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ABSTRACT

In rank aggregation, the goal is to combine multiple input rank-
ings into a single output ranking. In this paper, we analyze rank
aggregation methods, so-called social welfare functions (SWFs),
with respect to strategyproofness, which requires that no agent can
misreport his ranking to obtain an output ranking that is closer
to his true ranking in terms of the Kemeny distance. As our main
result, we show that no anonymous SWF satisfies unanimity and
strategyproofness if there are at least four alternatives. This result
is proven by SAT solving, a computer-aided theorem proving tech-
nique, and verified by Isabelle, a highly trustworthy interactive
proof assistant. Moreover, we show by hand that strategyproofness
is incompatible with majority consistency, a variant of Condorcet-
consistency for SWFs. Lastly, we demonstrate for two large classes
of SWFs that all SWFs within these classes have a high incentive
ratio and are thus severely manipulable.

KEYWORDS

Rank aggregation, Social welfare functions, Social choice theory,
Strategyproofness, Computer-aided theorem proving

ACM Reference Format:

Manuel Eber] and Patrick Lederer. 2026. The Impossibility of Strategyproof
Rank Aggregation. In Proc. of the 25th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2026), Paphos, Cyprus,
May 25 - 29, 2026, IFAAMAS, 43 pages.

1 INTRODUCTION

An important problem for multi-agent systems is rank aggrega-
tion: multiple input rankings need to be aggregated into a single
output ranking. For instance, this task arises when a hiring com-
mittee is asked to produce a ranking of the applicants based on
the preferences of the committee members [e.g., 24, 49], when ag-
gregating the outputs of multiple ranking algorithms in ensemble
learning [e.g., 56, 63], or when recommender systems infer an out-
put ranking based on the preferences of multiple users [e.g., 1, 62].
Moreover, rank aggregation finds applications in computational
biology [48, 55], engineering [38], and meta-search [36, 64]. Moti-
vated by this wide range of applications, we will investigate rank
aggregation in this paper through the lens of social choice theory.
In this field, rank aggregation is formalized via social welfare func-
tions (SWF), which map every profile of (complete and strict) input
rankings to a single output ranking.
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Specifically, we are interested in the question of whether there
are SWFs that incentivize voters to report their rankings truthfully—
a property that is commonly known as strategyproofness. We believe
strategyproofness to be important for many applications of rank
aggregation: without it, voters may try to game the mechanism in
order to obtain a better outcome from their individual perspective.
For instance, if we use an SWF that violates strategyproofness to
aggregate the preferences of the members of a hiring committee, a
committee member may misreport his preferences to ensure that
his preferred candidates are more likely to get the job. Similarly,
in recommender systems, a user may try to manipulate the output
ranking to ensure that the final recommendations are closer to his
preferences. Lastly, even in technical applications such as ensemble
learning, strategyproofness may be desirable as it offers resistance
against malicious behavior from the individual algorithms.

However, while both SWFs and strategyproofness are generally
well understood [see, e.g., 3, 8, 72], the study of strategyproof SWFs
has only recently gained attention [e.g., 4-6, 14]. One possible
reason for this is that it is challenging to define strategyproofness
for SWFs because it is unclear how voters compare different output
rankings. For instance, if a voter’s true ranking is a > b > c, does he
prefer the ranking b > a > c or the ranking ¢ > a > b? Following
the recent literature [e.g., 4, 6, 53], we will address this issue by
using the Kemeny distance to define the voters’ preferences over
rankings. This distance counts the number of pairs of alternatives
on which two rankings disagree, and we suppose that voters prefer
rankings that have a smaller Kemeny distance to their true ranking.
Less formally, this means that voters want the output ranking to
align as closely as possible with their true ranking. Lastly, (Kemeny-)
strategyproofness requires that, by misreporting their true ranking,
voters cannot obtain an output ranking that is closer to their true
ranking than the one that is chosen when voting honestly.

It is known that appealing SWFs, such as the Kemeny rule, satisfy
strategyproofness when there are m < 3 alternatives, but all known
SWFs fail this property if m > 4 [4, 6]. The central question of this
paper is thus whether strategyproofness allows for the design of
desirable SWFs or whether an impossibility theorem similar to the
Gibbard-Satterthwaite theorem [41, 67] holds for rank aggregation.

Contribution. As our main result, we show that no reasonable
SWEF satisfies strategyproofness, thereby establishing an analogue
of the Gibbard-Satterthwaite theorem for SWFs. In more detail, we
prove that no SWF simultaneously satisfies anonymity, unanimity,
and strategyproofness when there are m > 5 alternatives and an
even number of voters n, or when there are m = 4 alternatives and
n is a multiple of 4 (Theorem 2). We note here that anonymity and
unanimity are very basic properties—anonymity requires that all
voters are treated equally and unanimity that the output ranking
ranks one alternative x ahead of another alternative y if all voters
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Negative results
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Positive results

© No majority consistent and strategyproof SWF if m >4 (Thm. 1)

© No unanimous, anonymous, and strategyproof SWF if m >4 (Thm. 2)

© The Kemeny rule, all distance scoring rules, and all positional scoring
rules have an incentive ratio of at least (';) — m (Thm. 3)

@ The Kemeny rule is strategyproof, unanimous, anonymous, and
majority consistent if m<3 [4, 6]

@ There are non-dictatorial, unanimous, and strategyproof SWFs [6]

@ The Kemeny rule is betweenness strategyproof for all m [14]

Table 1: Summary of our results and comparison to related work. All negative results have been proven in this paper. While
there have been impossibility results for strategyproof SWFs before our work [e.g., 6, 15], Theorem 2 supersedes all of them.

prefer x to y. Hence, this result shows that no voting rule that seems
acceptable in practice can satisfy strategyproofness.

The proof of our main theorem is obtained via SAT solving, a
computer-aided theorem proving technique. Specifically, we en-
code the problem of deciding whether an SWF satisfies anonymity,
unanimity, and strategyproofness in a logical formula and show
with the help of a computer that this formula is unsatisfiable when
there are m = 5 alternatives and n = 2 voters, and when there are
m = 4 alternatives and n = 4 voters. This proves two base cases for
our impossibility theorem, which we then lift to our final statement
by applying inductive arguments. Following standard practices, we
also extract a proof of one of our base cases in a human-readable for-
mat. However, since this proof spans over 20 pages, we additionally
verify our main theorem with Isabelle [59], a highly trustworthy
computer program designed to verify mathematical proofs.

Furthermore, we manually prove that no strategyproof SWF sat-
isfies a form of Condorcet-consistency we call majority consistency
(Theorem 1). To introduce this axiom, we define the majority rela-
tion of a profile as the binary relation that prefers an alternative
x to another alternative y if a majority of the voters prefers x to y.
Then, majority consistency requires that, when the majority rela-
tion is transitive and antisymmetric (and thus a ranking), an SWF
needs to choose the corresponding ranking. Hence, this impossibil-
ity theorem can be seen as a counterpart to the observation that no
Condorcet-consistent social choice function (which return single
alternatives instead of rankings) satisfies strategyproofness.

Lastly, we investigate the incentive ratio of several SWFs to
measure how manipulable they are. Roughly, the incentive ratio of
an SWF quantifies the worst-case ratio between the utility of a voter
when manipulating and when voting honestly. This notion has been
successfully applied for private goods settings [e.g., 29, 54, 73] to
show that manipulable rules still limit the manipulation gain of
agents, which may suffice to disincentivize strategic behavior in
practice. Unfortunately, all SWFs that we consider have a very high
incentive ratio. Specifically, we show that the incentive ratio of the
Kemeny rule and all distance scoring rules (where voters assign
scores to the rankings depending on their Kemeny distance to the
ranking and the ranking with minimal total score is chosen) is
roughly (")) when there are m alternatives. Moreover, we prove
that positional scoring rules have an unbounded incentive ratio for
all m > 3 as voters with utility 0 can manipulate these SWFs.

Related Work. As mentioned before, both SWFs and strate-
gyproofness have been studied for decades. We hence refer to the
textbook by Arrow et al. [3] and the survey of Barbera [8] for in-
troductions to these topics. In more detail, SWFs are studied since
Arrow’s foundational work of social choice theory [2]. To date,

there is a large range of SWFs, including the Kemeny rule [46, 47],
various types of scoring rules [e.g., 30, 52, 70, 75], sequential scoring
rules [e.g., 12, 70], and Condorcet-style rules [e.g., 31, 68, 69]. These
SWFs are primarily studied with respect to consistency properties
(such as monotonicity, population consistency, or independence
axioms), which have lead to several influential characterizations of,
e.g., the Kemeny rule [26, 76, 77] or the Borda rule [60, 74].

Similarly, strategyproofness in voting has attracted significant
attention, although the results in this line of work are more negative.
In particular, Gibbard and Satterthwaite [41, 67] have independently
shown that no reasonable deterministic voting rule that always se-
lects a single winner satisfies strategyproofness. Motivated by this
result, significant efforts have been spent to circumvent this im-
possibility theorem, for instance by allowing for randomized or
set-valued outcomes [e.g., 18, 21, 42, 45], restricting the feasible
input rankings [e.g., 23, 28, 58], or studying weakenings of strate-
gyproofness [e.g., 25, 50, 65]. Except for domain restrictions, these
approaches have mostly lead to strengthened impossibility theo-
rems. We note that our paper can also be interpreted in this line
of work: since no reasonable single-winner voting rule is strate-
gyproof, one may attempt to escape this negative result by consid-
ering rankings as output. As our results show, this approach does
not allow to circumvent the Gibbard-Satterthwaite theorem.

More directly related, there are a number of works that study
(Kemeny-)strategyproofness for SWFs. To our knowledge, Bossert
and Storcken [15] were the first to study this strategyproofness
notion. These authors focus on group Kemeny-strategyproofness,
which allows for groups of voters to jointly deviate, and show that
this condition leads to an impossibility when requiring a technical
auxiliary property called weak extrema independence. Moreover,
Athanasoglou [4] and Athanasoglou et al. [6] investigate Kemeny-
strategyproofness and prove that, for m < 3 alternatives, the Ke-
meny rule (with suitable tie-breaking) and other SWFs are strate-
gyproof, whereas these positive results break when m > 4. More-
over, Athanasoglou et al. [6] show that no anonymous SWF satisfies
Kemeny-strategyproofness and a technical property called prefer-
ence selection. This condition requires an SWF to always return
a ranking that is present in the input profile, a property that is
violated by all commonly studied SWFs.

Lastly, different strategyproofness notions have been explored
for SWFs. For instance, Bossert and Sprumont [14] study between-
ness strategyproofness, which requires that, by manipulating, vot-
ers cannot obtain a ranking that lies on a single-crossing sequence
of rankings from the manipulator’s true ranking to the output rank-
ing chosen when voting truthfully. This notion is strictly weaker
than Kemeny-strategyproofness and Bossert and Sprumont [14]
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show that, e.g., the Kemeny rule always satisfies it. Moreover, Sato
[66] uses betweenness strategyproofness and strong side condi-
tions to obtain an impossibility theorem, whereas Harless [44] and
Athanasoglou [5] use this notion to characterize a family of SWFs
called status-quo rules. Further strategyproofness notions for SWFs
have been studied by Bonkoungou [13] and Dindar et al. [35], which
are, however, unrelated to Kemeny-strategyproofness.

2 PRELIMINARIES

Let A={a,b,c,...,} be aset of m alternatives and N = {1,...,n}
be a set of n voters. Every voter i € N reports a ranking ; over
the alternatives to indicate his preferences. Formally, a ranking >;
is a transitive, antisymmetric, and complete binary relation on A.
The set of all rankings is denoted by R. A (ranking) profile R =
(>1,...,>n) is the collection of the rankings of all voters in N, and
the set of all profiles is R . We will write rankings as sequences
of alternatives and indicate the voter submitting a ranking directly
before it. For example, 3 : abc means that voter 3 prefers a to b to c.

The study object of this paper are social welfare functions (SWFs)
which map every ranking profile to a single output ranking. More
formally, a social welfare function is a function f of the type
RN — R. To clearly distinguish between input and output rank-
ings, we will denote the former by > and the latter by .

2.1 Classes of SWFs

We will next introduce several natural classes of SWFs. Since all
of the following rules may return multiple winning rankings, we
assume that such ties are broken based on an external ranking >
over the alternatives that is lexicographically extended to rankings.
Specifically, given two rankings >1 = x1...xpm and >2 = y1 ... Ym,
it holds that 1 > > if and only if there is ¢ € {1, ..., m} such that
xp>ypand x; = y; foralli € {1,...,¢ — 1}. To fully specify our
SWFs, we always choose the most preferred ranking with respect
to > that is winning for the considered SWF. We note, however,
that all our results are independent of this tie-breaking convention.

Kemeny rule. The Kemeny rule was first suggested by Kemeny
[46] and is maybe the most prominent method in rank aggregation.
To introduce this rule, we define the Kemeny distance (which is also
known as swap distance or Kendall-tau distance) between two rank-
ings = and > by A(>-,>) = [{(x,y) € A%: x = y Ay > x}|. Less for-
mally, A(>, ) is the number of pairs of alternatives on which > and
> disagree. The Kemeny rule chooses the (lexicographically most
preferred) ranking that minimizes the the total Kemeny distance to
the input rankings, i.e., fkemeny(R) = argming e 2jen A(=i, >).

Distance scoring rules. In distance scoring rules, every voter i
assigns a score to every ranking > depending on the Kemeny dis-
tance between his input ranking >; and >, and we choose the
ranking with the minimal total score. More formally, these rules are
defined based on distance scoring functionss : {0,..., (rzn)} — R,
and a voter with a Kemeny distance of x to a ranking assigns a
score of s(x) to this ranking. Throughout the paper, we will re-
quire of distance scoring functions s that s(x) > s(x — 1) for all
xe{l,...,())hands(x) —s(x - 1) = s(x = 1) - s(x — 2) for all
xe{2..., (’g) }. These conditions formalize that rankings that are
further away from a voter’s ranking get a higher score and that s
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is convex. Finally, a distance scoring rule f is defined by a distance
scoring function s and chooses the (lexicographically most pre-
ferred) ranking that minimizes ;¢ S(A(>;,1>)). For example, the
Kemeny rule is defined by the distance scoring function s(x) = x,
and the Squared Kemeny rule of Lederer et al. [53] by s(x) = x2.

Positional scoring rules. Another prominent class of SWFs are
positional scoring rules. For these rules, the voters assign points to
the alternatives depending on their positions in the input ranking,
and the output ranking orders the alternatives in decreasing order
of their total score. To formalize this, we define the rank of an
alternative x in a ranking > by r(>,x) = 1+ |[{y € A\ {x}: y > x}|.
Then, positional scoring rules are defined by positional scoring func-
tions p : {1,...,m} — R and a voter who places an alternative at
rank k assigns a score of p(k) to this alternative. We will require
of positional scoring functions that p(1) > p(2) > --- > p(m)
and p(1) > p(m), i.e., voters give more points to higher-ranked
alternatives and do not assign the same score to all alternatives.
Finally, an SWF f is a positional scoring rule if there is a positional
scoring function p such that f returns for every profile R the (lex-
icographically most preferred) ranking > such that x > y implies
2ieN P(r(>i,x)) = Yien p(r(>i,y)). For instance, the Borda rule
is induced by the positional scoring function p(x) = m — x.

2.2 Strategyproofness

The central axiom in our analysis is strategyproofness, which re-
quires that voters cannot benefit by lying about their true ranking.
Following the literature [e.g., 4, 6, 15], we will define this axiom by
assuming that the voters’ preferences over rankings are induced by
the Kemeny distance A(>-,>) = |[{(x,y) € A%>: x - y Ay > x}|:a
voter with ranking >; prefers a ranking 1> to another ranking > if
A(>i,>) < A(>;,>"). This formalizes that voters prefer rankings
that are more similar to their true ranking. Based on this assumption,
we can define strategyproofness as usual by requiring that voters
cannot obtain a more preferred ranking by voting strategically.

Definition 1 (Strategyproofness). An SWF f is strategyproof if
A(>i, f(R)) < A(>4, f(R")) for all voters i € N and profiles R, R’ €
RN such that = = 7 forall j € N\ {i}.

This definition of strategyproofness is motivated by the fact
that the Kemeny distance is by far the most common distance over
rankings in rank aggregation [e.g., 24, 36, 48, 56]. In particular,
many papers propose to minimize the total Kemeny distance to
find good output rankings, which implicitly assumes that voters
prefer rankings that have a closer Kemeny distance to their input
ranking. Moreover, the Kemeny distance is also theoretically well-
understood and allows for appealing characterizations [27, 34, 46].
Nevertheless, we acknowledge that one can define alternative strat-
egyproofness notions by, e.g., using different distances on rankings
or even approaches that are not based on any distance measure,
which may lead to different results.

To further illustrate strategyproofness for SWFs, we will next
discuss an example showing that the Kemeny rule is manipulable.

Example 1. Consider the following profile R with m = 4 alterna-
tives A = {a,b,c,d} and n = 5 voters N = {1,...,5}.

R: 1:abed 2:cdab 3:dbac 4:bcda 5:adcb
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For this profile, the Kemeny rule chooses the ranking > = dabc,
which has a total Kemeny distance of }};c y A(>;,>) = 3+3+1+4+
2 = 13. By contrast, if voter 4 misreports his true ranking by swap-
ping bandc, i, if ~; = cbda, the Kemeny rule chooses the ranking
>’ = cdab. Further, it holds that A(>4,>) = A(bcda, dabc) = 4 >
3 = A(beda, cdab) = A(>4,1>"). This shows that voter 4 prefers the
ranking >’ to the ranking > selected for R, so the Kemeny rule fails
strategyproofness when m =4 and n = 5.

2.3 Further Axioms

Additionally to strategyproofness, we will consider three further
axioms, namely anonymity, unanimity, and majority consistency.

Anonymity. Intuitively, anonymity requires that the identities
of voters should not matter for the outcome. Formally, we say an
SWF f is anonymous if f(R) = f(x(R)) for all profiles R € RN
and permutations 7 : N — N. Here, R" = 7(R) is the profile given
by ! = >, (;) for all i € N. When assuming anonymity, we may
interpret profiles as multisets of rankings because we only need to
know how often each ranking is reported to compute the outcome.

Unanimity. Unanimity is a minimal efficiency notion which
requires that if all voters unanimously prefer one alternative x to
another alternative y, then the output ranking should also rank x
ahead of y. More formally, an SWF f is unanimous if, for all profiles
R € RN and alternatives x, y € 4, it holds for the output ranking
> = f(R) that x > y if x >; y for all voters i € N.

Majority consistency. One of the dominant notions in social
choice theory is the Condorcet principle: if an alternative is favored
to another alternative by a majority of the voters, then the former is
typically seen as socially more desirable than the latter. To formalize
this idea, we define the majority relation zg of a profile Rby x =g y
ifandonlyif {i e N:x >; y}| > |{i e N:y >; x}|,ie,x Zr y
if and only if a majority of voters prefer x to y. Put differently,
%R encodes the majority preferences. Finally, we say an SWF f is
majority consistent if returns the majority relation whenever this
relation is a ranking, i.e., f(R) = zg for all profiles R such that
the majority relation xp is transitive and antisymmetric. We note
that the majority relation does not necessarily form a ranking, and
majority consistency permits any outcome in such situations.

3 MAJORITY CONSISTENCY AND
STRATEGYPROOFNESS

As our first contribution, we will show that no majority consistent
SWEF satisfies strategyproofness if there are sufficiently many vot-
ers and at least four alternatives. While we include this theorem
primarily to showcase a proof for an impossibility theorem based
on strategyproofness, it is also one of the most general impossibility
results in rank aggregation.

Theorem 1. No strategyproof SWF satisfies majority consistency if
m>4,n>9,andn ¢ {10,12, 14, 16}.

Proor. We will first focus on the case that m = 4 and n = 9 and
later on explain how to generalize the result to larger values of n and
m. Hence, assume for contradiction that there is a strategyproof and
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majority consistent SWF f for 4 alternatives and 9 voters. We will
focus on the following two profiles R and R to derive a contradiction.

R 1:cdba 2:badc 3:dbac 4:cbad 5:adch
6:cadb 7:dcba 8:dabc 9:abcd

R 1:cdba 2:badc 3:dbca 4:cbad 5:adch
6:cadb 7:dcba 8:dabc 9:abcd

We will show that f has to choose & = adcb for R and > = dcba
for R. Since the profiles R and R only differ in the ranking of voter 3,
this means that f is manipulable because A(>3,5) = 3 > 2 =
A(%3,5), ie., voter 3 prefers > to 5. It remains to show that f
indeed needs to choose adcb and dcba for R and R, respectively.

Claim 1: f(R) = adcb. For proving this claim, we consider the
following five profiles R', ..., R>, all of which differ from R in the
ranking of a single voter. This ranking is highlighted in blue.

R' 1l:cdab 2:badc 3:dbac 4:cbad 5:adch
6:cadb 7:dcba 8:dabc 9:abcd

R® 1l:cdba 2:abdc 3:dbac  4:cbad 5:adch
6:cadb 7:dcba 8:dabc 9:abcd

R® 1:cdba 2:badc 3:dabc  4:cbad  5:adcb
6:cadb 7:dcba 8:dabc 9: abcd

R* 1:cdba 2:badc 3:dbac  4:cabd 5:adch
6:cadb 7:dcba 8:dabc 9: abcd

R> 1l:cdba 2:badc 3:dbac  4:cbad 5:dabc
6:cadb 7:dcba 8:dabc 9:abcd

In all five of these profiles, the majority relation is transitive
and antisymmetric and therefore a ranking. In more detail, in Rlto
R*, all of which arise from R by swapping a and b in the ranking
of a single voter, the majority relation corresponds to the ranking
adcb. Further, in R°, the majority relation is given by dbac. Hence,
majority consistency requires that f(R') = --- = f(R*) = adcb
and f(R%) = dbac. Consequently, strategyproofness implies the
following constraints for the ranking & chosen for R.

(1) Strategyproofness from R to R! requires that A(cdba,5) <
A(cdba, f(RY)) = A(cdba, adch) = 4.

(2) Strategyproofness from R to R? requires that A(badc,>)
A(badc, f(R?)) = A(badc, adcb) = 3.

(3) Strategyproofness from R to R? requires that A(dbac, )
A(dbac, f(R?)) = A(dbac, adcb) = 3.

(4) Strategyproofness from R to R* requires that A(cbad,>)
A(cbad, f(R*)) = A(cbad, adch) = 4.

(5) Strategyproofness from R to R® requires that A(adch,)
A(adcb, f(R®)) = A(adch, dbac) = 3.

We claim that only the ranking adcb satisfies these constraints.
To prove this, we will consider several cases. First, d cannot be
bottom-ranked in & because A(dbac,>) > 4 for all rankings &> that
rank d last and are not equal to bacd. Hence, all these rankings
fail Condition (3). Further, it holds that A(adcb, bacd) = 4, so the
ranking bacd fails Condition (5), thus showing that d is not ranked
last in . Next, > cannot bottom-rank a: every ranking > that
places a last and is not equal to dcba violates Condition (5) since
A(adcb,>>) > 4, and the ranking dcba fails Condition (2) since
A(badc,dcba) = 4. Thirdly, we show that alternative ¢ cannot be
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bottom-ranked by . For this, we observe that Condition (1) implies
that > ¢ {abdc, badc, adbc} because all these rankings have a swap
distance of at least 5 to cdba. Further, Condition (4) requires that
> ¢ {dabc, dbac} because these rankings have a swap distance of at
least 5 to cbad. Lastly, Condition (5) shows that > # bdac because
A(adchb, bdac) = 4. We now conclude that c¢ is not bottom-ranked
by 5. Because all other options have been ruled out, b must be
bottom-ranked by 5. This means that A(badc,>) > 3. Moreover,
this inequality needs to be tight due to Condition (2), which is only
true if f(R) = 5 = adch.

Claim 2: f(lé) =dcba. We will next show that f(l?) = dcba, for
which we consider the following five profiles. All of these profiles
only differ in the highlighted ranking from R.

R 1l:cdba 2:badc 3:dbca 4:cbda 5:adch
6:cadb 7:dcba 8:dabc 9:abcd

R? 1:cdba 2:badc 3:dbca 4:cbad 5:dach
6:cadb 7:dcba 8:dabc 9:abcd

R® 1:cdba 2:badc 3:dbca 4:cbad 5:adch
6:cdab  7:dcba 8:dabc 9: abcd

R* 1:cdba 2:bdac 3:dbca 4:cbad 5:adch
6:cadb 7:dcba 8:dabc 9: abcd

R® 1:cdba 2:badc 3:dbca 4:cbad 5:adch
6:cadb 7:cdab 8:dabc 9:abcd

The profiles R', .. ., R* only differ from R in the fact that a voter
swapped d and a. As a consequence, the majority relation of these
profiles corresponds to the ranking dcba. On the other hand, in R,
the majority relation is given by the ranking cadb. Hence, majority
consistency requires that f(ﬁl) =...= f(ﬁ‘l) = dcba and f(lés) =
cadb. In turn, strategyproofness between R and our five profiles
requires the following constraints for the ranking & chosen for R.

(1) Strategyproofness from R to R! requires that A(cbad, ) <
A(cbad,f(ﬁl)) = A(cbad, dcba) = 3.

(2) Strategyproofness from R to R? requires that A(adch, )
A(adcb,f(ﬁz)) = A(adcb,dcba) = 3.

(3) Strategyproofness from R to R requires that A(cadb, )
A(cadb, f(R?)) = A(cadb, dcba) = 3.

(4) Strategyproofness from R to R* requires that A(badc,)
A(badc, f(RY)) = A(badc, dcba) = 4.

(5) Strategyproofness from R to R’ requires that A(dcba, )
A(dcba,f(Rs)) = A(dcba, cadb) = 3.

Analogously to the last claim, we will show that these constraints
entail that & = dcba. To this end, we first note that Conditions (2)
and (5) show that d cannot be bottom-ranked by 5. In more de-
tail, every ranking > other than cbad that bottom-ranks d violates
Condition (5) since A(dcba,1>) > 4. On the other hand, the rank-
ing cbad violates Condition (2) as A(adcb, cbad) = 4. Next, Condi-
tions (2) and (3) show that ¢ cannot be bottom-ranked by &: the only
ranking > that bottom-ranks ¢ and satisfies that A(cbad,>) < 3
(Condition (2)) is badc, but this ranking fails Condition (3) since
A(badc, cadb) = 5. Thirdly, & cannot bottom-rank b. Specifically,
Condition (4) rules out that & € {cdab, dcab, cadb} since all these
rankings have a distance of at least 5 to badc, Condition (1) shows
that > ¢ {adcb, dacb} since these rankings have a Kemeny distance
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IA
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IN
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of at least 4 to cbad, and Condition (5) shows that > # acdb since
A(dcba, acdb) = 4. As a consequence of the analysis so far, we
conclude that a must be bottom-ranked in 5. In turn, we infer from
Condition (2) that > must be dcba since every other ranking that
bottom-ranks a satisfies that A(adcb,>) > 4.

Extension to larger values of m and n. Lastly, we explain how
to generalize our result to larger numbers of voters n and alterna-
tives m. First, to increase m, we can add new alternatives in the
same order at the bottom of the rankings of all voters. After this
extension, the majority relation is still transitive and antisymmet-
ric for all profiles Rf and R! with i € {1,...,5}. Using majority
consistency, the inequalities (1) to (5) thus remain intact for both
cases. Finally, these inequalities still imply that we need to choose
rankings for R and R that permit a manipulation for voter 3.

To extend our construction to larger numbers of voters, we apply
two different techniques. Firstly, we can generalize our impossibility
to every odd n > 9 by adding pairs of voters with inverse rankings.
These voters cancel each other out with respect to the majority
relation and therefore do not affect our analysis. Secondly, to extend
our impossibility to an even number of voters, we can double all
voters in our profiles. While this requires intermediate profiles R
to go from, e.g., R to R!, we can still infer the same inequalities
by chaining the strategyproofness conditions. For instance, for R!,
strategyproofness implies that A(cdba, f(R)) < A(cdba, f(RY)) <
A(cdba, f(RY)), where R' denotes the intermediate profile. Hence,
our analysis remains intact after this extension. Lastly, for any even
n > 18, we can again add pairs of voters with inverse rankings. O

Remark 1. When m < 3, Theorem 1 ceases to hold as the Ke-
meny rule (with suitable tie-breaking) is strategyproof and majority
consistent in this case [6, 77]. Moreover, under mild additional con-
ditions, namely anonymity, cancellation (i.e., adding pairs of voters
with inverse rankings does not affect the outcome), and a weak form
of neutrality, it can be shown that strategyproofness and majority
consistency require to choose a ranking that minimizes the total Ke-
meny distance to the input rankings when there are 3 alternatives.
We refer to Appendix A for details.

Remark 2. We did not minimize the number of voters for Theo-
rem 1 as we aimed for a simple proof. However, with the help of a
computer, we showed that this impossibility already holds when
there are m = 4 alternatives and n € {3, 4} voters. Based on our
inductive arguments for n, it thus follows that no majority consis-
tent SWF is strategyproof if there are m = 4 alternatives and n > 3
voters. By contrast, our inductive argument for m is specific to the
profiles in Theorem 1, so it is unclear whether the computer proof
extends to more alternatives. Further, we verified the correctness of
the computer proof and our human-readable proof by Isabelle/HOL,
a highly trustworthy interactive theorem prover [59].

4 STRATEGYPROOFNESS AND UNANIMITY

We will now turn to our main theorem: there is no anonymous
SWF that satisfies strategyproofness and unanimity if there are
m > 5 alternatives and an even number of voters n, or when there
are m = 4 alternatives and the number of voters n is a multiple
of 4. Put differently, this result shows that every reasonable SWF is
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manipulable and it can thus be seen as an analog of the Gibbard-
Satterthwaite theorem for rank aggregation.

Theorem 2. No anonymous SWF satisfies strategyproofness and
unanimity if m > 5 and n is even, or m = 4 and n is a multiple of 4.

We note that we have shown Theorem 2 based on a computer-
aided theorem proving technique called SAT solving. In the context
of social choice theory, such computer-aided techniques have been
pioneered by Tang and Lin [71] and have since then been used to
show a large number of results [e.g., 16, 17, 19, 21, 33, 37, 39, 61].
We refer to the survey of Geist and Peters [40] for an introduction
to these techniques. In the following three sections, we outline how
we apply SAT solving to obtain Theorem 2 (cf. Sections 4.1 and 4.2)
and how we verified our result (cf. Section 4.3).

Remark 3. Allaxioms of Theorem 2 are necessary for the impossi-
bility. Specifically, constant SWFs, which always return a fixed rank-
ing, satisty strategyproofness and anonymity but violate unanimity.
Dictatorships, which return the ranking of a fixed voter, satisfy
unanimity and strategyproofness but violate anonymity. It is also
not possible to weaken anonymity to non-dictatorship as Athana-
soglou et al. [6] design non-dictatorial (and non-anonymous) SWFs
that are strategyproof and unanimous. Thirdly, e.g., the Kemeny
rule satisfies unanimity and anonymity but violates strategyproof-
ness. Further, we cannot significantly weaken strategyproofness
as Bossert and Sprumont [14] shows that the Kemeny rule satisfies
betweenness strategyproofness, which is only slightly weaker than
our Kemeny-strategyproofness. Finally, when m < 3, Theorem 2
ceases to hold as the Kemeny rule is strategyproof in this case [6].

Remark 4. A drawback of Theorem 2 is that we cannot extend
this result to an odd number of voters. The primary reason for this is
technical: we could not find an inductive argument that generalizes
our theorem from an even number of voters to an odd one. Moreover,
based on our SAT approach, we showed that there are SWFs that
satisfy all axioms of Theorem 2 when m = 4 and n € {3, 5}, which
indicates that such an argument may not exist. Similar problems
are common for impossibility theorems in social choice theory
[e.g., 19, 20, 22, 33, 61], as it is often challenging to generalize such
results from a fixed number of voters n to arbitrary values of n.
We note, however, that we can extend Theorem 2 to odd n when
strengthening unanimity. Specifically, based on Theorem 2, one can
show to that no anonymous SWF satisfies strategyproofness and a
property called near unanimity when m > 5 and n > 3 is odd. This
latter condition requires that the output ranking puts x ahead of y
whenever all but one voter prefer x to y [10, 51]. In particular, if we
had an SWF that satisfies anonymity, strategyproofness, and near
unanimity for odd n > 3, we could construct an SWF that satisfies
anonymity, strategyproofness, and unanimity for n — 1 voters by
fixing the ranking of a single voter. We further observe that near
unanimity becomes less demanding as n increases, and all common
SWFs satisfy this condition when n is sufficiently larger than m.

4.1 SAT Solving

To show Theorem 2, we rely on SAT solving, a computer-aided
theorem proving technique. The central idea of this approach is
that, for fixed numbers of voters n and alternatives m, there is a large
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but finite number of ranking profiles and possible outcomes. For
instance, when n = 2 and m = 5, there are (5!)? = 14, 400 ranking
profiles, for each of which one of 5! = 120 rankings must be chosen.
Based on this observation, it is possible to write a large logical
formula that is satisfiable if and only if there is an anonymous SWF
that satisfies unanimity and strategyproofness for the given values
of n and m. We then prove two base cases of our theorem by letting
a computer program, a so-called SAT solver, show that our formula
is unsatisfiable when there are n = 2 voters and m = 5 alternatives,
and when there n = 4 voters and m = 4 alternatives.

In our logical formula, we follow the standard encoding of voting
rules. Specifically, our formula will use variables xg . for all profiles
R and rankings >, which will encode whether the ranking > is
chosen for the profile R. Moreover, since we focus on anonymous
SWFs, we will treat profiles as multisets of rankings. Formally, this
means that the variable xg . will state whether the ranking > is
chosen for all non-anonymous profiles that can be obtained by
assigning the rankings in the multiset R to the voters in N. This is
possible as anonymity necessitates that we need to choose the same
ranking for all such profiles. Furthermore, by representing profiles
as multisets, we reduces the number of variables in our formula
as a single multiset corresponds up to n! non-anonymous ranking
profiles. Also, due to this representation, anonymity is implicitly
encoded, so we do not need to add constraints for this axiom.

Next, we have to ensure that our variables xg . indeed encode
an (anonymous) SWF. This necessitates us to formalize that for
every profile R, exactly one ranking t> is chosen. To this end, we
will require for each profile R that exactly one variable xp . is true.
Moreover, to further simplify our formula, we encode unanimity
in this step by only introducing variables xg . for profiles R and
rankings > such that i satisfies unanimity for R. To make this more
formal, let X(R) = {(x,y) € A%: Vi € N: x =; y} denote the pairs
of alternatives (x, y) such that all voters prefer x to y in R. Then,
U(R) ={> € R: ¥(x,y) € X(R): x > y} is the set of rankings that
satisfy unanimity for R. We will only introduce variables xg . for
each profile R and ranking > € U(R) as rankings outside of U(R)
are not allowed to be chosen by unanimity. We can now enforce that
our variables encode an unanimous SWF by adding the following
constraints for every profile R, which respectively state that at least
and at most one ranking in U (R) must be chosen for R.

\/ XR > and /\

>>'eU(R): >#>’

(—xRpV # XR")

Lastly, we need to encode strategyproofness. We recall here that
this axiom requires that, for every profile R and voter i, it is not
possible for the voter to deviate such that the ranking chosen when
lying has a smaller Kemeny distance to his truthful ranking than
the one chosen when reporting his truthful ranking. Put differently,
if R and R’ only differ in the ranking of voter i, we cannot choose
rankings > and > for these profiles such that A(>, >;) > A(>7, >;).
To make this more formal, we define by D(R, ) the set of profiles
that can be derived from R by letting a voter with ranking > deviate
to an arbitrary other ranking. We note that D(R,>) = 0 if no
voter in R reports >. Further, given two rankings > and >, we
let B(>,>) = {»’ € R: A(>,>’) < A(>,>)} denote the set of
rankings that have a smaller Kemeny distance to - than >. Based on
this notation, strategyproofness can be formalized via implications:
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if we choose a ranking > for R, we cannot choose a ranking >" €
B(>,>) NU(R’) for all profiles R’ € D(R, >) and rankings > € R.
Using our variables xg ., this results in the following constraints.

AN AN

ReRN »€R R'eD(R,>) »>eU(R) >'eB(>>)NU(R")

(xR V xR )

We can now write a computer program that generates this logical
formula for given values of m and n. For instance, for m = 5 and
n = 2, our program produces a formula with 227,880 variables
and 59, 445, 060 clauses. We then hand this formula for both m =5
and n = 2,and m = n = 4 to a SAT solver (e.g., Glucose [7] or
Cadical [11]), which proves both formulas unsatisfiable in less than
a minute. We hence derive the following result.

Proposition 1. No anonymous SWF satisfies both strategyproofness
and unanimity ifm =5 andn =2 orm =4 andn = 4.

4.2 Inductive Arguments

Proposition 1 shows that no anonymous SWF satisfies strategyproof-
ness and unanimity for only two cases, namely when there are
m =5 alternatives and n = 2 voters or m = 4 alternatives and n = 4
voters. By contrast, Theorem 2 claims that the impossibility holds
for a large range of combinations of m and n. To close this gap, we
will next present a lemma that generalizes our impossibility theo-
rem from fixed numbers of voters and alternatives to a large range.
In combination with Proposition 1, this lemma proves Theorem 2.
The full proof of Lemma 1 can be found in Appendix B.

Lemma 1. Assume there is no anonymous SWF that satisfies strat-
egyproofness and unanimity for m alternatives and n voters. The

following claims hold:

(1) For every m’ > m, there is no anonymous SWF that satisfies
strategyproofness and unanimity for m’ alternatives and n voters.

(2) For every t € N, there is no anonymous SWF that satisfies strate-
gyproofness and unanimity for m alternatives and €n voters.

Proor SKETCH. For both claims, we will show the contraposi-
tive: we assume that there is an anonymous, unanimous, and strat-
egyproof SWF for the larger numbers of alternatives and voters,
and show that this implies that there is also an SWF that satisfies
our properties for m alternatives and n voters. In more detail, to
show Claim (1), we suppose that there is an SWF f for m’ > m
alternatives and n voters that satisfies our axioms. We then define
an SWF g for m alternatives and n voters as follows: given a profile
for these parameters, we add m’ — m dummy alternatives in the
same order at the bottom of the rankings of all voters, apply f to
compute a ranking on these m’ alternatives, and then delete the
m’ — m dummy alternatives from this ranking to infer the final out-
put ranking. Since f is unanimous, the dummy alternatives must
appear at the bottom of the intermediate output ranking. Based
on this insight, it can be shown that g inherits strategyproofness,
anonymity, and unanimity from f, which contradicts that no SWF
satisfies these axioms for m alternatives and n voters.

For Claim (2), we assume that there is a unanimous, anonymous,
and strategyproof SWF f for m alternatives and #n voters. We then
define an SWF g for m alternatives and n voters as follows: we
clone each voter’s ranking ¢ times and then apply f to compute
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the output ranking. It can be verified that g is anonymous, unani-
mous, and strategyproof as f satisfies these conditions, which again
contradicts the assumption of this lemma. O

4.3 Verification

Because Proposition 1 has been shown by SAT solving, it is not
immediately clear how to verify the correctness of this result. We
have chosen a threefold approach to address this issue.

Firstly, following prior works [e.g., 16, 19, 21, 61], we provide
in Appendix D a proof of Proposition 1 for the case that m = 5
and n = 2 in a human-readable format. This proof was obtained
by analyzing minimal unsatisfiable subsets (MUSes) of the orig-
inal formula, i.e., inclusion-minimal subsets of the formula that
are unsatisfiable. More intuitively, such MUSes can be seen as the
reason why a formula is unsatisfiable and they tend to be much
smaller than the original formula. For instance, for their Theo-
rem 2, Brandt et al. [21] ended up with a MUS that only reasons
about 13 profiles, which allows to give a compact human-readable
proof. Unfortunately, our MUSes, which we obtained by using the
program MUSer2 [9], are much bigger: even after several optimiza-
tions, the smallest MUS we found requires roughly 200 profiles
and uses rather intricate reasoning. Although we were able to ex-
tract a human-readable proof by using a custom computer program
that translates MUSes into a readable format, the resulting proof
spans over 20 pages and requires the verification of more than 3000
strategyproofness applications. As such, the proof allows readers
to build confidence in the correctness of our SAT-based approach
by inspecting intermediate steps, but manually verifying the full
argument would be extremely tedious. We moreover note that we
cannot provide a human-readable proof for the case that m =n =4
as the computer reasons about thousands of profiles in this case.

Because of these issues, we offer two further means of verifica-
tion. Firstly, alongside the paper, we submitted the necessary code
for creating the formula described in Section 4.1 and we plan to
make this code publicly available upon acceptance. This enables
researchers to directly check that our code correctly constructs the
formula described before, which means we only need to trust the
correctness of the SAT solvers. We note here also that our imple-
mentation is rather standard and we expect a researcher familiar
with the literature to be able to verify our code in less than a day.

Lastly, following more recent works [e.g., 16, 21, 33], we have
fully verified Theorem 2—including both base cases and the induc-
tive arguments—with the interactive theorem prover Isabelle/HOL
[59]. Such interactive theorem provers are computer programs de-
signed to verify the correctness of mathematical proofs and thus
have a high degree of trustworthiness. In more detail, Isabelle/HOL
offers a rich mathematical logic which makes it simple to formalize
our setting. Thus, our Isabelle verification directly derives Proposi-
tion 1 as well as Lemma 1 from our axioms. Moreover, this formal
verification releases us from the need to check the intermediate
steps because Isabelle verifies the correctness of each deduction
step based on a small and highly trustworthy set of logical oper-
ations. Consequently, to trust our results, one only needs to trust
the implementation of our axioms in Isabelle. We further note that
experts in verification see such formal proofs as the “gold standard”
for increasing the trustworthiness of mathematical results [43].
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Upon acceptance, we will publish our Isabelle proof development
in the Archive of Formal Proof, the standard venue for such proofs.

5 APPROXIMATE STRATEGYPROOFNESS

As our last contribution, we analyze how manipulable particular
SWFs are. Indeed, while Theorem 2 shows that all reasonable SWFs
must be manipulable, it may be the case that voters can only gain a
small amount of utility by lying about their true ranking. In practice,
this may be enough to disincentivize voters from manipulating as
casting strategic votes requires effort to, e.g., learn the rankings of
the other voters and to compute a successful manipulation.

Unfortunately, all the SWFs discussed in Section 2.1 are severely
manipulable. To formalize this, we will make several changes in our
assumptions. Firstly, we will consider a variable electorate setting
and use as many voters as necessary for our counterexamples.
Secondly, to make our result better comparable to the existing
literature, we will analyze the potential utility gain rather than the
decrease in cost. To this end, we define the utility of a voter i with
ranking >; for another ranking > by u(>;,>) = (';) —A(-j,>) =
{(x,y) € A%: x =; y A x > y}|. We note that u is is minimal if >
and > are inverse to each other (yielding u(>,>) = 0) and maximal
if = = (yielding u(>,>) = (’5’)) When using this utility function,
strategyproofness demands that voters cannot increase their utility
by lying about their ranking, which is equivalent to Definition 1.

Finally, we will use the incentive ratio to measure the manip-
ulability of SWFs. Intuitively, this ratio quantifies the worst-case
ratio between a voters’ utility when lying and when voting truth-
fully. Formally, the incentive ratio of an SWF f for m alternatives
is defined by ym (f) = SUPR ; -/ %, where we only con-
sider profiles on m alternatives and (>l’. ,R_;) denotes the profile
obtained from R by letting voter i deviate to 7. Since u; (f(R)) can
be 0, we use the conventions that % = oo forall x > 0 and % =1.We
observe that y,,, (f) = 1if f is strategyproof for m alternatives and
Ym(f) > 1 otherwise. Moreover, an SWF has an incentive ratio of
Ym(f) = oo if a voter with utility 0 can manipulate and it holds that
ym(f) < ('7) otherwise. The incentive ratio has been successfully
used for private good settings to show that several manipulable
mechanisms are still close to strategyproof [e.g., 29, 54, 73].

We will next prove that all SWFs discussed in Section 2.1 have
a large incentive ratio, which demonstrates that these SWFs are
severely manipulable. Specifically, we will show that, while distance
scoring rules (including the Kemeny rule) cannot be manipulated
by voters with utility 0, voters with a utility of 1 can gain almost
their maximal utility when lying. Moreover, for positional scoring
rules, we show that voters with utility 0 can manipulate, which
means that their incentive ratio is unbounded.

Theorem 3. The following statements are true:

(1) For all m > 4, the incentive ratio of the Kemeny rule fxemeny

Satisﬁes (gl) -m< YM(fKemeny) < (’;)
(2) For allm > 3, the incentive ratio of every distance scoring rule

faist other than fKemeny satisfies (Zl) =1 < ym(faist) < (r;)
(3) For allm > 3, the incentive ratio of every positional scoring rule

fpos IS Ym (fpos) = 0o.

ProoF SKETCH. We will only prove here that yp (f) < (') for
all distance scoring rules f and defer the proofs of our lower bounds
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to Appendix C. Equivalently, this upper bound means that voters
with utility 0 cannot manipulate distance scoring rules. To prove
this claim, we fix such a rule f and its distance scoring function s,
a profile R, a voter i with ranking >;, and let > = f(R). Moreover,
we suppose that u(>;,>) = 0, which means that >; is inverse to >
and A(>;,>) = (’5’) Lastly, let R denote a profile derived from R
by assigning an arbitrary ranking -] # >; to voter i.

As the first step, we consider another ranking >’ € R \ {>} and
show that s(A(>;,>)) =s(A(-],5)) = s(A(>;,>")) =s(A(-],>")).
To this end, we observe that A(>;, l>)—A(>l’., >) = A(-4, >;) since >
and ; are inverse to each other. Next, let z = A(>=;,>") = A(>-],>’)
and note that z < A(>j, >lf) since A is a metric. If z < 0, our
inequality holds since s is non-decreasing, A(>;,>) > A(>lf, >),
A(=;,>") < A(-},>’). In particular, these insights imply that
S(A(-5,5)) =s(A(=],>)) 2 0 2 s(A(i,>")) —s(A(~],>")). Next,
suppose that z > 0. In this case, we recall that, by definition,
s(x) —s(x—1) 2 s(x—1) —s(x—2) forall x € {2,..., ()}, which
implies that s(()) = s((%}) — 2) = s(A(>4,5")) = s(A(>,>') — 2).
Since s is non-decreasing, A(>;,>) = (';’) and z < A(>;, >}), we
can again infer our target inequality as

S(AC-i,)) =s(A(=7,2)) = s(A(-i,)) = s(A(=3,2) = A(=i,>7))
2 5(A(=,>)) =s(A(-3,>) —2)
>s(A(-i.) =s(AC-i,>") —2)
=s(AC-,>")) —s(A(-1,>")).

Next, it holds that ;e 5 s(A(>;,>)) < ¥ jen s(A(-j, 7)) for
all >’ € R since f(R) = >. Hence, we derive for all >’ € R that

DosAChEN = D S(AG-1)) = (S(AC-52) = A(-]>))
JEN JeN\{i}
< DL AGE) = (A1) = s(A(-1.2))
JeN\{i}
= Z A(>},l>').
JEN
This proves that > minimizes the total score in R’. Moreover, if this
inequality is tight for some ranking >, then 3 jen s(A(>4,>)) =
2 jen S(A(=j,>")) and > is lexicographically preferred to >’ as
f(R) = >. We hence conclude that f(R’) = >, which shows that
voters with utility 0 cannot manipulate f. O

Remark 5. A natural follow-up question to Theorem 3 is whether
there are appealing SWFs that have a significantly better incentive
ratio than our considered SWFs. Motivated by this question, we
discuss in Appendix C the minimal compromise rule fjsc, which
has an incentive ratio of m — 2 when m > 4. To define this rule, we
denote the min score of an alternative x in a profile R by spin (R, x) =
min;e N m—r(>;, x). Then, fysc orders the alternatives in decreasing
order of their min scores, with ties broken lexicographically.

6 CONCLUSION

In this paper, we study social welfare functions (SWFs) with respect
to (Kemeny-)strategyproofness, which requires that voters cannot
obtain a ranking that is closer to their true ranking in terms of
the Kemeny distance by voting strategically. As our main result,
we show a sweeping impossibility theorem, demonstrating that



The Impossibility of Strategyproof Rank Aggregation

no anonymous and unanimous SWF satisfies strategyproofness if
there are m > 4 alternatives. Moreover, we prove that no majority
consistent SWF is strategyproof when m > 4 and that many natural
SWFs are severely manipulable as they have a high incentive ratio.

Perhaps the most natural follow-up question to our work is how
we can circumvent our impossibility theorems. Possible directions
to this end are the study of randomized or set-valued SWFs, a more
detailed analysis of the incentive ratio of SWFs, or the study of
alternative strategyproofness notions. For instance, one could ana-
lyze strategyproofness based on other distances between rankings
in the hope of more positive results.
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A MAJORITY CONSISTENCY AND STRATEGYPROOFNESS FOR m =3

As mentioned in Remark 1, when m = 3, the Kemeny rule satisfies both majority consistency and strategyproofness. In this appendix, we
will show that, under mild additional assumptions, these two axioms even requires us to choose a ranking minimizing the total Kememy
distance to the input rankings. To make this more formal, we first extend the domain of SWFs from profiles for a fixed electorate RN to the
set of all profiles R* = Unc &: N is non-empty and finite RN that are defined for any non-empty and finite electorate. Furthermore, we define
the majority margin between two alternatives x,y € A in a profile R by gxy(R) = [{i € N: x =; y}| = |[{i € N: y »; x}|, i.e., the majority
margin between two alternatives counts how many more voters prefer x to y then vice versa. Then, we say an SWF f : R* — R satisfies
o quasi-neutrality if f(r(R)) = t(f(R)) for all profiles R and permutations 7 : A — A such that (i) gxy(R) # gow(R) for all o, w,x,y € A
with v # w, x # y, and {x, y} # {v, w} and (ii) the alternatives can be labeled such that x =g y % z =g x.

o cancellation if f(R) = f(R’) for all profiles R and R” such that R’ arises from R by adding two voters with inverse preferences.

Less formally, quasi-neutrality enforces a mild degree of neutrality for profiles where the majority relation is cyclic and all majority
margins are unique. On the other hand, cancellation requires that adding pairs of voters with inverse preferences does not affect the outcome.
As we show next, every SWF on R* that satisfies strategyproofness, majority consistency, anonymity, quasi-neutrality, and cancellation
must always choose a Kemeny ranking, i.e., a ranking from the set K(R) = arg max, ¢ 2jeNg A(>-i,>) (Where N denotes the voters in R).

Proposition 2. Assumem = 3.Ifan SWF f on R* satisfies strategyproofness, majority consistency, anonymity, quasi-neutrality, and cancellation,
then f(R) € K(R) for all profilesR € R*.

ProoF. Let m = 3 and f be a SWF on R* that satisfies all given axioms. We will show in multiple steps that f(R) € K(R) for all profiles
Re R

Step 1: First, we will show that f only depends on the majority margins: it holds that f(R) = f(R’) for all profiles R, R’ € R* such that
gxy(R) = gxy(R’) for all alternatives x,y € A. To prove this claim, we denote the six possible input rankings by

=1 = abc =9 = bca >3 = cab
>4 = cba >5 = ach >¢ = bac.
Furthemore, given a profile R, we define by n{e fori € {1,...,6} the number of voters that report the ranking >;. By anonymity, we can

compute f only based on these six numbers. We further observe that >; is inverse to >43 for i € {1, 2,3}. We hence define 51}.2 = n? - nﬁ_3

forall i € {1, 2,3} to count how many more voters report >; than >;43 (or vice versa). By cancellation, these values are sufficient to compute
f as we can add and remove pairs of voters with inverse preferences without affecting the outcome. To prove this step, we will next show
that if gxy(R) = gxy(R’) for all x, y € A, then also 55 = (Sf2 . This implies that f(R) = f(R’) by our previous insights, so f can indeed only
be computed based on the pairwise majority margins. Now, to prove our claim, we observe that

gap(R) = SR~ 8468 g (R) =R+ 68— 68, gea(R) = —68 + 68 + 5.
By rearranging these equations, we infer that

SR = 9ab(R) + gap(R) SR = gbe(R) + gea(R) SR = gea(R) +gap(R)
! 2 ’ 2 2 ’ 3 2 ’
Hence, the majority margins fully determine the values of 51R . In particular, if gxy(R) = gxy(R’) for all x,y € A, then it also holds that
51}.2 = SlR’ for all i € {1, 2, 3}. This completes the proof of this step.

Step 2: We will next show that f(R) € K(R) for all profiles R € R*. To this end, we first note that if the majority relation x s of a profile R
is a ranking, then K(R) = {xp} and our inclusion holds by majority consistency. Furthermore, if gxy(R) = 0 for all x,y € A, then K(R) = R
and it holds trivially that f(R) € K(R). We next proceed with a case distinction regarding the structure of the considered profile.

Case 2.1: Let R denote a profile such that g,;(R) = gpc(R) = gea(R) > 0. For this profile, it holds that K(R) = {abc, bca, cab} and we
assume for contradiction that f(R) ¢ {abc, bca, cab}. Without loss of generality, we can make this more precise by letting f(R) = cba. Using
cancellation, we next add g, (R) pairs of voters such that one voter reports abc and and the other voter reports cba. This leads to a new
profile R” with f(R") = cba due to cancellation. Finally, we let the newly added voters who report abc deviate to bac. Since these voters
completely disagree with f(R’), strategyproofness requires that the outcome is not allowed to change at any step. However, in the resulting
profile R”, we have that g, (R”) = gop(R’) > 0, gpc(R”) > 0, and geq(R”") > 0, i.e., the majority relation is transitive. Hence, we need to
choose the ranking bca for R”, which contradicts strategyproofness. This proves that the assumption that f(R) ¢ {abc, bca, cab} is wrong,.

Case 2.2: We will next turn to profiles such that the majority relation is cyclic and all majority margins are unique and non-zero. More
specifically, we analyze profiles R such that g4 (R) > 0, gy (R) > 0, gea(R) > 0, and gxy(R) # gyz(R) for all distinct x,y, z € A. We start by
again considering a profile R* such that g5, (R*) = gpc(R*) = gea(R*) = A for some A > 0. By Case 2.1, it holds that f(R*) € {abc, bca, cab}
and we suppose without loss of generality that f(R*) = abc. Using cancellation, we next add pairs of voters to R* such that one reports
abc and the other cba. By strategyproofness, the voters who reports cba cannot change the outcome by deviating as any other outcome
is better for them. In particular, this means that, when swapping b and ¢, or a and b, the outcome does not change. By this argument and
Step 1, it follows that f(R") = abc for all profiles R’ such that g4, (R") = gap(R), gpc(R') = gpe(R), and geq(R’) = A. In particular, this
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holds for when g, (R") # gpe(R’), gap(R’) > gea(R’), and gpe(R’) > gca(R’), i.e., when all majority margins are different and g¢4(R’) has
the smallest weight. Put differently, for all such profiles, we “cut” the edge in the majority graph with the least weight, which means that
f(R") € K(R") = {abc}. Further, since all majority margins are unique in R’, we can generalize this insight to all profiles whose majority
margins can be obtained from R’ by permuting the alternatives using quasi-neutrality. This shows that f(R) € K(R) for all profiles such that
the minimal majority margin has weight A and all majority margins are different. Finally, we note that we can apply this argument for all
values of A > 0. Hence, f(R) € K(R) for all profiles with unique non-zero majority margins and a cyclic majority relation.

Case 2.3: Thirdly, we consider the case that the majority relation is cyclic and the majority margins have two different non-zero values. To
this end, let R denote a profile and A1, A2 € N denote two non-zero integers such that g4, (R) = A1, gpe (R) = A1, gea(R) = Ag. First, suppose
that Ay > Ay, in which case K(R) = {abc}. Suppose for contradiction that f(R) # abc. We first note that it can be shown analogously to Case
2.1 that f(R) ¢ {cba, bac, acb} as we can deviate to a profile with transitive majority relation otherwise. It thus holds that f(R) € {bca, cab}.
Suppose that f(R) = bca. In this case, we add a pair of voters with preference relations bca and acb and cancellation shows that we still
choose bea. Next, let the voter reporting ach swap b and c, resulting in a profile R’ with g,5(R’) = A1, gpc(R') = A1 + 2, and g¢q(R') = 2.
Moreover, strategyproofness requires that f(R’) = bca as any other outcome constitutes a manipulation. However, this contradicts Case 2.2
as all majority margins are unique, non-zero, and g (R’) is minimal. On the other hand, if f(R) = cab, we can apply an analogous argument
by adding a pair of voters with preferences cab and bac and reinforcing a against b.

As the second subcase, suppose that A; < Az, which means that K(R) = {bca, cab}. Using again the argument of Case 2.1, it follows that
f(R) € {abc, bca, cab}. So, we assume for contradiction that f(R) = abc. In this case, we can add pairs of voters with preference relations abc
and cba, which does not affect the outcome due to cancellation. Moreover, strategyproofness requires that the voters reporting cba cannot
change the outcome by deviating. By letting these voters swap b and ¢, we can increase the majority margin g, (R) arbitrarily, so we now
infer that f(R’) = abc for all profiles R’ with g, (R") = A1, gpc(R’) > A1, and gcq(R’) = A2. However, once g (R’) > Az, this conflict with
Case 2.2: in this case, the minimal edge is g,;(R’), so f(R’) must be bca.

Case 2.4: In our fourth case, we assume that exactly one majority margin has value 0. Without loss of generality, we suppose that g4c(R) =0
and we consider three subcases. Moreover, we will assume that every preference relation is reported by at least one voter; this is without
loss of generality due to cancellation. Now, as the first subcase, suppose gp.(R) > 0 and gp,(R) > 0, which implies that K(R) = {bca, bac}.
Assume without for contradiction that f(R) ¢ K(R). If f(R) = acb, let R’ denote the profile derived from R by letting a voter change his
preference relation from bca to bac. Strategyproofness requires that the outcome does not change. However, the majority relation now agrees
with the ranking bca, so majority consistency requires that f(R) = bca, a contradiction. If f(R) = abc, let R’ denote the profile derived from
R by letting a voter change his preference relation from cba to bac. Strategyproofness requires that f(R’) = abc, but majority consistency
requires that f(R’) = bac, hence yielding a contradiction. Finally, the cases that f(R) = cab and f(R) = cba are symmetric to f(R) = acb
and f(R) = abc, respectively, so we have a contradiction in every case.

As the second subcase, suppose that gp.(R) < 0 and gp,(R) < 0, so K(R) = {acb,cab}. If f(R) = bca, a voter can again benefit by
manipulating from the preference relation acb to cab. In particular, after this deviation, the majority relation agrees with the ranking cab, so
this ranking must be chosen, but A(acb, bca) = 3 > 1 = A(acb, cab). On the other hand, if f(R) = cba, a voter can manipulate by deviating
from the preference relation abc to cab. After this step, the outcome must be cab by majority consistency, which again decreases the Kemeny
distance of the manipulator. The case that f(R) = bac and f(R) = abc are again symmetric, so it follows that f(R) € K(R) as every other
outcome means that f fails strategyproofness.

As the third case, we suppose that g,;(R) > 0 and gp(R) > 0 and note that the case g, (R) < 0 and gp.(R) < 0 is symmetric. For this case,
let R* denote a profile with gy, (R*) = 0 for all x, y € A and suppose that f(R*) = bca (this choice will not matter due to quasi-neutrality).
Using the same argument as in Case 2.2, it holds for every profile R’ with g;.(R’) > 0, gcq(R’) > 0, and g,5(R) = 0 that f(R’) = bea, too.
Based on quasi-neutrality, this insight generalizes to all rankings such that one majority margin is 0, all majority margins are distinct and
the majority relation is cyclic. Hence, if g 5 (R) # gpc(R), it follows for our profile R that f(R) = abc and thus f(R) € K(R). So, suppose that
Jab(R) = gpc(R) and assume that f(R) # abc. If f(R) = cba, we repeatedly let voters with preference relation abc change their preference
relation to ach. (Note that we may use cancellation to add these voters). This eventually results in a profile R with g, (R’) > 0, g, (R) > 0,
and gqc(R") =0, s0 f(R") € {acb, cab} by the last subcase. However, this contradicts strategyproofness as the voters with preference relation
acb have A(acbh, bca) = 3 and any other outcome is therefore a manipulation. Next, if f(R) = bac, we let a voter with preference relation
cab swap a and c. For the resulting profile R’, majority consistency requires that f(R’) = abc, which constitutes a manipulation. A similar
construction also works if f(R) = acb. Lastly, if f(R) = bca or f(R) = cab, we can infer a manipulation analogously to Case 2.3 by ensuring
that all majority margins are unique.

Case 2.5: As the last case, suppose that exactly two majority margins are zero. To make this more precise, we assume that g 3 (R) > 0 and
e (R) = gea(R) =0, so K(R) = {abc, acb, cab}. Suppose for contradiction that f(R) ¢ K(R). If f(R) = bac, let R’ denote the profile derived
from R by letting a voter deviate from cab to acb. Consequently, g 5 (R’) > 0, gac(R’) > 0, and gp.(R’) = 0, so f(R) € {abc, acb} by Case 2.4.
Regardless of the exact outcome this constitutes a manipulation. If f(R) = bca, we can use an analogous construction to infer a contradiction.
Finally, if f(R) = cba, we let a voter deviate from abc to acb. This results in a profile R’ with g, (R’) > 0, g5 (R’) > 0, and g4c(R’) = 0.
Hence, f(R) € {acb, cab} by Claim 2.4, which means that a voter can again manipulate. Hence, it indeed holds that f(R) € K(R) for all
cases. O
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B PROOF OF LEMMA 1

We next turn to the inductive arguments, which are necessary to generalize Proposition 1 to Theorem 2.

Lemma 1. Assume there is no anonymous SWF that satisfies strategyproofness and unanimity for m alternatives and n voters. The following
claims hold:

(1) For everym’ > m, there is no anonymous SWF that satisfies strategyproofness and unanimity for m’ alternatives and n voters.

(2) For every t € N, there is no anonymous SWF that satisfies strategyproofness and unanimity for m alternatives and ¢n voters.

Proor. Fix some values m and n and assume that there is no anonymous SWF satisfying strategyproofness and unanimity for m alternatives
and n voters. For both claims of our lemma, we will show that if there was an SWF satisfying our axioms for the given parameters, then
there would also be one for m alternatives and n voters, which contradicts our previous assumption.

Claim (1): Assume for contradiction that there is an integer m’ > m such that there is an anonymous SWF f for m’ alternatives and
n voters that satisfies strategyproofness and unanimity. Moreover, let A’ denote the set of m’ alternatives for which f is defined, and let
A C A’ be a subset of this set with |A| = m. We will next construct an SWF g for n voters and the alternatives A that satisfies all our axioms.
To this end, given a profile R on the alternatives A, we define by RA™A the profile obtained from R by adding the alternatives in A’ \ Ain a
fixed order at the bottom of the rankings of all voters. Moreover, given a ranking > on A’, we define by > |4 the ranking obtained by deleting
the alternatives in A’ \ A from . Then, given a profile R on the alternatives A, our new SWF g first constructs the profile RADA computes
the output ranking > of f on this profile, and finally returns the restriction of > to A. Or, more compactly, g is given by g(R) = f (RADA) 4.

We next will show that g satisfies anonymity, unanimity, and strategyproofness. For anonymity, we note that r(RA™AY) = 7(R)A™4 for
every permutation 7 : N — N since we extend the ranking of every voter in the same way, regardless of his reported ranking. Since f is
by assumption anonymous, it hence holds that g(x(R)) = f(r[(R)A_’A/)|A = f(rr(RA_’A/)) la = f(RA_’A’)|A = ¢g(R) for all permutations
7 : N — N, thus showing that g is unanimous. Next, for unanimity, we observe that, if x >; y for all voters i in some profile R on A, then the
same holds for the profile RA™A Since f is unanimous, it therefore follows that the output ranking g(R) = f (RA™A")| 4 ranks x ahead of y.

Lastly, for strategyproofness, we note that if g is manipulable, then so must be f. To make this more formal, assume that there are profiles
R and R over the set of alternatives A and a voter i in N such that R and R only differ in the ranking of voter i and A(>;, g(R)) > A(>;, g(ﬁ))
Further, let >; denote voter i’s extended ranking in RA™4 Since f is unanimous and all voters in RADA (resp. RA™A’) rank all alternatives
in A ahead of those in A’ \ A and agree on the order of the alternatives in A’ \ A, the same must be true for the output ranking f(RA74") (resp.
f(li’A%A,)). This implies that A(*, f(RAﬁA’)) =A(; g(R)) > A(=1,g(R) = A(54, f(}QAHA')). Since RA™4" and RA™4 only disagree in
the ranking of voter i, we conclude that f is manipulable, contradicting our assumptions. Hence, if the SWF f exists, we could also construct
an SWF g for m alternatives and n voters that satisfies anonymity, unanimity, and strategyproofness, contradicting the premise of this lemma.

Claim (2): For the second case, we fix some integer £ € N and suppose that there is an anonymous SWF f that satisfies strategyproofness
and unanimity for m voters and ¢n voters. This time, we define the following transformation: given a profile R on n voters and m alternatives,
we define by ¢R the profile that contains ¢ copies of each voter in R. Then, we define an SWF g for n voters and m alternatives by g(R) = f(¢R).
We first note that it is again easy to see that g inherits both anonymity and unanimity from f. In more detail, permuting our input profile R
corresponds to permuting our input profile £R accordingly, which suffices to prove that g inherits anonymity. Similarly, if all voters in R
prefer x to y, the same holds for £R. Hence, the output ranking g(R) = f(£R) also has to rank x ahead of y by the unanimity of f.

Lastly, for strategyproofness, consider two profile R and R’ (on n voters) such that R and R” only differ in the ranking of voter i. Consequently,
R and £R’ only differ in the ¢ clones of voter i. Now, consider the sequence of profile R® = ¢R, R', ..., R’ = ¢R’ derived by letting the clones
of voter i one after another change their ranking from ~; to /. By the strategyproofness of f, it holds that A(;, f (R))) < A(4, f(RITL))
forall j € {0,...,¢ — 1}. By chaining these inequalities, we get that A(>;, g(R)) = A(>, f(£R)) < A(>i, f(¢R")) = A(>i,g(R’)). This proves
that g is strategyproof if f satisfies this condition. Hence, if f satisfies anonymity, unanimity, and strategyproofness, so does g, which
contradicts our assumption that no SWF for m alternatives and n voters simultaneously satisfies all three conditions. O

C PROOF OF THEOREM 3

We next turn to the proof Theorem 3. Since we have already shown that every distance scoring function has an incentive ratio of at most
ym(f) < ('), we will only focus on the lower bounds. Further, to improve legibility, we show each lower bound as a separate proposition.

Proposition 3. For allm > 4, the incentive ratio of the Kemeny rule fiemeny satisfies (') = m < ym(fkemeny)-

Proor. To prove this proposition, we first note that the Kemeny rule can be computed only based on the majority margins gy (R) = [{i €
N:x>;y} — {i € N: y >; x}| for all alternatives x,y € A in a profile R. In more detail, a ranking > minimizes the total Kemeny distance
Yien A(-i,>) if and only if it maximizes 3, yea: xoy gxy(R). This holds because Yy yea: xoy gxy(R) = (3)n = 2 Xy yea: xoy l{i €
N:y = x}| = (3)n - 22 xyeaZieNIlx >y Ay =i x] = (")n = 23 ;en A(>i,>). Here, I[x > y Ay >=; x] is an indicator function
that takes value 1 if x > y and y >; x and 0 otherwise. For an easier notation, we define the Kemeny score of an ranking > in a profile
Rby s(R,>) = Xy yea: x»y 9xy(R). The key insight for our proof is that there is a profile R* for which two rankings &1 and >, with
A(>1,3) = ('5‘) — (m — 1) maximize the Kemeny score, i.e., s(R*,>1) = s(R*,>2) > s(R*,>) forall > € R\ {>1,>2}. We will construct this
profile R* later on.
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Based on this profile R*, we will construct another profile Rto prove that ym (fkemeny) = (’;) — m. To this end, let >1,..., > (with

k = A(>1,>2) + 1) denote a sequence of rankings such that >; = >, =, =1y, and for all i € {1,...,k — 1}, the ranking >;4; is derived from
>; by swapping one adjacent pair of alternatives in >;. Put differently, this sequence transforms >1 and >3 by repeatedly swapping pairs of
alternatives and each pair of alternatives is swapped at most once. Hence, it holds for >, and >;_; that A(>2,>1) = A(>f_1,>2) = 1 and
A(g_1,>2) = A(>2,>2) = A(>1,>2) — 1. Moreover, this means for the inverse rankings of >3 and > _4, denoted by >3 and >, _, that
A($2,51) = A(5p_1,2) = ('g) —land A(52,>2) = A(Sp_1,>1) = (';) — (A(>1,>2) — 1). Finally, the profile R is the profile derived from
R* by adding for each ranking > € {>3, =_1, =2, =x_1 } one voter who reports .

We first note that s(R,>) = s(R*,>) for all rankings > since >3 and 5 as well as =_; and $4_; are inverse to each other. Thus, the
corresponding voters cancel each other out with respect to the majority margins. This means that the Kemeny rule has to choose either
1 or i3 for R and we suppose without loss of generality that > is selected. Now, let R’ denote the profile derived from R by letting the
voter who reports >3 deviate to the ranking that is completely inverse to 1, denoted by 5. Since A(51,>1) = (’5’) > A(>2,>1) and
A(B1,52) = (7) = A(b1,02) < (3) = (A(>1,2) — 1) = A(52,>3), it holds that s(R’, >1) < s(R’,>;). Further, it still holds that s(R’,>) <
s(ﬁ’, >3) forall > € R\ {>1,>2}. To see this, we note that A(>2,51) = 1 because A(>2,>1) = 1, so there is a single pair of alternatives x, y
such that x >3 y and y 51 x. Consequently, it holds for every ranking > that s(R,>) —s(R>) =2ify> xand s(R,>) —s(R,>) = -2 if
x > y. Moreover, since the score of >3 increases when going from >, to 51, we have that s(R,>g) =s(Rg) +2 > s(R o) +2 > s(R, )
for all rankings > € R \ {i>1,>2}. This proves that Kemeny’s rule chooses >3 for R’. Finally, we note that the deviator has a utility of
u(>g,>1) = (';’) ~A(%3,>1)=1inRanda utility of u(>2,>2) = (rzn) —A(>g,>2) = (rzn) —min R'. Hence, the incentive ratio of the Kemeny
rule is at least (’;) - m.

It remains to show that there is indeed a profile R* and two rankings >1 and >3 such that s(R*,>1) = s(R*,>2) > s(R*,>) for all rankings
> € R\ {>1,>2} and A(>1,>2) = (7)) — (m — 1). To this end, we note that it suffices to specify a matrix containing all majority matrices
because the Kemeny rule can be computed only based on these. Moreover, McGarvey’s construction shows that every majority margin
matrix can be induced by a ranking profile if all majority margins have the same parity [32, 57], so it is without loss of generality to focus
on these matrices. To improve legibility, we will represent such majority margin matrices via weighted tournaments T = (A, E, w) on the
alternatives, where (x,y) € E if and only if gxy(R) > 0 and w(x,y) = gxy(R).

Furthermore, we also extend the Kemeny rule and the Kemeny score to such weighted tournaments. Specifically, given a weighted
tournament T = (A, E, w), we define the Kemeny score by s(T,>) = X (4 y)eE: x>y W(u v) and the Kemeny rule chooses the ranking
that maximizes this score. Given a profile R that induces the weighted tournament T, maximizing s(T,>) is equivalent to maximizing
s(R>) = Zx’yeA: x|>ygxy(R)- To see this, let T = (V,E, w) denote the weighted tournament induced by R and let C = Y ,cgw(e) =
Dx,yeA: Gxy (R)>0 gxy(R) denote the sum of all positive majority margins. Since gxy(R) = —gyx(R) for all x,y € A, we have that

Z gxy(R) = Z gxy(R) + Z gxy(R)

X, YeA: x>y X,YEA: x> YAgxy (R)>0 X,YEA: x> YyAgxy (R) <0
= Z gxy(R) - Z Gyx (R)
X,YEA: x> YAgxy (R)>0 X,YE€A: x> YyAgyx (R)>0
=—C+2 > gxy(R)

X,YEA: x> YAgxy (R)>0
=-C+2 Z w(x,y).
(x,y)€E: x>y

Now, to prove the existence of R*, we will proceed inductively on the number of alternatives and consider m = 4 and m = 5 as base cases.
For these cases, the following weighted tournaments prove our claim.

T

For the weighted tournament T on m = 4 alternatives on the left, it can be checked that precisely >1 = x1x2x3x4 and >2 = x3x1X4x2
maximize the Kemeny score. To see this, we note that both of these rankings only need to reverse edges with a total weight of 4, so
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s(Ty, >1) = s(Ty,>2) = 16, whereas all other rankings need to reverse edges with higher total weight and have thus less score. Further, it
holds that A(>1,>2) = 3 = (7)) — (m — 1), so our claim holds in this case. Similarly, when m = 5, the Kemeny score is maximized by the
rankings >1 = x1Xx2x3x4%5 and >y = x4x2X5x1x3 in the weighted tournament T5 on the right. Both of these rankings require us to revert
edges with a total weight of 14, so there total score is s(T5,>2) = 46. By using a case distinction with respect to which edge of the cycle
(x1, x3, x4, x5) is reversed in T5, we can further conclude that every other ranking > has strictly less score, so > and >3 are indeed the only
possible winning rankings. Further, it holds again that A(>1,2) = 6 = (%) — (m - 1).

For our induction step, we assume that there is a weighted tournament T,, = (A, E, w) for m > 4 alternatives A = {x1,...,xpn} for
which two rankings >1 and >3 with A(>1,) = (}) — (m — 1) maximize the Kemeny score, i.e., s(Tp, >1) = s(Tip, >2) > s(Tpp, >) for all
> € R\ {>1,>2}. Additionally, we will suppose that (i) each edge weight w(e) in T, is non-zero and even, (ii) >1 = X1 ... X, and (iii) >3
top-ranks x,;,—1 and second-ranks xp,—3. It is straightforward to verify that these assumptions holds for our base cases, and it will become
clear that they are preserved in the induction step. Given the weighted tournament T, we will construct another weighted tournament T,/
onm’ = m+2 alternatives A" = {x1, ..., Xm+2}. In particular, for this weighted tournament Ty, precisely the following two rankings > and
>é will maximize the Kemeny score: l>{ =X1...XmXm+1Xm, and > é agrees with >3 on all alternatives in A, places xpm4+1 first, Xp;—1 = X7 -3
second, and x;;,+2 third. For instance, l>§ = X5X3X6X1X4X2 When m = 6 and l>é = X7X5X8X3X6X1X4X2 when m = 8. Since l>; agrees with > and
>, agrees with > when restricted to A, it holds that A(>1,>)) = A(>1,>2) +m+(m—1) = (3) +m = (mg-z) — (m+1), so these rankings
satisfy our distance condition. Further, it is easy to check that they satisfy the conditions (ii) and (iii) for the induction.

Given Ty, = (A, E, w), we construct the weighted tournament T,y = (A", E’, w’) as follows:

e Forall x;,x; € {x1,...,xm}, we have (x;,x;) € E" if and only if (x;, x;) € E. Further, for all these edges except for (y1, y2) = (x2,x3) if m
is even and (y1,y2) = (x3,x4) if m is odd, we set w’(e) = ¢ - w(e), where c is a large constant that will be specified later. Further, we set
w (Y1 y2) =c-w(ynyz) +2.
e Forall x; € {x1,...,Xm—4,Xm—2}, we add the edges (xm+2, x;) and (xj, xp41) with weight w’ (xm+2, x;) = W' (i, Xm+1) = 2.
o We add the edges (xm, Xm+1), (Xm+2,Xm), (Xm+2, Xm—-3), and (xm—3, Xm+1) with weights w’ (xm, Xm+1) = W’ (Xm+2, Xm—3) = 4m and
W (Xma2, Xm) = W (Xm—3, Xm+1) = 2.
e Lastly, we add the edges (xm—1, Xm+2)s (Xm+1, Xm—1), and (Xm+1, Xm+2) with weights W’ (xm—1, Xm+2) = W (Xm+1, Xm+42) = 14m and
W (Xme1, Xm—-1) = 2.
Now, we will choose the constant ¢ so large that the ranking chosen for T, has to agree either with > or >3 when restricted to
A = {x1,...,xm}. Specifically, we set ¢ = 4 + X (x y)ep': {x,y}¢A W(x,y) and we denote by |4 the restriction of a ranking > on A’ =
{x1,...,xm+2} to the alternatives in A. Now, let (y1,y2) = (x2,x3) if m is even and (y1,y2) if m is odd. By construction, it holds that
$(Tas>) = ¢+ s(Tp,>|a) +2+ Z(x,y)eE’: {x,y}LAAX> Y w (x,y) if y1 > y2 and s(Tpy, >) = ¢ - 5(Trn, >]4) + Z(x,y)eE’: {x,y}¢AAX>Y w’ (x, 1)
otherwise. Furthermore, it holds by the induction hypothesis that s(T;,,>1) = s(Tm,>2) > s(Tp, >) for all other rankings > and so
$(Tm,>1) = s(Tm, >2) = 1+ s(Tpy, >) because the Kemeny score is always an integer. Hence, if >" and >’ are two rankings on A’ such that
>"|4 € {>1,>2} and >"" |4 ¢ {>1,>2}, it holds that s(T,,r, ") > s(T,,,>"’) because

(T, ") = 5T, ") 2 ¢ (5(T, & [4) = s(Tm,>"|)) 2= > w(xy)
(rey)€E: {x,y}¢A
>c-2- Z w(x,y)
(x.y)€E: {x,y}LA
=2.

Next, we will derive the rankings on A’ that agree with >; when restricted to A and maximizes the score s(Tj,, ). To this end, we first
compute the score of l>; =X1...Xm+2 as

s (T, [>;) =c-5(Tm, 1) + 2+ W (Xma1, Xmr2) + W (Xme1, Xma2) + W (Xm, Xma1) + W' (Xm—3, Xma1) + Z W’ (i, Xm1)
X €{ X1, Xm-4,X2 }

=c-s(Tp,>1)+2+14m+14m+4m+2+2(m—3)
=c-s(Tp,>1)+34m -2

Note here that the first +2 is due to the fact that x3 >1 x3 1 x4 and that we increased the weight of (x2, x3) (if m is even) or (x3,x4) (if m
is odd) by 2. Next, to show that ] maximizes the Kemeny scores among all rankings > with |4 = 1, we fix one such ranking > and show
that s(T,>7) > s(Tpy, >). To this end, we observe that the total weight of the edges (x;, x;) with {x;,x;} ¢ Ais Z(xi’xj)EE/: {(xix;}2A =
2-14m+2-4m+ (2m - 3) - 2 = 40m — 6, because there are 2m + 1 edges that are not contained in A and only four of these edges have a
value other than 2. As a consequence of this, it holds for & that s(T,>) = ¢ - $(Trn, >1) + 2+ 40m — 6 — X (x y)eE: yoxa{x,y}ea W (X, 9).
If Xm41 D> Xme2 OF Xmi2 D> Xm—1, our observation implies that s(T,>) < ¢ - s(Tip,>1) + 2 + 40m — 6 — 14m < s(Tyy, l>1). On the
other hand, if x;;,—1 > Xm42, we have by transitivity that x,,—3 > xp42 because xp—3 >1 xpm—1. If additionally X441 > xp, it holds that
$(Tp,>) < ¢ (T, >1) +2+40m — 6 — 8m < s(Tyy,>7). Hence, we must have that xp, > Xm+1 > Xm+2, which implies that > = >{. We
hence conclude that l>i indeed uniquely maximizes S(T,,>) among all rankings > with > 4 = >1.
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We next repeat the exercise for the rankings > on A’ that agree with >, when restricted to A. To this end, we let X = {x1, ..., Xm—4, Xm—2}
and first compute the score of the ranking l>;, which ranks x;,+1 first, x,,,—1 second, and x;,+2 third.

s(Ty, Dé) =c- (T, >2) + W (Xmat, Xm—1) + W (Xma1, Xma2) + W (Xm-1, Xma2) + W (Xma2, Xm—3) + W' (Xmi2, Xm) + Z w’ (X2, Xi)
xieX

¢ s(Tp,>2) +2+14m+14m+4m+2+2(m - 3)
=c-s(Ty,>2) +34m -2

Note here that x3 >3 x7 if m is even and x4 >3 x3 if m is even, so we do not have the "+2" from the edge in (x2, x3) (resp. (x3, x4)). Just as
for >, we next fix a ranking > on A’with |4 = >3 and show that s(T,>}) > s(Tp, ). Analogous to the analysis of -7, we observe that
$(Tyy,>) =c - s(Tpy, >2) +40m — 6 — Z(x,y)eE: yoxA{x,y)eA w’ (x,y). Hence, if xm+2 > Xm+1 OF Xm42 B> Xm—1, we can immediately conclude
our inequality. So, we assume that xp41 > X2 and xp—1 > Xpm42. Next, if X492 > X3, > must be either > é or the ranking that places x,;—1
first, x;n4+1 second, and xp,42 third, because xp,—3 is the second-best alternative in >5. Further, if x,,_1 is first ranked, it can be computed
that s(Tp, >) = (T, >5) = W(Xma1, Xm—1) = ¢ - $(Tmn, >2) + 34m — 4, so it holds that s(T,>) < s(Tny, >5). Hence, we suppose next that
Xm-3 B Xm+2. If additionally xpm+1 > Xy, it holds that s(Tpy,>) < ¢ - 5(Tm, >2) +40m — 6 — 8m < s(Ty,>7). Hence, we now assume that
Xm > Xm+1, which implies that x,;,—1 > Xm41 and x;,—3 > Xme1 because x;;—1 >2 Xm—3 B2 X Lastly, recall that X = {x1, ..., xm-4, Xm-2},
and define £; = |{x; € X: x; > xm+1}| and & = |{x; € X: xm+2 > xi}|. Since xpm41 > Xm+2, it holds that £ + £, > m — 3. Therefore, we
conclude for this case that

$(Tw,>) = ¢+ s(Tp, >2) + 40m — 6 — W,(xms Xm+1) — Wl(xm+1>xm—1) - W’(xm+1,xm—1)
- D WErm) - Y W (tme )
X €X 1 Xi> X1 Xi €X 1 Xmio> Xi
<c- s(Tp>2)+40m—6—-4m—-2—-2—-2(m—3)
=c-s(Ty,>2) +32m — 4.

Hence, it holds in every case that s(Tpy,>5) > s(Tpy, ), thereby proving that >/ uniquely maximizes the Kemeny score among all rankings

> with >[4 = 2. Since our computations also show that s(Tpy,>1) = s(Tyw,>5) as s(Tm, >1) = s(Tn, >2), the weighted tournament T,y
satisfies all our requirements. This completes the proof of the induction step and thus of this proposition. O

Next, we turn to our lower bound for distance scoring rules.
Proposition 4. Assumem > 3. The incentive ratio of every distance scoring rule fyis; other than fxemeny satisfies (3) =1 < ym(faist)-

Proor. Fix a distance scoring rule f for m alternatives other than the Kemeny rule and let s denote its distance scoring rule. To show this
proposition, we will follow the same approach as for the Kemeny rule and construct a profile R* such that that two rankings 1 and >
with A(>1,>2) = ('}) minimize the total score, i.e., ¥;en S(A(>1,>1)) = Djen S(A(=i,>2)) < Yien S(A(-,>)) forall > € R\ {>1,2).
For simplicity, we subsequently define the score of a ranking > in a profile R by s(R,>) = >;en S(A(>j,>>)). Based on the profile R*, we
construct another profile R as follows. First, we let A denote an integer such that 4 - min,, ¢ g\ (5,,5,) S(R*, >) = s(R*, >1) > 2(s( (';)) —5(0)).
Further, we let > and > denote two rankings with A(>1,>1) = 1 and A(>2,>2) = 1, respectively. Since A(>1,>2) = ('g’) this also means
s(-1,2) =s(=2,>1) = (3) - L.

Now, let R denote the profile that consists of A copies of R*, one voter reporting >1, and another voter reporting >3. First, we observe that

s(R>1) =A-s(R%,>1) +s(A(-1,1)) +s(A(-2, 1))

=21-s(R*,>2) +s(1) +s ((r;z) - 1)

A-s(R*,>2) +s(A(-2,2)) + s(A(-1,2))
s(R,>2).

Further, it holds for all > € R \ {1, >2} that
s(R,>) =s(R,>1) = A+ (s(R*,>) = s(R*,>1)) +s(A(>1,5)) = s(>1,>1) +5(A(>2,>)) = s(>2,>1)

> 2(s ((r;)) =5(0)) +s(A(>1,>)) = s(-1,21) +s(A(>2,>)) = s(>-2,>1)
> 0.

Here, the first inequality follows from the choice of A and the second one by the fact that s(x) < s(x + 1) for all x € {0, ..., (';’) — 1}, which
means that s(('g)) —5(0) = s(y) —s(z) forally,z € {0,..., (rg)}

By this analysis, it holds that precisely 1 and >2 minimize the total score in R. Without loss of generality, we may thus assume that i1 is
chosen, which leaves the voter who reports >2 with a utility of u(>2,>1) = ('g‘) — A(>2,>1) = 1. Now, assume that this voter deviates to
report i>5 instead. For the resulting profile R’, it holds that s(R’,>2) — s(R,>2) = s(0) —s(1) < 0 < s((7)) =s((7) = 1) = s(R',>1) = s(R, >1).
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Since s(R,>1) = s(R,>2), this means that s(R’,>>3) < s(R’,1>1). Further, an analogous argument as for R shows that s(R’,>3) < s(R,>)
forall > € R\ {>1,>2}. Hence, f needs to choose the ranking >3 for R. This means that the utility of our voter after the manipulation is
u(>2,>2) = (';l) — 1, which implies that y,,, (f) > (';l) -1

It remains to construct the profile R*. To this end, we first consider the profile R™, where one voter reports = and another voter reports the
inverse ranking . It holds for every ranking > that s(R™,>) = s(A(>,>)) + s(A(5, 1)) = s(A(-,>)) + s((';) — A(>,>)). Furthermore, we
recall that distance scoring functions satisfy that s(x +2) — s(x + 1) > s(x + 1) — s(x) for all x € {0, ..., ('g) By chaining these inequalities,
it holds that s(y + 1) — s(y) > s(x + 1) —s(x) forall x,y € {0,...,(’}) — 1 with x < y. When letting x € {1,...,|(’})/2]}, this implies that
s((rzn) -x+1)— s((rg) —x) = s(x) —s(x — 1) and thus s((g’) —x+1)+s(x—-1) >s(x)+ s((rg) — x). For our profile R, this means for all
>, >’ € R that s(R™,>) < s(R”™, ') when |A(>,>) - (7) /2] < |A(>,>") — (7)) /2. Further, since f is not the Kemeny rule, there must be
anindex i € {1,...,('}) — 1} such that s(x + 1) — s(x) > s(x) — s(x — 1), which implies that s((’})) +s(0) > s([(’y)/21) +s(L(’y)/2]). Since
s(x) +s((’;l) -x) < s(y) —s((rzn) —y) forallx,ye{0,..., L(T)J} with x > y, we thus conclude that there is an index ¢ € {0, ..., L(?)/ZJ -1}
such that

(1) s((3) —x) +s(x) =s((3) —y) +s(y) forall x,y € {|(7)/2] - ¢..... () /2]} and

2) s((’;’) —-x)+s(x) < s((rzn) —y) +s(y) forall x € {|_(r2")/2J -4, L(rg)/zj} andy € {0,..., |_(r2")/2j -t -1}

Now, let X = {|(%})/2] — ¢,...,[(’})/2] + £}. From our insights on s, it follows that s(R™,>) = s(R”,>’) < s(R™,>") forall >,>", " € R
such that A(>,>) € X, A(>,>’) € X,and A(>,>"") ¢ X.

Next, we fix our desired output ranking >1 and we define D(>1) = {> € R: A(>,>1) € X}. Then, we let R* denote the profile that
concatenates the profiles R”™ for all >~ € D(>1). Now, we first note that s(R*,>1) = ¥y ep(s,) S(R7,>1) < Xy ep(s,) S(R™,>) = s(R*,>)
for all rankings > € R, because A(>,>1) € X for all = € D(>1). In particular, by the insights of the previous paragraph, this means
that 1 is a minimizer of s(R”, ). Secondly, we note for the inverse ranking of 1, denoted by 2 that s(R*,>2) = s(R*,>1) because
s(R™,>1) = s(R”,>3) for all = € R. The latter observation is true as A(>,>1) = A(=,>3) and A(%,>1) = A(>,>3) (wWhere & is the inverse
ranking of ), where we use that, if two rankings disagree on a pair of alternatives, the inverse rankings will also disagree on this pair.

Lastly, it remains to show that s(R*,>1) < s(R*,>) for all rankings > € R\ {>1,>2}. To this end, we first recall that s(R”,>1) < s(R”,>)
for all > € D(>1) and > € R. Hence, it suffices to identify a single ranking > € D(>1) to prove our claim. If > € D(>1), we can simply
pick > for this. Indeed, since A(>,>) = 0 ¢ X, it holds that s(R”,>1) < s(R”,>). Hence, assume that > ¢ D(>>1), which means that
A(>,>1) < [(F)/2] —€ or A(>,>1) > [(’})/2]+¢. We focus on the first case, i.e, A(>,>1) < | () /2] — ¢ because the other case is symmetric
when exchanging the role of > and >3. Now, let >, .. ., =(m) denote a sequence of rankings from > to >3 through . More formally, these
rankings satisfy that >o= 1, >(m): >, thereisk € {1,..., (';) — 1} such that >;= >, and for all i € {0, ..., (';l) — 1}, >i4+1 emerges from >;
by swapping one pair of alternatives. By the last condition, we know that k = A(>, >1) because each swap must move the ranking further
away from > and towards >3. Now, let = = ~; denote the ranking for the index j = L(';) /2] — ¢. Since our sequence transforms >; one
after another to >3 and 0 < k < j, it holds that A(>1,>) = | (})/2] — £ > A(>, >). Hence, we have that s(R™,>1) < s(R”,>). Moreover, it
holds by definition that > € D(>1) because A(t>1,>) € X. Since our two cases are exhaustive, we conclude that s(R*,>1) < s(R*,1>) for all
rankings > € R \ {>1,>2}, which completes the proof. O

As the third point of this section, we turn to positional scoring rules.

Proposition 5. For all m > 3, the incentive ratio of every positional scoring rule fyos is ym(fpos) = 0.

Proor. For proving this claim, we fix a positional scoring rule f and let p denote its positional scoring function. To show that
¥m (fpositional) = oo, it suffices to give two profiles R and R’ on m alternatives and a voter i such that R and R’ only differ in the ranking
of voter i, this voter obtains a utility of 0 from the ranking > = f(R), and a non-zero utility from the ranking >’ = f(R). To construct
such profiles, we let R* denote a profile on m — 1 voters such that (i) alternative x is top-ranked by all voters and (ii) for every alternative
y € A\{x} and eachrank k € {2,...,m}, there is one voter such that (>, y) = k. For these profiles, the total score of x, denoted by p(R*, x),
is p(R*,x) = (m — 1)p(1) and the total score of all other alternatives y € A\ {x} is p(R¥,y) = X/, p(k). Since p(1) 2 p(2) > --- > p(m)
and p(1) > p(m), this means that p(R¥, x) > p(R¥,y) forall y € A\ {x}. Next, we define ¢ = p(R¥,y) and § = p(R¥,x) — p(R¥,Y) for some
pair of alternatives x,y € A with x # y and note that ¢ and § are independent of the choice of x and y.

We proceed with a case distinction and first suppose that p(1) > p(m — 1). In this case, we enumerate the alternatives by x1, ..., xm
and consider the profile R that consists of i copies of R¥i for alli € {1,...,m — 1} and m — 1 copies of R*m. For instance, if m = 3,
R consists one copy of R*1, two copies of R*2 and two copies of R, In this profile, every alternative x; € A \ {x,;} has a score of
p(ﬁ, xi) = (M — 1) - ¢c+i- 0 and alternative x;, has a score of p(ﬁ, Xm) = (M —1)-c+ (m—1) - 8. Hence, it holds that
p(ﬁ, Xm) = p(ﬁ, Xm-1) > p(R xm_3) > -+ > p(ﬁ, x1). Next, let A € N denote an integer such that § - 1 > 2(p(1) — p(m)) and let R
denote the profile that consists of A copies of R, one voter reporting >1 = X1 ...Xm, and one voter reporting >3 = X1 ... Xm-2XmXm—1-
We first note that p(R, x;,,) = Ap(ﬁ, Xm) + p(m—1) + p(m) = Ap(l?, Xm-1) + p(m — 1) + p(m) = p(R,xm-1). Further, by the choice of
A, it holds that p(R,xm—1) > p(R,xm—2) > --- > p(R,x1) because p(R, x;) — p(Rxj—1) = A -8+ p(r(>1,x;)) — p(r(>1,xi—1)) + p(r(>2
,%i)) — p(r(>2,%xi-1)) 2 A- 8 —2(p(1) — p(m)) > 0 foralli € {2,...,m — 1}. Lastly, we suppose without loss of generality that f chooses
the ranking > = x, ... x1, which means that the voter reporting >1 obtains a utility of 0. On the other hand, if this voter deviates to report
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=1 = Xm—1%1 . . . Xm-2Xm, it holds for the resulting profile R” that p(R’, xm-1) > p(R, xm-1) = p(R, xm) = p(R’, ) because p(1) > p(m—1).
This means that x,,—1 >’ x;, for the ranking chosen for R’ and therefore u(>1, f(R’)) > 0. This completes our proof in this case.

Secondly, we suppose that p(1) = p(m —1). Since p(1) > p(2) > --- = p(m — 1), this means that p(1) = p(2) = - -- = p(m — 1). Moreover,
because p(1) > p(m), we conclude that p(m—1) > p(m). In this case, we consider the profile R that consists of one copy of R*! and i — 1 copies
of R¥i for all i € {2, ..., m}. Hence, it holds in this profile that p(R, x1) = (m(mT_l) +1)c+8and p(R x;) = (w +1)c+ (i —1)6 for all
i € {2,...,m}. This shows thatp(ﬁ, Xm) > -+ > p(l?, Xx2) = p(l?, x1). Further, we let A again denote an integer such that §-1 > 2(p(1) —p(m))
and define R as the profile that consists of A copies of R, one voter reporting >1 = X1 ... Xm, and another voter reporting >3 = X2x1x3 . . . Xp.
Just as in the last case, it can still be shown that p(R,x;,) > -+ > p(R x2) = p(R x1). Without loss of generality, we suppose that
f(R) => = xp, ... x1, which means that the voter reporting >1 obtains a utility of 0. Lastly, let R” denote the profile where this voter deviates
to the ranking > = x1x3 ... xmx2. It holds for this profile that p(R’, x1) = p(R, x1) as the manipulator does not change the position of this
alternative and p(R’, x3) < p(R, x2) because p(m) < p(2). Hence, we have now that p(R’, x1) > p(R’, x2) which implies that x; >’ x, for the
ranking >’ = f(R’). This means that u(>1,>’) > 0 and thus u(>1,>") /u(>1,>) = co. O

As the last point of this appendix, we turn to the minimal compromise rule defined in Remark 5. To this end, we recall that the min score
of an alternative x in a profile R is spin (R, x) = minje Ny m — r(>;, x). Then, the minimal compromise rule sorts the alternatives in decreasing
order of their min scores, with ties broken lexicographically.

Proposition 6. For all m > 4, the incentive ratio of the minimal compromise rule fuin is Ym(fmin) = m — 2.

Proor. To prove this proposition, we will show that yp, (fimin) = m — 2 and yim (fmin) < m — 2 whenm > 4.

Claim 1: y;, (fiin) = m — 2. First, to show our lower bound, we construct a profile R such that a voter i obtains a utility of 1 when
voting truthfully and of m — 2 when voting dishonestly. To this end, we suppose that the tie-breaking order > is given by x1 > x3 > - -+ > xp,.
Now, the ranking of our manipulator will be >; = xp,;—1 ... x2xm,x1. Further, for every alternative x; € A \ {xp,}, there is one voter in R
who reports a ranking where x; is bottom-ranked. By this definition, it follows that spyin (R, x;) = 0 for all x; € A\ {x} because each
such alternative is bottom-ranked by one voter. On the other hand, spin (R, Xm) = 1 because r(>j, xpz) < m — 1 for all voters j € N and
r(>i,xm) = m — 1. Using our tie-breaking, it thus follows that the minimal compromise rule returns the ranking > = x;;; X1 ... x;—1. On the
other hand, if voter i bottom-ranks xp,, every alternative has a min score of 0, because every alternative is bottom-ranked by a voter. Hence,
in the corresponding profile R’, the minimal compromise rule picks the ranking >” = x7 ... xp, by our tie-breaking assumption. Finally, we

note that i) — m=2 _ ) _ 5 thys showing our lower bound.

u(>;,>) ~ 1

Claim 2: y,; (fiin) < m — 2. To prove our upper bound, we will proceed in multiple steps. Firstly, we will show that we can restrict
our analysis to deviations such that the min scores of all alternatives weakly decrease, because the maximal utility gain is attained with such
a deviation. Secondly, we prove that the sum of the min scores is a lower bound of the utility of every voter. Based on these insights, we will
prove this claim in the last step.

Step 1: First, we will show that it suffices to focus on deviations that weakly reduce the min scores of all alternatives. To prove this
claim, let R and R’ denote two profiles and i a voter such that R and R’ only differ in the ranking of voter i. We will next show that
there are two other profiles R and R such that (i) &; = »; and & = =1 (i.e,, voter i reports the same ranking in Rand R’ asinRand R,
respectively) (ii) R differs from K’ only in the ranking of voter i, (iii) Smin(R’, %) < smin(R x) for all x € A, and (iv) finin(R) = finin (R) and
u (>4, fmin (R’ ) = u(>i, fmin (R )) This means that the incentive ratio of fii, is maximized when voters only decrease the min scores. Now,
to prove | this claim, we define R and R’ as the profiles derived from R and R’ by adding a new voter who reports >;. Clearly, the resulting
profiles Rand R’ satisfy our conditions (i) and (ii) by construction. Further, it holds for all x € A that sy (R, x) = min(m—r(>;,x),m—r(>’ ;
,X),minjeny (3 m = r(>5,%)) < min(m — r(>4,x), minjeny (53 m — r(>j,x)) = Smin (R, x), which proves condition (iii). Moreover, since
cloning rankings does not affect min scores, we have that syin (R, x) = Smin (R x) for all x € A and thus Jfmin(R) = fmin (R).

As the last point, we need to show that u(>;, fiin (R')) = u(>i, famin(R")). To ease notation, we set & = finin (R) and > = finin (R') for the
rest of this step. Furthermore, we define for every alternative x € A the set S(x) = {y € A: x>yAy > x} and note that A(>,5) = Y, c 4 [S(x)].
Now, we fix an alternative x € A and analyze the set S(x). To this end, we first observe that sy, (R, Y) < smin(R’,y) for all y € A because
R’ arises from R’ by adding a new voter. Hence, if Smin(R, %) = smin (R’, x), it holds that S(x) = @ because syin (R, x) = smin(R’,x) >
smin(R',y) > s(R',y) for all y with x > y. Moreover, if this inequality is tight, then spin (R’, x) = smin(R’, y) and x > y implies that x is
favored lexicographically to y. Next, we suppose that syin (R, x) < smin(R’, x), which means that sy (R, x) = m — r(>i, x). By definition
of S(x), it holds that y > x and thus Smin(R, y) > Smin (R, x) for all y € S(x). This inequality implies that y >; x for all y € S(x) because
Smin(R',x) = m — r(>;,x). In particular, if x >»; y, it would hold that spin (R, y) < m — r(>5,y) < m — r(>1,x) = Smin(R’, x), which
contradicts that y & x. By combining our two cases, we infer for all alternatives x,y € A with x > y and y & x that y >; x. This means that
A(-3,5) = A(=i,>) = A(>,5) < A(-;,1>) and thus u(>-5,5) > u(>-;,>).

Step 2: Next, we will show that the sum of all min scores is a lower bound for the utility of every voter in the considered profile, i.e.,
u(>i, fmin(R)) = Yxea Smin (R, x). To see this, fix a profile R and a voter i, and let > = fni, (R) denote the ranking chosen by the minimal
compromise rule for R. We further define the utility of an alternative x € A by u(x,>;,>) = {y € A: x >; y A x > y}| and note that
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u(-i,>) = () = A(=i,>) = {(x,y) € A%: x = y Ax > y}| = Yyeq u(x, =i, ). Finally, fix an alternative x; we will show that u(x, >;,>) >
Smin (R, X). If smin (R, x) = 0, this holds trivially, so we suppose that spyin (R, x) > 0. In this case,let Y = {y € A: m—r(>;,y) < smin(R, y)} and
note that |Y| = syjn (R, x). Further, it holds for all y € Y that x >; y and x > y because spin (R y) < m —r(>i,y) < smin(R x) < m—r(>;,x).
This entails that u; (x, >;,>) > |Y| = spin (R, x), thus proving this step.

Step 3: Lastly, we will prove our upper bound. To this end, let R and R’ denote two profiles on m alternatives that differ only in the ranking
of a single voter i and suppose that R and R” maximize the incentive ratio of the minimal compromise rule. Further, we let > = fi;,(R) and
e
if u(>;,>) = 0, then > has to top-rank the bottom-ranked alternative x* of ;. However, it holds that syjn (R, x*) = m — r(>;,x*) = 0
and thus also that spiy (R, x) = 0 for all x € A because fyjy sorts the alternatives in decreasing order of their min scores. Finally, because
Smin(R’, X) < smin(R, x) for all x € A, we conclude that spin (R, x) = 0 = spin (R, x) for all x € A. This implies that > = >, so a voter with
utility 0 cannot manipulate.

By Step 1, we can also conclude that no voter can manipulate if all min scores are 0. Hence, suppose that spin (R, x) > 0 for at least one
alternative x. Similar to Step 1, we define the sets St (x) = {y € A: x>yAy>'xAy =; x}and S~ (x) = {y € A: x>yAy>"xAx >; y}. We note
for these sets that {(x,y) € A2: x>yAy>'x} = {(x,y) € A2: y € ST(x)}U{(x,y) € A2: y € ST(x)}, 50 A(>, ") = Yyea IST(2)|+]S™ (x)].
Further, the set {(x,y) € A%: y € $*(x)} contains all pairs of alternatives on which > and >’ disagree and that move > closer to >;, whereas
{(x,y) € A%: y € S™(x)} contains the pairs of alternatives on which > and >’ disagree and that move > further away from >;. In particular,
this means that A(>;,>") = A(=;,>) + Yxea IS (x)| = |ST(x)| and thus u(>;,>") = u(>5,>) + Xyea ST ()] = 1S7(x)].

We will next aim to bound the value |S*(x)| — |S™ (x)| for every alterative x. To this end, we first note that if spin (R, x) = Smin (R, x)
for some alternative x, then S*(x) = S™(x) = 0. The reason for this is that if spin (R, x) = smin(R’, x), then spin (R, x) = smin(R, x) >
Smin (R, Y) = Smin (R’, y) for all y with x > y. Hence, we can infer that x >’ y for all such y, which means that there are no alternatives x, y
such that x > y and y >’ x. This implies that [S*(x)| — |S™ (x)| = 0 for all x € A with spin (R, x) = 0.

Next, we turn to alternatives x with syin (R, x) > 0. In this case, let x* again denote the bottom-ranked alternative in >; and note that
x> x* as spin (R, x) > 0. Now, if x* >’ x, it holds that |[S*(x)| < m — 2 (as x* ¢ S*(x) and x ¢ S*(x)) and [S™(x)| > 1 (as x* € S™(x)) and
thus [S*(x)| - [S™ (x)| < m — 3. Similarly, if x >” x* and there is another alternative y with x* > v/, it holds that |S* (x)| - [S(x)| < m -3
since x ¢ S*(x), x* ¢ S*(x), and y ¢ S*(x). To conclude, if x* is not bottom-ranked in >, then |S* (x)| - [S(x)| < m — 3 for all x € A with
Smin (R, x) > 0. Hence, when letting ¢ denote the number of alternatives with sy, (R, x) > 0, we derive that

u(i>) _ u(i2) + Yaea IST@ - IS” (] _ u(-pp) +(m=3) _£+(m=3) _
u(>i,>) B u(>i,>) - u(>5,>) - 4 B

>’ = fmin(R’). By Step 1, we may assume that spyjn(R’, X) < spin(R, x) for all x € A. In turn, this implies that # co. In particular,

m-—2.

Here, the first equality uses the definition of S*(x) and S~ (x) and the second uses our insights regarding |S*(x)| — |S™ (x)|. The third step
holds because £ < Y\, cA Smin (R x) < u(>;,>), where the last inequality follows by Step 2. Hence, if >” does not bottom-rank x*, our upper
bound on the incentive ratio holds.

As the second case, assume that x* is bottom-ranked in >’. Since syin (R’, X) < smin (R, x) for all x € A, it holds that {x € A: syjn (R, x) =
0} C {x € A: spin(R’, x) = 0}. By our lexicographic tie-breaking, this means that x* is also bottom-ranked in > and so S*(x*) = S~ (x*) = 0.
Further, let y; denote the i-th best alternative in ', i.e., r(y;,>’) = i. By definition of the sets S*(x) and S~ (x), it holds for alternatives y;
withi € {1,...,m—1} that |S*(y;)| = |S™ (yi)| < |S*(yi)| < (i — 1) because there are only i — 1 alternatives x with x >’ y;. Lastly, since x* is
bottom-ranked in >; and >, we conclude that u(>;,>) > m — 1 and thus

u(-i,>") _ u(i>) + Txea ST - 1" (] _ u(-i2) + (- 1) cm-D+m-2)(m-1)/2 _m
2

= < <m-2.
u(>i,>) u(>;,>)

u(>i,>) m-—1

This chain of (in)equalities follows analogous to the last case, except for the last step where we use that m > 4 implies %! < m - 2. O

D PROOF OF PROPOSITION 1

In this section, we will prove one of the base cases of our main impossibility theorem: if there are n = 2 voters and m = 5 alternatives, no
anonymous SWF satisfies both unanimity and strategyproofness. We will prove this statement by contradiction and hence assume that there
is an SWF f for the given numbers of voters and alternatives that satisfies our axioms. To derive a contradiction, we will subsequently reason
about numerous profiles and show that, regardless of which outcomes we choose at certain profiles, strategyproofness must be violated. We
start by considering the profile R* shown below.

R*: abcde acbed

We first note that for this profile, it holds that f(R*) € {abcde, abced, acbde, acbed} because of unanimity. Moreover, an analogous
statement holds for all profiles R" = 7(R*) that are derived by permuting the alternatives in R* according to a bijection 7 : A — A. In more
detail, it is easy to see that, for each permutation 7 : A — A, it holds that f(7x(R*)) € {x(abcde), r(abced), = (acbde), w(acbed)} because
unanimity does not depend on the names of the alternatives.

As the first step of our proof, we will show that there is a permutation 7 : A — A such that f(7(R*)) € {n(abcde), n(acbed)}. Assume
for contradiction that this is not true, which means that f(x(R*)) € {z(abced), r(acbde)} for all permutations 7 : A — A. In particular, this
means that f(R*) € {abced, acbde}. We further note that b and c as well as ¢ and d are symmetric in R*, i.e., it holds that 7*(R*) = R* for
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the permutation 7* given by 7n*(a) = a, 7*(b) = ¢, 7%(¢) = b, 7" (d) = e, and 7" (e) = d. Consequently, we can assume that f(R*) = acbde;
the case that f(R*) = abced follows by simply permuting all profiles and rankings in the subsequent argument with respect to z*.

In the following table, we show that our assumptions are in conflict with each other as no feasible outcome remains for the profile R?.
Note that we display this simple derivation in the highly compressed form that is used throughout this section. In particular, we will present
all proofs in tabular forms, where each row consists of a profile marker (left most column), the two rankings that make up the profile (second
and third column), and all feasible outcomes. We note that the feasible outcomes are either determined by our assumptions (as, e.g., for R* in
the following table) or correspond to the set of rankings that satisfy unanimity for the given profile (as, e.g., for R? in the following table).
Moreover, profiles may appear multiple times in our derivations as we may infer additional information about the possible outcomes.

Based on the assumptions, we show that strategyproofness rules out specific rankings at given profiles. For instance, in the following
derivation, the fact that f(R*) = acbde entails that f(R?) # acbed as the first voter can otherwise manipulate by deviating from R? to R*.
Hence, we know that acbde must be chosen for R?, and we will use this fact in further derivations. More generally, all grayed out rankings in
the right most column satisfy unanimity, but violate strategyproofness due to the outcome that has been inferred for the profile indicated in
brackets. We note here that strategyproofness may apply in either directions (i.e., either a voter manipulated from the considered profile
to the one in the brackets or vice versa). Moreover, it is possible that multiple rankings are feasible outcomes for the profile indicated in
brackets; in this case, strategyproofness rules out that the indicated ranking is chosen, regardless of the exact outcome for a given profile.
Note that strategyproofness may be applied in either of the two directions for each of the possible outcomes at the manipulated profile. The
second possibility that a ranking is grayed out is that we explicitly assume that this outcome is not chosen (e.g., for R*, our assumption that
f(n(R*) € {n(abced), m(acbde)} for all permutations 7 : A — A rules out that f(R*) = abced or f(R*) = acbde). Lastly, all our proofs end
in a profile where not valid outcome remains, thereby showing that our axioms the assumptions are incompatible with each other.

R* | abcde acbed | acbde (A)

R? | acbde acbed | acbde acbed (R¥)

R3 | abede acbde | abede (R*) achbde

R* | abced acbde | abede (R®) acbed (R?) abceed (A) acbde (A)

For this simple derivation, it is straightforward to translate our tabular form into natural language. We assume that f(R*) = acbde. This
implies that f(R?) = f(R3) = acbde as these profiles are derived by letting one of the voters in R* deviate to acbde. Lastly, for R*, we have
by assumption that f(R*) # abced and f(R*) # acbde. However, if we choose f(R*) = abcde, voter 1 can manipulate by deviating from R
to R*. Similarly, if f(R*) = acbed, voter 2 can manipulate by deviating from R? to R*. Hence, no ranking that satisfies unanimity remains for
R*, thereby showing that our assumptions are in conflict.

By this derivation, we know that f(7(R*)) € {n(abcde), n(acbed)} for some permutation  : A — A. We will subsequently assume that 7
is given by the identity, i.e., that f(R*) € {abcde, acbed}. Our proof applies to any other permutation s by simply renaming the alternatives
in all proofs and outcomes accordingly as both unanimity and strategyproofness are independent of the names of alternatives. Further, by
the fact that b and c, as well as d and e are symmetric in R*, we can assume without loss of generality that f(R*) = abcde; if f(R*) = acbed,
we can just exchange the roles of b and ¢ as well as d and e in the subsequent proofs.

Now, from here on, we proceed with a case distinction with respect to the profile R* shown below.

R*: eabcd ecabd

We note that only three outcomes satisfy unanimity for this profile: f(R*) = eabed, f(R") = eacbd, or f(R*) = ecabd. We will next show
that all of these three cases result in a contradiction. To give further structure to our proof, we will discuss each of these cases as a separate
lemma. In particular, we show in the next three lemmas that none of these outcomes is compatible with the fact that f is anonymous,
strategyproof, unanimous, and satisfies that f(R*) = abcde. Note that each case itself breaks down in several subcases and steps. Since
no valid outcome remains for R*, we conclude that our basic assumptions are in conflict, so no SWF satisfies anonymity, unanimity, and
strategyproofness if m = 5 and n = 2.

Lemma 2. f(R") # ecabd.

Proor. To prove his lemma, we assume for contradiction that f(R") = ecabd. We then proceed in five steps to specify the outcomes for
further profiles, which ultimately results in a contradiction. We note that, except for R* and R*, we will reset the profile markers for each
step as the corresponding derivations are fully self-contained.

Step 1: Our first goal is to show that f(R) = aecbd for the profile R where one voter reports aebcd and the other aecbd. We hence assume
for contradiction that f(R) # aecbd. The subsequent derivation shows that this assumption is invalid as no feasible outcome remains for
profile R?. In this table, the profile R appears in Steps 1 and 6 (i.e., R = R! and R = R®).

R* | abcde acbed | abcde (A)
R* |eabcd ecabd | ecabd (A)
R! | aebdc aecbd | aebed aebdc aecbd (A)
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R? |eabdc ecabd |eabed (RY)  eabde (RY)
R3 | aebdc ecabd | aebcd (RT)  aebdc (R?)
R* | aebdc caebd | acebd aebed (R3)
R® | acebd aebdc | acebd aebed (RY)
R® | aebdc aecbd | aebed aebdc (R?)
R’ | abecd aechd | abecd aebed

R8 | abecd ecabd | abecd (R®)  aebed (RY)
R® | abecd eacbd | abecd (R®) aebed (R®)
R | abecd eabed | abecd (R?)  aebed

RY | eabdc eacbd | eabed eabdc (R?)
R'2 | abedc aechd | abecd abedc

R13 | abede acebd | abede abced (R¥)
R | abede aecbd | abede abced (R¥)
R'5 | abdec aecbd | abdec abecd

R | abedc aecbd | abecd abedc

R | abedc eachd | abecd (R?)  abedc (R°)
R18 | abecd eacbd | abecd (R®)  aebed (R®)
RY | abecd eabed | abecd (R°)  aebed (R'?)
R0 | abedc aechd | abecd abedc (R'7)
R*' | abecd aecbd | abecd aebed (R%0)
R% | abced eabcd | abced (RY) abecd (R'7)
R® | abecd aecdb | abecd aebed (R?Y)
R%** | acebd eabcd | acebd (R%?) aebed (R°)
R% | abecd eacdb | abecd (R®)  aebed (R®)
R? | eabed eacdb | eabed (R**) eachd (R?%)

eachd (R™) ecabd
aecbd (R') eabed (RY)
aebdc (R?)  aecbd (RY)
aebdc (R*)  aecbd (RY)
aechd (A)

aechd (R%)

aecbd (R3)  eabcd (RY)
aecbd (R7)  eabcd
eabed

eacbd

aebed aebdc (R%)
acbde (R*) acbed (R*)
abecd acbde (R*)
abedc aebed (R')
aebed (RY) aebdc (R%)
aebed (R°)  aebdc
aecbd (R7)  eabed
eabcd

aebcd (R) aebdc (R°)
aechbd (R®)

aebed (RY)  eabed
aecbd (R7)  aecdb (R?)
aecbd (R°)  eabcd (R°)
aecbd (R7)  aecdb (R*)
eacdb (R?®)
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eabdc (R")
caebd

eacbd (R") ecabd

eachd (R™) ecabd

eacbd

aechd (RY)
acebd (R¥)
acbed (R¥)
aebdc (R®)
aechd (RY)
aecbd (R1?)
eacbd (R'7)

acebd (R*)  aebed (R'3) aecbd (R'3)

aecbd (RY)

eabcd eabdc (R'Y) eachd (R'©)

aechd (RY)

eacbd

eabed eacbd (R'®) eacdb (R??)

Step 2: Next, we will showt that f(R) = aedcb for the profie R where one voters reports aecbd and the other aedcb. We hence assume
that f(R) # aedcb and infer a contradiction as shown below. The profile R corresponds to R? and R in the subsequent derivation.

R* | abcde acbed | abcde (A)

R! | aebdc aecbd | aecbd (A, Step 1)

R? | gecbd aedch | aechd aecdb

R3 | abecd aecbd | abecd aebed (RY)
R* | aebcd aechd | aebed (R')  aecbd

R® | abede acebd | abede abced (R¥)
R® | abede aecbd | abede abced (R¥)
R? | abdec aecbd | abdec abecd

R® | abedc aecbd | abecd abedc (RY)
R® | abecd aecbd | abecd aebed (RY)
R | abecd aecdb | abecd aebed (R®)
R\ gebed aecdb | aebed (R*)  aecbd

R2 | aecbd aecdb | aecbd aecdb (R'1)
R3 | gecbd aedcb | aecbd aecdb (R'?)
R™ | adecb aecbd | adech (R'®) aecbd

R'5 | adebe aecbd | adebe (R'™) adech (R'?)
R | adebc aecdb | adebe (RY) adech (R')
RY7 | adbec aecdb | adbec (R'®) adebe (R°)
R'8 | adbec aedcb | adbec (R'7) adebe (R'7)

aedchb (A)

aecbd

acbde (R*) acbed (R*)
abecd acbde (R¥)
abedc (R')  aebed (RY)
aebcd (RY)  aebdc (RY)
aechd (R®)

aecbd (R°)  aecdb (R®)
aecdb (R10)

aedcb (A)

aecdb (R'?) aedch (R?)
aebed (RY)  aebde (RY)
aecdb aedbc (RV)
adecb (R'®) aecdb (R'?)
adecb (R'7) aedbc (R'7)

acebd (R¥)

acbed (R*) acebd (R*) aebed (R')  aecbd (R®)
aebdc (R')  aecbd (R®)

aechd (R7)

aecbd aecdb (R'?) aedbc (R') aedch (R?)
aedch

aedbe (R'©)  aedcb

aedch
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aebdc
adceb
adebc
adebc
abecd
abedc
aebdc
adecb
adceb
acedb
acedb
adceb
acebd
acedb
adbce
abcde
acedb
acdbe
acdbe
acdbe
adbce
adceb
acdbe
adceb
adceb
acdbe
acdeb
acdeb

aedcb
aedcb
aebed
aebdc
aedcb
aedcb
aedcb
aebdc
aebdc
aebdc
aecbd
aecbd
adceb
adceb
aedcb
acedb
adbce
acedb
aecdb
aedcb
aedcb
aedcb
adbce
aedbc
adebc
adbec
adebc
adbec

aebdc
adceb
adebc (R'%)
adebc (R?1)
abecd
abedc (R'8)
aebdc
adebc (R??)
adceb (R?®)
acebd (R?7)
acebd (R?8)
acdeb (R'%)
acdeb (R3?)
acdeb
adbce (R'®)
abcde
acdbe
acdbe
acdbe
acdbe
adbce (R'8)
adceb
acdbe
adceb (R?7)
adceb (R*%)
acdbe
acdeb (R*3)
acdbe (R¥)

aedbc (R'8)
adecb (R'8)
aebed

aebdc

abedc (R%)
aebdc

aedbc (R'8)
adecb (R')
adebc (R??)
acedb (R?7)
acedb (R?8)
acebd (R*°)
acebd

acedb

adbec (R®)
abced (R¥)
acdeb (R3*)
acdeb (R3)
acdeb (R3°)
acdeb (R3¢)
adbec (R'8)
adecb (R'8)
adbce (R3)
adebc

adebc

adbce (R*)
adceb (R*3)
acdeb (R*)

aedcb

aedcb

aebdc

aedbc

aebed (R?)
aedbc (R'8)
aedcb (R?%)
aebdc

adecb (R?°)
aebed (RY)
aecbd

acedb (R?%)
acedb

adceb (R31)
adcbe (R'8)
acbde (R*)
acedb (R3%)
acedb (R®)
acedb (R3%)
acedb (R3%)
adcbe (R'8)
aedcb (R3)
adcbe (R>®)
adech (R??)
adecb (R%0)
adbec (R*!)
adebc

adbce (R**)

aedbc (R')

aebdc
aedcb (R?3)

aedbc (R'?)
aebdc

aebdc (RY)
aecdb (R'?)
adceb (R'%)
adceb (R3%)

adceb
acbed (R¥)
adbcee (R33)

aecdb (R3%)
adcbe (R'8)
adceb

aedbc (R*0)
adcbe (R*)

adecb (R*3)
adbec (R'7)

aechd (R%)

aedcb (R?)
aedbe (R'?)
aecbd

adecb (R13)
adebc (R)

acdbe
adcbe (R33)

adceb
adebc (R'8)

aedcb (R0)

adcbe (R**)

aecdb (R%)

aedcb (R?)
aecdb (R?)

aecbd

adech (R'®)
acdeb (R°)
adceb (R3?)

adech (R'8)
adech (R'8)

adceb (R¥)
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aedbe (R1%) aedcb (R?)

aedbc (RY)  aedcb (R%)

aecdb (R'?) aedcb (R?)

aedbe (R'®)  aedch
acebd (R*)  acedb (R°)
aecdb (R3®) aedch (R3)

aedbc (R'®)  aedcb (R3®)

adebc (R*) adech (R*)

Step 3: As our third step, we will show that f(R) = ecabd for the profile R where one voter reports abecd and the other reports ecabd. As
usual, we asume that f(R) is not our desired outcome, i.e., f(R) # ecabd, and derive a contradiction. We use our assumption on R at profile

R3 and RY.

R*
R+
Rl
RZ
R3
R4
RS
RS
R7

abcde
eabced
aebdc
aecbd
abecd
eacbd
aecbd
aebdc
aecbd
aecbd
eacbd
ecabd
aebed
abecd
abcde
abcde

acbed
ecabd
aecbd
aedcb
ecabd
ecabd
ecabd
ecabd
ecabd
ecbad
ecbad
ecbad
aecbd
aecbd
acebd
aecbd

abcde (A)
ecabd (A)

aecbd (A, Step 1)
aedcb (A, Step 2)

abecd
eachd (R")
aecbd
aebed (RY)
aecbd
aecbd
eachbd (R*)
ecabd
aebed (RY)
abecd
abcde
abcde

aebed (RT)
ecabd

eachd (R")
aebdc (RY)
eacbd (R")
eacbd (R°)
ecabd

ecbad (R®)
aecbd

aebed (RY)
abced (R¥)
abced (R¥)

aecbd

ecabd
aecbd
ecabd (R®)
ecabd (R7)
ecbad (R?)

aecbd
acbde (R¥)
abecd

eabcd (RY)

eabced (RY)

ecbad (R7)

acbed (R¥)
acbde (R*)

eachd (R*)

eabdc (RY)

acebd (R¥)
acbed (R¥)

ecabd (A)

eachd (R")

acebd (R*)

ecabd (R%)

aebed (RY)  aechd (R'3)
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abdec
abedc
abecd
eabdc
abecd
beacd
ebadc
ebcad
ebadc
aecbd
eacdb
eadbc
eabced
acedb
abecd
aebed
aecbd
abecd
abedc
aebdc
abecd
baecd
beacd
abecd
beacd
beacd
beacd
beacd
eadbc
eabed
eabed
deabc
adebc
adebc
adebc
adebc
adecb
adceb
acedb
acedb
adebc
adebc
adbec
adbec
adceb
adceb
adbce

aecbd
aecbd
aecbd
ecabd
ecabd
ecabd
ecabd
ecabd
ebcad
ebcad
ebcad
ebcad
eadbc
aedcb
aecdb
aecdb
aecdb
aedcb
aedcb
aedcb
ebcad
ebcad
ebcad
eacdb
eacdb
ecabd
eacdb
eadbc
ebcad
eadbc
edabc
eabced
aecbd
eabcd
aebed
aebdc
aebdc
aebdc
aebdc
aecbd
aecbd
aecdb
aecdb
aedcb
aecbd
aedcb
aedcb

abdec
abecd
abecd
eabcd (RY)
abecd
beacd
eabcd (RY)
ebcad
ebacd (R?1)
aebed (RY)
eabcd
eabced
eabced
acedb
abecd
aebed (RM)
aecbd
abecd
abedc
aebdc
abecd
baecd
beacd
abecd
beacd
beacd
beacd
beacd
eabcd
eabcd
eabed
deabc (R¥)
adebc
adebe (R*)
adebc (R*8)
adebc (R¥)
adebc (R°?)
adceb (R°1)
acebd (R*?)
acebd (R3)
adebc (R*8)
adebc (R>)
adbec (R>®)
adbec (R°7)
acdeb (R%?)
adceb (R>)
adbce (R°®)

abecd
abedc (RY)
aebed (RY)
eabdc (R")
aebed (RY)
becad
eabdc (R")
ecabd (R?1)
ebadc (R?1)
aecbd
eacbd (R?%)
eabdc (R?3)
eabdc (R?®)
aecdb (R?)
aebed (R'2)
aecbd
aecdb (R30)
abedc
aebdc
aedbc
aebed (R'7)
beacd
becad
aebed (R'?)
eabed
becad
eabed (RY0)
beadc
eabdc (R*)
eabdc (R?®)
eabdc (R?7)
eabed
adecb
aebed (RY7)
aebed (RY7)
aebdc
adecb (R°?)
adebc (R*?)
acedb (R%%)
acedb (R3)
adech (R*8)
adecb (R>)
adebc (R>®)
adebe (R7)
acebd (R?)
adech (R°8)
adbec (R°®)

abedc (RY)
aebed (RY)
aecbd (R'©)
eacbd (R")
aechbd (R'7)
eabcd (RT)
eachd (R*)
ecbad (R10)
ebcad
eabcd
eacdb
eadbc
eadbc
aedcb
aechbd (R'7)
aecdb (R??)

aebed (R?)
aedbc (R*?)
aedch (R33)
baecd

becad (R)
ebacd (R?®)
aecbd (R'7)
eacbd (R®®)
eabcd (RT)
eacbd (R38)
eabed (R10)
eadbc (R*?)
eadbe (R*3)
eadbe (R*)
eabdc (R?7)
aebed (R?)
aebdc

aebdc

aedbc (R*)
aebdc

adech (R*?)
aebed (RY)
aecbd

aebed (R?)
aecdb (RY)
adech (R>%)
adech (R°7)
acedb (R°%)
aedcb

adcbe (R>®)

aebed (RY)
aebdc (RY)

ecabd

eabed (RY)
eachd (R")
ebacd (R")

eacbd (R)
ebacd (R?%)
ebacd (R?3)

aecdb (R'7)

aebdc
aedcb (R3?)

beacd

ebacd (R?3)
ebcad (R3%)
aecdb (R'7)
eacdb (R%®)
eachd (R")
eacdb (R3%)
eabdc (R?®)
ebacd (R?3)

edabc (R*%)
eadbc (R**)
aebdc (RY)
aedbe (R*)
aedbc (R*8)

aedbc (R°?)
aebdc

aebdc (RY)
aecdb (R31)
aebdc (RY)
aedbc (R>)
aecdb (R?%)
aedbe (R°7)
adceb (R%%)

adceb (R%?)

aebdc (RY)
aecbd (R¥)

eacbd (RT)
ebacd (R™)
ebadc (R'8)

ebacd (R®)
ebcad (R**)
ebadc (R?3)

aecbd (R?)

becad (R**)
ebcad (R3)

eabed (RY)
ebacd (R%)
ebacd (R*)
ebacd (R?)
eadbc (R*1)
ebadc (R*)

edabc (R**)
aechd (R?)
eabed

aedcb (R3*)
aedbc (R*?)
aecbd

aecbd (R?)
aedcb
aedbc (R*)
aedcb
adecb (R>)

adebc (R>®)
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aechd (R'%)

ecabd (A)
ebcad
ebcad

ebcad (R®)
ecabd (R?%)
ebcad (R?)

aecdb (R?)

eabcd (R')

eachd (R?)
ebcad (R37)

ebacd (R*%)
ebcad (R?)

aecdb (R?)
eabdc (R?7)

aedcb (R3%)
aecdb (R*®)

aecdb (R?)
aedcb
aechd (R?)

adech (R%®)

ecabd (R')
ecabd (R?0)

ecabd (R”)
ecadb (R?%)

aedbc (R?°)

ebacd (R?%)

eacdb (R'%)
ecabd (R')

ebadc

aedbc (RY)
eadbc (R**)

aedbe (RY)

aedbc (RY)

aecdb (R?)

aedbc (R°®)

ecbad (R10)
ecbad (R10)

ecbad (R7)
ecbad (R**)

aedcb (R?°)

ebcad (R**)

ecbad (R10)

aedcb

aedcb (R3%)

aedch

aedcb

aedch
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acdbe
acdbe
acdbe
abcde
acedb
adbce
acedb
acbed
acebd
abcde
abcde
acbed
acdbe
acdbe
acbed
acbde
acbed
acdeb
acdbe
acbed
acdbe
acdbe
acbed

aedcb
aecdb
acedb
acedb
adbce
adceb
adceb
aedcb
adceb
acedb
adceb
adceb
adceb
acedb
acdbe
acedb
acedb
aecbd
aecbd
aecbd
adecb
aedcb
aedcb

acdbe (RO1)
acdbe (R%%)
acdbe (R%3)
abcde
acdbe (R%%)
adbce (R®)
acdeb (R%®)
acbed
acdeb (R%®)
abcde
abcde
acbde (R7%)
acdbe
acdbe (R®3)
acbde (R73)
acbde (R7°)
acbed
acdeb (R°%)
acbde (R7%)
acbed (R3%)
acdbe
acdbe (R%1)
acbed (R31)

acdeb (R%0)
acdeb (R%%)
acdeb
abced (R*)
acdeb (R%)
adcbe (R%®)
acedb (R%)
acebd (R?)
acebd (R>°)
abced (R¥)
abdce (R7)
acbed (R70)
acdeb (R%®)
acdeb (R7*)
acbed (R73)
acbed
acebd (R77)
acebd (R**)
acbed (R7°)
acebd (R>*)
acdeb (R7%)
acdeb (R%0)
acebd (R?)

acedb
acedb
acedb
acbde (R*)
acedb (R%)
adceb
adceb
acedb
acedb (R%®)
acbde (R¥)
acbde (R¥)
acdbe
adcbe (R%7)
acedb
acdbe
acdbe (R%%)
acedb (R77)
acedb (R°%)
acdbe (R7?)
aecbd
adcbe (R7%)
acedb
acedb (R78)

adcbe (R%8)
aecdb

acbed (R*)
adbce (RO1)

aecbd (R?)
adceb
acbed (R*)
acdbe (R71)
acdeb (R%®)
adceb (R73)

acdeb (R®)

aecbd
acdeb (R°%)

adceb (R7%)
adcbe (R°®)
aecbd (R?)

adceb (R0)

acdbe
adcbe (RO1)

aecdb (R?)
acdbe (R%*)

acdeb (R13)
acebd (R%%)

acebd (R®)

aecdb (R31)
acebd (R*)

adecb (R7*)
adceb (R%0)
aecdb (R?)

adech (R8)

acdeb (R'3)
adceb

aedcb
acdeb (R13)

adbce (R7)
acedb (R%®)

acedb (R%%)

acedb (R°%)

adech (R%®)
aedcb (R3)
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aecdb (R?)

acebd (R*)

acebd (R¥)
adcbe (R71)
adcbe (R7)

aecbd

aecdb (R?)

aedcb

acedb (R13)

acedb (R13)
adceb (R™1)
adceb (R7%)

aecdb (R31)

aedcb (R3%)

Step 4: Fourthly, we will show that f(R) = adcbe. Once again, we assume this to be wrong, which means that f(R) # adcbe. The
subsequent derivation shows taht this is impossible. We note that our assumption that f(R) # adcbe is only used at profile R, i.e., R = R0

R*
R!
R?
R3
R4
RS
R®
R7
R8

RlO

abcde
aebdc
aecbd
abecd
abecd
aebed
abcde
abcde
abdec
abedc
abecd
abecd
abecd
abecd
acbed
abcde
abecd
abedc
aebdc
acedb
aebed

acbed
aecbd
aedcb
ecabd
aecbd
aecbd
acebd
aecbd
aecbd
aecbd
aecbd
aecdb
caebd
acedb
acedb
abecd
aedcb
aedcb
aedcb
aedcb
aecdb

abcde (A)

aecbd (A, Step 1)

aedch (A, Step 2)

ecabd (A, Step 3)

abecd aebed (RY)
aebed (R')  aecbd
abcde abced (R¥)
abcde abced (R¥)
abdec abecd
abecd abedc (RY)
abecd aebed (RY)
abecd aebed (RY)
abced (R®)  abecd (R®)
abced abecd (R1?)
acbed acebd
abcde abced (R¥)
abecd abedc
abedc aebdc
aebdc aedbc
acedb aecdb (R?)
aebed (R°)  aechd

aecbd

acbde (R*)
abecd
abedc (RY)
aebed (RY)
aecbd (R%)
aecbd (R'9)
acbed
acbed
acedb (R13)
abecd
aebed (R?)
aedbc (R'©)
aedcb (RY)
aedcb
aecdb (R')

acbed (R*)
acbde (R*)
aebed (RY)
aebdc (RY)

aecdb (R'0)
acebd (R'?)
acebd (R'?)

aebdc
aedcb (R'©)

acebd (R¥)
acbed (R¥)
aebdc (RY)
aecbd (R®)

aebed (R?)
acedb (R'1)

aecbd (R?)

acebd (R*)
aechd (R7)

aechd (R'9)
aebed (RY)

aecdb (R?)

aebed (RY)

cabed
aechd (R10)

aedbc (R'1)

aecbd (R%)

caebd
aecdb (R10)

aedcb (R'1)
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aecbd
abecd
abecd
abecd
eabed
acebd
abced
acbed
acbed
acbed
acedb
acebd
acebd
acedb
acedb
acedb
acedb
acbed
acdeb
acbed
acbed
acbed
acdbe
abecd
abcde
acdbe
abcde

aecdb
eacbd
eabced
eacdb
eacdb
aebdc
eabced
eabced
eacdb
aedcb
aedcb
eabced
aebdc
aebdc
aecbd
aebdc
aecbd
aedcb
aecbd
adceb
acdeb
acdbe
aecbd
acdbe
abecd
aecbd
aecbd

Step 5: Finally, we will

R*
R!
R?
R3
R4
RS
R®
R’
RS

RlO

abcde
aebdc
aecbd
abecd
acbed
abecd
aebed
abcde
abcde
abdec
abedc
abecd
abecd
abecd
abecd
acbed
acedb
abcde

acbed
aecbd
aedcb
ecabd
adceb
aecbd
aecbd
acebd
aecbd
aecbd
aecbd
aecbd
aecdb
caebd
acedb
acedb
aedcb
abecd

aecbd
abecd (R?)
abecd (R??)
abecd (R?)
eabcd
acebd
abced (R?3)
abced (R?3)
acbed (R?8)
acbed (R*%)
acedb (R3%)
acebd (R?")
acebd (R3?)
acebd (R3%)
acebd (R3%)
acebd (R33)
acebd (R3%)
acbed
acdeb (R37)
acbde (R3%)
acbde (R*0)
acbde (R*)
acbde (R*%)
abcde
abcde
acbde (R%%)
abcde (R*0)

aecdb (R?0)
aebed (R3)
aebed (R10)
aebed (R?)
eachd (R**)
aebed (RY)
abecd (R?3)
abecd (R?3)
acebd (R?8)
acebd (R?)
aecdb (R?)
aebed (R?0)
aebed (RY)
acedb
acedb
acedb (R31)
acedb (R3%)
acebd (R?)
acebd (R®)
acbed (R30)
acbed (R*0)
acbed (R*1)
acbed
abced (R¥)
abced (R¥)
acbed (R*?)
abced (R¥)

aecbd (R10)
eabced
aecbd (R'?)
eacdb (R**)
aebdc (RY)
aebed (R?3)
acbed (R?")
acedb (R'%)
acedb (R'%)
aedcb
aecbd
aebdc (R)
aebed (RY)
aecbd
aebed (RY)
aecbd
acedb
acedb (R7)
acdbe
acdbe
acdbe
acdbe (R*%)
abecd (R13)
abecd (R**)
acdbe (R3%)
abecd (R®)

eabced
aecdb (R'?)

aecbd
eabced
acebd (R?7)
aecbd
aechd (R?)

eabcd
aecbd
aebdc (RY)
aecdb (R?1)
aebdc (RY)
aecdb (R?1)
aechbd (R?)
aecbd
acdeb
acdeb (R3)

acdeb (R37)
acbde (R*3)

acdeb (R37)
acbde (R*)

eacbd (R10)

eabed

aebed (R?3)
aecdb
aecdb (R?)

eacbd (R®)
aecbd
aecbd
aecdb (R?)
aecdb (R%1)
acebd (R38)

acebd (R*0)

acebd (R®)
acbed (R*?)

acebd (R3?)
acbed (R¥)
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eacbd (R'9)

aecbd
eacbd
aedcb

aecdb (R'?)
aecdb (R')
aedcb

acedb (R'%)
acedb (R'%)

acedb (R¥7)
acdbe (R¥3)

acedb (R37)
acebd (R*)

show that the information we have inferred so far is contradictory.

abcde (A)

aecbd (A, Step 1)
aedch (A, Step 2)
ecabd (A, Step 3)
adcbe (A, Step 4)

abecd
aebed (RY)
abcde
abcde
abdec
abecd
abecd
abecd
abced (R?)
abced
acbed
acedb
abcde

aebed (RY)
aecbd
abced (R¥)
abced (R¥)
abecd
abedc (RY)
aebed (RY)
aebed (R®)
abecd (R?)
abecd (R'3)
acebd
aecdb (R?)
abced (R¥)

aecbd

acbde (R*)
abecd
abedc (RY)
aebed (RY)
aecbd (R10)
aecbd (R'1)
acbed
acbed
acedb (R'%)
aedcb
abecd

acbed (R*)
acbde (R¥)
aebed (RY)
aebdc (RY)

aecdb (R'1)
acebd (R'1)
acebd (R'1)

acebd (R¥)
acbed (R*)
aebdc (RY)
aecbd (R%)

aebed (R?)
acedb (R12)

acebd (R¥)
aechd (R®)

aechbd (R'1)
aebed (R°)

eacdb (R'1)

eabced eacbd (R®)
eacdb

aedbc (R')  aedch (R'®)

aedbc (RY)  aedch (R'8)

adcbe (A)  adceb

aecbd aecdb (R?1)

aecbd aecdb (R?1)
aebed (RY)  aechbd (R®)

aebed (RY)  aecbd (R)

cabed caebd
aecbd (R'Y) aecdb (R')
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R | aebed aecdb | aebed (R°)  aecbd aecdb (R'?)
RY | aecbd aecdb | aecbd aecdb (R'8)
R | gcbed acdbe | acbde acbed (R*)  acdbe
R?' | abecd eacbd | abecd (R®)  aebed (R®)  aecbd (R') eabed eacbd (R'1)
R%2 | abecd eabcd | abecd (R*Y) aebed (R') eabed
R% | abecd eacdb | abecd (R*)  aebed (R®)  aecbd (R') aecdb (R'') eabed eacbd (R™) eacdb (R'?)
R%* | eabed eacdb | eabed eacbd (R?3) eacdb (R®)
R?® | acebd aebdc | acebd aebed (RY)  aebde (R')  aecbd
R?0 | acbed aedcb | acbed (R*) acebd (R?)  acedb (R') aecbd (R?) aecdb (R*) aedch
R?" | abecd aedch | abecd (R*®) abedc (R?®) aebed (R?)  aebdc aecbd (R?) aecdb (R?) aedbc (R'?) aedch (R'?)
R | gebdc aedch | aebdc aedbe (R*") aedcb (R?)
R | acedb aedch | acedb (R*°) aecdb (R?)  aedcb
R30 | abced eabed | abeed (R*) abecd (R*) aebed (R??) eabed
R3 | acebd eabed | acebd (R*") aebed (R?)  aecbd eabed eachd (R**)
R3 | acebd aebdc | acebd (R*') aebed (R')  aebde (R')  aechd
R33 | acedb aebdc | acebd (R*?) acedb (R?) aebed (R') aebde (R')  aechd aecdb (R'®) aedbc (R') aedch (R*®)
R3* | acedb aecbd | acebd (R*) acedb (R*®) aecbd aecdb (R')
R¥ | acdeb aecbd | acdeb (R**) acebd (R**) acedb (R**) aecbd aecdb (R')
R3¢ | acdbe aecbd | acbde (R*) acbed (R?°) acdbe (R*®) acdeb (R**) acebd (R**) acedb (R**) aechd aecdb (R'?)
R3 | abecd acdbe | abede abced (R') abecd (R') acbde (R3®) acbed (R*®) acdbe (R®)
R3 | abcde aechd | abede (R3°) abced (R*)  abecd acbde (R*) acbed (R*) acebd (R*) aebed (R') aecbd (R7)
R | abede abecd | abede (R3%) abeed (R*)  abecd (R?7)
Since Step 5 only uses the assumption on R* and the insights proven in the previous steps, this proves our lemma. O

Lemma 3. f(R") # eacbd.

Proor. We again assume for contradiction that f(R") = eacbhd and derive a contradiction in multiple steps.

Step 1: First, we will show that f(R) = eacbd for the profile R where one voter reports ceabd and the other reports eacbd. The following
derivation shows that we get an impossibility if f(R) # eacbd, thus proving our claim. Our assumption taht f(R) # eacbd is used at profile

R! and
R*
Rt
Rl
R?
R3
R4
RS
RS
R’
R8

R4

abcde
eabcd
ceabd
ceabd
ceabd
eabdc
eabdc
abcde
abcde
abced
abced
acbed
abecd
abecd
aebed
aebcd
acebd
acebd

acbed
ecabd
eacbd
eabed
eabdc
ecabd
eacbd
acebd
aecbd
aecbd
eacbd
eacbd
eacbd
ecabd
ecabd
ceabd
aebed
eacbd

abcde (A)
eacbd (A)
ceabd
ceabd
ceabd
eabced (RT)
eabed (RY)
abcde
abcde
abced
abced
acbed
abecd
abecd
aebed
acebd
acebd
acebd

eacbd (A)
eabcd (RT)
eabed (R?)
eabdc (R3)
eabdc (R%)
abced (R¥)
abced (R*)
abecd
abecd
acebd
aebcd
aebed
aecbd
aebed (R?)
aebed (R™)
aecbd

ecabd
eacbd (R)
eabdc (R?)
eacbd
eacbd
acbde (R*)
abecd
acbed
acbed
aecbd
aecbd
aecbd
eabcd (RY)
aechd (R?)
aecbd
eacbd (R'?)

ecabd (R")
eachd (RY)
ecabd (R")

acbed (R¥)

acbde (R*)

acebd (R7)

acebd (R?)

eacbd (R®)

eabed (R°)

eabcd (RY)

eacbd (R'?)
caebd

ecabd (R?)

acebd (R*)
acbed (R*)
aebed (R7)
aebed (R®)

eachd (R%)
eachd (R'1)
ecabd (RT)
ceabd (R13)

acebd (R*)
aecbd (R7)
aecbd (R?)

ecabd (RY)

eabed (R?)

aebed (R®)  aecbd (R%)

eabed (R°)  eacbd (R®)

eacbd (R')  ecabd (R?)
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eacbd
abdec
abedc
abedc
beadc
beacd
eacbd
acebd
acebd
aecbd
aebed
ceabd
ebacd
ebacd
acbde
abcde
acebd
acebd
abced
acebd
acebd
abedc
abced
aebcd
ceabd
aebed
eabdc
aebcd
eabdc
eacbd
eacbd
cebda
ceabd
ebadc
ceabd
ebacd
ebacd
baecd
beadc
beadc
ceabd
ebacd
acebd
caebd
ceabd
beacd
beacd

ebacd
aecbd
aecbd
eacbd
eacbd
eacbd
ebacd
eabced
ebacd
ebacd
aecbd
ebacd
ecabd
ecbad
acebd
acbde
ebacd
baecd
baecd
eabdc
eabdc
acebd
abedc
ecabd
eacbd
ecabd
ecbad
ecbad
ecbad
ecbad
ecbda
eacbd
cebda
ecbad
ebacd
ecabd
ecbad
ecbad
ecbad
becad
ebcad
ecabd
ecbad
ecbad
ebcad
ecbad
ecabd

eabed (R°)
abdec
abecd
abecd
beacd
beacd
eabed (R°)
acebd
acebd
aebed
aebed
ceabd
eabced (RY)
ebacd (R?°)
acbde
abcde
acebd
abced
abced
acebd
acebd
abced
abced
aebed
ceabd
aebed
eabed (R3)
aebed
eabcd (R?)
eacbd
eacbd
ceabd
ceabd
ebacd (R30)
ceabd
eabcd (RT)
ebacd (R?°)
baecd
beacd (R>®)
beacd (R)
ceabd
eabced (RY)
acebd
caebd
ceabd
beacd (R>3)
beacd (R*?)

eacbd
abecd
abedc
abedc
beadc
eabed (RY)
eacbd (R?%)
aebed (RV)
aebed (RY)
aechd (R*)
aecbd (R*®)
cebad
eacbd (R?3)
ebcad
acbed
acbde (R¥)
aebed (RV)
abecd (R33)
abecd
aebed
aebed (RV)
abecd
abecd
aecbd
eachd (A)
aecbd (R?7)
eabdc (R3)
aecbd (R?7)
eabdc (R?)
ecabd (R*)
ecabd (R*)
cebad (R*)
cebad (R*8)
ebadc (R*)
cebad (R*)
eacbd (R*3)
ebcad (R%?)
beacd (R*3)
beadc (R*)
beadc (R>>)
cebad
eacbd
aechd (R33)
ceabd
cebad (R*)
becad
becad

ebacd
abedc
aebed (R'8)
aebed (R')
eabed (R°)
eachd (R?1)
ebacd
aecbd
aecbd
eabed (RY7)

eabed (R?)
ebacd (R?8)
ecbad

acebd (R®)

aecbd (R?3)
acbed
baced
aebdc (R3)
aebdc (R3)
abedc (R37)
abedc (R3®)
eabcd (RT)
ecabd (R?)
eabcd (RY)
eacbd
eabced (R3)
eacbd
ecbad (R*)
ecbad (R*)
cebda (R*")
cebda (R*®)
ebcad
eabed (R?)
ebacd (R?8)
ecbad
becad
becad
becad
ebcad (R?)
ebacd (R?8)
caebd
cebad (R>?)
ebcad (R?)
ebacd (R3%)
eabcd (RY)

aebed (R7)
aebdc
aebdc (R°)
eabdc (R°)
ebacd

eabced (RY)
eabed (R'7)
eachd (R?3)

eachd (RY)
ebcad

eabed (R'7)
acebd (R°)
baecd (R3*)
aecbd
aecbd
acbed

eachd

eacbd (R'?)
ebacd

eacbd (R'3)
ebacd (R3?)

ecbda (R*)
eacbd (RY)

ecbad
eachd (RY)
ebcad (R°1)

ebacd (R3%)
ebacd (R3?)

ecabd (R?)
ebcad

ceabd

ecabd (R>%)
ecabd (R?)
ebcad (R>3)
eacbd (R??)

aebdc

aecbd (R'8)
aecbd (R'%)
eachd (R*)

eacbd (R'®)
eachd (R1)
ebacd (R®)

ebacd (R?)
ecabd (R")

eacbd (R'®)
aebed (RV)

eabed (R3)
eabed (R3)
acebd (R%)

ecabd (R")

ecabd (R*)
ebadc (R3)
ebacd

ebadc (R?)

ecabd (R*1)

ebacd (R?)
ecabd (R")

ebcad (R**)
ebadc (R*)

ecbad

ecabd (R")
cebad (R3)
ecbad (R*)
ecbad

ecbad (R**)
ebacd (R>®)
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aechd (R7)

eabed (RY)
ebacd

ebacd (R?*)

ebcad (R?)
ecbad

ebacd (R?%)
aechd (R3%)

eabdc (R3)

eabdc (R3)
aebed (R1%)

ebcad
ebcad (R*?)
ebcad (R**)

ecbad (R*)
ebcad (R?)
ecbad

ecbad (R**)

ebcad (R*3)

ecbad
eacbd (R'©)

ebcad (R?)

eabdc (R°)
ebadc (R°)

ecabd (R?)

baced (R33)

eachd (R®)
eacbd (R'®)
aebdc (R3%)

ecabd (R*)
ecabd (R*0)
ecabd (R*)

ecbda (R*)

ecabd (R?)

ecbad (R°%)

ecabd (R3%)

ecabd (R")

eacbd (R?)

echbad

baecd (R?)

aecbd (R'%)

ecbad
ecbad (R'3)
ecbad (R**)

ecbad

ecbad (R?)

ecbad (R%?)
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R% | becad ecabd | becad ebcad (R°?) ecabd (R*°) ecbad (R®)

R% | eacbd ebcad | eabed (R°)  eachd (R*?)  ebacd ebcad (R*)  ecabd (R?®) ecbad (R*)

R | caebd ebcad | caebd ceabd cebad (RY)  ebcad (R°7)  ecabd (R®®) ecbad (R®)

R®7 | ceabd ebcad | ceabd cebad (R*) ebcad (R?)  ecabd (R?)  ecbad (R%°)

R% | becad ceabd | bcead (R°7)  becad (R7)  cbead ceabd (R%*) cebad (R*¥’) ebcad (R*)  ecabd (R*)  ecbad (R%%)
R% | cbead ceabd | cbead ceabd (R%®)  cebad (R*)

R7 | becad ebacd | beacd (R°°)  becad ebacd ebcad (R%)

R"! | ebadc ecbad | ebacd (R*°)  ebadc (R¥)  ebead (R*®)  ecbad

R7? | ceabd ebcda | ceabd cebad (R*) cebda (RY) ebcad (R?)  ebcda (RY7) ecabd (R*)  ecbad (R®") ecbda (R*)
R73 |ebeda ecabd | ebcad (R%%)  ebeda (R7?)  ecabd (R?”)  ecbad ecbda (R7%)

R7* |ebcda echad | ebcad (R7)  ebeda (R7?)  echad ecbda (R73)

R” |ebdca ecbad |ebcad (R°)  ebeda (R7*)  ebdea (R™)  ecbad ecbda (R™)

R7® | bedca ecbad | becad becda (R’*)  bedca (R”) ebcad (R*®) ebcda (R’*) ebdca (R™') ecbad (R°?) ecbda (R%?)
R77 | becad bedca | becad becda (R7®)  bedca (R7°)

R7® | acebd aebcd | acebd aebed (R™)  aecbd (R33)

R” | abede aebed | abede abced (R*)  abecd aebed (R®)

R8 | cbead eachd | cbead ceabd (R%) cebad (R*) eacbd (R')  ecabd (R*') ecbad (R*)

R81 | chead ebacd | beead beacd (R*®)  becad cbead cebad (R®) ebacd (R?®)  ebcad (R?®)  ecbad (R%)
R%2 | beead ebacd | beead beacd (R’°)  becad ebacd (R®Y)  ebcad (R70)

R33 | becad ebacd | beacd (R°°)  becad ebacd (R®?)  ebcad (R%%)

R8 | becad eabcd | beacd (R°°)  becad eabcd (R%*)  ebacd (R®3)  ebcad (R%)

R% | aebed ecbad | aebed aecbd (R?)  eabcd (R*¥)  eacbd (R*3) ebacd (R®) ebcad (R*?)  ecabd (R¥®) ecbad (R'3)
R8 | gebed becad | abecd (R®*)  aebed (R)  baecd beacd (R®®) becad (R®®) eabed (R*?) ebacd (R®) ebcad (R*?)
R% | baecd becad | baecd beacd (R**) becad (R3°)

R8 | gebed baecd | abecd (R%°)  aebed (R3©)  baecd

R® | baecd becda | baecd beacd (R°*) becad (R¥) becda (R®)

R | becad bedac | beacd (R°°)  beade (R°°)  becad becda (R77)  bedac (R°®) bedca (R"7)

R' | bdeac becad | bdeac (R”°) bdeca (R”7)  beacd (R°°) beadc (R°°)  becad becda (R”7)  bedac (R*®) bedca (R"7)
R%2 | bdeac becda|bdeac (R”') bdeca (R’') becda bedac (R')  bedca

R | bdaec becda | bdaec (R°?)  bdeac (R%*)  bdeca (R%%) becda bedac (R%*)  bedca

R%* | bdaec becda|bdaec (R”?) bdeac (R%?) bdeca (R??) becda (R®) bedac (R%?) bedca

R% | bdaec bedca | bdaec (R°?)  bdeac (R?®)  bdeca (R**) bedac (R™*) bedca

R% | baecd bedca | baecd baedc (R%)  beacd (R**)  beadc becad (R¥7)  becda (R7®) bedac (R’®) bedca (R7°)
R%7 | badec bedca | badec (R”) baedec (R”) bdaec (R®)  bdeac (R”) bdeca (R”) beadc bedac (R%) bedca (R%)
R | badec beadc | badec (R°7)  baede (R77)  beade

R | baecd echad | baecd beacd (R°®) becad (R¥7) ebacd (R*) ebcad (R**) ecbad (R**)

R190 | baecd eacbd | abecd (R®®)  aebed (R%®)  aecbd (R*)  baecd beacd (R¥) eabcd (R°)  eacbd (R°)  ebacd (R*®)
R | gcebd baecd | abced abecd (R*3) acbed (R'°) acebd (R®)  aebed (RY®)  aechd (R*®)  baced (R*®)  baecd (R*)
R192 | gbced baecd | abced abecd (R®®)  baced (R'') baecd (R3*)

R193 | badce beadc | badce (R°®)  badec (R°®)  baedc (R*®)  beadc

R4 | gbced beacd | abced abecd (R'9?) baced (R'9?) baecd (R¥) beacd (R1%?)

R195 | acbde aebced | abede abced (R7°)  abecd (R7®) acbde (R*?) acbed acebd (R®Y)  aebed (R7°)  aecbd (R8)
R16 | acbde baecd | abede abced (R'%) abecd (R**) acbde (R*?) acbed (R') bacde baced (R**)  baecd (R**)
R197 | abced beadc | abced abecd (R'92) abedc (R?°)  baced (R'*?) baecd (R*) baedc (R'2) beacd (R'°%) beadc (R1%%)
R'98 | bacde beadc | bacde (R'*%) baced (R'®) badce (R%®)  badec (R’®)  baecd baedc (R'7) beacd (R'7) beadc (R'7)
R19° | bacde baecd | bacde (R'%) baced (R'%) baecd (R17%)
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Step 2: Our next goal is to show that f(R) = aebcd for the profile R where one voter reports aebcd and teh other reports ecabd. We hence
assume htat f(R) # aebcd and derive a contradiction, as shown in the following table. The profile R appears at Steps 2 and 11 (i.e., R? and
R of our derivation.

R*
R+
Rl

R3

abcde
eabed
ceabd
aebed
eacbd
abcde
abcde
abced
abecd
abced
abecd
abecd
aebed
acebd
acebd
caebd
eabdc
eabdc
acebd
acebd
aebed
acebd
acebd
aecbd
eacbd
aecbd
caebd
abdec
ceabd
abedc
ceabd
ceabd
eacbd
beacd
abedc
beadc
eabdc
ceabd
eacbd
acebd
acebd
aecbd
abecd
aecbd

acbed
ecabd
eacbd
ecabd
ecbad
acebd
aecbd
aecbd
ecabd
eacbd
eacbd
ecabd
ecabd
ecabd
ecbad
ecbad
ecabd
eacbd
eabced
aebed
aecbd
eabcd
ebacd
ebacd
ebacd
ebcad
ebcad
aecbd
ebcad
aecbd
eabed
ebacd
ebacd
eacbd
eacbd
eacbd
eacbd
eabdc
ebcad
eabdc
ebacd
ebacd
eacbd
ebcad

abcede (A)
eacbd (A)

eacbd (A, Step 1)

aebed (A)
eacbd
abcde
abcde
abced
abecd
abced
abecd
abecd
aebed (A)
acebd
acebd
caebd
eabcd (RY)
eabed (R1)
acebd
acebd
aebed (R')
acebd
acebd
aebed (R')
eabed
aebed (RY)
caebd
abdec
ceabd
abecd
ceabd (RY)
ceabd (RY)
eabed (R3%)
beacd (R31)
abecd
beacd (R31)
eabed (RY)
ceabd (RY)
eabed (R3)
acebd (R3¢)
acebd (R38)
aebed (RY?)
abecd (R3?)
aebed (R')

aecbd
ecabd (RY)
abced (R*)
abced (R¥)
abecd
aebed (R?)
abecd
aebed (R7)
aebed (R?)
aecbd
aecbd
aecbd
ceabd
eabdc
eabdc
aebed
aebed (R')
aecbd
aebed (R'8)
aebed (R'8)
aecbd
eacbd
aecbd
ceabd
abecd
cebad
abedc
eabed (RT)
cebad (RY)
eacbd
eabed (R31)
abedc
beadc (R3%)
eabdc
eabed (R?%)
eacbd
aebed (R'®)
aebed (R'8)
aecbd
aebed (R7)
aecbd

eabcd (RY)
ecbad
acbde (R*)
abecd
acbed
aecbd
acbed
aecbd
aecbd
eabcd (RT)
caebd
caebd
cebad
eacbd
eacbd
aecbd
aecbd

aecbd
aecbd
eabed (R?1)
ebacd (R*)
eabed (R?%)
cebad
abedc
ebcad (R?)
aebed (R*®)
eacbd
eabed (R?)
ebacd (R?)
eacbd
aebed (R?®)
eabed (R1©)
eacbd (R3%)
eabdc
ebacd (R??)
aebdc
aecbd
eabed (R?Y)
aecbd
eabed (R?%)

eacbd

acbed (R*)
acbde (R¥)
acebd (R°)
eabced (RY)
acebd (R°)
eabcd

eabcd (RY)
eachd (R1?)
ceabd (R'1)
ceabd (R'?)
ecabd

ecabd (R")

eabced (RY)

eabcd (RY)
eabed (R'7)
eacbd

eacbd
ebcad (R?%)
aebed (R°)
ecabd
aebdc
ecabd (RY)
eacbd

ebacd (R?3)
aebdc
eabdc

eacbd (R>)
ebcad (R?%)
aechd (R®)
eabed (R'7)
eachd (R3%)
eabed (R31)
eacbd (R*0)

ecabd (R")

acebd (R¥)
acbed (R¥)
aebed (RY)
eacbd

aebed (R®)
eachbd (R®)
eacbd (R%)
ecabd (R")
eacbd (R'1)
cebad

ecbad (R13)

eacbd

eacbd (R'?)
eacbd (R'?)
ebacd (R?!)

ebacd (R?%)
ecabd
aebdc
ecbad (R®)
aechd (R%®)

ebacd (R?!)

aecbd (R%*®)
eacbd (R33)

ecabd (RY)
ecabd (RY)
eabed (RY)
eacbd (R'?)
ebacd (R?1)
eacbd (R?)
ebacd (R*)

acebd (R¥)
aecbd (R°)
ecabd (R")
aechd (R®)

ecabd (R™)

ecabd (R")
eacbd (R'?)

ebacd (R?°)

ebcad (R?%)
ecbad (R'%)
aecbd (R°)

ebcad (R?7)

eabed (R1©)
ebacd (R?3)

ecbad
eabdc (R?)
ebacd (R?°)

ebcad (R?)

aebed (RY)  aechbd (RY)

eabed eachbd (R%)

ecabd (R?) ecbad (R'?)

ecabd echad

ecabd (R')  ecbad (R?")

eabdc eachd (R%*®)

ebadc (R31)

eachd (R1?)

ecabd (R%7) ecbad (R*?)
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R43

eacbd

R* | abced

R45
R46

cbead
cebad

ebcad | eabed (R?1)
eacbd | abced (R*!)
eacbd | cbead

eachd | ceabd (R')

eacbd
abecd (R3?%)
ceabd (RY)
cebad (RY)

ebacd (R?3)
acbed
cebad (RY)
eacbd (R¥)

ebcad (R?%)
acebd (R®)
eacbd (R**)
ecabd (RY)

ecabd (R')
aebed (R®)
ecabd (RY)
ecbad (R*3)

ecbad (R*?)
aecbd (R®)
ecbad (R¥3)
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eabed (R31)

eachd (R®)

Step 3: As the next step, we will show that f(R) = aebcd for the profile R where one voter reports acebd and the other reports aebcd. Once
again, we assume for contradiction that this is not true and derive a contraidction. The profile R is called R® in the subsequent derivation.

R*
R+
RY
RZ
R3
R4
RS
RO
R7
RS
R9
R10
RrRU

R13

abcde
eabced
ceabd
aebed
acebd
abcde
acbde
abcde
acebd
eacbd
eabdc
eabdc
aebed
abcde
acbde
acbde
acbed
acebd
acebd
acebd
acebd
caebd
ceabd
caebd
ceabd
ceabd
acebd
ceabd
eabdc
ceabd
eachd
abecd
abecd
beacd
beadc
abedc
abedc
abcde
abdec

acbed
ecabd
eacbd
ecabd
aebed
acebd
acebd
acbde
eacbd
ecbad
ecabd
eacbd
aecbd
aebed
aebed
eacbd
eacbd
eacbd
eabcd
ebacd
ecbad
ecbad
eabed
ebcad
ebacd
ebcad
eabdc
eabdc
eacbd
ebacd
ebacd
ecabd
eacbd
eacbd
eacbd
eacbd
aecbd
aecbd
aecbd

abcde (A)

eacbd (A)

eacbd (A, Step 1)

aebcd (A, Step 2)

acebd aebed (A)
abcde abced (R¥)
acbde acbed
abcde acbde (R¥)
acebd aechd (R?)
eacbd ecabd (RY)
eabed (RT)  eabdc
eabed (R?)  eabdc
aebed aecbd (R?)
abcde abced (R*)
abcde abced (R'?)
acbde acbed
acbed acebd
acebd aecbd (R?)
acebd aebed (R?)
acebd aebed (R3)
acebd aecbd (R3)
caebd ceabd
ceabd (R')  eabed (RT)
caebd ceabd
ceabd (R') cebad (R')
ceabd cebad
acebd aebed (R3)
ceabd (R')  eabed (R?)
eabed (R°)  eabdc (R*®)
ceabd (R') cebad (R')
eabed (R?7) eachd
abecd aebed
abecd aebed
beacd (R?°) eabed (R%7)
beacd (R?°) beadc (R3?)
abecd (R3%) abedc (R3?)
abecd (R3*) abedc (R?*)
abcde abced (R*)
abdec (R3®) abecd (R?)

aecbd (R?)
acbde (R*)
acebd (R*)

eacbd
ecbad
eacbd
eacbd

abecd
abecd (R3)
acebd (R®)
aecbd (R7)
eacbd (R'%)
aechd (R?)
aecbd (R3)
caebd
cebad (R')
eacbd
cebad (R??)
eabed (R?1)
ebcad (R?3)
aebdc (R3)
eabdc (R®)
eacbd
eabed (R?1)
ebacd (R?8)
aecbd (R?)
aechd (R3?)
eacbd
eabed (R19)
aebed
aebed
abecd
abedc (R3?)

acbed (R¥)

ecabd (R?)

aebed (RY)
acbde (R®)
aecbd (R)
eacbd (R')

eabed (RY)
eabed (R3)
ceabd
ecabd (R'%)
ecabd (RY)
ebcad (R?)
eacbd
ecabd
aecbd (R3)
eacbd

eacbd

eabed (R?)
eabed (R3?)
ebacd (R?)
eabdc (R?7)
aebdc (R?7)
aebdc (R3%)
acbde (R¥)
aebed (R39)

acebd (R¥)

acbed
eacbd (R13)

eacbd (R1)
eacbd (R®)
cebad (R'®)
ecbad (R')

ecabd (R*)
ebacd (R'8)
ecbad (R?%)
eabed (R3)
ecabd (RY)

ebacd (R'8)

eacbd (R?)
eachd (R30)

eacbd

aecbd (R31)
aecbd (R'1)
acbed (R*)
aebdc (R3)

acebd (R°)

ebacd (R'7)
eacbd (R'©)

ecbad (R??)
ebcad (R'8)

eabdc (R'7)

ebcad (R'8)
ecabd (R?)
ebacd (R?)
eabed (R31)

acebd (R¥)
aecbd (R')

aebed (R3)

ecabd (R®)

ecabd (RY)

eacbd (R'®)

ecabd (RY)

ebadc (R?7)
eabdc (R?7)

aebed (RY)

aecbd (R?)

ecbad (R'8)

echad

ecbad (R**)

eacbd (R31)

aechd (R'1)
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Step 4: Fourthly, we will show that f(R) = abecd for the profile R where one voter reports acbde and the other reports aebcd. In more
detail, the following derivation shows that f(R) # abecd results in a contradiction. The profile R is called R’ in the following table.

R*
R+
Rl
RZ
R3
R4
RS
RS
R7

abcde
eabced
ceabd
aebed
acebd
abcde
aebed
aebed
abcde
abcde
acbde
acdeb
aebed
aebed
aebed
abcde
abecd
abecd
abecd
abcde
abced
abecd
abced
abced
abced
acbed
aebed
acbde
cbead
cebad
eacbd
eabdc
aebed
eabdc
ebadc
ebacd
baecd
beacd
eacbd
acbde
aebed
cabed
acbed
eacbd
cebad

acbed
ecabd
eacbd
ecabd
aebed
acbde
aecbd
aecdb
acebd
aebed
aebed
aebed
ceabd
caedb
aecdb
aebed
aecdb
ecabd
eacbd
aecbd
aecbd
eacbd
aecdb
eacbd
acbed
aebed
baecd
acebd
eacbd
eacbd
ecbad
ecabd
ecbad
ecbad
ecbad
ecbad
eacbd
eacbd
ebacd
eacbd
cabed
eacbd
cabed
ecbad
ecbad

abcde (A)

eacbd (A)

eacbd (A, Step 1)

aebcd (A, Step 2)

aebed (A, Step 3)

abcde acbde (R¥)
aebed aecbd (R3)
aebed aechd (R?)
abcde abced (R*)
abcde abced (R¥)
abcde abced (R®)
acdeb acebd (R3)
acebd (R®)  aebed
acebd (R3)  acedb (R3)
aebed (R'2)  aecbd (R3)
abcde abced (R¥)
abecd (R'3) aebed (R13)
abecd aebed
abecd aebed
abcde abced (R¥)
abced abecd
abecd (R'®) aebed
abced (R'®) abecd (R'3)
abced (R?Y) abecd (R?0)
abced (R?*) acbed
abced (R?%) abecd
abecd aebed (R?%)
acbde acbed
cbead ceabd (RY)
ceabd (R')  cebad (R!)
eachd (R?8) ecabd (R!)
eabed (RY)  eabdc
aebed aechd (R?)
eabed (R*Y) eabdc
ebacd ebadc
ebacd ebcad
abecd (R?°) aebed (R?)
beacd eabed (R®)
eabed eacbd (R3%)
acbde acbed
abced (R**) abecd
acbed acebd (R??)
acbed cabed (R0)
eacbd ecabd (RY)
cebad (R?®) ecbad

aecdb
acbde (R*)
abecd
abecd (A)
acedb (R?)
aechd (R?)
aebed (R1?)
aecdb
abecd (R%)
aecbd (R%)
aechd (R?)
aechd (R'®)
abecd (R'%)
acbed
aecbd (R'©)
acbed (R1)
acbed

acbed (R3)
baecd

acebd (R7)
cebad (RY)
eacbd (R?*7)
ecbad

eacbd

eabed (R?)
eacbd (R?)
ebcad (R3?)
ecbad (R3?)
aecbd (R'7)
eachd (R®)
ebacd

acebd (R?®)
acbed (R3)
aecbd (R3%)

echad

acbed (R*)
aebed (R7)
acbde (R%)
aebed (R®)
caebd (R?)
aechd (R3)

aebed (R7)
aecdb

eabcd (R?)
eabed (R1©)
acbde (R¥)
acebd (R'8)
eabed (R'©)
acebd (R'%)
acebd (R'?)

acebd (R3)

eacbd (R?%)
ecabd (RY)

ecabd (R?)
eachd (R?)
ebacd

ecbad (R3%)

baecd
ebacd

aecbd (R®)
acebd (R3)
cabed (R*%)

acebd (R*)

acbed (R3)
aecbd (R3)
ceabd (R?)
aecdb

eachd (R?)
eachd (R)
acbed (R¥)
aebed (R18)
eacbd (R'®)
acedb

aebed (RY)

aebed (R?)

ecabd (RY)
ecbad

ebacd
ebadc

beacd

eacbd (R%)
aebed (R?)
caebd (RY)

acebd (R3)  aebed (R®)
aecdb

eabcd (R?)  eachd (R?)
caebd (R3)  caedb (R')

ecabd (R?)

acebd (R*)  aebed (R7)
aecbd (R°)

aebed (R3)  aechbd (R®)
aechd (R'7) eabed (R'7)

aechd (R3)

ecbad

ebcad (R?)  ecabd (R?)
ebcad (R3) ecabd (R3')

eabcd (R'7) eachd (R'7)

aecbhd (R3)  cabed (R)
ceabd (R')  eacbd (R*®)

aecbd (R3)

ecabd (R?)

aecbd (RY)

aecdb (R'?)
eacbd (RV7)

ecbad (R?)
ecbad (R31)

ebacd

caebd (R3)
ecabd (RY)
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acbed
acebd
caebd
ceabd
eacbd
ceabd
ceabd
acbed
caebd
caebd
acbed
acebd
acebd

eacbd
eacbd
ecbad
eabed
ebcad
ebacd
ebcad
eacbd
ebcad
ecbad
ecabd
ecbad
ecabd

acbed
acebd
caebd
ceabd (RY)
eabed (R?8)
ceabd (RY)
ceabd (R*)
acbed
caebd (R°?)
caebd (R>?)
acbed
acebd (R>3)
acebd (R>®)

acebd
aecbd
ceabd
eabed (RY)
eachd (R*®)
cebad (RY)
cebad (R*°)
acebd (R?%)
ceabd (R*?)
ceabd (R*?)
acebd (R1)
aecbd (R*°)
aecbd (R>)

aecbd (R38)
eacbd (R**)
cebad (R¥)
eacbd

ebacd

eabed (RY7)
ebcad

aecbd (R3%)
cebad (R*®)
cebad (R®)
aecbd (R**)
caebd (R>?)
caebd (R>®)

eacbd (R38)

ecabd (R*%)
ecabd (RY)
ebcad
eacbd (R37)
ecabd (R*8)
eacbd (R3%)
ebcad
ecabd (R*°)
cabed (R*1)
ceabd (R3)
ceabd (R*%)
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ecbad

ecabd (R')  ecbad

ebacd ebcad ecabd (R')  echad (R**)
ecbad

ecabd (R*®) ecbad

ecbad

caebd ceabd (R°') eacbd (R**) ecabd (R?)
cebad (R¥®) eacbd (R®) ecabd (R*?) ecbad
eacbd (R¥) ecabd (R?)

Step 5: In our fifth step, we will prove that f(R) = acbed for the profile R where one voter reports acbed and the other reports eacbd. To
this end, we assume that f(R) # acbed and derive a contradiction. Our assumption that f(R) # acbed appears at profile R'> and R?’.

R*
R+
Rl
RZ
R3
R
RS
R6
R7
RS
R
RlO
Rll
RlZ
R13
R14
R15
R16
R17
R18
R19
RZO
R21
RZZ

R24

abcde
eabed
ceabd
aebed
acebd
acbde
aebed
abcde
abecd
abecd
abcde
abced
abced
acbed
abced
beacd
abcde
acbde
eacbd
eachd
acbde
acebd
ceabd
acebd
ceabd
ceabd
acebd
aecbd
acbed
abecd
abecd

acbed
ecabd
eacbd
ecabd
aebed
aebed
aecbd
aebed
ecabd
eacbd
aecbd
aecbd
eacbd
eacbd
eacbd
eacbd
acebd
acebd
ebacd
ecbad
eacbd
eacbd
eabcd
eabcd
ebacd
ebcad
ebacd
ebacd
eacbd
eacbd
ecabd

abcde (A)
eacbd (A)
eacbd (A, Step 1)
aebed (A, Step 2)
aebed (A, Step 3)
abecd (A, Step 4)

aebed aechd (R?)
abede (R*)  abced (R*)
abecd aebed
abecd aebed
abcde (R%)  abced (R¥)
abced (R?)  abecd
abced (R') abecd
acbed (A)  acebd
abced (R'Y)  abecd
beacd eabcd
abcde abced (R¥)
acbde acbed
eabcd eacbd (R')
eacbd ecabd (RY)
acbde (R*)  acbed (R'?)
acebd (RY) aecbd
ceabd (R') eabcd (RT)
acebd (R®)  aebed
ceabd (R')  cebad (R')
ceabd (R?3) cebad (R??)
acebd (R®)  aebed
aebed aecbd (R°)
acbed (A)  acebd (R'?)
abecd aebed (R'3)
abecd aebed (R?8)

abecd
aecbd (R?)
aecbd (R7)
abecd
acbed
acbed
aecbd
acbed (R'?)
eacbd (R'3)
acbde (R*)
acebd (R'%)
ebacd
ecbad
acebd (R'©)
eachd (R'?)
eacbd
aecbd (R3)
eabed (R?Y)
ebcad
aechd (R?)
eabed (R?)
aecbd
aecbd (R7)
aecbd (R?)

aebed (RY)
eabed (R?)
eabed (R7)
acbde (R*)
acebd (R®)
acebd (R'?)
eachd (R'1)
acebd (R'0)
ebacd
acbed (R*)

aecbd

ecabd (RY)
eabcd (RY)
eacbd (R'7)
ecabd (R?3)
eabcd (R??)
eacbd (R'7)
eachd (R'1)
eabed (R7)
eabcd (R?)

eacbd (R?)  ecabd (R?)

eacbd (R7)

acbed (R*)  acebd (R*) aebed (R®)  aecbd (R®)
aebed (R%)  aechd (R®)

aebed (R'0) aechd (R'°) eabed (R®)  eachd (R1?)
aebed (R'0) aechd (R'°) eabed (R®)  eacbd (R1?)
acebd (R*)

eacbd (R'1)

eacbd

ebacd ebcad ecabd (R')  ecbad
ecbad

eachd (R?°) ebacd

ebacd

eacbd (R7)

eacbd (R?)  ecabd (R?)
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acbed
acebd
caebd
acebd
caebd
caebd
aecbd
aecbd
acebd
acebd
cebad
eacbd
cebad

ecabd
ecabd
ebcad
ecbad
ecbad
ebcad
ebcad
ebacd
ebacd
ecbad
ecbad
ecbad
eacbd

acbed (R'?)
acebd (R?%)
caebd (R?%)
acebd (R?%)
caebd (R3?)
caebd (R?%)
aebed (R3)
aebed (R39)
acebd (R?)
acebd (R?)
cebad
eacbd (R3)
ceabd (RY)

acebd (R?7)
aecbd
ceabd (R**)
aecbd
ceabd (R3?)
ceabd (R?%)
aecbd (R°)
aecbd (R®)
aebed (R37)
aechbd (R38)
ecbad (R3%)
ecabd (RY)
cebad (RY)

aecbd
caebd
cebad (R?%)
caebd
cebad
cebad (R?%)
eabed (R?©)
eabed (R?)
aecbd (R?)
caebd (R3*)

ecbad
eacbd (R*)

cabed (R?7)
ceabd (R3%)
ebcad

ceabd (R31)
ecabd

ebcad

eachd (R)
eacbd (R'7)
eabcd (R??)
ceabd (R31)

ecabd (RY)

caebd
eacbd (R?0)
ecabd (R**)
cebad
ecbad (R)
ecabd (R**)
ebacd
ebacd
eachd (R*)
cebad

ecbad (R*0)
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ceabd (R?%)
ecabd (R?)
ecbad
eacbd (R?%)

eacbd (R'?)

ecabd (R'®)

ecbad (R3%)
ebcad ecabd (R?%)
ebacd

eacbd (R?°) ecabd (R'®)

ecabd (R?)

ecbad (R31)

ecbad (R®)

ecbad (R31)

Step 6: Finally, we derive a contradiction by showing that the insights of our previous steps are incompatible with each other.

R+
R!
R?
R3
R4
RS
R®
R7
R8
R9
RlO
RrRU
RlZ
R13
R14
R15
R16

R18

eabed
ceabd
aebed
acebd
acbde
acbed
aebed
cabed
acbed
eacbd
acebd
cbead
cebad
cebad
eacbd
aebed
eabdc
ebadc
ebacd
aebed
caebd
acbed
acebd
acebd
caebd
eacbd
caebd
ceabd
ceabd
ceabd
eacbd
abecd

ecabd
eacbd
ecabd
aebed
aebed
eacbd
cabed
eacbd
cabed
ecbad
eacbd
eacbd
eacbd
ecbad
ecbad
ecbad
ecbad
ecbad
ecbad
baecd
ecbad
ecabd
ecabd
ecbad
ecbad
ebcad
ebcad
ebcad
eabcd
ebacd
ebacd
ecabd

eacbd (A)

eacbd (A, Step 1)
aebed (A, Step 2)
aebcd (A, Step 3)
abecd (A, Step 4)
acbed (A, Step 5)

abced (R*)  abecd
acbed acebd (R®)
acbed cabed (R7)
eacbd ecabd (RY)
acebd aecbd
cbead ceabd (RY)
ceabd (R')  cebad (RY)
cebad (R'?) ecbad
eachd (R'?) ecabd (R')
aebed aecbd (R3)
eabed (R™) eabdc
ebacd ebadc
ebacd ebcad
abecd aebed (R*)
caebd ceabd
acbed acebd (R®)
acebd aecbd
acebd aechd (R'%)
caebd ceabd
eabed (R'?)  eachd (R'?)
caebd ceabd
ceabd cebad
ceabd (R')  eabcd (RT)
ceabd (R')  cebad (R')
eabed (R?Y) eachd
abecd aebed

acbed (R*)
aecbd (R?)

ecbad
eacbd (RY)
cebad (R')
eacbd (R'1)

ecbad
eabed (R?)
eacbd (R'%)
ebcad (R'©)
ecbad (R')
baecd
cebad (R'3)
aecbd (R?)
caebd
caebd
cebad (R'3)
ebacd
cebad (R?°)
ebcad (R?®)
eacbd
eabed (R?8)
ebacd (R?°)
aecbd (R?)

acebd (R%)
cabed (R°)

eacbd (R°)
ecabd (RY)

eachd (R?)
ebacd
ecbad (R'©)

ecabd (R'%)
cabed (R?)
ceabd (R?1)
ceabd (R?%)
ecabd (R'%)
ebcad
ebcad (R?%)
ecabd (R?)
ecabd (RY)
eacbd

eabed (R?)

aebed (RY)
caebd (RY)

ecabd (RY)
ecbad

ebacd
ebadc

ecbad
caebd
eachd (R10)
cebad (R13)
ecbad (R?3)
ecabd (RY)
ecabd (R®)
ecbad (R%®)

ebacd (R?7)

eacbd (R?)

aechd (R3)  cabed (R*)
ceabd (R°)  eacbd (R°)
ecbad

ebcad (R?)  ecabd (R%)
ebcad (R'®) ecabd (R'?)
ceabd (R°)  eacbd (R°)
ecabd (R?)

eacbd (R'°) ecabd (R°)
ecbad

ecbad (R?%)

ebcad (R?7) ecabd (R!)
ecabd (R?)

caebd (R3)
ecabd (RY)

ecbad (R?)
ecbad (R¥)

ecabd (RY)

ecbad (R*)

ecbad (R8)
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R3?| abecd eachd | abecd aebed aecbd (R*') eabcd (R3') eachd (R®)
R33 | beacd eacbd | beacd (R%) eabed (Rso) eacbd ebacd (R30)
R3* | baecd eachd | abecd (R®) aebed (R'°) aecbd (R3?) baecd (R3?) beacd (R*) eabed (R%) eacbd (R?)  ebacd (R3?)

This concludes the proof of this lemma. O
Lemma 4. f(R") # eabcd.

ProOF. As usual, we will assume for contradiction that f(R*) = eabcde. Howbever, in contrast to the previous two lemmas, we will
derive a contradiction by means of a further case distinction. Specifically, we will consider the outcomes for the profile R' shown below.

R': caebd cebad
For this profile, only three ranings satisfy unanimity: f(R') = caebd, f(R') = ceabd, and f(R') = cebad. We will show that none of these

outcomes is compatible with our other assumptions on f.
Case 1: We first assume that f(R') = ceabd. In this case, we immediately can derive a contradiction as wittnessed by the following
deduction.
R* | abcde acbed | abede (A)
R* | eabcd ecabd | eabed (A)
R! | caebd cebad | ceabd (A)

R? | ceabd eabcd | ceabd (R*) eabed eacbd (R*) ecabd (RY)

R3 | ceabd ebcad | ceabd (R*) cebad ebcad ecabd ecbad

R* | abede cabed | abede abced (R*) acbde (R*) acbed (R*) cabde cabed (R*)

R’ |acbde cabed | acbde acbed cabde cabed (R*)

R® | abede acebd | abede abced (R*) acbde (R*) acbed (R*) acebd (R¥)

R | acbde acebd | acbde acbed acebd (R%)

R® | caebd ceabd | caebd (R') ceabd

R® | caebd ecabd | caebd (R') ceabd ecabd

R0 | ceabd eachd | ceabd (R*) eacbd ecabd

R cabed ceabd | cabed caebd (R®)  ceabd

R2| ceabd ecbad | ceabd (R®) cebad ecabd ecbad

R'3 | abced ceabd | abced acbed acebd cabed caebd (R®)  ceabd (R?)

R | acbde ceabd |acbde acbed acebd (R7)  cabde cabed (R°)  caebd (R®) ceabd (R'3)
R' | cabde ceabd | cabde cabed caebd (R®)  ceabd (R')

R1%| cabed ceabd | cabed caebd (R®)  ceabd (R')

RY7 | cabed ecabd | cabed caebd (R%)  ceabd (R'®) ecabd (R'®)

R'8 | caebd ecabd | caebd (R') ceabd ecabd (R'7)

RY | caebd ecbad | cacbd (R') ceabd (R'?) cebad (R')  ecabd ecbad

R? | caebd ecbad | caebd (R') ceabd (R'?) cebad (R') ecabd (R'®) ecbad

R?!| cabed ecbad | cabed (R'?) caebd (R'') cbaed (R?°) cbead ceabd (R'?) cebad (R'®) ecabd (R'®) ecbad (R'7)

R?2 | cabed cbead | cabed (R*') cbaed (R*') cbead
R?3 | acbed cbead acbed(Rzz) cabed (R**) cbaed (R*?) cbead

R?* | acbed cebad | acbed (R*®) acebd (R?®) cabed (R**) caebd (R') cbaed (R*) cbead ceabd cebad (RY)
R% | acebd cebad | acebd (R**) caebd (R')  ceabd cebad (RY)

R%® | gcebd ceabd | acebd (R*) caebd (R®) ceabd

R%7 | acdeb ceabd | acdeb acebd (R?°) acedb (R?°) cadeb caebd (R®)  caedb ceabd (R™) ceadb

R?8| cadeb ceabd | cadeb caebd (R®)  caedb ceabd (R?") ceadb

R? | caedb cebad | caebd (R') caedb ceabd ceadb cebad (RY)

R30| caedb ceabd | cacbd (R®)  caedb ceabd (R?®) ceadb

R3!| cbhead ecbad | cbead cebad (R?°) ecbad (R*)
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caedb
caedb
cbead
cbead
eacbd
acebd
cabed
acebd
acebd

cebad
cbead
ecadb
eacbd
ecbad
cebad
eacbd
ecbad
eacbd

caebd (RY)
cabed (R??)
cbead (R33)
cbead (R3%)
eacbd
acebd
acbed (R3)
acebd (R'%)
acebd (R*%)

caedb
caebd (R?%)
ceabd
ceabd (R'?)
ecabd (R?)
caebd (RY)
acebd
aecbd (R?%)
aecbd (R38)

ceabd (R3Y)
caedb
ceadb
cebad (R31)
ecbad (R®)
ceabd
aecbd (R'7)
caebd (R¥)
eacbd (R3%)

ceadb
cbaed (R??)
cebad (R31)
eacbd

cebad (RY)
cabed (R3)
ceabd (R'?)
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cebad (R")
chead (R*?) ceabd (R*°) ceadb cebad (R?°)
ecabd (R*') ecadb ecbad (R31)

ecabd (R*') ecbad (R®')

caebd (RM) ceabd (R'®) eacbd (R'7) ecabd (R'®)
cebad (R*7) eachd ecabd (R?®) ecbad (R*°)

Case 2: As the second case, we assume f(R!) = caebd. In this case, we proceed with a third tier case distinction with respect to the profile
R? where one voter reports caebd and the other reports ecabd.

Case 2.1: First, we assume that f(R?) # caebd. Then, our assumption become incompatible as shown by the following derivation.

R*
R!
RZ
R3
R
RS
R6
R7
RS
R®
RlO

Rlz

abcde
caebd
caebd
cabed
cabde
cabde
cabde
cabde
cabde
caebd
caebd
cabed
cbaed
caebd
abcde
abcde
acbde
acbed
acbed
bcade
caebd
caebd
caebd
cbaed
caedb
cbaed
cbaed
cbaed
acbed
acbed
acedb
acbed
ceadb
acbed

acbed
cebad
ecabd
ecabd
ecabd
ceabd
cebad
ceabd
caebd
cebda
cheda
cheda
cbeda
chaed
acebd
caebd
caebd
caebd
acedb
caebd
cbdae
cbeda
cbaed
cbeda
chaed
ecabd
ceadb
cebad
cebad
chaed
chaed
acedb
cebad
ceadb

abcede (A)
caebd (A)
caebd (A)
cabed (R?)
cabde (R3)
cabde (R*)
cabde (R*)
cabde (R%)
cabde (R®)
caebd
cabed (R®)
cabed
cbaed
cabed (R®)
abcde
abcde
acbde (R®)
acbed
acbed
bcade
cabde (R®)
cabed (R®)
cabed (R®)
chaed
cabed (R'3)
cabed (R?)
cabed (R'3)
cbaed (R?®)
acbed
acbed
acbed
acbed
ceabd (R?®)
acbed

ceabd (RY)
caebd (R?)
cabed (R?)
cabed (R*)
cabed (R*)
cabed (R*)
cabed (R7)
ceabd (RY)
caebd
chaed
cbead
caebd
abced (R¥)
abced (R*)
acbed
acebd (R®)
acebd (R'7)
bcaed
cabed (R®)
caebd (R?0)
caebd (R?!)
cbead (R?Y)
caebd (R??)
caebd (R?)
caebd (R?%)
cbead (R?3)
acebd (R'7)
cabed (R'7)
acebd (R®)
acebd (R'7)
ceadb (R?®)
acebd (R'7)

ecabd
ceabd (R?)
caebd (R?)
caebd
caebd
caebd
caebd
cebad (RY)
chaed
cbead (R'?)
cbeda (R')
cbaed
acbde (R*)
acbde (R*)
acebd (R')
cabed (R®)
acedb
cabde (R®)
caebd (R'?)
cbaed
cbaed
cbeda (R')
caedb (R??)
cbaed (R?)
caedb (R??)
cebad
cabed (R®)
cbaed (R?8)
acedb (R**)
acedb (R3%)
cebad
acedb (R31)

ecabd
ceabd (R?)
ceabd
cbade (RY)
ceabd (R®)

cebda (RY)
cbead (RY)
cbeda (R'?)

acbed (R*)
acbed (R¥)
cabde (R®)
caebd (R®)

cabed (R')

cbade (R?)
cbead (RY)

cbaed

cbead (R?)
cbaed (R?)
caebd (R'7)

cabed (R'3)

cabed (R'7)

ecabd

chaed cbead (R')  ceabd (R') cebad (R')

cbeda (R°) ceabd (R') cebad (R') cebda (R)

acebd (R¥)
acebd (R*) cabde cabed (R*)  caebd (R'%)
cabed (R'®) caebd (R™)

caebd (RY) cbade (R®)  cbaed
cbaed cbdae
cbeda (R°) ceabd (R') cebad (R') cebda (RY)

ceabd (R?)  cebad ecabd echad
cbead (R®) ceabd (R*) ceadb (R**) cebad

cbaed (R?") cbead (R') ceabd (R') cebad (R)

caebd (R??) caedb (R*?) cbaed (R*)

caebd (R') caedb (R'7) ceabd (R'7) ceadb (R?*®)
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cabed
caebd
caebd
cbaed
cebad
cdeba
cdeab
cadeb
cadeb
cebad
cebda
cdeab
caebd
cdaeb
cdaeb
caebd
cadeb
cadeb
cadbe
acdbe
acdbe
abcde
acedb
acedb
acedb
caebd
adceb
adceb

ceadb
ceadb
cedba
cedba
cedba
cebad
cebad
cebad
caebd
dceba
dceba
cebda
cdaeb
cebda
cedba
cedba
cedba
ceadb
ceadb
ceadb
acedb
acedb
adbce
adcbe
adceb
dcaeb
ceadb
caebd

cabed (R3)
caebd

caebd

cbaed (R?®)
cebad

cdeba (R38)
cdeab (R3)
cadeb (R*0)
cadeb (R*)
cdeba (R3®)
cdeba (R*3)
cdeab (R%0)
cadeb (R*?)
cdaeb (R*%)
cdaeb (RY7)
caebd

cadeb (R*8)
cadeb (R°?)
cadbe (R°1)
acdbe (R%%)
acdbe (R>3)
abcde

acdbe (R°%)
acdbe (R°%)
acdeb (R%%)
cadeb (R*?)
acdeb (R°1)
acdeb (R*?)

caebd
caedb (R3%)
caedb (R3)
cbead (R?3)
cebda (R7)
cebad
cdeba (R38)
caebd
caebd
cebad
cebda
cdeba (R*0)
caebd
cdeab (R®)
cdeab (R*7)
caedb
caedb (R*8)
caedb (R*?)
cadeb (R°1)
acdeb (R°1)
acdeb (R3)
abced (R¥)
acdeb (R>)
acdeb (R>*)
acedb (R7)
caebd
acedb (R>®)
acebd (R°®)

caedb (R3%)
ceabd (RV)
ceabd (RY)
cbeda (R'?)
cedba (R37)
cebda (R3%)
ceabd (R3?)
caedb (R3?)
caedb (R*®)
cebda (R3%)
cedba

cebda

caedb (R®®)
cdeba (R*)
cdeba (R*7)
ceabd (RY)
cdaeb (R*8)
ceadb

caedb (R>1)
acedb

acedb

acbde (R¥)
acedb (R>)
acedb (R>®)
adceb

caedb (R3®)
adceb

acedb (R8)

ceabd (R33)
ceadb (R3%)
ceadb (R>)
cebad

cedba (R38)
ceadb (R3?)
ceabd (RY)

cedba (R3®)
dceba (R*3)
cedab (R*0)
cdaeb (R3%)
cebda (R®)
cedab (RY7)
ceadb

cdeab (R*8)

ceadb
cadbe (R°1)

acbed (R¥)
adbce
adcbe (R°%)

cdaeb (R3%)
cadeb (R°)
adceb (R>%)

ceadb (R33)

cebad (RY)
cebda (R??)

cebad
ceadb (R??)

dceba (R*)
cedba

cedab (R¥)
cedba

cebad (R")
cdeba (R*)

cadeb (R°Y)

acdbe
adcbe (R**)
adceb

deaeb (R*0)
caedb (R°V)
cadeb (R*?)
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cebda (RY)
cedba (R3%)

cedab (R%)  cedba (R°)

cebda (R3®) cedab (R*?) cedba (R3®)
cebad (RY)

cedba

cebda (RY)
ceadb

cedab (R%)  cedba (R°)
cedab (R¥) cedba (R*?)

caedb (R3%) ceadb (R33)

acdeb (R'%)
adceb

acebd (R*)  acedb (R'%)

ceadb (R>3)

caebd (R®) caedb (R*)

Case 2.2: As our second subcase, we suppose that f(R?) = caebd. We again derive a contradiction for this case, as shown in the followign.
By combining our two subcases, it follows that f(R!) = caebd must be wrong,

R*
R+
Rl
RZ
Rr3
R4
RS
R6
R7
RS
R9
RlO
Rll
R12
R13
R14

abcde
eabed
caebd
caebd
ceabd
cebad
cebad
cebad
caebd
caebd
caebd
ceabd
ceabd
caebd
cabed
cbaed

acbed
ecabd
cebad
ecabd
eabced
eabed
ebacd
ebcad
cebda
ecbda
ebcad
ebcad
ecabd
cbeda
cbeda
cheda

abcede (A)
eabed (A)
caebd (A)
caebd (A)
ceabd (R")
ceabd (R")
cebad (R*)
cebad (R°)
caebd
caebd
caebd
ceabd (R?)
ceabd (R'0)
cabed
cabed
chaed

eabed
cebad (R?)
ebacd
ebcad
ceabd (R?)
ceabd (R?)
ceabd (R?)
cebad (R®)
ecabd
caebd
cbaed
cbead

eachd (R")
eabced
ebcad
ecbad
cebad (RY)
cebad (R')
cebad (RY)
ebcad (R%)

cbaed
cbead (R'?)
cbeda (R'3)

ecabd (R")
eachd (R")
ecbad (R*)

cebda (RY)
cebda (RY)
ebcad (R?)
ecabd

cbead (RY)
cbeda (R'?)

ebacd

ecabd (R?)
ecabd (R?)
ecbad (R%)

cbeda (R7)

ebcad ecabd (R*) ecbad (RY)
ecbad (R?) ecbda (R)

ecbad (R?)

ceabd (R?) cebad (R') cebda (R')



The Impossibility of Strategyproof Rank Aggregation AAMAS °26, May 25 - 29, 2026, Paphos, Cyprus

RY | ebcad ecabd | ebcad (R'Y) ecabd echad (R'?)

R | caebd eabcd | acebd (R®)  aebed (R°)  aechd caebd (R®) ceabd (R*) eabcd (R’°) eachd (R?) ecabd (R?)
RY7 | aecbd caebd | acebd (R'®) aecbd caebd (R'©)

R'8 | cebad ecabd | ceabd (R'') cebad ecabd ecbad (R')

RY | aecbd cebad | acebd (R'7) aecbd caebd (R') ceabd (R') cebad (R') eacbd ecabd ecbad (RY)
R¥ | cebad eachd | ceabd (R'®) cebad (R'Y) eachd ecabd echad (R'®)

R%!| cebad ecabd |ceabd (R') cebad (R?") ecabd ecbad (R')

R? | cbead ecabd | cbead (R*') ceabd (R') cebad (R*') ecabd ecbad (RV)

R?3 | chaed ecabd | cabed (R*%) caebd cbaed (R??) cbead (R*') ceabd (R?) cebad (R?!) ecabd (R?) ecbad (R?)
R?* | caebd cbaed | cabed (R*®) caebd cbaed (R?3)

R% | cabde ecabd | cabde cabed caebd ceabd (R%) ecabd (R%)

R%® | gbede acebd | abede abced (R*) acbde (R*) acbed (R*) acebd (R¥)

R?" | abede caebd | abede abced (R*) acbde (R*) acbed (R*) acebd (R*) cabde cabed (R*)  caebd (R?°)
R?8 | becade caebd | beade beaed (R?)  cabde cabed (R?") caebd (R?") cbade (R**) cbaed (R**)

R? | caebd cbeda | cabed (R**) caebd cbaed (R?%) cbead (R') cbeda (R7) ceabd (R?) cebad (R') cebda (R')
R30 | caebd cbdae | cabde cabed (R?*) caebd (R*®) cbade (R**) cbaed (R**) cbdae (R*°)

R3!| cabde caebd | cabde cabed (R?*) caebd (R3°)

R32 | cabde ecabd | cabde cabed (R**) caebd ceabd (R?)  ecabd (R?)

R33 | cabde ceabd | cabde cabed (R3?) caebd (R*') ceabd (R%)

R3* | cheda ceabd | cbead (R?°) cbeda (R?°) ceabd cebad cebda (R%)

R% | cbdea ceabd |cbdea (R**) chead (R**) cheda (R**) ceabd (R*) cebad cebda (R3*)

R3¢ | cbdea ecbda|cbdea (R*) cbeda cebda ecbda

R37 | cbdea cebad |cbdea (R*®) chead (R*) cbeda (R*) cebad cebda (R*)

R38 | cbaed cebad | cbaed chead (R*) cebad

R% | cabde cebad | cabde cabed (R*?) caebd (R®') cbade (R®") cbaed cbead (R') ceabd (R') cebad (R')
R¥ | cbdae cebad |chade (R?7) chaed cbdae (R®) cbdea (R¥) cbead (R¥7) cbeda (R37) cebad (R*°) cebda (R®")
R*| chaed cebad | cbaed cbead (R37) cebad (R*?)

R*2 | cbaed ecbda |cbaed cbead (R3®) cbeda (R'™) cebad (R*') cebda (R®) ecbad (R®) ecbda (R®)

R® | cbdae ecbda | cbdae chdea (R*®) cbeda cebda (R¥®) ecbda (R*?)

R* | cbhdea echbda|cbdea (R*) cbeda cebda (R®) ecbda (R®)

R% | cbeda ecbda | cbeda cebda (R*) ecbda (R*)

R | cbeda ecabd | cbead (R*') cbeda (R??) ceabd (R') cebad (R?') cebda (R*') ecabd echbad (R") ecbda
R | cbeda ecdab | cbeda (R*) cebda (R*) cedab cedba ecbda (R*) ecdab ecdba (R®)

R*® | cheda ecdba | cbeda (RY) cebda (R*¥) cedba ecbda (R¥®) ecdba (R?)

R*¥ | cbeda cedba | cbeda (R*®) cebda (R*) cedba

R | cebda cedba | cebda (R*) cedba

R3!| bcead cebad | beead chead (R*7) cebad

R>? | cebad cedba | cebad cebda (R*7) cedba

R>3 | cbeda cedba | cbeda cebda (R*) cedba

R | beeda cedba | bceda (R*) cheda (R*) cebda (R) cedba

R | cbaed cedba | chaed chead (R®®) cbeda (R') cebad (R*') cebda (R®?) cedba (R*?)

R3¢ | beead cedba | beead (R*) beeda (R*®) cbead (R°Y) cbeda (R*) cebad cebda (R°?) cedba (R>®)

R | cebad cedba | cebad cebda (R%7) cedba (R>°)

R>8 | cebad dceba | cdeba (RY) cebad cebda (R?7) cedba dceba

R | cdeba cebad | cdeba (R®7) cebad cebda (R*7) cedba

RO | beead cebad | beead (R°°) cbead (R7) cebad

RO | cdeba cebad | cdeba (R®) cebad cebda (R¥) cedba (R°7)
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cebad
cebda
cedba
cedba
cedba
cedba
cdeba
bedea
bedea
cbdae
bedea
bedea
bdcea
bdcea
bdcea
cedba
cbeda
cedba
cdbea
bedea
cdbea
cdbea
bdeca
becda
becda
bedca
bedac
beacd
beacd
cbaed
cbead
cbead
bcead
bcead
bcead

dceba
dceba
dceba
ebcad
ebcda
ecbda
ecbda
cebad
cebda
cedba
cedba
cebda
cebda
cebda
cheda
dbcea
dbcea
dbcea
dbcea
cdbea
dbeca
ecbda
cdbea
cdbea
cbeda
cbeda
cbeda
cbeda
cbead
ebcad
ebcad
ebacd
ebacd
ecabd
eabcd

cdeba (R37)
cdeba (R%®)
cdeba (R%3)
cebad (R®)
cebda (R*)
cebda (R¥)
cdeba (R)
bedea (R37)
bedea (R%)
cbdae
bedea (RO%)
bedea (R%Y)
bedea (R79)
bedea (R70)
bedea (R74)
cdbea
bedea (R70)
cdbea
cdbea
bedea (R7?)
cdbea
cbdea (R3)
bedea (R31)
bedea (RB1)
beeda (R70)
beeda (R70)
beeda (R70)
becead
becead
bcaed
becead
bcead
becead
beead (R?%)
beead (R%?)

cebad

cebda (R°?)
cedba

cebda (R°?)
cedba (R%)
cedba (R%®)
cebda

beead (R%0)
beeda (R%%)
cbdea (R*3)
beeda (R*%)
beeda (R%%)
beeda (R70)
beeda (R0)
beeda (R7?)
cdeba (R%%)
beeda (R70)
cdeba (R%%)
dbcea (R7%)
cbdea (R7?)
dbcea (R80)
cbeda

bdcea (R31)
beeda (R81)
becda (R%)
becda (R3%)
becda (R3%)
beeda (R70)
beacd (R%%)
bcead

becad

beacd (R%®)
beacd (R%?)
becad (R¥)
beacd (R%%)

cebda (R37)
cedba
dceba (R%%)
cedba (R>®)
ebeda (R*)
ecbda
cedba (R%7)
beeda (R37)
cbdea (R%)
cbeda (R*)
cbdea (R¥)
cbdea (R%)
bdcea (R7%)
bdcea (R7?)
bdcea (R7*)
cedba (R7%)
bdcea (R7°)
cedba (R7?)
dcbea (R77)
cdbea
dbeca (R3Y)
cdbea (R%®)
bdeca (R?)
becda (R%)
cbeda
bedca (R7°)
bedac (R¥)
beacd (R3%)
becad (R%%)
becad (R%)
cbead (R??)
becad (R*®)
becad (R%?)
cbead (R?1)
becad (R%®)

cedba (R%7)
dceba (R%%)

ebcad
ecbda
ecdba
ecbda
cbdea (R37)
cbeda
cdbae
cbeda (R*)
cbeda
cbdea (R7%)
cbdea (R7%)
cbdea (R7°)
dbcea
cbdea (R7%)
dbcea (R7®)

dcbea (R30)
cdeba (R%®)
cbdea (R31)
cbdea (R®1)

cbeda
bedca (R7%)
becad (R3%)
cbead
cbaed
cebad (R%)
cbead (R°)
ebacd (R%?)
ceabd (R'1)
eabed (R%%)

dceba (R%Y)

ebeda (R*)
ecdba

ecdba
cbead (R?)
cebda
cdbea
cdbea
cebda (R7%)
cbeda
cheda
cheda
dcbea (R%%)
cbeda
dcbea (R%%)

cebda (R¥3)
cdbea
cbeda

cbeda
becda (R8)

cbead (R38)
ebcad (R1)
cebad (R°)

ebcad (R7®)
cebad (R*!)
ebacd (R%%)

ecbad

cbeda (R37)

cdeba (R>)
cdeba (R%%)

cebda
cebda (R73)

dceba (R%%)
cdbea
dceba (R%%)

cedba (R%7)
dbcea (R3%)
cdbea (R®3)

cbead

cebad (R®)
ecbad
ebacd (R%)

ebcad (RY)
ebcad (R%%)
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ecbda

cebad

cebda (R*0)
cebda (R>3)

dbcea (R7%)

ecbda (R*3)
dbeca (R%)

cheda
ebcad (R?)
ebcad (R%?)

ecabd

ecdba (R°)

cebda (R?)

cedba (R>®)
cedba (R7Y)

debea (R79)

ecdba (R*3)
dcbea (R%9)

ecbad (R%)
ecbad (RY)

ecbad (R¥)

Case 3: Lastly, we suppose that f(R') = cebad. To derive a contradiction in this case, we will use a further case distinction with respect
to the profile R? where one voter repots aecbd and the other reports cabed. It can be checked that there are 5 possible outcomes for this
profile f(R?) € {acbed, acebd, aecbd, cabed, caebd}. We will subsequenlty show that none of these outcoems is feasible by considering four

separate cases.

Case 3.1: As the first case, we suppose that f(R?) ¢ {acbed, acebd, aecbd}. In this case, the following derivation shows that our assumptions
are incompatible. Noet that the profile R? appears again at R'! as we can conclude that f(R?) = f(R'!) = cabed at this point.

R* | abcde
R* | eabcd
R! | caebd
R? | aechd
R3 | aechd
R* | acebd

acbed
ecabd
cebad
cabed
caebd
cebad

abcde (A)
eabed (A)
cebad (A)
acbed (A)
acebd
acebd (RY)

acebd (A)
aecbd (R?)
caebd (RY)

aecbd (A)
caebd
ceabd (R')

cabed

cebad

caebd
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RS
R6
R’
RS
R9

Case 3.2:

acebd
ceabd
caebd
aebed
aebed
aecbd
aecbd
aebed
abced
abcde
abcde
acdeb
acedb
aebed
abced
abced
abecd
abecd

ceabd
eabced
eabced
caebd
aecdb
caebd
cabed
cabed
cabed
acebd
aebed
aebed
aebed
aecdb
ceabd
acedb
acedb
aecdb

acebd (R%)
ceabd (R")
acebd (R®)
acebd (R7)
aebed
acebd
acbed (A)
abced
abced
abcde
abcde
acdeb
acebd (R®)
aebed (RY7)
abced
abced
abced
abecd (R'®)

caebd
eabed
aebed
aebed
aechd (R®)
aecbd (R?)
acebd (A)
abecd (R'1)
acbed (R'1)
abced (R¥)
abced (R¥)
acebd (R®)
acedb (R?)
aechd (R®)
acbed (R13)
acbed (R13)
abecd (R'7)
aebed (R'8)

ceabd
eachd (R™)
aecbd (R?)
aecbd (R?)
aecdb
caebd (R®)
aecbd (A)
acbed (R?)
cabed (R'?)
acbde (R¥)
abecd (R'?)
acedb (R?)
aebed (R1©)
aecdb
acebd (R?)
acebd (R')
acbed (R?°)
aecbd (R?)

ecabd (R")
caebd (R®)
caebd (R7)

cabed
acebd (R?)

acbed (R*)
aebed (R')
aebed (RV)
aecbd (R?)

cabed (R13)
acedb (R')
acebd (R?%)
aecdb (R?1)

ceabd (R")

caebd (R19)
aebed (R?)

acebd (R¥)

aecbd (R®)
aecdb

caebd (R'3)

acedb (R?0)
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eabced eachd (R*) ecabd (RY)

aecbd (R?)  cabed (R®) caebd (R®)

aecdb

ceabd (R®)

aebed (RY7) aechd (R?°) aecdb (R%0)

Next, we assume that f(R?) = acbed and derive a contradiction as shown below.

eabcd
caebd
aecbd
ceabd
caebd
aebed
aecbd
acebd
acebd
aecbd
aecbd
aecbd
ceadb
ceadb
ceadb
eadcb
abced
acbed
acbde
acbde
acbed
acbed
abced
acbed
acebd
acbed
acebd

ecabd
cebad
cabed
eabcd
eabcd
caebd
caebd
cebad
ceabd
cebad
ceabd
ecabd
eabcd
eadbc
eadcb
ecadb
cabed
cabed
aecbd
eacbd
eacbd
ceabd
ceabd
ceabd
ceabd
ecabd
ecabd

eabced (A)
cebad (A)
acbed (A)
ceabd (R")
acebd (R3)
acebd (R*)
acebd
acebd (RY)
acebd (R7)
acebd (RY)
acebd (R®)
aecbd (R'9)
ceabd (R")
ceadb (R'?)
ceadb (R'3)
eacdb
abced
acbed
acbde
acbde
acbed
acbed
abced
acbed
acebd (R7)
acbed
acebd (R7)

eabed
aebed
aebed
aecbd
caebd (RY)
caebd
aecbd (R7)
aecbd (R®)
eacbd
ceadb (R?)
eacdb
eacdb
eadch
acbed
cabed (R?)
acbed
acbed
acebd
acebd (R?)
acbed
acebd (R®)
caebd
acebd (R?1)
aecbd (R'1)

eacbd (RY)
aecbd
aecbd
caebd (R°)
ceabd (RY)
ceabd
caebd (RY)
caebd (R®)
ecabd
eabed
eadbc
eadcb
ecadb (R'%)
cabed (R?)

acebd (R?)
acebd (R'8)
aecbd (R')
cabed (R'7)
acebd (R®)
cabed (R'7)
ceabd (R?3)
aecbd (R?°)
caebd

ecabd (R")
caebd (R3)
caebd (R%)

cebad

ceabd (RY)
ceabd (R3)

eachd (R")
eadcb
ecadb (R'3)

aechd (R?)
aecbd (R'8)
eacbd (R'%)
caebd
cabed (R'©)
caebd

cabed (R'7)
ceabd (R?%)

ceabd (R™)

cebad
eacbd

eacdb
ecadb (R'%)

eacbd (R'8)

ceabd
caebd
ceabd (R?%)

caebd
eacbd (R*)

eabed eacbd (R*) ecabd (RY)
eachd (R”)  ecabd ecbad
ecabd

ecabd (R*) ecadb (RY)

ceabd (R?)

ceabd (R?3) eacbd (R*°) ecabd (R*)
ecabd (R?®)
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R%" | acebd ecbad | acebd (R7) aecbd (R7) caebd (R’) ceabd (R”) cebad eacbd (R7) ecabd (R*) ecbad (R*®)
R | cebad ecbad | cebad ecbad (R*")

R?® | ceadb eacdb | ceadb (R'™) eacdb ecadb

R3 | acbed cebad | acbed (R7) acebd (R') cabed (R') caebd (R') cbaed cbead ceabd (R')  cebad

R3 | acbed cbead | acbed (R*") cabed (R'7) cbaed cbead

R32| acbed cbaed | acbed (R*') cabed (R'7) cbaed

R33 | cebad ecabd |ceabd (R') cebad ecabd ecbad (R%)

R34 | gecbd cebad | acebd (R') aecbd (R7) caebd (R') ceabd (R') cebad eachd (R7)  ecabd ecbad (R?8)
R% | aecbd ceabd | acebd (R®) aecbd (R°) caebd (R®) ceabd (R®) eachd (R**) ecabd

R3¢ | aecbd ecabd | aechd (R'") eachd (R*) ecabd

R3 | aecbd chaed | acbed (R**) acebd (R?) aecbd (R*) cabed (R*) caebd (R®) cbaed

R38| cbaed ecabd | cabed (R*?) caebd (R*7) cbaed cbead ceabd (R*7) cebad ecabd (R37) ecbad (R¥)
R3 | cbead ecabd | cbead ceabd (R*®) cebad ecabd (R3®) ecbad (R*?)

R | cebad ecabd |ceabd (R')  cebad ecabd (R*°) ecbad (R*?)

R¥ | acebd ecbad | acebd (R7) aecbd (R7) caebd (R7) ceabd (R7)  cebad eachd (R7)  ecabd echad

R* | gecbd cebad | acebd (R') aecbd (R7) caebd (R') ceabd (R') cebad eacbd (R7) ecabd (R*") ecbad (R*®)
R® | cebad eacdb | ceabd (R') ceadb (R*°) cebad eacbd (R7)  eacdb (R**) ecabd (R**) ecadb (R*®) ecbad (R*®)
R* | eacdb ecbad |eacbd (R*') eacdb (R*?) ecabd ecadb (R¥) ecbad

R® | eadcb ecbad | eacbd (R*') eacdb (R**) eadch (R*) ecabd ecadb (R™) ecbad

R* | eadch ecabd | eachd (R*®) eacdb (R*®) eadch (R*) ecabd ecadb (R')

R | eadcb ecadb | eacdb eadch (R*) ecadb (R'*)

R*% | gedcb ecabd | aecbd (R'') aecdb (R*®) aedcb (R*®) eachd (R3°) eacdb (R*®) eadch (R*®) ecabd ecadb (R*)
R¥ | aedcb ecadb | aecdb (R*®) aedch (R*®) eacdb eadcb (RY) ecadb (R?)

R | aedcb eacdb | aecdb (R*®) aedcb (R*) eacdb eadcb (RY)

R | acedb eacdb | acedb aecdb (R°Y)  eacdb

R | ceadb eadch | ceadb (R'3) eacdb eadch (R*) ecadb (R'3)

R33 | ceadb eacdb | ceadb (R'™) eacdb ecadb (R?)

R>* | cedba eacdb | ceadb (R?”) cedab (R°%) cedba eacdb (R*) ecadb (R*) ecdab ecdba

R> | eacdb ecdba | eacdb (R°*) ecadb (R*®) ecdab ecdba

R | caebd ecabd | caebd ceabd (R?®) ecabd (R%®)

R | cebad eabcd | ceabd (R')  cebad (R®)  eabed (R*?) eachd (R*)  ebacd (R*?) ebcad ecabd (R*) ecbad (RY)
R38| cebad ebcad | cebad (R°7) ebcad ecbad (R?8)

R | eacdb ecdab | eacdb (R°®) ecadb (R°*) ecdab

RO | caebd ebcad | caebd (R')  ceabd (R') cebad (R°%) ebcad ecabd (R°®) ecbad (R>®)

RO | gecbd ebcad | aebed (R°)  aecbd (R°)  eabed eachd (R°)  ebacd ebcad ecabd (R%) echad (R*?)
R%2 | gecbd ebacd | aebed (R°') aecbd (R°') eabed eachd (R°Y) ebacd

RO3 | aecbd eabcd | aebed aechbd (R°%) eabcd eachd (R")

R%* | acbed eacdb | acbed acebd acedb aecbd (R?°) aecdb (R°°) eacbd (R*®) eacdb (R*)

R% | adecb eacdb | adech (R°") aecdb (R°°) aedch (R°") eacdb eadch (R°)

R% | acdbe eacdb | acdbe acdeb (R%) acedb aecdb (R°°) eacdb (R%*)

R® | adceb eacdb | acdeb (R°°) acedb adceb (R®) adecb (R*®) aecdb (R*®) aedch (R°) eacdb (R%°) eadch (R*°)
RO | acedb eacdb | acedb aecdb (R°®) eacdb (R%7)

R% | eabcd ecdab | eabed eachd (R") eacdb ecabd (R") ecadb (R") ecdab

R’ | ceadb eadbe | ceadb (R'?) eacdb eadbc eadch (R°?) ecadb (R'?)

R"'| caebd eabcd | acebd (R®)  aebed aecbd (R®) caebd (R®) ceabd (R*) eabcd eacbd (R*) ecabd (R")
R72 | acedb eabcd | acebd (R®) acedb (R"') aebed aechd (R°%) aecdb (R°') eabed eacbd (R*) eacdb (R%®)
R73 | acedb eadbc | acedb (R7?) aecdb (R°') aedbc aedcb eacdb (R°®) eadbc eadcb (R7%)
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Case 3.3: Thridly, we show that f(R?) = acebd is not possible. As usual, we assume the

acedb
ceadb
eabced
eadbc
aedcb
aedcb
acedb
ecabd
ecadb
ecdab

edach
eabcd
ecdab
ecdab
ecdab
edach
edacb
edacb
edach
edach

acedb (R7®) aecdb (R°Y)
ceabd (R*) ceadb (R3)
eabcd eachd (R")
eacdb (R°?) eadbc
aecdb (R*®) aedcb (R*®)
aedcb (R78) eadch (R74)
acedb (R73) aecdb (R°))
eachd (R3°) eacdb (R*0)
eacdb (R®%) eadch (R*")
ecdab (R’®) edacbh (R%?)

contradiction with the following table.

R*
R+
Rl
R?
R3
R4
RS
R6
R’
R
R9
RlO
Rll
R12
R13
R14
R15
R16
RY7
RlS
R19
RZO
RZl
R%2
R23

R25

abcde
eabed
caebd
aecbd
aecbd
acbed
acebd
acbed
acbed
acbed
acbed
acebd
aecbd
ceabd
caebd
aebed
aebed
acbde
abcde
acbde
acbde
abcde
abcde
aebed
abced
aebed
acdeb
acedb
aebed
abced
abced
abecd
abecd

acbed
ecabd
cebad
cabed
chaed
chaed
cebad
cebad
cbead
chaed
cabed
ceabd
caebd
eabced
eabced
caebd
aecdb
aecbd
acebd
acebd
aecbd
aecbd
aebed
cabed
cabed
caebd
aebed
aebed
aecdb
ceabd
acedb
acedb
aecdb

abcede (A)

eabed (A)

cebad (A)

acebd (A)

acbed (R?)  acebd
acbed cabed
acebd (R')  caebd (RY)
acbed (R°)  acebd (R!)
acbed (R®)  cabed (R®)
acbed (R7)  cabed
acbed (R®)  cabed
acebd (R°)  caebd
acebd aecbd (R?)
ceabd (R") eabcd

acebd (R'?) aebed
acebd (R'3) aebed
aebed aechd (R'*)
acbde acbed (R?)
abcde abced (R¥)
acbde acbed (R'®)
acbde acbed (R?)
abcde abced (R¥)
abcde abced (R¥)
abced abecd
abced acbed (R®)
acebd aebed
acdeb acebd (R'%)

acebd (R') acedb (R%)

aebed (R?°)  aechd (R%)
abced acbed (R?3)
abced acbed (R*)
abced abecd (R?®)

abecd (R?") aebed (R?7)

aedcb

eabcd

eacdb (R>?)
eadcb (R79)
eacdb (R>?)
edach

aedcb (R7%)
eadcb (R*0)
ecadb (R')
edcab (R8%)

aecbd (R?)
cbaed (R?)
ceabd (RY)
cabed (RY)
cbaed (R*)
cbaed (R3)

ceabd
caebd (R?)
eacbd (R")
aecbd (R'1)
aechd (R'1)
aecdb
acebd
acbde (R*)
acebd (R'7)
acebd (R'®)
abecd (R')
abecd (R?°)
acbed (R?)
cabed (R??)
aecbhd (R'1)
acedb (R'%)
aebed (R?)
aecdb
acebd (R'?)
acebd (R*®)
acbed (R?%)
aecbd (R'%)

eacdb (R®)
eachd (R")
ecabd (R")
ecadb (R%%)
eadch (R*®)

eacdb (R%8)
ecabd
ecdab

cabed (R?)

cebad
caebd (RY)
cbead

ecabd (R")
caebd (R'1)
caebd (R'1)

aecbd (R?)
acbed (R*)

aechbd (R?)
acbde (R¥)
aebed (R'7)
acebd (R'%)

caebd (R'1)
aebed (R?Y)
aecbd (R?%)

cabed (R?3)
acedb (R?®)
acebd (R?°)
aecdb (R3?)

eadcb (R%8)
eacdb (R7%)
ecadb (R")
ecdab (R7°)
ecadb (R*)
eadcb (R8)
ecadb (R*®)
edach (R81)

caebd (R?)

cbaed (R%)

ceabd (R*)

acebd (R¥)

acbed (R?)
aebed (R?1)
aecbd (R**)
aecdb
caebd (R??)

acedb (R*%)
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edach

ecabd (R*) ecadb (RT)

ecdab (R7°)

edabc edacb edcab (R7°)
ecdab (R"") edach edcab
edacb

ecdab edacb (R*) edcab (R*)
edcab (R®1)

opposite, i.e., that f(R?) = acebd and infer a

cbaed (R?)
cbead ceabd (R')  cebad
eabcd eachd (R*) ecabd (RY)

acebd (R*)  aebed (RY7) aecbd (R?)

aechd (R?)  cabed (R*) caebd (R?)

aecdb

ceabd (R'?)

aebed (R%°)  aechd (R%®) aecdb (R%)

Case 3.4: Lastly, we assume that f(R?) = aecbd and derive again a contradiction, as demonstrated with the following table.
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R* | abcde acbed | abcde (A)

R* | eabcd ecabd | eabed (A)

R! | caebd cebad | cebad (A)

R? | aecbd cabed | aecbd (A)

R | acebd cebad |acebd (R') caebd (R') ceabd (R') cebad

R* | aecbd chaed | acbed (R?) acebd (R*) aechd cabed (R%) caebd (R%) cbaed (R?)

R® | aecbd cebad | acebd (R?) aecbd (R®) caebd (R?) ceabd (R*) cebad (R*) eacbd (R®) ecabd echad (RY)
R® | aecbd ecabd | aecbd (R°) eacbd (R’) ecabd

R7 | acbde aechbd | acbde (R*) acbed (R*) acebd (R*) aecbd

R® | acbde eachd | acbde (R7) acbed (R7) acebd (R7) aecbd eacbhd

R® | acbed eachd | acbed (R®) acebd (R®) aecbd eacbd

R19| gbede acebd | abede abced (R*) acbde (R*) acbed (R*) acebd (R¥)

RY | abede aechd | abede (R7)  abeed (R?)  abecd acbde (R?) acbed (R*) acebd (R*) aebcd (R'0) aechbd (R'?)
R12| gbecd aecbd | abecd aebed (R'Y) aecbd (RM)

R13 | aecbd caebd | acebd (R*)  aecbd caebd (R?)

R | cebad ecabd | ceabd (R') cebad (RS) ecabd ecbad (R®)

RY5 | ceabd eabed | ceabd (RY)  eabed eacbd (R*) ecabd (RY)

R | cbead ecabd | cbead (R'™) ceabd (R™) cebad (R'™) ecabd ecbad (R'%)

RY7 | gecbd ceabd | acebd (R%) aecbd (R®) caebd (R*) ceabd (R?) eachd (R°) ecabd

R'8 | acbed ecabd | acbed (R?) acebd (R°) aecbd (R®) cabed (R'®) caebd ceabd (R') eachd (R®) ecabd
RY | acbed ceabd | ached (R'®) acebd (R17) cabed (ng) caebd ceabd

R® | gbced ceabd | abced (R'?) acbed (R'?) acebd (R'7) cabed (R') caebd ceabd (R1)

R%! | abced caebd | abced (R?) acbed (R*) acebd (R?°) cabed (R?°) caebd
R%2 | gbecd caebd | abced (R?') abecd (R¥') acbed (R*') acebd (R*3) aebed (R'?) aechd (R'?) cabed (R¥3) caebd (R*3)

Since no valid ranking remains for R?, this means that f(R!) = cebad is not possible either. Since we exhausted all cases for f(R!), this
proves the lemma. O

R badc cbad dcba
R' cbad cbad dcba
R? badc dcba dcha
R® badc cbad chad
Step 1: For our first step, we will analyze the profile R, where voter 1 reports abed, voter 2 reports chda, and voter 3 reports
dbac. Specifically, we will show for this profile that f(R) € {bacd, bcda, bdac}. To prove this claim, we consider the following profiles.
R abed cbda dbac
R! abdc cbda dbac
R? abed cbad dbac
R® abcd cbda dbca
We first note that the majority relation for R!, R?, and R? all form a ranking. Specifically, the majority relation for R, R?, and R® correspond

to the rankings bdac, bacd, and beda. Hence, majority consistency requires that f(R!) = bdac, f(R?) = bacd, and f(R?) = beda. In turn,
strategyproofness from R to these three profiles results in the following inequalities, where & is the ranking chosen for R.

(1) Strategyproofness from R to R! requires that A(abced,>) < A(abed, bdac) = 3.
(2) Strategyproofness from R to R? requires that A(cbda,5) < A(cbda, bacd) = 3.
(3) Strategyproofness from R to R® requires that A(dbac, 5) < A(dbac, beda) = 3.

We claim that these inequalities imply that > € {bacd, beda, bdac}. To this end, we first show that b must be top-ranked by >. Assume
that this is not the case. If a is top-ranked by >, then either Condition (2) or Condition (3) is violated. In more detail, if & is top-ranked by a
and is not acbd, then A(cbda,>) > 3, which violates Condition (2). On the other hand, if > = acbd, then Condition (3) is violated because
A(dbac,>) = 4. Next, if ¢ is top-ranked by >, then we either Condition (1) or (3) is violated. In more detail, any ranking > that top-ranks ¢
other than cdba fails Condition (3) since A(dbac, >) > 3. On the other hand, the ranking cdba fails Condition (1) because A(abcd, cdba) = 4.
Lastly, a symmetric argument based on Conditions (1) and (2) shows that d cannot be top-ranked by . By our analysis so far, we have that b
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is top-ranked by . Our claim now follows by observing that the rankings badc, bcad, and bdca respectively fail Conditions (2), (3), and (1)
since A(cbda, badc) = 4, A(dbac, bead) = 4, and A(abed, bdca) = 4. Hence, it follows that f(R) € {bacd, bdac, bcda}.
Finally, we note that we can without loss of generality assume that f(R) = bdac.
Step 2: For our second step, we consider the profile R, where voter 1 reports abdc,
R abed cdba dbac
R' abcd cdba bdca
R* cdba cdba dbac
R abed cbda dbac

We first note that the majority relation for R! corresponds to the ranking beda. Hence, majority consistency postulates that f (RY) = beda.
Similarly, it is easy see that the majority relation in R? is cdba, so f(R?) = cdba. Finally, we have by our previous analysis that f(R) =
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