ (0, 0.5) and j ∈ [m]. To this end, we fix three
distinct candidates cj1 , cj2 , and cj3 and consider the instance I2 such that s2i,j1 = γ, s2i,j2 = 0.5, and
s2i,j3 = 0.5 − γ for all i ∈ N . All other candidates receive probability 0 from all agents. By score-
unanimity, fj(I2) = 0 for all j ∈ [m] \ {j1, j2, j3}. Moreover, we infer that F (I2)j2 = 0.5 = fj2(I2)
by score-unanimity and our previous insights, which implies that

∑
j∈[m] fj(I2) = 1. Since score-

unanimity also requires that F (I2)j1 = γ, we conclude now that fj1(γ, . . . , γ) = γ.
Finally, we consider the case that γ ∈ (0.5, 1). Fix two candidates cj1 and cj2 and consider the

instance I3 such that s3i,j1 = γ and s3i,j2 = 1 − γ for all i ∈ N . All other candidates again obtain
probability 0 from all agents. Since 1 − γ < 0.5, we derive from our previous insights and score-
unanimity that F (I3)j2 = 1 − γ = fj2(I3). Hence, it holds that

∑
j∈[m] fj(I3) = 1. Since score-

unanimity implies that fj(I3) = 0 for all j ∈ [m] \ {j1, j2}, we infer that fj1(γ, . . . , γ) = γ. This
completes the proof of Step 1.
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Step 2: Next, we prove that fj(I) = 1
n

∑
i∈N si,j for all instances I and candidates cj with

maxi∈N si,j < 1. Fix an arbitrary instance I∗ and a candidate cj1 that satisfy our requirements. More-
over, we define ε = 1 − maxi∈N s∗i,j1 and note that ε > 0 as maxi∈N s∗i,j1 < 1. If ε = 1, then all
agents assign probability 0 to cj1 in I∗, and score-unanimity immediately implies that fj1(I∗) = 0 =
1
n

∑
i∈N s∗i,j1 .

Hence, we assume that ε < 1 and consider three more candidates cj2 , cj3 , cj4 . Furthermore, we
define another aggregation rule G for the candidates {cj1 , cj2 , cj3} ⊊ C as follows: Given an instance I
on these three candidates, we define the extended instance IE on C by (i) sEi,j = (1 − ε)si,j for all
i ∈ N and j ∈ {j1, j2, j3}, (ii) sEi,j4 = ε for all i ∈ N , and (iii) sEi,j = 0 for all i ∈ N and j ∈
[m] \ {j1, j2, j3, j4}. Then, G(I)j = 1

1−εF (IE)j for all j ∈ {j1, j2, j3}.
Our goal is to show that G corresponds to AVG since this implies that F (IE)j1 = (1− ε)G(I)j1 =

(1− ε) 1n
∑

i∈N si,j1 for all instances I on {cj1 , cj2 , cj3}. Because sEi,j = (1− ε)si,j for j ∈ {j1, j2, j3},
it then follows that F (IE)j1 = 1

n

∑
i∈N sEi,j1 . Furthermore, by Step 1 and score-unanimity, we have that

F (IE)j4 = ε = fj4(IE), which implies that
∑

j∈[m] fj(IE) = 1. In turn, this means that F (IE)j =

fj(IE) for all j ∈ [m], so it follows that fj1(IE) = 1
n

∑
i∈N sEi,j1 for all instances I on {cj1 , cj2 , cj3}.

Finally, since we assumed that 0 < ε = 1 − maxi∈N s∗i,j1 , there exists an instance I on {cj1 , cj2 , cj3}
such that s∗i,j1 = sEi,j1 for all i ∈ N , so we conclude that fj1(I∗) = 1

n

∑
i∈N s∗i,j1 .

It remains to show that G is indeed AVG. To this end, we aim to employ our first characterization
and show that G is a well-defined aggregation rule that satisfies anonymity, score-unanimity, and inde-
pendence. First, it is easy to verify that G is well-defined: it holds that G(I)j ≥ 0 for all instances I and
j ∈ {j1, j2, j3} as the same is true for F (IE). Moreover, score-unanimity implies that F (IE)j4 = ε
and F (IE)j = 0 for all j ∈ [m]\{j1, j2, j3, j4}, so F (IE)j1 +F (IE)j2 +F (IE)j3 = 1−ε. It follows
that G(I)j1 +G(I)j2 +G(I)j3 = 1 for all instances I.

Next, we show that G is anonymous. Consider two instances I and Î such that Î is derived from
I by permuting the agents. Consequently, the instances IE and ÎE can be derived from each other
by permuting the agents, so the anonymity of F implies that F (IE) = F (ÎE). This also means that
G(I) = G(Î), so G is anonymous.

To show that G is score-unanimous, we consider an instance I such that all agents i ∈ N put
the same probability γ on some candidate cj . Hence, all agents put probability (1 − ε)γ on cj in the
extended instance IE . The score-unanimity of F then implies that F (IE)j = (1 − ε)γ, which entails
that G(I)j = 1

1−εF (IE)j = γ. So G satisfies this axiom, too.
For the last point, we show that G satisfies independence. To this end, consider two instances I, Î

on {cj1 , cj2 , cj3} and a candidate cj such that si,j = ŝi,j for all i ∈ N . This means that sEi,j = ŝEi,j for
all i ∈ N , so fj(IE) = fj(ÎE). Moreover, it holds by Step 1 and score-unanimity that F (IE)j4 =
ε = fj4(IE) and F (ÎE)j4 = ε = fj4(ÎE). We hence infer that

∑
j′∈[m] fj′(IE) =

∑
j′∈[m] fj′(ÎE) =

1. This means that F (IE)j = fj(IE) = fj(ÎE) = F (ÎE)j , so G satisfies independence because
G(I)j = 1

1−εF (IE)j =
1

1−εF (ÎE)j = G(Î)j .
Finally, since the rule G satisfies all axioms of Claim 1, we conclude that it is AVG, which completes

the proof of this step.

Step 3: By the insights of Step 2, we get that fj(I) = 1
n

∑
i∈N si,j for all instances I and can-

didates cj such that maxi∈N si,j < 1. This means that F is equal to AVG for all instances I with
maxi∈N, j∈[m] si,j < 1. In order to extend the result to instances where some agents assign probability
1 to some candidate, we use the continuity of F . Specifically, consider an instance I∗ such that s∗i,j = 1
for some agents i ∈ N and candidate cj ∈ C. Moreover, let I denote the instance where every agent
assigns probability 1

m to every candidate. We can now consider the sequence of instances Ik defined by
ski,j = 1

2k
si,j + (1 − 1

2k
)s∗i,j for all i ∈ N , j ∈ [m]. Clearly, this sequence converges to I∗. Moreover,

for every instance Ik and all j ∈ [m], it holds that F (Ik)j = 1
n

∑
i∈N ski,j due to Step 2. Hence, we
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can infer by continuity that F (I∗)j = limk→∞ F (Ik)j = 1
n

∑
i∈N s∗i,j . This shows that F is AVG, as

desired.

Remark 7.2. For both of our characterizations, all axioms are necessary. Every dictatorial aggrega-
tion rule, which always returns the score vector of a specific agent, satisfies all given axioms except
anonymity. Every constant aggregation rule satisfies all given axioms except score-unanimity. UTIL

satisfies all given axioms except independence and coordinate-wiseness. Furthermore, the coordinate-
wise rule defined by the coordinate-aggregation function fj(I) = 1 if there is an agent i with si,j = 1
and fj(I) = 1

n

∑
i∈N si,j otherwise satisfies all axioms except independence and continuity. Finally,

the condition that m ≥ 3 is necessary for our first characterization as independence becomes otherwise
trivial and, e.g., UTIL satisfies all given axioms, and the condition that m ≥ 4 is necessary for the second
characterization because MED satisfies all conditions if m ≤ 3.

Remark 7.3. One can check that in our first characterization, it is possible to replace score-unanimity
and anonymity with score-representation. That is, AVG is the only aggregation rule that satisfies score-
representation and independence. The reason for this is that all key steps of our proof still work when
using score-representation instead of anonymity and score-unanimity. In particular, for instances of the
form Ĩ1, we obtain from score-representation that candidate cj1 receives probability at least γ

n , candidate
cj2 receives probability at least 1 − γ, and candidate cj3 receives probability at least (n−1)γ

n . Since the
probabilities must sum up to 1, this is only possible if all of these bounds are tight. By independence and
the fact that this argument does not depend on the identities of agents or candidates, this immediately
completes the proof of Steps 1 and 2.

Perhaps surprisingly, this claim does not hold for our second characterization as the coordinate-wise
rule, whose coordinate-aggregation functions assign to each candidate the minimum probability that
meets the requirements imposed by score-representation, satisfies score-representation, anonymity, and
continuity.

Remark 7.4. Another natural way to characterize AVG is to rely on convexity. Specifically, we say
that an aggregation rule F is weakly convex if F (I ′′) = F (I) for all instances I, I ′, and I ′′ such that
F (I) = F (I ′) and there exists λ ∈ (0, 1) with s′′i,j = λsi,j + (1− λ)s′i,j for all i ∈ N , j ∈ [m]. Then,
one can show that AVG is the only aggregation rule that satisfies weak convexity, anonymity, and score-
unanimity. The idea is that for every instance I, we can permute it with every permutation π : N → N
and then take the average of all permuted instances. This results in an instance I ′ where all agents assign
probability 1

n

∑
i∈N si,j to each candidate cj . Hence, score-unanimity requires F (I ′)j =

1
n

∑
i∈N si,j ,

and weak convexity and anonymity imply that the same holds for I.

Remark 7.5. All coordinate-wise (and anonymous) rules from Table 1 violate Pareto-optimality. Intu-
itively, this does not come as a surprise as correlations between scores and Pareto improvements cannot
be taken into account by coordinate-wise rules. Formally, the proof of Theorem 7.1 shows that any
coordinate-wise, anonymous, and score-unanimous (which is necessary for Pareto-optimality) rule has
to coincide with AVG on all instances with si,j ̸= 1 for all i, j. It is not difficult to see—e.g., by adapting
the instance I1 in the proof of Theorem 3.1—that no such rule satisfies Pareto-optimality.

8 Conclusion

In this paper, we have analyzed aggregation rules for portioning with cardinal preferences from an ax-
iomatic perspective. Specifically, we considered a natural model in which each agent reports her ideal
distribution of a homogeneous resource over a set of candidates and her disutility for a distribution cor-
responds to the ℓ1 distance from her ideal distribution. We investigated rules based on coordinate-wise
aggregation or welfare aggregation as well as the independent markets rule of Freeman et al. [2021] with
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respect to efficiency, fairness, consistency, and incentive properties. Our results, which are summarized
in Table 1, show that the rule that simply returns the average of the agents’ reports satisfies most of the
studied axioms. In particular, even though this rule violates strategyproofness and Pareto-optimality, it is
the only rule among the ones we considered that fulfills the strong fairness notion of score-representation
as well as the strong consistency property of independence. To further strengthen this point, we provided
two characterizations demonstrating that the average rule is the only rule within large classes of rules
that satisfies, for example, independence and score-unanimity at the same time.

We believe that our paper can serve as a basis for extensive future research in the domain of cardinal
portioning. For instance, the insights that our findings offer may be helpful toward characterizations
of further rules. It would also be interesting to examine additional axioms, especially those concerning
fairness, which is important but arguably not yet well-understood in this setting. One such axiom is
membership in the core, which intuitively means that no subset of agents can guarantee a better outcome
(in the sense of a Pareto improvement) by using their proportional share of the resource. The core
strengthens both Pareto-optimality (since the latter makes this requirement only for the set of all agents)
and single-minded proportionality, so Table 1 immediately implies that none of the rules we considered
always returns an outcome in the core. Whether any such rule exists is therefore an intriguing question
which we leave for future work.
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Anna Bogomolnaia, Hervé Moulin, and Richard Stong. Collective choice under dichotomous prefer-
ences. Journal of Economic Theory, 122(2):165–184, 2005.

30



Draft – August 31, 2024

Florian Brandl, Felix Brandt, and Hans Georg Seedig. Consistent probabilistic social choice. Econo-
metrica, 84(5):1839–1880, 2016.

Felix Brandt. Rolling the dice: Recent results in probabilistic social choice. In Ulle Endriss, editor,
Trends in Computational Social Choice, chapter 1, pages 3–26. AI Access, 2017.

Felix Brandt, Matthias Greger, Erel Segal-Halevi, and Warut Suksompong. Optimal budget aggregation
with single-peaked preferences. In Proceedings of the 25th ACM Conference on Economics and
Computation (EC), 2024. Forthcoming.

Ioannis Caragiannis, George Christodoulou, and Nicos Protopapas. Truthful aggregation of budget
proposals with proportionality guarantees. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI), pages 4917–4924, 2022.

Robert T. Clemen. Combining forecasts: a review and annotated bibliography. International Journal of
Forecasting, 5(4):559–583, 1989.

Mark de Berg, Rupert Freeman, Ulrike Schmidt-Kraepelin, and Markus Utke. Truthful budget aggrega-
tion: Beyond moving-phantom mechanisms. CoRR, abs/2405.20303, 2024.

Conal Duddy. Fair sharing under dichotomous preferences. Mathematical Social Sciences, 73:1–5,
2015.

Soroush Ebadian, Dominik Peters, and Nisarg Shah. How to fairly allocate easy and difficult chores.
In Proceedings of the 21st International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 372–380, 2022.

Edith Elkind, Warut Suksompong, and Nicholas Teh. Settling the score: Portioning with cardinal pref-
erences. In Proceedings of the 26th European Conference on Artificial Intelligence (ECAI), pages
621–628, 2023.

Peter C. Fishburn. Axioms for approval voting: Direct proof. Journal of Economic Theory, 19(1):
180–185, 1978.

Rupert Freeman and Ulrike Schmidt-Kraepelin. Project-fair and truthful mechanisms for budget aggre-
gation. In Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI), pages 9704–
9712, 2024.

Rupert Freeman, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. Equitable allocations of indivisible chores.
In Proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 384–392, 2020.

Rupert Freeman, David Pennock, Dominik Peters, and Jennifer Wortman Vaughan. Truthful aggregation
of budget proposals. Journal of Economic Theory, 193:105234, 2021.

Christian Genest and James V. Zidek. Combining probability distributions: a critique and an annotated
bibliography. Statistical Science, 1(1):114–135, 1986.

Ashish Goel, Anilesh K. Krishnaswamy, Sukolsak Sakshuwong, and Tanja Aitamurto. Knapsack voting
for participatory budgeting. ACM Transactions on Economics and Computation, 7(2):8:1–8:27, 2019.

Mohak Goyal, Sukolsak Sakshuwong, Sahasrajit Sarmasarkar, and Ashish Goel. Low sample com-
plexity participatory budgeting. In Proceedings of the 50th International Colloquium on Automata,
Languages and Programming (ICALP), pages 70:1–70:20, 2023.

31



Draft – August 31, 2024

Michael D. Intriligator. A probabilistic model of social choice. The Review of Economic Studies, 40(4):
553–560, 1973.

David Kurokawa, Ariel D. Procaccia, and Nisarg Shah. Leximin allocations in the real world. ACM
Transactions on Economics and Computation, 6(3–4):11:1–11:24, 2018.

Tobias Lindner, Klaus Nehring, and Clemens Puppe. Allocating public goods via the midpoint rule. In
Proceedings of the 9th International Meeting of the Society of Social Choice and Welfare, 2008.
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A Appendix: Computational Aspects

In this appendix, we prove two claims about computational aspects that were made in the main body.
First, we show that EGAL (including the leximin tie-breaking) can be computed in polynomial time.

Proposition A.1. EGAL can be computed in polynomial time.

Proof. Similar to Airiau et al. [2023, Alg. 1], we formulate a series of linear programs (LP) for finding
an EGAL outcome. Let the objective function be

minimize ξ

subject to the following constraints.

(1)
∑

j∈[m] xj = 1.

(2) xj ≥ 0 for each j ∈ [m] and ξ ≥ 0.

(3) zi,j ≥ si,j − xj and zi,j ≥ xj − si,j for each i ∈ N , j ∈ [m].

(4)
∑

j∈[m] zi,j ≤ ξ for each i ∈ N .
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This allows us to minimize the largest disutility ξ. There is an agent i that has disutility ξ in every
leximin outcome: indeed, if for every i ∈ N there is an outcome in which i incurs disutility less than ξ
and every other agent incurs disutility at most ξ, then by averaging these outcomes across all i ∈ N , we
obtain an outcome in which every agent’s disutility is less than ξ, contradicting the choice of ξ. To find
such an agent, for each i ∈ N , we formulate an LP that computes the maximum δ for which there exists
an outcome such that agent i incurs disutility at most ξ − δ while every other agent incurs disutility at
most ξ; an agent with the desired property will return δ = 0. We fix the disutility of this agent to ξ, and
continue by finding the second largest disutility, and so on. The total number of LPs is O(n2).

Next, we prove that checking whether an outcome is Pareto-optimal can be done in polynomial time.

Proposition A.2. Determining whether an outcome x′ is Pareto-optimal can be done in polynomial
time.

Proof. Suppose we are given an outcome x′ for an instance I = (s1, . . . , sn) and we want to determine
whether x′ is Pareto-optimal.

For each i ∈ N and j ∈ [m], let z′i,j = |x′j − si,j |. The quantities z′i,j and si,j can be computed from
the input, and will appear in the constraints of the linear program below.

We formulate a linear program as follows:

minimize
∑
i∈N

∑
j∈[m]

zi,j ,

subject to the following constraints.

(1)
∑

j∈[m] xj = 1.

(2) xj ≥ 0 for each j ∈ [m].

(3) zi,j ≥ si,j − xj and zi,j ≥ xj − si,j for each i ∈ N , j ∈ [m].

(4)
∑

j∈[m] zi,j ≤
∑

j∈[m] z
′
i,j for each i ∈ N .

Note that zi,j is an upper bound on i’s disutility for candidate cj , so the smaller it is, the better. Then,
for the optimal solution (z∗i,j)i∈N, j∈[m] returned, if

∑
j∈[m] z

∗
i,j <

∑
j∈[m] z

′
i,j for some i ∈ N , we know

that x′ is not Pareto-optimal; otherwise it is.
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