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ABSTRACT
In rank aggregation, the goal is to combine multiple input rank-

ings into a single output ranking. In this paper, we analyze rank

aggregation methods, so-called social welfare functions (SWFs),

with respect to strategyproofness, which requires that no agent can

misreport his ranking to obtain an output ranking that is closer

to his true ranking in terms of the Kemeny distance. As our main

result, we show that no anonymous SWF satisfies unanimity and

strategyproofness if there are at least four alternatives. This result

is proven by SAT solving, a computer-aided theorem proving tech-

nique, and verified by Isabelle, a highly trustworthy interactive

proof assistant. Moreover, we show by hand that strategyproofness

is incompatible with majority consistency, a variant of Condorcet-

consistency for SWFs. Lastly, we demonstrate for two large classes

of SWFs that all SWFs within these classes have a high incentive

ratio and are thus severely manipulable.
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1 INTRODUCTION
An important problem for multi-agent systems is rank aggrega-

tion: multiple input rankings need to be aggregated into a single

output ranking. For instance, this task arises when a hiring com-

mittee is asked to produce a ranking of the applicants based on

the preferences of the committee members [e.g., 24, 49], when ag-

gregating the outputs of multiple ranking algorithms in ensemble

learning [e.g., 56, 63], or when recommender systems infer an out-

put ranking based on the preferences of multiple users [e.g., 1, 62].

Moreover, rank aggregation finds applications in computational

biology [48, 55], engineering [38], and meta-search [36, 64]. Moti-

vated by this wide range of applications, we will investigate rank

aggregation in this paper through the lens of social choice theory.

In this field, rank aggregation is formalized via social welfare func-
tions (SWF), which map every profile of (complete and strict) input

rankings to a single output ranking.
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Specifically, we are interested in the question of whether there

are SWFs that incentivize voters to report their rankings truthfully—

a property that is commonly known as strategyproofness. We believe

strategyproofness to be important for many applications of rank

aggregation: without it, voters may try to game the mechanism in

order to obtain a better outcome from their individual perspective.

For instance, if we use an SWF that violates strategyproofness to

aggregate the preferences of the members of a hiring committee, a

committee member may misreport his preferences to ensure that

his preferred candidates are more likely to get the job. Similarly,

in recommender systems, a user may try to manipulate the output

ranking to ensure that the final recommendations are closer to his

preferences. Lastly, even in technical applications such as ensemble

learning, strategyproofness may be desirable as it offers resistance

against malicious behavior from the individual algorithms.

However, while both SWFs and strategyproofness are generally

well understood [see, e.g., 3, 8, 72], the study of strategyproof SWFs

has only recently gained attention [e.g., 4–6, 14]. One possible

reason for this is that it is challenging to define strategyproofness

for SWFs because it is unclear how voters compare different output

rankings. For instance, if a voter’s true ranking is 𝑎 ≻ 𝑏 ≻ 𝑐 , does he
prefer the ranking 𝑏 ≻ 𝑎 ≻ 𝑐 or the ranking 𝑐 ≻ 𝑎 ≻ 𝑏? Following
the recent literature [e.g., 4, 6, 53], we will address this issue by

using the Kemeny distance to define the voters’ preferences over

rankings. This distance counts the number of pairs of alternatives

on which two rankings disagree, and we suppose that voters prefer

rankings that have a smaller Kemeny distance to their true ranking.

Less formally, this means that voters want the output ranking to

align as closely as possible with their true ranking. Lastly, (Kemeny-)
strategyproofness requires that, by misreporting their true ranking,

voters cannot obtain an output ranking that is closer to their true

ranking than the one that is chosen when voting honestly.

It is known that appealing SWFs, such as the Kemeny rule, satisfy

strategyproofness when there are𝑚 ≤ 3 alternatives, but all known

SWFs fail this property if𝑚 ≥ 4 [4, 6]. The central question of this

paper is thus whether strategyproofness allows for the design of

desirable SWFs or whether an impossibility theorem similar to the

Gibbard-Satterthwaite theorem [41, 67] holds for rank aggregation.

Contribution. As our main result, we show that no reasonable

SWF satisfies strategyproofness, thereby establishing an analogue

of the Gibbard-Satterthwaite theorem for SWFs. In more detail, we

prove that no SWF simultaneously satisfies anonymity, unanimity,

and strategyproofness when there are𝑚 ≥ 5 alternatives and an

even number of voters 𝑛, or when there are𝑚 = 4 alternatives and

𝑛 is a multiple of 4 (Theorem 2). We note here that anonymity and

unanimity are very basic properties—anonymity requires that all

voters are treated equally and unanimity that the output ranking

ranks one alternative 𝑥 ahead of another alternative 𝑦 if all voters

https://orcid.org/0000-0002-4263-6571
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Negative results Positive results

⊖ No majority consistent and strategyproof SWF if𝑚≥ 4 (Thm. 1)

⊖ No unanimous, anonymous, and strategyproof SWF if𝑚≥ 4 (Thm. 2)

⊖ The Kemeny rule, all distance scoring rules, and all positional scoring

rules have an incentive ratio of at least

(𝑚
2

)
−𝑚 (Thm. 3)

⊕ The Kemeny rule is strategyproof, unanimous, anonymous, and

majority consistent if𝑚≤ 3 [4, 6]

⊕ There are non-dictatorial, unanimous, and strategyproof SWFs [6]

⊕ The Kemeny rule is betweenness strategyproof for all𝑚 [14]

Table 1: Summary of our results and comparison to related work. All negative results have been proven in this paper. While
there have been impossibility results for strategyproof SWFs before our work [e.g., 6, 15], Theorem 2 supersedes all of them.

prefer 𝑥 to𝑦. Hence, this result shows that no voting rule that seems

acceptable in practice can satisfy strategyproofness.

The proof of our main theorem is obtained via SAT solving, a

computer-aided theorem proving technique. Specifically, we en-

code the problem of deciding whether an SWF satisfies anonymity,

unanimity, and strategyproofness in a logical formula and show

with the help of a computer that this formula is unsatisfiable when

there are𝑚 = 5 alternatives and 𝑛 = 2 voters, and when there are

𝑚 = 4 alternatives and 𝑛 = 4 voters. This proves two base cases for

our impossibility theorem, which we then lift to our final statement

by applying inductive arguments. Following standard practices, we

also extract a proof of one of our base cases in a human-readable for-

mat. However, since this proof spans over 20 pages, we additionally

verify our main theorem with Isabelle [59], a highly trustworthy

computer program designed to verify mathematical proofs.

Furthermore, we manually prove that no strategyproof SWF sat-

isfies a form of Condorcet-consistency we call majority consistency

(Theorem 1). To introduce this axiom, we define the majority rela-

tion of a profile as the binary relation that prefers an alternative

𝑥 to another alternative 𝑦 if a majority of the voters prefers 𝑥 to 𝑦.

Then, majority consistency requires that, when the majority rela-

tion is transitive and antisymmetric (and thus a ranking), an SWF

needs to choose the corresponding ranking. Hence, this impossibil-

ity theorem can be seen as a counterpart to the observation that no

Condorcet-consistent social choice function (which return single

alternatives instead of rankings) satisfies strategyproofness.

Lastly, we investigate the incentive ratio of several SWFs to

measure how manipulable they are. Roughly, the incentive ratio of

an SWF quantifies the worst-case ratio between the utility of a voter

whenmanipulating and when voting honestly. This notion has been

successfully applied for private goods settings [e.g., 29, 54, 73] to

show that manipulable rules still limit the manipulation gain of

agents, which may suffice to disincentivize strategic behavior in

practice. Unfortunately, all SWFs that we consider have a very high

incentive ratio. Specifically, we show that the incentive ratio of the

Kemeny rule and all distance scoring rules (where voters assign

scores to the rankings depending on their Kemeny distance to the

ranking and the ranking with minimal total score is chosen) is

roughly

(𝑚
2

)
when there are𝑚 alternatives. Moreover, we prove

that positional scoring rules have an unbounded incentive ratio for

all𝑚 ≥ 3 as voters with utility 0 can manipulate these SWFs.

Related Work. As mentioned before, both SWFs and strate-

gyproofness have been studied for decades. We hence refer to the

textbook by Arrow et al. [3] and the survey of Barberà [8] for in-

troductions to these topics. In more detail, SWFs are studied since

Arrow’s foundational work of social choice theory [2]. To date,

there is a large range of SWFs, including the Kemeny rule [46, 47],

various types of scoring rules [e.g., 30, 52, 70, 75], sequential scoring

rules [e.g., 12, 70], and Condorcet-style rules [e.g., 31, 68, 69]. These

SWFs are primarily studied with respect to consistency properties

(such as monotonicity, population consistency, or independence

axioms), which have lead to several influential characterizations of,

e.g., the Kemeny rule [26, 76, 77] or the Borda rule [60, 74].

Similarly, strategyproofness in voting has attracted significant

attention, although the results in this line of work are more negative.

In particular, Gibbard and Satterthwaite [41, 67] have independently

shown that no reasonable deterministic voting rule that always se-

lects a single winner satisfies strategyproofness. Motivated by this

result, significant efforts have been spent to circumvent this im-

possibility theorem, for instance by allowing for randomized or

set-valued outcomes [e.g., 18, 21, 42, 45], restricting the feasible

input rankings [e.g., 23, 28, 58], or studying weakenings of strate-

gyproofness [e.g., 25, 50, 65]. Except for domain restrictions, these

approaches have mostly lead to strengthened impossibility theo-

rems. We note that our paper can also be interpreted in this line

of work: since no reasonable single-winner voting rule is strate-

gyproof, one may attempt to escape this negative result by consid-

ering rankings as output. As our results show, this approach does

not allow to circumvent the Gibbard-Satterthwaite theorem.

More directly related, there are a number of works that study

(Kemeny-)strategyproofness for SWFs. To our knowledge, Bossert

and Storcken [15] were the first to study this strategyproofness

notion. These authors focus on group Kemeny-strategyproofness,

which allows for groups of voters to jointly deviate, and show that

this condition leads to an impossibility when requiring a technical

auxiliary property called weak extrema independence. Moreover,

Athanasoglou [4] and Athanasoglou et al. [6] investigate Kemeny-

strategyproofness and prove that, for𝑚 ≤ 3 alternatives, the Ke-

meny rule (with suitable tie-breaking) and other SWFs are strate-

gyproof, whereas these positive results break when𝑚 ≥ 4. More-

over, Athanasoglou et al. [6] show that no anonymous SWF satisfies

Kemeny-strategyproofness and a technical property called prefer-

ence selection. This condition requires an SWF to always return

a ranking that is present in the input profile, a property that is

violated by all commonly studied SWFs.

Lastly, different strategyproofness notions have been explored

for SWFs. For instance, Bossert and Sprumont [14] study between-

ness strategyproofness, which requires that, by manipulating, vot-

ers cannot obtain a ranking that lies on a single-crossing sequence

of rankings from the manipulator’s true ranking to the output rank-

ing chosen when voting truthfully. This notion is strictly weaker

than Kemeny-strategyproofness and Bossert and Sprumont [14]
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show that, e.g., the Kemeny rule always satisfies it. Moreover, Sato

[66] uses betweenness strategyproofness and strong side condi-

tions to obtain an impossibility theorem, whereas Harless [44] and

Athanasoglou [5] use this notion to characterize a family of SWFs

called status-quo rules. Further strategyproofness notions for SWFs

have been studied by Bonkoungou [13] and Dindar et al. [35], which

are, however, unrelated to Kemeny-strategyproofness.

2 PRELIMINARIES
Let 𝐴 = {𝑎, 𝑏, 𝑐, . . . , } be a set of𝑚 alternatives and 𝑁 = {1, . . . , 𝑛}
be a set of 𝑛 voters. Every voter 𝑖 ∈ 𝑁 reports a ranking ≻𝑖 over
the alternatives to indicate his preferences. Formally, a ranking ≻𝑖
is a transitive, antisymmetric, and complete binary relation on 𝐴.

The set of all rankings is denoted by R. A (ranking) profile 𝑅 =

(≻1, . . . , ≻𝑛) is the collection of the rankings of all voters in 𝑁 , and

the set of all profiles is R𝑁
. We will write rankings as sequences

of alternatives and indicate the voter submitting a ranking directly

before it. For example, 3 : 𝑎𝑏𝑐 means that voter 3 prefers 𝑎 to 𝑏 to 𝑐 .

The study object of this paper are social welfare functions (SWFs)
which map every ranking profile to a single output ranking. More

formally, a social welfare function is a function 𝑓 of the type

R𝑁 → R. To clearly distinguish between input and output rank-

ings, we will denote the former by ≻ and the latter by ▷.

2.1 Classes of SWFs
We will next introduce several natural classes of SWFs. Since all

of the following rules may return multiple winning rankings, we

assume that such ties are broken based on an external ranking >

over the alternatives that is lexicographically extended to rankings.

Specifically, given two rankings ▷1 = 𝑥1 . . . 𝑥𝑚 and ▷2 = 𝑦1 . . . 𝑦𝑚 ,

it holds that ▷1 >▷2 if and only if there is ℓ ∈ {1, . . . ,𝑚} such that

𝑥ℓ >𝑦ℓ and 𝑥𝑖 = 𝑦𝑖 for all 𝑖 ∈ {1, . . . , ℓ − 1}. To fully specify our

SWFs, we always choose the most preferred ranking with respect

to > that is winning for the considered SWF. We note, however,

that all our results are independent of this tie-breaking convention.

Kemeny rule. The Kemeny rule was first suggested by Kemeny

[46] and is maybe the most prominent method in rank aggregation.

To introduce this rule, we define the Kemeny distance (which is also

known as swap distance or Kendall-tau distance) between two rank-

ings ≻ and ▷ by Δ(≻,▷) = |{(𝑥,𝑦) ∈ 𝐴2
: 𝑥 ≻ 𝑦 ∧𝑦 ▷ 𝑥}|. Less for-

mally, Δ(≻,▷) is the number of pairs of alternatives on which ≻ and

▷ disagree. The Kemeny rule chooses the (lexicographically most

preferred) ranking that minimizes the the total Kemeny distance to

the input rankings, i.e., 𝑓Kemeny (𝑅) = arg min▷∈R
∑
𝑖∈𝑁 Δ(≻𝑖 ,▷).

Distance scoring rules. In distance scoring rules, every voter 𝑖

assigns a score to every ranking ▷ depending on the Kemeny dis-

tance between his input ranking ≻𝑖 and ▷, and we choose the

ranking with the minimal total score. More formally, these rules are

defined based on distance scoring functions 𝑠 : {0, . . . ,
(𝑚

2

)
} → R,

and a voter with a Kemeny distance of 𝑥 to a ranking assigns a

score of 𝑠 (𝑥) to this ranking. Throughout the paper, we will re-

quire of distance scoring functions 𝑠 that 𝑠 (𝑥) > 𝑠 (𝑥 − 1) for all
𝑥 ∈ {1, . . . ,

(𝑚
2

)
}, and 𝑠 (𝑥) − 𝑠 (𝑥 − 1) ≥ 𝑠 (𝑥 − 1) − 𝑠 (𝑥 − 2) for all

𝑥 ∈ {2, . . . ,
(𝑚

2

)
}. These conditions formalize that rankings that are

further away from a voter’s ranking get a higher score and that 𝑠

is convex. Finally, a distance scoring rule 𝑓 is defined by a distance

scoring function 𝑠 and chooses the (lexicographically most pre-

ferred) ranking that minimizes

∑
𝑖∈𝑁 𝑠 (Δ(≻𝑖 ,▷)). For example, the

Kemeny rule is defined by the distance scoring function 𝑠 (𝑥) = 𝑥 ,
and the Squared Kemeny rule of Lederer et al. [53] by 𝑠 (𝑥) = 𝑥2

.

Positional scoring rules. Another prominent class of SWFs are

positional scoring rules. For these rules, the voters assign points to

the alternatives depending on their positions in the input ranking,

and the output ranking orders the alternatives in decreasing order

of their total score. To formalize this, we define the rank of an

alternative 𝑥 in a ranking ≻ by 𝑟 (≻, 𝑥) = 1+ |{𝑦 ∈ 𝐴 \ {𝑥} : 𝑦 ≻ 𝑥}|.
Then, positional scoring rules are defined by positional scoring func-
tions 𝑝 : {1, . . . ,𝑚} → R and a voter who places an alternative at

rank 𝑘 assigns a score of 𝑝 (𝑘) to this alternative. We will require

of positional scoring functions that 𝑝 (1) ≥ 𝑝 (2) ≥ · · · ≥ 𝑝 (𝑚)
and 𝑝 (1) > 𝑝 (𝑚), i.e., voters give more points to higher-ranked

alternatives and do not assign the same score to all alternatives.

Finally, an SWF 𝑓 is a positional scoring rule if there is a positional
scoring function 𝑝 such that 𝑓 returns for every profile 𝑅 the (lex-

icographically most preferred) ranking ▷ such that 𝑥 ▷ 𝑦 implies∑
𝑖∈𝑁 𝑝 (𝑟 (≻𝑖 , 𝑥)) ≥

∑
𝑖∈𝑁 𝑝 (𝑟 (≻𝑖 , 𝑦)). For instance, the Borda rule

is induced by the positional scoring function 𝑝 (𝑥) =𝑚 − 𝑥 .

2.2 Strategyproofness
The central axiom in our analysis is strategyproofness, which re-

quires that voters cannot benefit by lying about their true ranking.

Following the literature [e.g., 4, 6, 15], we will define this axiom by

assuming that the voters’ preferences over rankings are induced by

the Kemeny distance Δ(≻,▷) = |{(𝑥,𝑦) ∈ 𝐴2
: 𝑥 ≻ 𝑦 ∧ 𝑦 ▷ 𝑥}|: a

voter with ranking ≻𝑖 prefers a ranking ▷ to another ranking ▷′
if

Δ(≻𝑖 ,▷) < Δ(≻𝑖 ,▷′). This formalizes that voters prefer rankings

that aremore similar to their true ranking. Based on this assumption,

we can define strategyproofness as usual by requiring that voters

cannot obtain a more preferred ranking by voting strategically.

Definition 1 (Strategyproofness). An SWF 𝑓 is strategyproof if

Δ(≻𝑖 , 𝑓 (𝑅)) ≤ Δ(≻𝑖 , 𝑓 (𝑅′)) for all voters 𝑖 ∈ 𝑁 and profiles 𝑅, 𝑅′ ∈
R𝑁

such that ≻𝑗 = ≻′
𝑗
for all 𝑗 ∈ 𝑁 \ {𝑖}.

This definition of strategyproofness is motivated by the fact

that the Kemeny distance is by far the most common distance over

rankings in rank aggregation [e.g., 24, 36, 48, 56]. In particular,

many papers propose to minimize the total Kemeny distance to

find good output rankings, which implicitly assumes that voters

prefer rankings that have a closer Kemeny distance to their input

ranking. Moreover, the Kemeny distance is also theoretically well-

understood and allows for appealing characterizations [27, 34, 46].

Nevertheless, we acknowledge that one can define alternative strat-

egyproofness notions by, e.g., using different distances on rankings

or even approaches that are not based on any distance measure,

which may lead to different results.

To further illustrate strategyproofness for SWFs, we will next

discuss an example showing that the Kemeny rule is manipulable.

Example 1. Consider the following profile 𝑅 with𝑚 = 4 alterna-

tives 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑛 = 5 voters 𝑁 = {1, . . . , 5}.
𝑅: 1: 𝑎𝑏𝑐𝑑 2: 𝑐𝑑𝑎𝑏 3: 𝑑𝑏𝑎𝑐 4: 𝑏𝑐𝑑𝑎 5: 𝑎𝑑𝑐𝑏
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For this profile, the Kemeny rule chooses the ranking ▷ = 𝑑𝑎𝑏𝑐 ,

which has a total Kemeny distance of

∑
𝑖∈𝑁 Δ(≻𝑖 ,▷) = 3+3+1+4+

2 = 13. By contrast, if voter 4 misreports his true ranking by swap-

ping 𝑏 and 𝑐 , i.e., if ≻′
4
= 𝑐𝑏𝑑𝑎, the Kemeny rule chooses the ranking

▷′ = 𝑐𝑑𝑎𝑏. Further, it holds that Δ(≻4,▷) = Δ(𝑏𝑐𝑑𝑎, 𝑑𝑎𝑏𝑐) = 4 >

3 = Δ(𝑏𝑐𝑑𝑎, 𝑐𝑑𝑎𝑏) = Δ(≻4,▷′). This shows that voter 4 prefers the

ranking ▷′
to the ranking ▷ selected for 𝑅, so the Kemeny rule fails

strategyproofness when𝑚 = 4 and 𝑛 = 5.

2.3 Further Axioms
Additionally to strategyproofness, we will consider three further

axioms, namely anonymity, unanimity, and majority consistency.

Anonymity. Intuitively, anonymity requires that the identities

of voters should not matter for the outcome. Formally, we say an

SWF 𝑓 is anonymous if 𝑓 (𝑅) = 𝑓 (𝜋 (𝑅)) for all profiles 𝑅 ∈ R𝑁

and permutations 𝜋 : 𝑁 → 𝑁 . Here, 𝑅′ = 𝜋 (𝑅) is the profile given
by ≻′

𝑖
= ≻𝜋 (𝑖 ) for all 𝑖 ∈ 𝑁 . When assuming anonymity, we may

interpret profiles as multisets of rankings because we only need to

know how often each ranking is reported to compute the outcome.

Unanimity. Unanimity is a minimal efficiency notion which

requires that if all voters unanimously prefer one alternative 𝑥 to

another alternative 𝑦, then the output ranking should also rank 𝑥

ahead of 𝑦. More formally, an SWF 𝑓 is unanimous if, for all profiles
𝑅 ∈ R𝑁

and alternatives 𝑥,𝑦 ∈ 𝐴, it holds for the output ranking
▷ = 𝑓 (𝑅) that 𝑥 ▷ 𝑦 if 𝑥 ≻𝑖 𝑦 for all voters 𝑖 ∈ 𝑁 .

Majority consistency. One of the dominant notions in social

choice theory is the Condorcet principle: if an alternative is favored

to another alternative by a majority of the voters, then the former is

typically seen as socially more desirable than the latter. To formalize

this idea, we define themajority relation ¥𝑅 of a profile 𝑅 by 𝑥 ¥𝑅 𝑦
if and only if |{𝑖 ∈ 𝑁 : 𝑥 ≻𝑖 𝑦}| ≥ |{𝑖 ∈ 𝑁 : 𝑦 ≻𝑖 𝑥}|, i.e., 𝑥 ¥𝑅 𝑦
if and only if a majority of voters prefer 𝑥 to 𝑦. Put differently,

¥𝑅 encodes the majority preferences. Finally, we say an SWF 𝑓 is

majority consistent if returns the majority relation whenever this

relation is a ranking, i.e., 𝑓 (𝑅) = ¥𝑅 for all profiles 𝑅 such that

the majority relation ¥𝑅 is transitive and antisymmetric. We note

that the majority relation does not necessarily form a ranking, and

majority consistency permits any outcome in such situations.

3 MAJORITY CONSISTENCY AND
STRATEGYPROOFNESS

As our first contribution, we will show that no majority consistent

SWF satisfies strategyproofness if there are sufficiently many vot-

ers and at least four alternatives. While we include this theorem

primarily to showcase a proof for an impossibility theorem based

on strategyproofness, it is also one of the most general impossibility

results in rank aggregation.

Theorem 1. No strategyproof SWF satisfies majority consistency if
𝑚 ≥ 4, 𝑛 ≥ 9, and 𝑛 ∉ {10, 12, 14, 16}.

Proof. We will first focus on the case that𝑚 = 4 and 𝑛 = 9 and

later on explain how to generalize the result to larger values of𝑛 and

𝑚. Hence, assume for contradiction that there is a strategyproof and

majority consistent SWF 𝑓 for 4 alternatives and 9 voters. We will

focus on the following two profiles 𝑅 and 𝑅 to derive a contradiction.

𝑅 1: 𝑐𝑑𝑏𝑎 2: 𝑏𝑎𝑑𝑐 3: 𝑑𝑏𝑎𝑐 4: 𝑐𝑏𝑎𝑑 5: 𝑎𝑑𝑐𝑏

6: 𝑐𝑎𝑑𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

𝑅 1: 𝑐𝑑𝑏𝑎 2: 𝑏𝑎𝑑𝑐 3: 𝑑𝑏𝑐𝑎 4: 𝑐𝑏𝑎𝑑 5: 𝑎𝑑𝑐𝑏

6: 𝑐𝑎𝑑𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

We will show that 𝑓 has to choose ▷̄ = 𝑎𝑑𝑐𝑏 for 𝑅 and ▷̂ = 𝑑𝑐𝑏𝑎

for 𝑅. Since the profiles 𝑅 and 𝑅 only differ in the ranking of voter 3,

this means that 𝑓 is manipulable because Δ(≻̄3, ▷̄) = 3 > 2 =

Δ(≻̄3, ▷̂), i.e., voter 3 prefers ▷̂ to ▷̄. It remains to show that 𝑓

indeed needs to choose 𝑎𝑑𝑐𝑏 and 𝑑𝑐𝑏𝑎 for 𝑅 and 𝑅, respectively.

Claim 1: 𝑓 (𝑅) = 𝑎𝑑𝑐𝑏. For proving this claim, we consider the

following five profiles 𝑅1, . . . , 𝑅5
, all of which differ from 𝑅 in the

ranking of a single voter. This ranking is highlighted in blue.

𝑅1
1: 𝑐𝑑𝑎𝑏 2: 𝑏𝑎𝑑𝑐 3: 𝑑𝑏𝑎𝑐 4: 𝑐𝑏𝑎𝑑 5: 𝑎𝑑𝑐𝑏

6: 𝑐𝑎𝑑𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

𝑅2
1: 𝑐𝑑𝑏𝑎 2: 𝑎𝑏𝑑𝑐 3: 𝑑𝑏𝑎𝑐 4: 𝑐𝑏𝑎𝑑 5: 𝑎𝑑𝑐𝑏

6: 𝑐𝑎𝑑𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

𝑅3
1: 𝑐𝑑𝑏𝑎 2: 𝑏𝑎𝑑𝑐 3: 𝑑𝑎𝑏𝑐 4: 𝑐𝑏𝑎𝑑 5: 𝑎𝑑𝑐𝑏

6: 𝑐𝑎𝑑𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

𝑅4
1: 𝑐𝑑𝑏𝑎 2: 𝑏𝑎𝑑𝑐 3: 𝑑𝑏𝑎𝑐 4: 𝑐𝑎𝑏𝑑 5: 𝑎𝑑𝑐𝑏

6: 𝑐𝑎𝑑𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

𝑅5
1: 𝑐𝑑𝑏𝑎 2: 𝑏𝑎𝑑𝑐 3: 𝑑𝑏𝑎𝑐 4: 𝑐𝑏𝑎𝑑 5: 𝑑𝑎𝑏𝑐

6: 𝑐𝑎𝑑𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

In all five of these profiles, the majority relation is transitive

and antisymmetric and therefore a ranking. In more detail, in 𝑅1
to

𝑅4
, all of which arise from 𝑅 by swapping 𝑎 and 𝑏 in the ranking

of a single voter, the majority relation corresponds to the ranking

𝑎𝑑𝑐𝑏. Further, in 𝑅5
, the majority relation is given by 𝑑𝑏𝑎𝑐 . Hence,

majority consistency requires that 𝑓 (𝑅1) = · · · = 𝑓 (𝑅4) = 𝑎𝑑𝑐𝑏

and 𝑓 (𝑅5) = 𝑑𝑏𝑎𝑐 . Consequently, strategyproofness implies the

following constraints for the ranking ▷̄ chosen for 𝑅.

(1) Strategyproofness from 𝑅 to 𝑅1
requires that Δ(𝑐𝑑𝑏𝑎, ▷̄) ≤

Δ(𝑐𝑑𝑏𝑎, 𝑓 (𝑅1)) = Δ(𝑐𝑑𝑏𝑎, 𝑎𝑑𝑐𝑏) = 4.

(2) Strategyproofness from 𝑅 to 𝑅2
requires that Δ(𝑏𝑎𝑑𝑐, ▷̄) ≤

Δ(𝑏𝑎𝑑𝑐, 𝑓 (𝑅2)) = Δ(𝑏𝑎𝑑𝑐, 𝑎𝑑𝑐𝑏) = 3.

(3) Strategyproofness from 𝑅 to 𝑅3
requires that Δ(𝑑𝑏𝑎𝑐, ▷̄) ≤

Δ(𝑑𝑏𝑎𝑐, 𝑓 (𝑅3)) = Δ(𝑑𝑏𝑎𝑐, 𝑎𝑑𝑐𝑏) = 3.

(4) Strategyproofness from 𝑅 to 𝑅4
requires that Δ(𝑐𝑏𝑎𝑑, ▷̄) ≤

Δ(𝑐𝑏𝑎𝑑, 𝑓 (𝑅4)) = Δ(𝑐𝑏𝑎𝑑, 𝑎𝑑𝑐𝑏) = 4.

(5) Strategyproofness from 𝑅 to 𝑅5
requires that Δ(𝑎𝑑𝑐𝑏, ▷̄) ≤

Δ(𝑎𝑑𝑐𝑏, 𝑓 (𝑅5)) = Δ(𝑎𝑑𝑐𝑏, 𝑑𝑏𝑎𝑐) = 3.

We claim that only the ranking 𝑎𝑑𝑐𝑏 satisfies these constraints.

To prove this, we will consider several cases. First, 𝑑 cannot be

bottom-ranked in ▷̄ because Δ(𝑑𝑏𝑎𝑐,▷) ≥ 4 for all rankings ▷ that

rank 𝑑 last and are not equal to 𝑏𝑎𝑐𝑑 . Hence, all these rankings

fail Condition (3). Further, it holds that Δ(𝑎𝑑𝑐𝑏, 𝑏𝑎𝑐𝑑) = 4, so the

ranking 𝑏𝑎𝑐𝑑 fails Condition (5), thus showing that 𝑑 is not ranked

last in ▷̄. Next, ▷̄ cannot bottom-rank 𝑎: every ranking ▷ that

places 𝑎 last and is not equal to 𝑑𝑐𝑏𝑎 violates Condition (5) since

Δ(𝑎𝑑𝑐𝑏,▷) ≥ 4, and the ranking 𝑑𝑐𝑏𝑎 fails Condition (2) since

Δ(𝑏𝑎𝑑𝑐, 𝑑𝑐𝑏𝑎) = 4. Thirdly, we show that alternative 𝑐 cannot be
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bottom-ranked by ▷̄. For this, we observe that Condition (1) implies

that ▷̄ ∉ {𝑎𝑏𝑑𝑐, 𝑏𝑎𝑑𝑐, 𝑎𝑑𝑏𝑐} because all these rankings have a swap
distance of at least 5 to 𝑐𝑑𝑏𝑎. Further, Condition (4) requires that

▷̄ ∉ {𝑑𝑎𝑏𝑐, 𝑑𝑏𝑎𝑐} because these rankings have a swap distance of at
least 5 to 𝑐𝑏𝑎𝑑 . Lastly, Condition (5) shows that ▷̄ ≠ 𝑏𝑑𝑎𝑐 because

Δ(𝑎𝑑𝑐𝑏, 𝑏𝑑𝑎𝑐) = 4. We now conclude that 𝑐 is not bottom-ranked

by ▷̄. Because all other options have been ruled out, 𝑏 must be

bottom-ranked by ▷̄. This means that Δ(𝑏𝑎𝑑𝑐, ▷̄) ≥ 3. Moreover,

this inequality needs to be tight due to Condition (2), which is only

true if 𝑓 (𝑅) = ▷̄ = 𝑎𝑑𝑐𝑏.

Claim 2: 𝑓 (𝑅) = 𝑑𝑐𝑏𝑎. We will next show that 𝑓 (𝑅) = 𝑑𝑐𝑏𝑎, for
which we consider the following five profiles. All of these profiles

only differ in the highlighted ranking from 𝑅.

𝑅1
1: 𝑐𝑑𝑏𝑎 2: 𝑏𝑎𝑑𝑐 3: 𝑑𝑏𝑐𝑎 4: 𝑐𝑏𝑑𝑎 5: 𝑎𝑑𝑐𝑏

6: 𝑐𝑎𝑑𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

𝑅2
1: 𝑐𝑑𝑏𝑎 2: 𝑏𝑎𝑑𝑐 3: 𝑑𝑏𝑐𝑎 4: 𝑐𝑏𝑎𝑑 5: 𝑑𝑎𝑐𝑏

6: 𝑐𝑎𝑑𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

𝑅3
1: 𝑐𝑑𝑏𝑎 2: 𝑏𝑎𝑑𝑐 3: 𝑑𝑏𝑐𝑎 4: 𝑐𝑏𝑎𝑑 5: 𝑎𝑑𝑐𝑏

6: 𝑐𝑑𝑎𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

𝑅4
1: 𝑐𝑑𝑏𝑎 2: 𝑏𝑑𝑎𝑐 3: 𝑑𝑏𝑐𝑎 4: 𝑐𝑏𝑎𝑑 5: 𝑎𝑑𝑐𝑏

6: 𝑐𝑎𝑑𝑏 7: 𝑑𝑐𝑏𝑎 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

𝑅5
1: 𝑐𝑑𝑏𝑎 2: 𝑏𝑎𝑑𝑐 3: 𝑑𝑏𝑐𝑎 4: 𝑐𝑏𝑎𝑑 5: 𝑎𝑑𝑐𝑏

6: 𝑐𝑎𝑑𝑏 7: 𝑐𝑑𝑎𝑏 8: 𝑑𝑎𝑏𝑐 9: 𝑎𝑏𝑐𝑑

The profiles 𝑅1, . . . , 𝑅4
only differ from 𝑅 in the fact that a voter

swapped 𝑑 and 𝑎. As a consequence, the majority relation of these

profiles corresponds to the ranking 𝑑𝑐𝑏𝑎. On the other hand, in 𝑅5
,

the majority relation is given by the ranking 𝑐𝑎𝑑𝑏. Hence, majority

consistency requires that 𝑓 (𝑅1) = · · · = 𝑓 (𝑅4) = 𝑑𝑐𝑏𝑎 and 𝑓 (𝑅5) =
𝑐𝑎𝑑𝑏. In turn, strategyproofness between 𝑅 and our five profiles

requires the following constraints for the ranking ▷̂ chosen for 𝑅.

(1) Strategyproofness from 𝑅 to 𝑅1
requires that Δ(𝑐𝑏𝑎𝑑, ▷̂) ≤

Δ(𝑐𝑏𝑎𝑑, 𝑓 (𝑅1)) = Δ(𝑐𝑏𝑎𝑑, 𝑑𝑐𝑏𝑎) = 3.

(2) Strategyproofness from 𝑅 to 𝑅2
requires that Δ(𝑎𝑑𝑐𝑏, ▷̂) ≤

Δ(𝑎𝑑𝑐𝑏, 𝑓 (𝑅2)) = Δ(𝑎𝑑𝑐𝑏, 𝑑𝑐𝑏𝑎) = 3.

(3) Strategyproofness from 𝑅 to 𝑅3
requires that Δ(𝑐𝑎𝑑𝑏, ▷̂) ≤

Δ(𝑐𝑎𝑑𝑏, 𝑓 (𝑅3)) = Δ(𝑐𝑎𝑑𝑏, 𝑑𝑐𝑏𝑎) = 3.

(4) Strategyproofness from 𝑅 to 𝑅4
requires that Δ(𝑏𝑎𝑑𝑐, ▷̂) ≤

Δ(𝑏𝑎𝑑𝑐, 𝑓 (𝑅4)) = Δ(𝑏𝑎𝑑𝑐, 𝑑𝑐𝑏𝑎) = 4.

(5) Strategyproofness from 𝑅 to 𝑅5
requires that Δ(𝑑𝑐𝑏𝑎, ▷̂) ≤

Δ(𝑑𝑐𝑏𝑎, 𝑓 (𝑅5)) = Δ(𝑑𝑐𝑏𝑎, 𝑐𝑎𝑑𝑏) = 3.

Analogously to the last claim, wewill show that these constraints

entail that ▷̂ = 𝑑𝑐𝑏𝑎. To this end, we first note that Conditions (2)

and (5) show that 𝑑 cannot be bottom-ranked by ▷̂. In more de-

tail, every ranking ▷ other than 𝑐𝑏𝑎𝑑 that bottom-ranks 𝑑 violates

Condition (5) since Δ(𝑑𝑐𝑏𝑎,▷) ≥ 4. On the other hand, the rank-

ing 𝑐𝑏𝑎𝑑 violates Condition (2) as Δ(𝑎𝑑𝑐𝑏, 𝑐𝑏𝑎𝑑) = 4. Next, Condi-

tions (2) and (3) show that 𝑐 cannot be bottom-ranked by ▷̂: the only
ranking ▷ that bottom-ranks 𝑐 and satisfies that Δ(𝑐𝑏𝑎𝑑,▷) ≤ 3

(Condition (2)) is 𝑏𝑎𝑑𝑐 , but this ranking fails Condition (3) since

Δ(𝑏𝑎𝑑𝑐, 𝑐𝑎𝑑𝑏) = 5. Thirdly, ▷̂ cannot bottom-rank 𝑏. Specifically,

Condition (4) rules out that ▷̂ ∈ {𝑐𝑑𝑎𝑏, 𝑑𝑐𝑎𝑏, 𝑐𝑎𝑑𝑏} since all these
rankings have a distance of at least 5 to 𝑏𝑎𝑑𝑐 , Condition (1) shows

that ▷̂ ∉ {𝑎𝑑𝑐𝑏, 𝑑𝑎𝑐𝑏} since these rankings have a Kemeny distance

of at least 4 to 𝑐𝑏𝑎𝑑 , and Condition (5) shows that ▷̂ ≠ 𝑎𝑐𝑑𝑏 since

Δ(𝑑𝑐𝑏𝑎, 𝑎𝑐𝑑𝑏) = 4. As a consequence of the analysis so far, we

conclude that 𝑎 must be bottom-ranked in ▷̂. In turn, we infer from

Condition (2) that ▷̂ must be 𝑑𝑐𝑏𝑎 since every other ranking that

bottom-ranks 𝑎 satisfies that Δ(𝑎𝑑𝑐𝑏,▷) ≥ 4.

Extension to larger values of𝑚 and 𝑛. Lastly, we explain how

to generalize our result to larger numbers of voters 𝑛 and alterna-

tives 𝑚. First, to increase 𝑚, we can add new alternatives in the

same order at the bottom of the rankings of all voters. After this

extension, the majority relation is still transitive and antisymmet-

ric for all profiles 𝑅𝑖 and 𝑅𝑖 with 𝑖 ∈ {1, . . . , 5}. Using majority

consistency, the inequalities (1) to (5) thus remain intact for both

cases. Finally, these inequalities still imply that we need to choose

rankings for 𝑅 and 𝑅 that permit a manipulation for voter 3.

To extend our construction to larger numbers of voters, we apply

two different techniques. Firstly, we can generalize our impossibility

to every odd 𝑛 > 9 by adding pairs of voters with inverse rankings.

These voters cancel each other out with respect to the majority

relation and therefore do not affect our analysis. Secondly, to extend

our impossibility to an even number of voters, we can double all

voters in our profiles. While this requires intermediate profiles 𝑅̃

to go from, e.g., 𝑅 to 𝑅1
, we can still infer the same inequalities

by chaining the strategyproofness conditions. For instance, for 𝑅1
,

strategyproofness implies that Δ(𝑐𝑑𝑏𝑎, 𝑓 (𝑅)) ≤ Δ(𝑐𝑑𝑏𝑎, 𝑓 (𝑅̃1)) ≤
Δ(𝑐𝑑𝑏𝑎, 𝑓 (𝑅1)), where 𝑅̃1

denotes the intermediate profile. Hence,

our analysis remains intact after this extension. Lastly, for any even

𝑛 > 18, we can again add pairs of voters with inverse rankings. □

Remark 1. When𝑚 ≤ 3, Theorem 1 ceases to hold as the Ke-

meny rule (with suitable tie-breaking) is strategyproof and majority

consistent in this case [6, 77]. Moreover, under mild additional con-

ditions, namely anonymity, cancellation (i.e., adding pairs of voters

with inverse rankings does not affect the outcome), and a weak form

of neutrality, it can be shown that strategyproofness and majority

consistency require to choose a ranking that minimizes the total Ke-

meny distance to the input rankings when there are 3 alternatives.

We refer to Appendix A for details.

Remark 2. We did not minimize the number of voters for Theo-

rem 1 as we aimed for a simple proof. However, with the help of a

computer, we showed that this impossibility already holds when

there are𝑚 = 4 alternatives and 𝑛 ∈ {3, 4} voters. Based on our

inductive arguments for 𝑛, it thus follows that no majority consis-

tent SWF is strategyproof if there are𝑚 = 4 alternatives and 𝑛 ≥ 3

voters. By contrast, our inductive argument for𝑚 is specific to the

profiles in Theorem 1, so it is unclear whether the computer proof

extends to more alternatives. Further, we verified the correctness of

the computer proof and our human-readable proof by Isabelle/HOL,

a highly trustworthy interactive theorem prover [59].

4 STRATEGYPROOFNESS AND UNANIMITY
We will now turn to our main theorem: there is no anonymous

SWF that satisfies strategyproofness and unanimity if there are

𝑚 ≥ 5 alternatives and an even number of voters 𝑛, or when there

are 𝑚 = 4 alternatives and the number of voters 𝑛 is a multiple

of 4. Put differently, this result shows that every reasonable SWF is
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manipulable and it can thus be seen as an analog of the Gibbard-

Satterthwaite theorem for rank aggregation.

Theorem 2. No anonymous SWF satisfies strategyproofness and
unanimity if𝑚 ≥ 5 and 𝑛 is even, or𝑚 = 4 and 𝑛 is a multiple of 4.

We note that we have shown Theorem 2 based on a computer-

aided theorem proving technique called SAT solving. In the context

of social choice theory, such computer-aided techniques have been

pioneered by Tang and Lin [71] and have since then been used to

show a large number of results [e.g., 16, 17, 19, 21, 33, 37, 39, 61].

We refer to the survey of Geist and Peters [40] for an introduction

to these techniques. In the following three sections, we outline how

we apply SAT solving to obtain Theorem 2 (cf. Sections 4.1 and 4.2)

and how we verified our result (cf. Section 4.3).

Remark 3. All axioms of Theorem 2 are necessary for the impossi-

bility. Specifically, constant SWFs, which always return a fixed rank-

ing, satisfy strategyproofness and anonymity but violate unanimity.

Dictatorships, which return the ranking of a fixed voter, satisfy

unanimity and strategyproofness but violate anonymity. It is also

not possible to weaken anonymity to non-dictatorship as Athana-

soglou et al. [6] design non-dictatorial (and non-anonymous) SWFs

that are strategyproof and unanimous. Thirdly, e.g., the Kemeny

rule satisfies unanimity and anonymity but violates strategyproof-

ness. Further, we cannot significantly weaken strategyproofness

as Bossert and Sprumont [14] shows that the Kemeny rule satisfies

betweenness strategyproofness, which is only slightly weaker than

our Kemeny-strategyproofness. Finally, when𝑚 ≤ 3, Theorem 2

ceases to hold as the Kemeny rule is strategyproof in this case [6].

Remark 4. A drawback of Theorem 2 is that we cannot extend

this result to an odd number of voters. The primary reason for this is

technical: we could not find an inductive argument that generalizes

our theorem from an even number of voters to an odd one.Moreover,

based on our SAT approach, we showed that there are SWFs that

satisfy all axioms of Theorem 2 when𝑚 = 4 and 𝑛 ∈ {3, 5}, which
indicates that such an argument may not exist. Similar problems

are common for impossibility theorems in social choice theory

[e.g., 19, 20, 22, 33, 61], as it is often challenging to generalize such

results from a fixed number of voters 𝑛 to arbitrary values of 𝑛.

We note, however, that we can extend Theorem 2 to odd 𝑛 when

strengthening unanimity. Specifically, based on Theorem 2, one can

show to that no anonymous SWF satisfies strategyproofness and a

property called near unanimity when𝑚 ≥ 5 and 𝑛 ≥ 3 is odd. This

latter condition requires that the output ranking puts 𝑥 ahead of 𝑦

whenever all but one voter prefer 𝑥 to 𝑦 [10, 51]. In particular, if we

had an SWF that satisfies anonymity, strategyproofness, and near

unanimity for odd 𝑛 ≥ 3, we could construct an SWF that satisfies

anonymity, strategyproofness, and unanimity for 𝑛 − 1 voters by

fixing the ranking of a single voter. We further observe that near

unanimity becomes less demanding as 𝑛 increases, and all common

SWFs satisfy this condition when 𝑛 is sufficiently larger than𝑚.

4.1 SAT Solving
To show Theorem 2, we rely on SAT solving, a computer-aided

theorem proving technique. The central idea of this approach is

that, for fixed numbers of voters𝑛 and alternatives𝑚, there is a large

but finite number of ranking profiles and possible outcomes. For

instance, when 𝑛 = 2 and𝑚 = 5, there are (5!)2 = 14, 400 ranking

profiles, for each of which one of 5! = 120 rankings must be chosen.

Based on this observation, it is possible to write a large logical

formula that is satisfiable if and only if there is an anonymous SWF

that satisfies unanimity and strategyproofness for the given values

of 𝑛 and𝑚. We then prove two base cases of our theorem by letting

a computer program, a so-called SAT solver, show that our formula

is unsatisfiable when there are 𝑛 = 2 voters and𝑚 = 5 alternatives,

and when there 𝑛 = 4 voters and𝑚 = 4 alternatives.

In our logical formula, we follow the standard encoding of voting

rules. Specifically, our formula will use variables 𝑥𝑅,▷ for all profiles

𝑅 and rankings ▷, which will encode whether the ranking ▷ is

chosen for the profile 𝑅. Moreover, since we focus on anonymous

SWFs, we will treat profiles as multisets of rankings. Formally, this

means that the variable 𝑥𝑅,▷ will state whether the ranking ▷ is

chosen for all non-anonymous profiles that can be obtained by

assigning the rankings in the multiset 𝑅 to the voters in 𝑁 . This is

possible as anonymity necessitates that we need to choose the same

ranking for all such profiles. Furthermore, by representing profiles

as multisets, we reduces the number of variables in our formula

as a single multiset corresponds up to 𝑛! non-anonymous ranking

profiles. Also, due to this representation, anonymity is implicitly

encoded, so we do not need to add constraints for this axiom.

Next, we have to ensure that our variables 𝑥𝑅,▷ indeed encode

an (anonymous) SWF. This necessitates us to formalize that for

every profile 𝑅, exactly one ranking ▷ is chosen. To this end, we

will require for each profile 𝑅 that exactly one variable 𝑥𝑅,▷ is true.

Moreover, to further simplify our formula, we encode unanimity

in this step by only introducing variables 𝑥𝑅,▷ for profiles 𝑅 and

rankings ▷ such that ▷ satisfies unanimity for 𝑅. To make this more

formal, let 𝑋 (𝑅) = {(𝑥,𝑦) ∈ 𝐴2
: ∀𝑖 ∈ 𝑁 : 𝑥 ≻𝑖 𝑦} denote the pairs

of alternatives (𝑥,𝑦) such that all voters prefer 𝑥 to 𝑦 in 𝑅. Then,

𝑈 (𝑅) = {▷ ∈ R : ∀(𝑥,𝑦) ∈ 𝑋 (𝑅) : 𝑥 ▷ 𝑦} is the set of rankings that
satisfy unanimity for 𝑅. We will only introduce variables 𝑥𝑅,▷ for

each profile 𝑅 and ranking ▷ ∈ 𝑈 (𝑅) as rankings outside of𝑈 (𝑅)
are not allowed to be chosen by unanimity. We can now enforce that

our variables encode an unanimous SWF by adding the following

constraints for every profile 𝑅, which respectively state that at least

and at most one ranking in𝑈 (𝑅) must be chosen for 𝑅.∨
▷∈𝑈 (𝑅)

𝑥𝑅,▷ and

∧
▷,▷′∈𝑈 (𝑅) : ▷≠▷′

(¬𝑥𝑅,▷∨ ≠ 𝑥𝑅,▷′ )

Lastly, we need to encode strategyproofness. We recall here that

this axiom requires that, for every profile 𝑅 and voter 𝑖 , it is not

possible for the voter to deviate such that the ranking chosen when

lying has a smaller Kemeny distance to his truthful ranking than

the one chosen when reporting his truthful ranking. Put differently,

if 𝑅 and 𝑅′ only differ in the ranking of voter 𝑖 , we cannot choose

rankings▷ and▷′
for these profiles such that Δ(▷, ≻𝑖 ) > Δ(▷′, ≻𝑖 ).

To make this more formal, we define by 𝐷 (𝑅, ≻) the set of profiles
that can be derived from 𝑅 by letting a voter with ranking ≻ deviate

to an arbitrary other ranking. We note that 𝐷 (𝑅, ≻) = ∅ if no

voter in 𝑅 reports ≻. Further, given two rankings ≻ and ▷, we
let 𝐵(≻,▷) = {▷′ ∈ R : Δ(≻,▷′) < Δ(≻,▷)} denote the set of

rankings that have a smaller Kemeny distance to ≻ than▷. Based on
this notation, strategyproofness can be formalized via implications:
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if we choose a ranking ▷ for 𝑅, we cannot choose a ranking ▷′ ∈
𝐵(≻,▷) ∩𝑈 (𝑅′) for all profiles 𝑅′ ∈ 𝐷 (𝑅, ≻) and rankings ≻ ∈ R.
Using our variables 𝑥𝑅,▷ , this results in the following constraints.∧
𝑅∈R𝑁

∧
≻∈R

∧
𝑅′∈𝐷 (𝑅,≻)

∧
▷∈𝑈 (𝑅)

∧
▷′∈𝐵 (≻,▷)∩𝑈 (𝑅′ )

(¬𝑥𝑅,▷ ∨ ¬𝑥𝑅′,▷′ )

We can nowwrite a computer program that generates this logical

formula for given values of𝑚 and 𝑛. For instance, for𝑚 = 5 and

𝑛 = 2, our program produces a formula with 227, 880 variables

and 59, 445, 060 clauses. We then hand this formula for both𝑚 = 5

and 𝑛 = 2, and 𝑚 = 𝑛 = 4 to a SAT solver (e.g., Glucose [7] or

Cadical [11]), which proves both formulas unsatisfiable in less than

a minute. We hence derive the following result.

Proposition 1. No anonymous SWF satisfies both strategyproofness
and unanimity if𝑚 = 5 and 𝑛 = 2 or𝑚 = 4 and 𝑛 = 4.

4.2 Inductive Arguments
Proposition 1 shows that no anonymous SWF satisfies strategyproof-

ness and unanimity for only two cases, namely when there are

𝑚 = 5 alternatives and 𝑛 = 2 voters or𝑚 = 4 alternatives and 𝑛 = 4

voters. By contrast, Theorem 2 claims that the impossibility holds

for a large range of combinations of𝑚 and 𝑛. To close this gap, we

will next present a lemma that generalizes our impossibility theo-

rem from fixed numbers of voters and alternatives to a large range.

In combination with Proposition 1, this lemma proves Theorem 2.

The full proof of Lemma 1 can be found in Appendix B.

Lemma 1. Assume there is no anonymous SWF that satisfies strat-
egyproofness and unanimity for 𝑚 alternatives and 𝑛 voters. The
following claims hold:

(1) For every 𝑚′ > 𝑚, there is no anonymous SWF that satisfies
strategyproofness and unanimity for𝑚′ alternatives and 𝑛 voters.

(2) For every ℓ ∈ N, there is no anonymous SWF that satisfies strate-
gyproofness and unanimity for𝑚 alternatives and ℓ𝑛 voters.

Proof Sketch. For both claims, we will show the contraposi-

tive: we assume that there is an anonymous, unanimous, and strat-

egyproof SWF for the larger numbers of alternatives and voters,

and show that this implies that there is also an SWF that satisfies

our properties for𝑚 alternatives and 𝑛 voters. In more detail, to

show Claim (1), we suppose that there is an SWF 𝑓 for 𝑚′ > 𝑚

alternatives and 𝑛 voters that satisfies our axioms. We then define

an SWF 𝑔 for𝑚 alternatives and 𝑛 voters as follows: given a profile

for these parameters, we add𝑚′ −𝑚 dummy alternatives in the

same order at the bottom of the rankings of all voters, apply 𝑓 to

compute a ranking on these𝑚′
alternatives, and then delete the

𝑚′ −𝑚 dummy alternatives from this ranking to infer the final out-

put ranking. Since 𝑓 is unanimous, the dummy alternatives must

appear at the bottom of the intermediate output ranking. Based

on this insight, it can be shown that 𝑔 inherits strategyproofness,

anonymity, and unanimity from 𝑓 , which contradicts that no SWF

satisfies these axioms for𝑚 alternatives and 𝑛 voters.

For Claim (2), we assume that there is a unanimous, anonymous,

and strategyproof SWF 𝑓 for𝑚 alternatives and ℓ𝑛 voters. We then

define an SWF 𝑔 for 𝑚 alternatives and 𝑛 voters as follows: we

clone each voter’s ranking ℓ times and then apply 𝑓 to compute

the output ranking. It can be verified that 𝑔 is anonymous, unani-

mous, and strategyproof as 𝑓 satisfies these conditions, which again

contradicts the assumption of this lemma. □

4.3 Verification
Because Proposition 1 has been shown by SAT solving, it is not

immediately clear how to verify the correctness of this result. We

have chosen a threefold approach to address this issue.

Firstly, following prior works [e.g., 16, 19, 21, 61], we provide

in Appendix D a proof of Proposition 1 for the case that 𝑚 = 5

and 𝑛 = 2 in a human-readable format. This proof was obtained

by analyzing minimal unsatisfiable subsets (MUSes) of the orig-

inal formula, i.e., inclusion-minimal subsets of the formula that

are unsatisfiable. More intuitively, such MUSes can be seen as the

reason why a formula is unsatisfiable and they tend to be much

smaller than the original formula. For instance, for their Theo-

rem 2, Brandt et al. [21] ended up with a MUS that only reasons

about 13 profiles, which allows to give a compact human-readable

proof. Unfortunately, our MUSes, which we obtained by using the

program MUSer2 [9], are much bigger: even after several optimiza-

tions, the smallest MUS we found requires roughly 200 profiles

and uses rather intricate reasoning. Although we were able to ex-

tract a human-readable proof by using a custom computer program

that translates MUSes into a readable format, the resulting proof

spans over 20 pages and requires the verification of more than 3000

strategyproofness applications. As such, the proof allows readers

to build confidence in the correctness of our SAT-based approach

by inspecting intermediate steps, but manually verifying the full

argument would be extremely tedious. We moreover note that we

cannot provide a human-readable proof for the case that𝑚 = 𝑛 = 4

as the computer reasons about thousands of profiles in this case.

Because of these issues, we offer two further means of verifica-

tion. Firstly, alongside the paper, we submitted the necessary code

for creating the formula described in Section 4.1 and we plan to

make this code publicly available upon acceptance. This enables

researchers to directly check that our code correctly constructs the

formula described before, which means we only need to trust the

correctness of the SAT solvers. We note here also that our imple-

mentation is rather standard and we expect a researcher familiar

with the literature to be able to verify our code in less than a day.

Lastly, following more recent works [e.g., 16, 21, 33], we have

fully verified Theorem 2—including both base cases and the induc-

tive arguments—with the interactive theorem prover Isabelle/HOL

[59]. Such interactive theorem provers are computer programs de-

signed to verify the correctness of mathematical proofs and thus

have a high degree of trustworthiness. In more detail, Isabelle/HOL

offers a rich mathematical logic which makes it simple to formalize

our setting. Thus, our Isabelle verification directly derives Proposi-

tion 1 as well as Lemma 1 from our axioms. Moreover, this formal

verification releases us from the need to check the intermediate

steps because Isabelle verifies the correctness of each deduction

step based on a small and highly trustworthy set of logical oper-

ations. Consequently, to trust our results, one only needs to trust

the implementation of our axioms in Isabelle. We further note that

experts in verification see such formal proofs as the “gold standard”

for increasing the trustworthiness of mathematical results [43].
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Upon acceptance, we will publish our Isabelle proof development

in the Archive of Formal Proof, the standard venue for such proofs.

5 APPROXIMATE STRATEGYPROOFNESS
As our last contribution, we analyze how manipulable particular

SWFs are. Indeed, while Theorem 2 shows that all reasonable SWFs

must be manipulable, it may be the case that voters can only gain a

small amount of utility by lying about their true ranking. In practice,

this may be enough to disincentivize voters from manipulating as

casting strategic votes requires effort to, e.g., learn the rankings of

the other voters and to compute a successful manipulation.

Unfortunately, all the SWFs discussed in Section 2.1 are severely

manipulable. To formalize this, we will make several changes in our

assumptions. Firstly, we will consider a variable electorate setting

and use as many voters as necessary for our counterexamples.

Secondly, to make our result better comparable to the existing

literature, we will analyze the potential utility gain rather than the

decrease in cost. To this end, we define the utility of a voter 𝑖 with

ranking ≻𝑖 for another ranking ▷ by 𝑢 (≻𝑖 ,▷) =
(𝑚

2

)
− Δ(≻𝑖 ,▷) =

|{(𝑥,𝑦) ∈ 𝐴2
: 𝑥 ≻𝑖 𝑦 ∧ 𝑥 ▷ 𝑦}|. We note that 𝑢 is is minimal if ≻

and ▷ are inverse to each other (yielding 𝑢 (≻,▷) = 0) and maximal

if ≻ = ▷ (yielding 𝑢 (≻,▷) =
(𝑚

2

)
). When using this utility function,

strategyproofness demands that voters cannot increase their utility

by lying about their ranking, which is equivalent to Definition 1.

Finally, we will use the incentive ratio to measure the manip-

ulability of SWFs. Intuitively, this ratio quantifies the worst-case

ratio between a voters’ utility when lying and when voting truth-

fully. Formally, the incentive ratio of an SWF 𝑓 for𝑚 alternatives

is defined by 𝛾𝑚 (𝑓 ) = sup𝑅,𝑖,≻′
𝑖

𝑢𝑖 (𝑓 (≻′
𝑖 ,𝑅−𝑖 ) )

𝑢𝑖 (𝑓 (𝑅) ) , where we only con-

sider profiles on𝑚 alternatives and (≻′
𝑖
, 𝑅−𝑖 ) denotes the profile

obtained from 𝑅 by letting voter 𝑖 deviate to ≻′
𝑖
. Since 𝑢𝑖 (𝑓 (𝑅)) can

be 0, we use the conventions that
𝑥
0
= ∞ for all 𝑥 > 0 and

0

0
= 1. We

observe that 𝛾𝑚 (𝑓 ) = 1 if 𝑓 is strategyproof for𝑚 alternatives and

𝛾𝑚 (𝑓 ) > 1 otherwise. Moreover, an SWF has an incentive ratio of

𝛾𝑚 (𝑓 ) = ∞ if a voter with utility 0 can manipulate and it holds that

𝛾𝑚 (𝑓 ) ≤
(𝑚

2

)
otherwise. The incentive ratio has been successfully

used for private good settings to show that several manipulable

mechanisms are still close to strategyproof [e.g., 29, 54, 73].

We will next prove that all SWFs discussed in Section 2.1 have

a large incentive ratio, which demonstrates that these SWFs are

severely manipulable. Specifically, we will show that, while distance

scoring rules (including the Kemeny rule) cannot be manipulated

by voters with utility 0, voters with a utility of 1 can gain almost

their maximal utility when lying. Moreover, for positional scoring

rules, we show that voters with utility 0 can manipulate, which

means that their incentive ratio is unbounded.

Theorem 3. The following statements are true:
(1) For all 𝑚 ≥ 4, the incentive ratio of the Kemeny rule 𝑓Kemeny

satisfies
(𝑚

2

)
−𝑚 ≤ 𝛾𝑚 (𝑓Kemeny) ≤

(𝑚
2

)
(2) For all𝑚 ≥ 3, the incentive ratio of every distance scoring rule

𝑓dist other than 𝑓Kemeny satisfies
(𝑚

2

)
− 1 ≤ 𝛾𝑚 (𝑓dist ) ≤

(𝑚
2

)
.

(3) For all𝑚 ≥ 3, the incentive ratio of every positional scoring rule
𝑓pos is 𝛾𝑚 (𝑓pos) = ∞.

Proof Sketch. We will only prove here that 𝛾𝑚 (𝑓 ) ≤
(𝑚

2

)
for

all distance scoring rules 𝑓 and defer the proofs of our lower bounds

to Appendix C. Equivalently, this upper bound means that voters

with utility 0 cannot manipulate distance scoring rules. To prove

this claim, we fix such a rule 𝑓 and its distance scoring function 𝑠 ,

a profile 𝑅, a voter 𝑖 with ranking ≻𝑖 , and let ▷ = 𝑓 (𝑅). Moreover,

we suppose that 𝑢 (≻𝑖 ,▷) = 0, which means that ≻𝑖 is inverse to ▷
and Δ(≻𝑖 ,▷) =

(𝑚
2

)
. Lastly, let 𝑅′ denote a profile derived from 𝑅

by assigning an arbitrary ranking ≻′
𝑖
≠ ≻𝑖 to voter 𝑖 .

As the first step, we consider another ranking ▷′ ∈ R \ {▷} and
show that 𝑠 (Δ(≻𝑖 ,▷)) −𝑠 (Δ(≻′

𝑖
,▷)) ≥ 𝑠 (Δ(≻𝑖 ,▷′)) −𝑠 (Δ(≻′

𝑖
,▷′)).

To this end, we observe thatΔ(≻𝑖 ,▷)−Δ(≻′
𝑖
,▷) = Δ(≻𝑖 , ≻′

𝑖
) since▷

and ≻𝑖 are inverse to each other. Next, let 𝑧 = Δ(≻𝑖 ,▷′) −Δ(≻′
𝑖
,▷′)

and note that 𝑧 ≤ Δ(≻𝑖 , ≻′
𝑖
) since Δ is a metric. If 𝑧 ≤ 0, our

inequality holds since 𝑠 is non-decreasing, Δ(≻𝑖 ,▷) ≥ Δ(≻′
𝑖
,▷),

Δ(≻𝑖 ,▷′) ≤ Δ(≻′
𝑖
,▷′). In particular, these insights imply that

𝑠 (Δ(≻𝑖 ,▷)) −𝑠 (Δ(≻′
𝑖
,▷)) ≥ 0 ≥ 𝑠 (Δ(≻𝑖 ,▷′)) −𝑠 (Δ(≻′

𝑖
,▷′)). Next,

suppose that 𝑧 > 0. In this case, we recall that, by definition,

𝑠 (𝑥) − 𝑠 (𝑥 − 1) ≥ 𝑠 (𝑥 − 1) − 𝑠 (𝑥 − 2) for all 𝑥 ∈ {2, . . . ,
(𝑚

2

)
}, which

implies that 𝑠 (
(𝑚

2

)
) − 𝑠 (

(𝑚
2

)
− 𝑧) ≥ 𝑠 (Δ(≻𝑖 ,▷′)) − 𝑠 (Δ(≻𝑖 ,▷′) − 𝑧).

Since 𝑠 is non-decreasing, Δ(≻𝑖 ,▷) =
(𝑚

2

)
, and 𝑧 ≤ Δ(≻𝑖 , ≻′

𝑖
), we

can again infer our target inequality as

𝑠 (Δ(≻𝑖 ,▷)) −𝑠 (Δ(≻′
𝑖 ,▷)) = 𝑠 (Δ(≻𝑖 ,▷)) −𝑠 (Δ(≻𝑖 ,▷) −Δ(≻𝑖 ,≻′

𝑖 ))
≥ 𝑠 (Δ(≻𝑖 ,▷)) −𝑠 (Δ(≻𝑖 ,▷) −𝑧)
≥ 𝑠 (Δ(≻𝑖 ,▷′)) −𝑠 (Δ(≻𝑖 ,▷′) −𝑧)
= 𝑠 (Δ(≻𝑖 ,▷′)) −𝑠 (Δ(≻′

𝑖 ,▷
′)) .

Next, it holds that

∑
𝑗∈𝑁 𝑠 (Δ(≻𝑗 ,▷)) ≤

∑
𝑗∈𝑁 𝑠 (Δ(≻𝑗 ,▷′)) for

all ▷′ ∈ R since 𝑓 (𝑅) = ▷. Hence, we derive for all ▷′ ∈ R that∑︁
𝑗∈𝑁

𝑠 (Δ(≻′
𝑗 ,▷)) =

∑︁
𝑗∈𝑁 \{𝑖 }

𝑠 (Δ(≻𝑗 ,▷)) − (𝑠 (Δ(≻𝑖 ,▷) −Δ(≻′
𝑖 ,▷))

≤
∑︁

𝑗∈𝑁 \{𝑖 }
Δ(≻𝑗 ,▷′) − (𝑠 (Δ(≻𝑖 ,▷′)) −𝑠 (Δ(≻′

𝑖 ,▷
′)))

=
∑︁
𝑗∈𝑁

Δ(≻′
𝑗 ,▷

′) .

This proves that ▷ minimizes the total score in 𝑅′. Moreover, if this

inequality is tight for some ranking ▷′
, then

∑
𝑗∈𝑁 𝑠 (Δ(≻𝑖 ,▷)) =∑

𝑗∈𝑁 𝑠 (Δ(≻𝑗 ,▷′)) and ▷ is lexicographically preferred to ▷′
as

𝑓 (𝑅) = ▷. We hence conclude that 𝑓 (𝑅′) = ▷, which shows that

voters with utility 0 cannot manipulate 𝑓 . □

Remark 5. A natural follow-up question to Theorem 3 is whether

there are appealing SWFs that have a significantly better incentive

ratio than our considered SWFs. Motivated by this question, we

discuss in Appendix C the minimal compromise rule 𝑓MC , which

has an incentive ratio of𝑚 − 2 when𝑚 ≥ 4. To define this rule, we

denote themin score of an alternative 𝑥 in a profile𝑅 by 𝑠min (𝑅, 𝑥) =
min𝑖∈𝑁 𝑚−𝑟 (≻𝑖 , 𝑥). Then, 𝑓MC orders the alternatives in decreasing

order of their min scores, with ties broken lexicographically.

6 CONCLUSION
In this paper, we study social welfare functions (SWFs) with respect

to (Kemeny-)strategyproofness, which requires that voters cannot

obtain a ranking that is closer to their true ranking in terms of

the Kemeny distance by voting strategically. As our main result,

we show a sweeping impossibility theorem, demonstrating that
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no anonymous and unanimous SWF satisfies strategyproofness if

there are𝑚 ≥ 4 alternatives. Moreover, we prove that no majority

consistent SWF is strategyproof when𝑚 ≥ 4 and that many natural

SWFs are severely manipulable as they have a high incentive ratio.

Perhaps the most natural follow-up question to our work is how

we can circumvent our impossibility theorems. Possible directions

to this end are the study of randomized or set-valued SWFs, a more

detailed analysis of the incentive ratio of SWFs, or the study of

alternative strategyproofness notions. For instance, one could ana-

lyze strategyproofness based on other distances between rankings

in the hope of more positive results.
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A MAJORITY CONSISTENCY AND STRATEGYPROOFNESS FOR𝑚 = 3

As mentioned in Remark 1, when𝑚 = 3, the Kemeny rule satisfies both majority consistency and strategyproofness. In this appendix, we

will show that, under mild additional assumptions, these two axioms even requires us to choose a ranking minimizing the total Kememy

distance to the input rankings. To make this more formal, we first extend the domain of SWFs from profiles for a fixed electorate R𝑁
to the

set of all profiles R∗ =
⋃

𝑁 ⊆N : 𝑁 is non-empty and finite
R𝑁

that are defined for any non-empty and finite electorate. Furthermore, we define

the majority margin between two alternatives 𝑥,𝑦 ∈ 𝐴 in a profile 𝑅 by 𝑔𝑥𝑦 (𝑅) = |{𝑖 ∈ 𝑁 : 𝑥 ≻𝑖 𝑦}| − |{𝑖 ∈ 𝑁 : 𝑦 ≻𝑖 𝑥}|, i.e., the majority

margin between two alternatives counts how many more voters prefer 𝑥 to 𝑦 then vice versa. Then, we say an SWF 𝑓 : R∗ → R satisfies

• quasi-neutrality if 𝑓 (𝜏 (𝑅)) = 𝜏 (𝑓 (𝑅)) for all profiles 𝑅 and permutations 𝜏 : 𝐴 → 𝐴 such that (i) 𝑔𝑥𝑦 (𝑅) ≠ 𝑔𝑣𝑤 (𝑅) for all 𝑣,𝑤, 𝑥,𝑦 ∈ 𝐴
with 𝑣 ≠ 𝑤 , 𝑥 ≠ 𝑦, and {𝑥,𝑦} ≠ {𝑣,𝑤} and (ii) the alternatives can be labeled such that 𝑥 ¥𝑅 𝑦 ¥𝑅 𝑧 ¥𝑅 𝑥 .

• cancellation if 𝑓 (𝑅) = 𝑓 (𝑅′) for all profiles 𝑅 and 𝑅′ such that 𝑅′ arises from 𝑅 by adding two voters with inverse preferences.

Less formally, quasi-neutrality enforces a mild degree of neutrality for profiles where the majority relation is cyclic and all majority

margins are unique. On the other hand, cancellation requires that adding pairs of voters with inverse preferences does not affect the outcome.

As we show next, every SWF on R∗
that satisfies strategyproofness, majority consistency, anonymity, quasi-neutrality, and cancellation

must always choose a Kemeny ranking, i.e., a ranking from the set 𝐾 (𝑅) = arg max▷∈R
∑
𝑖∈𝑁𝑅

Δ(≻𝑖 ,▷) (where 𝑁𝑅 denotes the voters in 𝑅).

Proposition 2. Assume𝑚 = 3. If an SWF 𝑓 on R∗ satisfies strategyproofness, majority consistency, anonymity, quasi-neutrality, and cancellation,
then 𝑓 (𝑅) ∈ 𝐾 (𝑅) for all profiles 𝑅 ∈ R∗.

Proof. Let𝑚 = 3 and 𝑓 be a SWF on R∗
that satisfies all given axioms. We will show in multiple steps that 𝑓 (𝑅) ∈ 𝐾 (𝑅) for all profiles

𝑅 ∈ R∗
.

Step 1: First, we will show that 𝑓 only depends on the majority margins: it holds that 𝑓 (𝑅) = 𝑓 (𝑅′) for all profiles 𝑅, 𝑅′ ∈ R∗
such that

𝑔𝑥𝑦 (𝑅) = 𝑔𝑥𝑦 (𝑅′) for all alternatives 𝑥,𝑦 ∈ 𝐴. To prove this claim, we denote the six possible input rankings by

≻1 = 𝑎𝑏𝑐 ≻2 = 𝑏𝑐𝑎 ≻3 = 𝑐𝑎𝑏

≻4 = 𝑐𝑏𝑎 ≻5 = 𝑎𝑐𝑏 ≻6 = 𝑏𝑎𝑐 .

Furthemore, given a profile 𝑅, we define by 𝑛𝑅
𝑖
for 𝑖 ∈ {1, . . . , 6} the number of voters that report the ranking ≻𝑖 . By anonymity, we can

compute 𝑓 only based on these six numbers. We further observe that ≻𝑖 is inverse to ≻𝑖+3 for 𝑖 ∈ {1, 2, 3}. We hence define 𝛿𝑅
𝑖
= 𝑛𝑅

𝑖
− 𝑛𝑅

𝑖+3

for all 𝑖 ∈ {1, 2, 3} to count how many more voters report ≻𝑖 than ≻𝑖+3 (or vice versa). By cancellation, these values are sufficient to compute

𝑓 as we can add and remove pairs of voters with inverse preferences without affecting the outcome. To prove this step, we will next show

that if 𝑔𝑥𝑦 (𝑅) = 𝑔𝑥𝑦 (𝑅′) for all 𝑥,𝑦 ∈ 𝐴, then also 𝛿𝑅
𝑖
= 𝛿𝑅

′
𝑖
. This implies that 𝑓 (𝑅) = 𝑓 (𝑅′) by our previous insights, so 𝑓 can indeed only

be computed based on the pairwise majority margins. Now, to prove our claim, we observe that

𝑔𝑎𝑏 (𝑅) = 𝛿𝑅1 − 𝛿𝑅
2
+ 𝛿𝑅

3
, 𝑔𝑏𝑐 (𝑅) = 𝛿𝑅1 + 𝛿𝑅

2
− 𝛿𝑅

3
, 𝑔𝑐𝑎 (𝑅) = −𝛿𝑅

1
+ 𝛿𝑅

2
+ 𝛿𝑅

3
.

By rearranging these equations, we infer that

𝛿𝑅
1
=
𝑔𝑎𝑏 (𝑅) + 𝑔𝑎𝑏 (𝑅)

2

, 𝛿𝑅
2
=
𝑔𝑏𝑐 (𝑅) + 𝑔𝑐𝑎 (𝑅)

2

, 𝛿𝑅
3
=
𝑔𝑐𝑎 (𝑅) + 𝑔𝑎𝑏 (𝑅)

2

.

Hence, the majority margins fully determine the values of 𝛿𝑅
𝑖
. In particular, if 𝑔𝑥𝑦 (𝑅) = 𝑔𝑥𝑦 (𝑅′) for all 𝑥,𝑦 ∈ 𝐴, then it also holds that

𝛿𝑅
𝑖
= 𝛿𝑅

′
𝑖

for all 𝑖 ∈ {1, 2, 3}. This completes the proof of this step.

Step 2:We will next show that 𝑓 (𝑅) ∈ 𝐾 (𝑅) for all profiles 𝑅 ∈ R∗
. To this end, we first note that if the majority relation ¥𝑀 of a profile 𝑅

is a ranking, then 𝐾 (𝑅) = {¥𝑀 } and our inclusion holds by majority consistency. Furthermore, if 𝑔𝑥𝑦 (𝑅) = 0 for all 𝑥,𝑦 ∈ 𝐴, then 𝐾 (𝑅) = R
and it holds trivially that 𝑓 (𝑅) ∈ 𝐾 (𝑅). We next proceed with a case distinction regarding the structure of the considered profile.

Case 2.1: Let 𝑅 denote a profile such that 𝑔𝑎𝑏 (𝑅) = 𝑔𝑏𝑐 (𝑅) = 𝑔𝑐𝑎 (𝑅) > 0. For this profile, it holds that 𝐾 (𝑅) = {𝑎𝑏𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏} and we

assume for contradiction that 𝑓 (𝑅) ∉ {𝑎𝑏𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏}. Without loss of generality, we can make this more precise by letting 𝑓 (𝑅) = 𝑐𝑏𝑎. Using
cancellation, we next add 𝑔𝑎𝑏 (𝑅) pairs of voters such that one voter reports 𝑎𝑏𝑐 and and the other voter reports 𝑐𝑏𝑎. This leads to a new

profile 𝑅′ with 𝑓 (𝑅′) = 𝑐𝑏𝑎 due to cancellation. Finally, we let the newly added voters who report 𝑎𝑏𝑐 deviate to 𝑏𝑎𝑐 . Since these voters

completely disagree with 𝑓 (𝑅′), strategyproofness requires that the outcome is not allowed to change at any step. However, in the resulting

profile 𝑅′′, we have that 𝑔𝑏𝑎 (𝑅′′) = 𝑔𝑎𝑏 (𝑅′) > 0, 𝑔𝑏𝑐 (𝑅′′) > 0, and 𝑔𝑐𝑎 (𝑅′′) > 0, i.e., the majority relation is transitive. Hence, we need to

choose the ranking 𝑏𝑐𝑎 for 𝑅′′, which contradicts strategyproofness. This proves that the assumption that 𝑓 (𝑅) ∉ {𝑎𝑏𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏} is wrong.
Case 2.2: We will next turn to profiles such that the majority relation is cyclic and all majority margins are unique and non-zero. More

specifically, we analyze profiles 𝑅 such that 𝑔𝑎𝑏 (𝑅) > 0, 𝑔𝑏𝑐 (𝑅) > 0, 𝑔𝑐𝑎 (𝑅) > 0, and 𝑔𝑥𝑦 (𝑅) ≠ 𝑔𝑦𝑧 (𝑅) for all distinct 𝑥,𝑦, 𝑧 ∈ 𝐴. We start by

again considering a profile 𝑅∗ such that 𝑔𝑎𝑏 (𝑅∗) = 𝑔𝑏𝑐 (𝑅∗) = 𝑔𝑐𝑎 (𝑅∗) = 𝜆 for some 𝜆 > 0. By Case 2.1, it holds that 𝑓 (𝑅∗) ∈ {𝑎𝑏𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏}
and we suppose without loss of generality that 𝑓 (𝑅∗) = 𝑎𝑏𝑐 . Using cancellation, we next add pairs of voters to 𝑅∗ such that one reports

𝑎𝑏𝑐 and the other 𝑐𝑏𝑎. By strategyproofness, the voters who reports 𝑐𝑏𝑎 cannot change the outcome by deviating as any other outcome

is better for them. In particular, this means that, when swapping 𝑏 and 𝑐 , or 𝑎 and 𝑏, the outcome does not change. By this argument and

Step 1, it follows that 𝑓 (𝑅′) = 𝑎𝑏𝑐 for all profiles 𝑅′ such that 𝑔𝑎𝑏 (𝑅′) ≥ 𝑔𝑎𝑏 (𝑅), 𝑔𝑏𝑐 (𝑅′) ≥ 𝑔𝑏𝑐 (𝑅), and 𝑔𝑐𝑎 (𝑅′) = 𝜆. In particular, this
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holds for when 𝑔𝑎𝑏 (𝑅′) ≠ 𝑔𝑏𝑐 (𝑅′), 𝑔𝑎𝑏 (𝑅′) > 𝑔𝑐𝑎 (𝑅′), and 𝑔𝑏𝑐 (𝑅′) > 𝑔𝑐𝑎 (𝑅′), i.e., when all majority margins are different and 𝑔𝑐𝑎 (𝑅′) has
the smallest weight. Put differently, for all such profiles, we “cut” the edge in the majority graph with the least weight, which means that

𝑓 (𝑅′) ∈ 𝐾 (𝑅′) = {𝑎𝑏𝑐}. Further, since all majority margins are unique in 𝑅′, we can generalize this insight to all profiles whose majority

margins can be obtained from 𝑅′ by permuting the alternatives using quasi-neutrality. This shows that 𝑓 (𝑅) ∈ 𝐾 (𝑅) for all profiles such that

the minimal majority margin has weight 𝜆 and all majority margins are different. Finally, we note that we can apply this argument for all

values of 𝜆 > 0. Hence, 𝑓 (𝑅) ∈ 𝐾 (𝑅) for all profiles with unique non-zero majority margins and a cyclic majority relation.

Case 2.3: Thirdly, we consider the case that the majority relation is cyclic and the majority margins have two different non-zero values. To

this end, let 𝑅 denote a profile and 𝜆1, 𝜆2 ∈ N denote two non-zero integers such that 𝑔𝑎𝑏 (𝑅) = 𝜆1, 𝑔𝑏𝑐 (𝑅) = 𝜆1, 𝑔𝑐𝑎 (𝑅) = 𝜆2. First, suppose

that 𝜆1 > 𝜆2, in which case 𝐾 (𝑅) = {𝑎𝑏𝑐}. Suppose for contradiction that 𝑓 (𝑅) ≠ 𝑎𝑏𝑐 . We first note that it can be shown analogously to Case

2.1 that 𝑓 (𝑅) ∉ {𝑐𝑏𝑎, 𝑏𝑎𝑐, 𝑎𝑐𝑏} as we can deviate to a profile with transitive majority relation otherwise. It thus holds that 𝑓 (𝑅) ∈ {𝑏𝑐𝑎, 𝑐𝑎𝑏}.
Suppose that 𝑓 (𝑅) = 𝑏𝑐𝑎. In this case, we add a pair of voters with preference relations 𝑏𝑐𝑎 and 𝑎𝑐𝑏 and cancellation shows that we still

choose 𝑏𝑐𝑎. Next, let the voter reporting 𝑎𝑐𝑏 swap 𝑏 and 𝑐 , resulting in a profile 𝑅′ with 𝑔𝑎𝑏 (𝑅′) = 𝜆1, 𝑔𝑏𝑐 (𝑅′) = 𝜆1 + 2, and 𝑔𝑐𝑎 (𝑅′) = 𝜆2.

Moreover, strategyproofness requires that 𝑓 (𝑅′) = 𝑏𝑐𝑎 as any other outcome constitutes a manipulation. However, this contradicts Case 2.2

as all majority margins are unique, non-zero, and 𝑔𝑐𝑎 (𝑅′) is minimal. On the other hand, if 𝑓 (𝑅) = 𝑐𝑎𝑏, we can apply an analogous argument

by adding a pair of voters with preferences 𝑐𝑎𝑏 and 𝑏𝑎𝑐 and reinforcing 𝑎 against 𝑏.

As the second subcase, suppose that 𝜆1 < 𝜆2, which means that 𝐾 (𝑅) = {𝑏𝑐𝑎, 𝑐𝑎𝑏}. Using again the argument of Case 2.1, it follows that

𝑓 (𝑅) ∈ {𝑎𝑏𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏}. So, we assume for contradiction that 𝑓 (𝑅) = 𝑎𝑏𝑐 . In this case, we can add pairs of voters with preference relations 𝑎𝑏𝑐

and 𝑐𝑏𝑎, which does not affect the outcome due to cancellation. Moreover, strategyproofness requires that the voters reporting 𝑐𝑏𝑎 cannot

change the outcome by deviating. By letting these voters swap 𝑏 and 𝑐 , we can increase the majority margin 𝑔𝑏𝑐 (𝑅) arbitrarily, so we now

infer that 𝑓 (𝑅′) = 𝑎𝑏𝑐 for all profiles 𝑅′ with 𝑔𝑎𝑏 (𝑅′) = 𝜆1, 𝑔𝑏𝑐 (𝑅′) ≥ 𝜆1, and 𝑔𝑐𝑎 (𝑅′) = 𝜆2. However, once 𝑔𝑏𝑐 (𝑅′) > 𝜆2, this conflict with

Case 2.2: in this case, the minimal edge is 𝑔𝑎𝑏 (𝑅′), so 𝑓 (𝑅′) must be 𝑏𝑐𝑎.

Case 2.4: In our fourth case, we assume that exactly one majority margin has value 0. Without loss of generality, we suppose that 𝑔𝑎𝑐 (𝑅) = 0

and we consider three subcases. Moreover, we will assume that every preference relation is reported by at least one voter; this is without

loss of generality due to cancellation. Now, as the first subcase, suppose 𝑔𝑏𝑐 (𝑅) > 0 and 𝑔𝑏𝑎 (𝑅) > 0, which implies that 𝐾 (𝑅) = {𝑏𝑐𝑎, 𝑏𝑎𝑐}.
Assume without for contradiction that 𝑓 (𝑅) ∉ 𝐾 (𝑅). If 𝑓 (𝑅) = 𝑎𝑐𝑏, let 𝑅′ denote the profile derived from 𝑅 by letting a voter change his

preference relation from 𝑏𝑐𝑎 to 𝑏𝑎𝑐 . Strategyproofness requires that the outcome does not change. However, the majority relation now agrees

with the ranking 𝑏𝑐𝑎, so majority consistency requires that 𝑓 (𝑅) = 𝑏𝑐𝑎, a contradiction. If 𝑓 (𝑅) = 𝑎𝑏𝑐 , let 𝑅′ denote the profile derived from

𝑅 by letting a voter change his preference relation from 𝑐𝑏𝑎 to 𝑏𝑎𝑐 . Strategyproofness requires that 𝑓 (𝑅′) = 𝑎𝑏𝑐 , but majority consistency

requires that 𝑓 (𝑅′) = 𝑏𝑎𝑐 , hence yielding a contradiction. Finally, the cases that 𝑓 (𝑅) = 𝑐𝑎𝑏 and 𝑓 (𝑅) = 𝑐𝑏𝑎 are symmetric to 𝑓 (𝑅) = 𝑎𝑐𝑏
and 𝑓 (𝑅) = 𝑎𝑏𝑐 , respectively, so we have a contradiction in every case.

As the second subcase, suppose that 𝑔𝑏𝑐 (𝑅) < 0 and 𝑔𝑏𝑎 (𝑅) < 0, so 𝐾 (𝑅) = {𝑎𝑐𝑏, 𝑐𝑎𝑏}. If 𝑓 (𝑅) = 𝑏𝑐𝑎, a voter can again benefit by

manipulating from the preference relation 𝑎𝑐𝑏 to 𝑐𝑎𝑏. In particular, after this deviation, the majority relation agrees with the ranking 𝑐𝑎𝑏, so

this ranking must be chosen, but Δ(𝑎𝑐𝑏, 𝑏𝑐𝑎) = 3 > 1 = Δ(𝑎𝑐𝑏, 𝑐𝑎𝑏). On the other hand, if 𝑓 (𝑅) = 𝑐𝑏𝑎, a voter can manipulate by deviating

from the preference relation 𝑎𝑏𝑐 to 𝑐𝑎𝑏. After this step, the outcome must be 𝑐𝑎𝑏 by majority consistency, which again decreases the Kemeny

distance of the manipulator. The case that 𝑓 (𝑅) = 𝑏𝑎𝑐 and 𝑓 (𝑅) = 𝑎𝑏𝑐 are again symmetric, so it follows that 𝑓 (𝑅) ∈ 𝐾 (𝑅) as every other

outcome means that 𝑓 fails strategyproofness.

As the third case, we suppose that 𝑔𝑎𝑏 (𝑅) > 0 and 𝑔𝑏𝑐 (𝑅) > 0 and note that the case 𝑔𝑎𝑏 (𝑅) < 0 and 𝑔𝑏𝑐 (𝑅) < 0 is symmetric. For this case,

let 𝑅∗ denote a profile with 𝑔𝑥𝑦 (𝑅∗) = 0 for all 𝑥,𝑦 ∈ 𝐴 and suppose that 𝑓 (𝑅∗) = 𝑏𝑐𝑎 (this choice will not matter due to quasi-neutrality).

Using the same argument as in Case 2.2, it holds for every profile 𝑅′ with 𝑔𝑏𝑐 (𝑅′) ≥ 0, 𝑔𝑐𝑎 (𝑅′) ≥ 0, and 𝑔𝑎𝑏 (𝑅) = 0 that 𝑓 (𝑅′) = 𝑏𝑐𝑎, too.
Based on quasi-neutrality, this insight generalizes to all rankings such that one majority margin is 0, all majority margins are distinct and

the majority relation is cyclic. Hence, if 𝑔𝑎𝑏 (𝑅) ≠ 𝑔𝑏𝑐 (𝑅), it follows for our profile 𝑅 that 𝑓 (𝑅) = 𝑎𝑏𝑐 and thus 𝑓 (𝑅) ∈ 𝐾 (𝑅). So, suppose that
𝑔𝑎𝑏 (𝑅) = 𝑔𝑏𝑐 (𝑅) and assume that 𝑓 (𝑅) ≠ 𝑎𝑏𝑐 . If 𝑓 (𝑅) = 𝑐𝑏𝑎, we repeatedly let voters with preference relation 𝑎𝑏𝑐 change their preference

relation to 𝑎𝑐𝑏. (Note that we may use cancellation to add these voters). This eventually results in a profile 𝑅′ with 𝑔𝑎𝑏 (𝑅′) > 0, 𝑔𝑐𝑏 (𝑅′) > 0,

and 𝑔𝑎𝑐 (𝑅′) = 0, so 𝑓 (𝑅′) ∈ {𝑎𝑐𝑏, 𝑐𝑎𝑏} by the last subcase. However, this contradicts strategyproofness as the voters with preference relation

𝑎𝑐𝑏 have Δ(𝑎𝑐𝑏, 𝑏𝑐𝑎) = 3 and any other outcome is therefore a manipulation. Next, if 𝑓 (𝑅) = 𝑏𝑎𝑐 , we let a voter with preference relation

𝑐𝑎𝑏 swap 𝑎 and 𝑐 . For the resulting profile 𝑅′, majority consistency requires that 𝑓 (𝑅′) = 𝑎𝑏𝑐 , which constitutes a manipulation. A similar

construction also works if 𝑓 (𝑅) = 𝑎𝑐𝑏. Lastly, if 𝑓 (𝑅) = 𝑏𝑐𝑎 or 𝑓 (𝑅) = 𝑐𝑎𝑏, we can infer a manipulation analogously to Case 2.3 by ensuring

that all majority margins are unique.

Case 2.5: As the last case, suppose that exactly two majority margins are zero. To make this more precise, we assume that 𝑔𝑎𝑏 (𝑅) > 0 and

𝑔𝑏𝑐 (𝑅) = 𝑔𝑐𝑎 (𝑅) = 0, so 𝐾 (𝑅) = {𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑐𝑎𝑏}. Suppose for contradiction that 𝑓 (𝑅) ∉ 𝐾 (𝑅). If 𝑓 (𝑅) = 𝑏𝑎𝑐 , let 𝑅′ denote the profile derived
from 𝑅 by letting a voter deviate from 𝑐𝑎𝑏 to 𝑎𝑐𝑏. Consequently, 𝑔𝑎𝑏 (𝑅′) > 0, 𝑔𝑎𝑐 (𝑅′) > 0, and 𝑔𝑏𝑐 (𝑅′) = 0, so 𝑓 (𝑅) ∈ {𝑎𝑏𝑐, 𝑎𝑐𝑏} by Case 2.4.

Regardless of the exact outcome this constitutes a manipulation. If 𝑓 (𝑅) = 𝑏𝑐𝑎, we can use an analogous construction to infer a contradiction.

Finally, if 𝑓 (𝑅) = 𝑐𝑏𝑎, we let a voter deviate from 𝑎𝑏𝑐 to 𝑎𝑐𝑏. This results in a profile 𝑅′ with 𝑔𝑎𝑏 (𝑅′) > 0, 𝑔𝑐𝑏 (𝑅′) > 0, and 𝑔𝑎𝑐 (𝑅′) = 0.

Hence, 𝑓 (𝑅) ∈ {𝑎𝑐𝑏, 𝑐𝑎𝑏} by Claim 2.4, which means that a voter can again manipulate. Hence, it indeed holds that 𝑓 (𝑅) ∈ 𝐾 (𝑅) for all
cases. □
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B PROOF OF LEMMA 1
We next turn to the inductive arguments, which are necessary to generalize Proposition 1 to Theorem 2.

Lemma 1. Assume there is no anonymous SWF that satisfies strategyproofness and unanimity for𝑚 alternatives and 𝑛 voters. The following
claims hold:
(1) For every𝑚′ > 𝑚, there is no anonymous SWF that satisfies strategyproofness and unanimity for𝑚′ alternatives and 𝑛 voters.
(2) For every ℓ ∈ N, there is no anonymous SWF that satisfies strategyproofness and unanimity for𝑚 alternatives and ℓ𝑛 voters.

Proof. Fix some values𝑚 and𝑛 and assume that there is no anonymous SWF satisfying strategyproofness and unanimity for𝑚 alternatives

and 𝑛 voters. For both claims of our lemma, we will show that if there was an SWF satisfying our axioms for the given parameters, then

there would also be one for𝑚 alternatives and 𝑛 voters, which contradicts our previous assumption.

Claim (1): Assume for contradiction that there is an integer𝑚′ > 𝑚 such that there is an anonymous SWF 𝑓 for𝑚′
alternatives and

𝑛 voters that satisfies strategyproofness and unanimity. Moreover, let 𝐴′
denote the set of𝑚′

alternatives for which 𝑓 is defined, and let

𝐴 ⊆ 𝐴′
be a subset of this set with |𝐴| =𝑚. We will next construct an SWF 𝑔 for 𝑛 voters and the alternatives 𝐴 that satisfies all our axioms.

To this end, given a profile 𝑅 on the alternatives 𝐴, we define by 𝑅𝐴→𝐴′
the profile obtained from 𝑅 by adding the alternatives in 𝐴′ \𝐴 in a

fixed order at the bottom of the rankings of all voters. Moreover, given a ranking ▷ on 𝐴′
, we define by ▷ |𝐴 the ranking obtained by deleting

the alternatives in 𝐴′ \𝐴 from ▷. Then, given a profile 𝑅 on the alternatives 𝐴, our new SWF 𝑔 first constructs the profile 𝑅𝐴→𝐴′
, computes

the output ranking ▷ of 𝑓 on this profile, and finally returns the restriction of ▷ to 𝐴. Or, more compactly, 𝑔 is given by 𝑔(𝑅) = 𝑓 (𝑅𝐴→𝐴′ ) |𝐴 .
We next will show that 𝑔 satisfies anonymity, unanimity, and strategyproofness. For anonymity, we note that 𝜋 (𝑅𝐴→𝐴′ ) = 𝜋 (𝑅)𝐴→𝐴′

for

every permutation 𝜋 : 𝑁 → 𝑁 since we extend the ranking of every voter in the same way, regardless of his reported ranking. Since 𝑓 is

by assumption anonymous, it hence holds that 𝑔(𝜋 (𝑅)) = 𝑓 (𝜋 (𝑅)𝐴→𝐴′ ) |𝐴 = 𝑓 (𝜋 (𝑅𝐴→𝐴′ )) |𝐴 = 𝑓 (𝑅𝐴→𝐴′ ) |𝐴 = 𝑔(𝑅) for all permutations

𝜋 : 𝑁 → 𝑁 , thus showing that 𝑔 is unanimous. Next, for unanimity, we observe that, if 𝑥 ≻𝑖 𝑦 for all voters 𝑖 in some profile 𝑅 on 𝐴, then the

same holds for the profile 𝑅𝐴→𝐴′
. Since 𝑓 is unanimous, it therefore follows that the output ranking 𝑔(𝑅) = 𝑓 (𝑅𝐴→𝐴′ ) |𝐴 ranks 𝑥 ahead of 𝑦.

Lastly, for strategyproofness, we note that if 𝑔 is manipulable, then so must be 𝑓 . To make this more formal, assume that there are profiles

𝑅 and 𝑅 over the set of alternatives 𝐴 and a voter 𝑖 in 𝑁 such that 𝑅 and 𝑅 only differ in the ranking of voter 𝑖 and Δ(≻𝑖 , 𝑔(𝑅)) > Δ(≻𝑖 , 𝑔(𝑅)).
Further, let ≻̄𝑖 denote voter 𝑖’s extended ranking in 𝑅𝐴→𝐴′

. Since 𝑓 is unanimous and all voters in 𝑅𝐴→𝐴′
(resp. 𝑅𝐴→𝐴′

) rank all alternatives

in𝐴 ahead of those in𝐴′ \𝐴 and agree on the order of the alternatives in𝐴′ \𝐴, the same must be true for the output ranking 𝑓 (𝑅𝐴→𝐴′ ) (resp.
𝑓 (𝑅𝐴→𝐴′ )). This implies that Δ(≻̄𝑖 , 𝑓 (𝑅𝐴→𝐴′ )) = Δ(≻𝑖 𝑔(𝑅))) > Δ(≻𝑖 , 𝑔(𝑅)) = Δ(≻̄𝑖 , 𝑓 (𝑅𝐴→𝐴′ )). Since 𝑅𝐴→𝐴′

and 𝑅𝐴→𝐴′
only disagree in

the ranking of voter 𝑖 , we conclude that 𝑓 is manipulable, contradicting our assumptions. Hence, if the SWF 𝑓 exists, we could also construct

an SWF 𝑔 for𝑚 alternatives and 𝑛 voters that satisfies anonymity, unanimity, and strategyproofness, contradicting the premise of this lemma.

Claim (2): For the second case, we fix some integer ℓ ∈ N and suppose that there is an anonymous SWF 𝑓 that satisfies strategyproofness

and unanimity for𝑚 voters and ℓ𝑛 voters. This time, we define the following transformation: given a profile 𝑅 on 𝑛 voters and𝑚 alternatives,

we define by ℓ𝑅 the profile that contains ℓ copies of each voter in 𝑅. Then, we define an SWF 𝑔 for 𝑛 voters and𝑚 alternatives by 𝑔(𝑅) = 𝑓 (ℓ𝑅).
We first note that it is again easy to see that 𝑔 inherits both anonymity and unanimity from 𝑓 . In more detail, permuting our input profile 𝑅

corresponds to permuting our input profile ℓ𝑅 accordingly, which suffices to prove that 𝑔 inherits anonymity. Similarly, if all voters in 𝑅

prefer 𝑥 to 𝑦, the same holds for ℓ𝑅. Hence, the output ranking 𝑔(𝑅) = 𝑓 (ℓ𝑅) also has to rank 𝑥 ahead of 𝑦 by the unanimity of 𝑓 .

Lastly, for strategyproofness, consider two profile𝑅 and𝑅′ (on𝑛 voters) such that𝑅 and𝑅′ only differ in the ranking of voter 𝑖 . Consequently,
ℓ𝑅 and ℓ𝑅′ only differ in the ℓ clones of voter 𝑖 . Now, consider the sequence of profile 𝑅0 = ℓ𝑅, 𝑅1, . . . , 𝑅ℓ = ℓ𝑅′ derived by letting the clones

of voter 𝑖 one after another change their ranking from ≻𝑖 to ≻′
𝑖
. By the strategyproofness of 𝑓 , it holds that Δ(≻𝑖 , 𝑓 (𝑅 𝑗 )) ≤ Δ(≻𝑖 , 𝑓 (𝑅 𝑗+1))

for all 𝑗 ∈ {0, . . . , ℓ − 1}. By chaining these inequalities, we get that Δ(≻𝑖 , 𝑔(𝑅)) = Δ(≻𝑖 , 𝑓 (ℓ𝑅)) ≤ Δ(≻𝑖 , 𝑓 (ℓ𝑅′)) = Δ(≻𝑖 , 𝑔(𝑅′)). This proves
that 𝑔 is strategyproof if 𝑓 satisfies this condition. Hence, if 𝑓 satisfies anonymity, unanimity, and strategyproofness, so does 𝑔, which

contradicts our assumption that no SWF for𝑚 alternatives and 𝑛 voters simultaneously satisfies all three conditions. □

C PROOF OF THEOREM 3
We next turn to the proof Theorem 3. Since we have already shown that every distance scoring function has an incentive ratio of at most

𝛾𝑚 (𝑓 ) ≤
(𝑚

2

)
, we will only focus on the lower bounds. Further, to improve legibility, we show each lower bound as a separate proposition.

Proposition 3. For all𝑚 ≥ 4, the incentive ratio of the Kemeny rule 𝑓Kemeny satisfies
(𝑚

2

)
−𝑚 ≤ 𝛾𝑚 (𝑓Kemeny).

Proof. To prove this proposition, we first note that the Kemeny rule can be computed only based on the majority margins 𝑔𝑥𝑦 (𝑅) = |{𝑖 ∈
𝑁 : 𝑥 ≻𝑖 𝑦}| − |{𝑖 ∈ 𝑁 : 𝑦 ≻𝑖 𝑥}| for all alternatives 𝑥,𝑦 ∈ 𝐴 in a profile 𝑅. In more detail, a ranking ▷ minimizes the total Kemeny distance∑
𝑖∈𝑁 Δ(≻𝑖 ,▷) if and only if it maximizes

∑
𝑥,𝑦∈𝐴 : 𝑥▷𝑦 𝑔𝑥𝑦 (𝑅). This holds because

∑
𝑥,𝑦∈𝐴 : 𝑥▷𝑦 𝑔𝑥𝑦 (𝑅) =

(𝑚
2

)
𝑛 − 2

∑
𝑥,𝑦∈𝐴 : 𝑥▷𝑦 |{𝑖 ∈

𝑁 : 𝑦 ≻𝑖 𝑥}| =
(𝑚

2

)
𝑛 − 2

∑
𝑥,𝑦∈𝐴

∑
𝑖∈𝑁 I[𝑥 ▷ 𝑦 ∧ 𝑦 ≻𝑖 𝑥] =

(𝑚
2

)
𝑛 − 2

∑
𝑖∈𝑁 Δ(≻𝑖 ,▷). Here, I[𝑥 ▷ 𝑦 ∧ 𝑦 ≻𝑖 𝑥] is an indicator function

that takes value 1 if 𝑥 ▷ 𝑦 and 𝑦 ≻𝑖 𝑥 and 0 otherwise. For an easier notation, we define the Kemeny score of an ranking ▷ in a profile

𝑅 by 𝑠 (𝑅,▷) =
∑
𝑥,𝑦∈𝐴 : 𝑥▷𝑦 𝑔𝑥𝑦 (𝑅). The key insight for our proof is that there is a profile 𝑅∗ for which two rankings ▷1 and ▷2 with

Δ(▷1,▷2) =
(𝑚

2

)
− (𝑚 − 1) maximize the Kemeny score, i.e., 𝑠 (𝑅∗,▷1) = 𝑠 (𝑅∗,▷2) > 𝑠 (𝑅∗,▷) for all ▷ ∈ R \ {▷1,▷2}. We will construct this

profile 𝑅∗ later on.
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Based on this profile 𝑅∗, we will construct another profile 𝑅 to prove that 𝛾𝑚 (𝑓Kemeny) ≥
(𝑚

2

)
−𝑚. To this end, let ≻1, . . . , ≻𝑘 (with

𝑘 = Δ(▷1,▷2) + 1) denote a sequence of rankings such that ≻1 = ▷1, ≻𝑘 = ▷2, and for all 𝑖 ∈ {1, . . . , 𝑘 − 1}, the ranking ≻𝑖+1 is derived from

≻𝑖 by swapping one adjacent pair of alternatives in ≻𝑖 . Put differently, this sequence transforms ▷1 and ▷2 by repeatedly swapping pairs of

alternatives and each pair of alternatives is swapped at most once. Hence, it holds for ≻2 and ≻𝑘−1
that Δ(≻2,▷1) = Δ(≻𝑘−1

,▷2) = 1 and

Δ(≻𝑘−1
,▷2) = Δ(≻2,▷2) = Δ(▷1,▷2) − 1. Moreover, this means for the inverse rankings of ≻2 and ≻𝑘−1

, denoted by ≻̄2 and ≻̄𝑘−1
, that

Δ(≻̄2,▷1) = Δ(≻̄𝑘−1
,▷2) =

(𝑚
2

)
− 1 and Δ(≻̄2,▷2) = Δ(≻̄𝑘−1

,▷1) =
(𝑚

2

)
− (Δ(▷1,▷2) − 1). Finally, the profile 𝑅 is the profile derived from

𝑅∗ by adding for each ranking ≻ ∈ {≻2, ≻𝑘−1
, ≻̄2, ≻̄𝑘−1

} one voter who reports ≻.
We first note that 𝑠 (𝑅,▷) = 𝑠 (𝑅∗,▷) for all rankings ▷ since ≻2 and ≻̄2 as well as ≻𝑘−1

and ≻̄𝑘−1
are inverse to each other. Thus, the

corresponding voters cancel each other out with respect to the majority margins. This means that the Kemeny rule has to choose either

▷1 or ▷2 for 𝑅 and we suppose without loss of generality that ▷1 is selected. Now, let 𝑅
′
denote the profile derived from 𝑅 by letting the

voter who reports ≻̄2 deviate to the ranking that is completely inverse to ▷1, denoted by ▷̄1. Since Δ(▷̄1,▷1) =
(𝑚

2

)
> Δ(≻̄2,▷1) and

Δ(▷̄1,▷2) =
(𝑚

2

)
− Δ(▷1,▷2) <

(𝑚
2

)
− (Δ(▷1,▷2) − 1) = Δ(≻̄2,▷2), it holds that 𝑠 (𝑅′,▷1) < 𝑠 (𝑅′,▷2). Further, it still holds that 𝑠 (𝑅′,▷) <

𝑠 (𝑅′,▷2) for all ▷ ∈ R \ {▷1,▷2}. To see this, we note that Δ(≻̄2, ▷̄1) = 1 because Δ(≻2,▷1) = 1, so there is a single pair of alternatives 𝑥,𝑦

such that 𝑥 ≻̄2 𝑦 and 𝑦 ▷̄1 𝑥 . Consequently, it holds for every ranking ▷ that 𝑠 (𝑅′,▷) − 𝑠 (𝑅,▷) = 2 if 𝑦 ▷ 𝑥 and 𝑠 (𝑅′,▷) − 𝑠 (𝑅,▷) = −2 if

𝑥 ▷ 𝑦. Moreover, since the score of ▷2 increases when going from ≻̄2 to ▷̄1, we have that 𝑠 (𝑅′,▷2) = 𝑠 (𝑅,▷2) + 2 > 𝑠 (𝑅,▷) + 2 ≥ 𝑠 (𝑅′,▷)
for all rankings ▷ ∈ R \ {▷1,▷2}. This proves that Kemeny’s rule chooses ▷2 for 𝑅′. Finally, we note that the deviator has a utility of

𝑢 (≻̄2,▷1) =
(𝑚

2

)
− Δ(≻̄2,▷1) = 1 in 𝑅 and a utility of 𝑢 (≻̄2,▷2) =

(𝑚
2

)
− Δ(≻̄2,▷2) =

(𝑚
2

)
−𝑚 in 𝑅′. Hence, the incentive ratio of the Kemeny

rule is at least

(𝑚
2

)
−𝑚.

It remains to show that there is indeed a profile 𝑅∗ and two rankings ▷1 and ▷2 such that 𝑠 (𝑅∗,▷1) = 𝑠 (𝑅∗,▷2) > 𝑠 (𝑅∗,▷) for all rankings
▷ ∈ R \ {▷1,▷2} and Δ(▷1,▷2) =

(𝑚
2

)
− (𝑚 − 1). To this end, we note that it suffices to specify a matrix containing all majority matrices

because the Kemeny rule can be computed only based on these. Moreover, McGarvey’s construction shows that every majority margin

matrix can be induced by a ranking profile if all majority margins have the same parity [32, 57], so it is without loss of generality to focus

on these matrices. To improve legibility, we will represent such majority margin matrices via weighted tournaments 𝑇 = (𝐴, 𝐸,𝑤) on the

alternatives, where (𝑥,𝑦) ∈ 𝐸 if and only if 𝑔𝑥𝑦 (𝑅) > 0 and𝑤 (𝑥,𝑦) = 𝑔𝑥𝑦 (𝑅).
Furthermore, we also extend the Kemeny rule and the Kemeny score to such weighted tournaments. Specifically, given a weighted

tournament 𝑇 = (𝐴, 𝐸,𝑤), we define the Kemeny score by 𝑠 (𝑇,▷) =
∑

(𝑥,𝑦) ∈𝐸 : 𝑥▷𝑦 𝑤 (𝑢, 𝑣) and the Kemeny rule chooses the ranking

that maximizes this score. Given a profile 𝑅 that induces the weighted tournament 𝑇 , maximizing 𝑠 (𝑇,▷) is equivalent to maximizing

𝑠 (𝑅,▷) =
∑
𝑥,𝑦∈𝐴 : 𝑥▷𝑦 𝑔𝑥𝑦 (𝑅). To see this, let 𝑇 = (𝑉 , 𝐸,𝑤) denote the weighted tournament induced by 𝑅 and let 𝐶 =

∑
𝑒∈𝐸 𝑤 (𝑒) =∑

𝑥,𝑦∈𝐴 : 𝑔𝑥𝑦 (𝑅)>0
𝑔𝑥𝑦 (𝑅) denote the sum of all positive majority margins. Since 𝑔𝑥𝑦 (𝑅) = −𝑔𝑦𝑥 (𝑅) for all 𝑥,𝑦 ∈ 𝐴, we have that∑︁

𝑥,𝑦∈𝐴 : 𝑥▷𝑦

𝑔𝑥𝑦 (𝑅) =
∑︁

𝑥,𝑦∈𝐴 : 𝑥▷𝑦∧𝑔𝑥𝑦 (𝑅)>0

𝑔𝑥𝑦 (𝑅) +
∑︁

𝑥,𝑦∈𝐴 : 𝑥▷𝑦∧𝑔𝑥𝑦 (𝑅)<0

𝑔𝑥𝑦 (𝑅)

=
∑︁

𝑥,𝑦∈𝐴 : 𝑥▷𝑦∧𝑔𝑥𝑦 (𝑅)>0

𝑔𝑥𝑦 (𝑅) −
∑︁

𝑥,𝑦∈𝐴 : 𝑥▷𝑦∧𝑔𝑦𝑥 (𝑅)>0

𝑔𝑦𝑥 (𝑅)

= −𝐶 + 2

∑︁
𝑥,𝑦∈𝐴 : 𝑥▷𝑦∧𝑔𝑥𝑦 (𝑅)>0

𝑔𝑥𝑦 (𝑅)

= −𝐶 + 2

∑︁
(𝑥,𝑦) ∈𝐸 : 𝑥▷𝑦

𝑤 (𝑥,𝑦) .

Now, to prove the existence of 𝑅∗, we will proceed inductively on the number of alternatives and consider𝑚 = 4 and𝑚 = 5 as base cases.

For these cases, the following weighted tournaments prove our claim.

𝑥1 𝑥2

𝑥3𝑥4

4

4 4

2

4

2

𝑥1

𝑥2

𝑥3𝑥4

𝑥5

4

82

8

84

8

8

28

For the weighted tournament 𝑇4 on𝑚 = 4 alternatives on the left, it can be checked that precisely ▷1 = 𝑥1𝑥2𝑥3𝑥4 and ▷2 = 𝑥3𝑥1𝑥4𝑥2

maximize the Kemeny score. To see this, we note that both of these rankings only need to reverse edges with a total weight of 4, so
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𝑠 (𝑇4,▷1) = 𝑠 (𝑇4,▷2) = 16, whereas all other rankings need to reverse edges with higher total weight and have thus less score. Further, it

holds that Δ(▷1,▷2) = 3 =
(𝑚

2

)
− (𝑚 − 1), so our claim holds in this case. Similarly, when𝑚 = 5, the Kemeny score is maximized by the

rankings ▷1 = 𝑥1𝑥2𝑥3𝑥4𝑥5 and ▷2 = 𝑥4𝑥2𝑥5𝑥1𝑥3 in the weighted tournament 𝑇5 on the right. Both of these rankings require us to revert

edges with a total weight of 14, so there total score is 𝑠 (𝑇5,▷2) = 46. By using a case distinction with respect to which edge of the cycle

(𝑥1, 𝑥3, 𝑥4, 𝑥5) is reversed in 𝑇5, we can further conclude that every other ranking ▷ has strictly less score, so ▷1 and ▷2 are indeed the only

possible winning rankings. Further, it holds again that Δ(▷1,▷2) = 6 =
(𝑚

2

)
− (𝑚 − 1).

For our induction step, we assume that there is a weighted tournament 𝑇𝑚 = (𝐴, 𝐸,𝑤) for 𝑚 ≥ 4 alternatives 𝐴 = {𝑥1, . . . , 𝑥𝑚} for
which two rankings ▷1 and ▷2 with Δ(▷1,▷) =

(𝑚
2

)
− (𝑚 − 1) maximize the Kemeny score, i.e., 𝑠 (𝑇𝑚,▷1) = 𝑠 (𝑇𝑚,▷2) > 𝑠 (𝑇𝑚,▷) for all

▷ ∈ R \ {▷1,▷2}. Additionally, we will suppose that (i) each edge weight𝑤 (𝑒) in 𝑇𝑚 is non-zero and even, (ii) ▷1 = 𝑥1 . . . 𝑥𝑚 , and (iii) ▷2

top-ranks 𝑥𝑚−1 and second-ranks 𝑥𝑚−3. It is straightforward to verify that these assumptions holds for our base cases, and it will become

clear that they are preserved in the induction step. Given the weighted tournament 𝑇𝑚 , we will construct another weighted tournament 𝑇𝑚′

on𝑚′ =𝑚 + 2 alternatives 𝐴′ = {𝑥1, . . . , 𝑥𝑚+2}. In particular, for this weighted tournament𝑇𝑚′ , precisely the following two rankings ▷′
1
and

▷′
2
will maximize the Kemeny score: ▷′

1
= 𝑥1 . . . 𝑥𝑚𝑥𝑚+1𝑥𝑚2

and ▷′
2
agrees with ▷2 on all alternatives in 𝐴, places 𝑥𝑚+1 first, 𝑥𝑚−1 = 𝑥𝑚′−3

second, and 𝑥𝑚+2 third. For instance, ▷′
2
= 𝑥5𝑥3𝑥6𝑥1𝑥4𝑥2 when𝑚 = 6 and ▷′

2
= 𝑥7𝑥5𝑥8𝑥3𝑥6𝑥1𝑥4𝑥2 when𝑚 = 8. Since ▷′

1
agrees with ▷1 and

▷′
2
agrees with ▷2 when restricted to 𝐴, it holds that Δ(▷′

1
,▷′

2
) = Δ(▷1,▷2) +𝑚 + (𝑚 − 1) =

(𝑚
2

)
+𝑚 =

(𝑚+2

2

)
− (𝑚 + 1), so these rankings

satisfy our distance condition. Further, it is easy to check that they satisfy the conditions (ii) and (iii) for the induction.
Given 𝑇𝑚 = (𝐴, 𝐸,𝑤), we construct the weighted tournament 𝑇𝑚′ = (𝐴′, 𝐸′,𝑤 ′) as follows:

• For all 𝑥𝑖 , 𝑥 𝑗 ∈ {𝑥1, . . . , 𝑥𝑚}, we have (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐸′ if and only if (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐸. Further, for all these edges except for (𝑦1, 𝑦2) = (𝑥2, 𝑥3) if𝑚
is even and (𝑦1, 𝑦2) = (𝑥3, 𝑥4) if𝑚 is odd, we set𝑤 ′ (𝑒) = 𝑐 ·𝑤 (𝑒), where 𝑐 is a large constant that will be specified later. Further, we set

𝑤 ′ (𝑦1, 𝑦2) = 𝑐 ·𝑤 (𝑦1, 𝑦2) + 2.

• For all 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑚−4, 𝑥𝑚−2}, we add the edges (𝑥𝑚+2, 𝑥𝑖 ) and (𝑥𝑖 , 𝑥𝑚+1) with weight𝑤 ′ (𝑥𝑚+2, 𝑥𝑖 ) = 𝑤 ′ (𝑥𝑖 , 𝑥𝑚+1) = 2.

• We add the edges (𝑥𝑚, 𝑥𝑚+1), (𝑥𝑚+2, 𝑥𝑚), (𝑥𝑚+2, 𝑥𝑚−3), and (𝑥𝑚−3, 𝑥𝑚+1) with weights 𝑤 ′ (𝑥𝑚, 𝑥𝑚+1) = 𝑤 ′ (𝑥𝑚+2, 𝑥𝑚−3) = 4𝑚 and

𝑤 ′ (𝑥𝑚+2, 𝑥𝑚) = 𝑤 ′ (𝑥𝑚−3, 𝑥𝑚+1) = 2.

• Lastly, we add the edges (𝑥𝑚−1, 𝑥𝑚+2), (𝑥𝑚+1, 𝑥𝑚−1), and (𝑥𝑚+1, 𝑥𝑚+2) with weights 𝑤 ′ (𝑥𝑚−1, 𝑥𝑚+2) = 𝑤 ′ (𝑥𝑚+1, 𝑥𝑚+2) = 14𝑚 and

𝑤 ′ (𝑥𝑚+1, 𝑥𝑚−1) = 2.

Now, we will choose the constant 𝑐 so large that the ranking chosen for 𝑇𝑚′ has to agree either with ▷1 or ▷2 when restricted to

𝐴 = {𝑥1, . . . , 𝑥𝑚}. Specifically, we set 𝑐 = 4 + ∑
(𝑥,𝑦) ∈𝐸′

: {𝑥,𝑦}⊈𝐴𝑤 (𝑥,𝑦) and we denote by ▷ |𝐴 the restriction of a ranking ▷ on 𝐴′ =

{𝑥1, . . . , 𝑥𝑚+2} to the alternatives in 𝐴. Now, let (𝑦1, 𝑦2) = (𝑥2, 𝑥3) if 𝑚 is even and (𝑦1, 𝑦2) if 𝑚 is odd. By construction, it holds that

𝑠 (𝑇𝑚′ ,▷) = 𝑐 · 𝑠 (𝑇𝑚,▷ |𝐴) + 2 +∑
(𝑥,𝑦) ∈𝐸′

: {𝑥,𝑦}⊈𝐴∧𝑥▷𝑦 𝑤
′ (𝑥,𝑦) if 𝑦1 ▷ 𝑦2 and 𝑠 (𝑇𝑚′ ,▷) = 𝑐 · 𝑠 (𝑇𝑚,▷ |𝐴) +

∑
(𝑥,𝑦) ∈𝐸′

: {𝑥,𝑦}⊈𝐴∧𝑥▷𝑦 𝑤
′ (𝑥,𝑦)

otherwise. Furthermore, it holds by the induction hypothesis that 𝑠 (𝑇𝑚,▷1) = 𝑠 (𝑇𝑚,▷2) > 𝑠 (𝑇𝑚,▷) for all other rankings ▷ and so

𝑠 (𝑇𝑚,▷1) = 𝑠 (𝑇𝑚,▷2) ≥ 1 + 𝑠 (𝑇𝑚,▷) because the Kemeny score is always an integer. Hence, if ▷′
and ▷′′

are two rankings on 𝐴′
such that

▷′ |𝐴 ∈ {▷1,▷2} and ▷′′ |𝐴 ∉ {▷1,▷2}, it holds that 𝑠 (𝑇𝑚′ ,▷′) > 𝑠 (𝑇𝑚′ ,▷′′) because

𝑠 (𝑇𝑚′ ,▷′) − 𝑠 (𝑇𝑚′ ,▷′′) ≥ 𝑐 · (𝑠 (𝑇𝑚,▷′ |𝐴) − 𝑠 (𝑇𝑚,▷′′ |𝐴)) − 2 −
∑︁

(𝑥,𝑦) ∈𝐸 : {𝑥,𝑦}⊈𝐴
𝑤 ′ (𝑥,𝑦)

≥ 𝑐 − 2 −
∑︁

(𝑥,𝑦) ∈𝐸 : {𝑥,𝑦}⊈𝐴
𝑤 ′ (𝑥,𝑦)

= 2.

Next, we will derive the rankings on 𝐴′
that agree with ▷1 when restricted to 𝐴 and maximizes the score 𝑠 (𝑇𝑚,▷). To this end, we first

compute the score of ▷′
1
= 𝑥1 . . . 𝑥𝑚+2 as

𝑠 (𝑇𝑚′ ,▷′
1
) = 𝑐 · 𝑠 (𝑇𝑚,▷1) + 2 +𝑤 ′ (𝑥𝑚+1, 𝑥𝑚+2) +𝑤 ′ (𝑥𝑚−1, 𝑥𝑚+2) +𝑤 ′ (𝑥𝑚, 𝑥𝑚+1) +𝑤 ′ (𝑥𝑚−3, 𝑥𝑚+1) +

∑︁
𝑥𝑖 ∈{𝑥1,...,𝑥𝑚−4,𝑥2 }

𝑤 ′ (𝑥𝑖 , 𝑥𝑚+1)

= 𝑐 · 𝑠 (𝑇𝑚,▷1) + 2 + 14𝑚 + 14𝑚 + 4𝑚 + 2 + 2(𝑚 − 3)
= 𝑐 · 𝑠 (𝑇𝑚,▷1) + 34𝑚 − 2

Note here that the first +2 is due to the fact that 𝑥2 ▷1 𝑥3 ▷1 𝑥4 and that we increased the weight of (𝑥2, 𝑥3) (if𝑚 is even) or (𝑥3, 𝑥4) (if𝑚
is odd) by 2. Next, to show that ▷′

1
maximizes the Kemeny scores among all rankings ▷ with ▷ |𝐴 = ▷1, we fix one such ranking ▷ and show

that 𝑠 (𝑇𝑚′ ,▷′
1
) > 𝑠 (𝑇𝑚′ ,▷). To this end, we observe that the total weight of the edges (𝑥𝑖 , 𝑥 𝑗 ) with {𝑥𝑖 , 𝑥 𝑗 } ⊈ 𝐴 is

∑
(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐸′

: {𝑥𝑖 ,𝑥 𝑗 }⊈𝐴 =

2 · 14𝑚 + 2 · 4𝑚 + (2𝑚 − 3) · 2 = 40𝑚 − 6, because there are 2𝑚 + 1 edges that are not contained in 𝐴 and only four of these edges have a

value other than 2. As a consequence of this, it holds for ▷ that 𝑠 (𝑇𝑚′ ,▷) = 𝑐 · 𝑠 (𝑇𝑚,▷1) + 2 + 40𝑚 − 6 −∑
(𝑥,𝑦) ∈𝐸 : 𝑦▷𝑥∧{𝑥,𝑦}∉𝐴𝑤

′ (𝑥,𝑦).
If 𝑥𝑚+1 ▷ 𝑥𝑚+2 or 𝑥𝑚+2 ▷ 𝑥𝑚−1, our observation implies that 𝑠 (𝑇𝑚′ ,▷) ≤ 𝑐 · 𝑠 (𝑇𝑚,▷1) + 2 + 40𝑚 − 6 − 14𝑚 < 𝑠 (𝑇𝑚′ ,▷′

1
). On the

other hand, if 𝑥𝑚−1 ▷ 𝑥𝑚+2, we have by transitivity that 𝑥𝑚−3 ▷ 𝑥𝑚+2 because 𝑥𝑚−3 ▷1 𝑥𝑚−1. If additionally 𝑥𝑚+1 ▷ 𝑥𝑚 , it holds that

𝑠 (𝑇𝑚′ ,▷) ≤ 𝑐 · 𝑠 (𝑇𝑚,▷1) + 2 + 40𝑚 − 6 − 8𝑚 < 𝑠 (𝑇𝑚′ ,▷′
1
). Hence, we must have that 𝑥𝑚 ▷ 𝑥𝑚+1 ▷ 𝑥𝑚+2, which implies that ▷ = ▷′

1
. We

hence conclude that ▷′
1
indeed uniquely maximizes 𝑆 (𝑇𝑚′ ,▷) among all rankings ▷ with ▷𝐴 = ▷1.
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We next repeat the exercise for the rankings ▷ on𝐴′
that agree with ▷2 when restricted to𝐴. To this end, we let 𝑋 = {𝑥1, . . . , 𝑥𝑚−4, 𝑥𝑚−2}

and first compute the score of the ranking ▷′
2
, which ranks 𝑥𝑚+1 first, 𝑥𝑚−1 second, and 𝑥𝑚+2 third.

𝑠 (𝑇𝑚′ ,▷′
2
) = 𝑐 · 𝑠 (𝑇𝑚,▷2) +𝑤 ′ (𝑥𝑚+1, 𝑥𝑚−1) +𝑤 ′ (𝑥𝑚+1, 𝑥𝑚+2) +𝑤 ′ (𝑥𝑚−1, 𝑥𝑚+2) +𝑤 ′ (𝑥𝑚+2, 𝑥𝑚−3) +𝑤 ′ (𝑥𝑚+2, 𝑥𝑚) +

∑︁
𝑥𝑖 ∈𝑋

𝑤 ′ (𝑥𝑚+2, 𝑥𝑖 )

= 𝑐 · 𝑠 (𝑇𝑚,▷2) + 2 + 14𝑚 + 14𝑚 + 4𝑚 + 2 + 2(𝑚 − 3)
= 𝑐 · 𝑠 (𝑇𝑚,▷2) + 34𝑚 − 2

Note here that 𝑥3 ▷2 𝑥2 if𝑚 is even and 𝑥4 ▷2 𝑥3 if𝑚 is even, so we do not have the "+2" from the edge in (𝑥2, 𝑥3) (resp. (𝑥3, 𝑥4)). Just as
for ▷′

1
, we next fix a ranking ▷ on 𝐴′

with ▷ |𝐴 = ▷2 and show that 𝑠 (𝑇𝑚′ ,▷′
2
) > 𝑠 (𝑇𝑚′ ,▷). Analogous to the analysis of ▷′

1
, we observe that

𝑠 (𝑇𝑚′ ,▷) = 𝑐 · 𝑠 (𝑇𝑚,▷2) + 40𝑚 − 6 −∑
(𝑥,𝑦) ∈𝐸 : 𝑦▷𝑥∧{𝑥,𝑦}∉𝐴𝑤

′ (𝑥,𝑦). Hence, if 𝑥𝑚+2 ▷ 𝑥𝑚+1 or 𝑥𝑚+2 ▷ 𝑥𝑚−1, we can immediately conclude

our inequality. So, we assume that 𝑥𝑚+1 ▷ 𝑥𝑚+2 and 𝑥𝑚−1 ▷ 𝑥𝑚+2. Next, if 𝑥𝑚+2 ▷ 𝑥𝑚−3, ▷ must be either ▷′
2
or the ranking that places 𝑥𝑚−1

first, 𝑥𝑚+1 second, and 𝑥𝑚+2 third, because 𝑥𝑚−3 is the second-best alternative in ▷2. Further, if 𝑥𝑚−1 is first ranked, it can be computed

that 𝑠 (𝑇𝑚′ ,▷) = 𝑠 (𝑇𝑚′ ,▷′
2
) −𝑤 (𝑥𝑚+1, 𝑥𝑚−1) = 𝑐 · 𝑠 (𝑇𝑚,▷2) + 34𝑚 − 4, so it holds that 𝑠 (𝑇𝑚′ ,▷) < 𝑠 (𝑇𝑚′ ,▷′

2
). Hence, we suppose next that

𝑥𝑚−3 ▷ 𝑥𝑚+2. If additionally 𝑥𝑚+1 ▷ 𝑥𝑚 , it holds that 𝑠 (𝑇𝑚′ ,▷) ≤ 𝑐 · 𝑠 (𝑇𝑚,▷2) + 40𝑚 − 6 − 8𝑚 < 𝑠 (𝑇𝑚′ ,▷′
2
). Hence, we now assume that

𝑥𝑚 ▷ 𝑥𝑚+1, which implies that 𝑥𝑚−1 ▷ 𝑥𝑚+1 and 𝑥𝑚−3 ▷ 𝑥𝑚+1 because 𝑥𝑚−1 ▷2 𝑥𝑚−3 ▷2 𝑥𝑚 . Lastly, recall that 𝑋 = {𝑥1, . . . , 𝑥𝑚−4, 𝑥𝑚−2},
and define ℓ1 = |{𝑥𝑖 ∈ 𝑋 : 𝑥𝑖 ▷ 𝑥𝑚+1}| and ℓ2 = |{𝑥𝑖 ∈ 𝑋 : 𝑥𝑚+2 ▷ 𝑥𝑖 }|. Since 𝑥𝑚+1 ▷ 𝑥𝑚+2, it holds that ℓ1 + ℓ2 ≥ 𝑚 − 3. Therefore, we

conclude for this case that

𝑠 (𝑇𝑚′ ,▷) = 𝑐 · 𝑠 (𝑇𝑚,▷2) + 40𝑚 − 6 −𝑤 ′ (𝑥𝑚, 𝑥𝑚+1) −𝑤 ′ (𝑥𝑚+1, 𝑥𝑚−1) −𝑤 ′ (𝑥𝑚+1, 𝑥𝑚−1)

−
∑︁

𝑥𝑖 ∈𝑋 : 𝑥𝑖▷𝑥𝑚+1

𝑤 ′ (𝑥𝑖 , 𝑥𝑚+1) −
∑︁

𝑥𝑖 ∈𝑋 : 𝑥𝑚+2▷𝑥𝑖

𝑤 ′ (𝑥𝑚+2, 𝑥𝑖 )

≤ 𝑐 · 𝑠 (𝑇𝑚,▷2) + 40𝑚 − 6 − 4𝑚 − 2 − 2 − 2(𝑚 − 3)
= 𝑐 · 𝑠 (𝑇𝑚,▷2) + 32𝑚 − 4.

Hence, it holds in every case that 𝑠 (𝑇𝑚′ ,▷′
2
) > 𝑠 (𝑇𝑚′ ,▷), thereby proving that ▷′

2
uniquely maximizes the Kemeny score among all rankings

▷ with ▷ |𝐴 = ▷2. Since our computations also show that 𝑠 (𝑇𝑚′ ,▷′
1
) = 𝑠 (𝑇𝑚′ ,▷′

2
) as 𝑠 (𝑇𝑚,▷1) = 𝑠 (𝑇𝑚,▷2), the weighted tournament 𝑇𝑚′

satisfies all our requirements. This completes the proof of the induction step and thus of this proposition. □

Next, we turn to our lower bound for distance scoring rules.

Proposition 4. Assume𝑚 ≥ 3. The incentive ratio of every distance scoring rule 𝑓dist other than 𝑓Kemeny satisfies
(𝑚

2

)
− 1 ≤ 𝛾𝑚 (𝑓dist ).

Proof. Fix a distance scoring rule 𝑓 for𝑚 alternatives other than the Kemeny rule and let 𝑠 denote its distance scoring rule. To show this

proposition, we will follow the same approach as for the Kemeny rule and construct a profile 𝑅∗ such that that two rankings ▷1 and ▷2

with Δ(▷1,▷2) =
(𝑚

2

)
minimize the total score, i.e.,

∑
𝑖∈𝑁 𝑠 (Δ(≻𝑖 ,▷1)) =

∑
𝑖∈𝑁 𝑠 (Δ(≻𝑖 ,▷2)) <

∑
𝑖∈𝑁 𝑠 (Δ(≻,▷)) for all ▷ ∈ R \ {▷1,▷2).

For simplicity, we subsequently define the score of a ranking ▷ in a profile 𝑅 by 𝑠 (𝑅,▷) = ∑
𝑖∈𝑁 𝑠 (Δ(≻𝑖 ,▷)). Based on the profile 𝑅∗, we

construct another profile 𝑅 as follows. First, we let 𝜆 denote an integer such that 𝜆 · min▷∈R\{▷1,▷2 } 𝑠 (𝑅∗,▷) − 𝑠 (𝑅∗,▷1) > 2(𝑠 (
(𝑚

2

)
) − 𝑠 (0)).

Further, we let ≻1 and ≻2 denote two rankings with Δ(≻1,▷1) = 1 and Δ(≻2,▷2) = 1, respectively. Since Δ(▷1,▷2) =
(𝑚

2

)
, this also means

𝑠 (≻1,▷2) = 𝑠 (≻2,▷1) =
(𝑚

2

)
− 1.

Now, let 𝑅 denote the profile that consists of 𝜆 copies of 𝑅∗, one voter reporting ≻1, and another voter reporting ≻2. First, we observe that

𝑠 (𝑅,▷1) = 𝜆 · 𝑠 (𝑅∗,▷1) + 𝑠 (Δ(≻1,▷1)) + 𝑠 (Δ(≻2,▷1))

= 𝜆 · 𝑠 (𝑅∗,▷2) + 𝑠 (1) + 𝑠
((
𝑚

2

)
− 1

)
= 𝜆 · 𝑠 (𝑅∗,▷2) + 𝑠 (Δ(≻2,▷2)) + 𝑠 (Δ(≻1,▷2))
= 𝑠 (𝑅,▷2).

Further, it holds for all ▷ ∈ R \ {▷1,▷2} that
𝑠 (𝑅,▷) − 𝑠 (𝑅,▷1) = 𝜆 · (𝑠 (𝑅∗,▷) − 𝑠 (𝑅∗,▷1)) + 𝑠 (Δ(≻1,▷)) − 𝑠 (≻1,▷1) + 𝑠 (Δ(≻2,▷)) − 𝑠 (≻2,▷1)

> 2(𝑠
((
𝑚

2

))
− 𝑠 (0)) + 𝑠 (Δ(≻1,▷)) − 𝑠 (≻1,▷1) + 𝑠 (Δ(≻2,▷)) − 𝑠 (≻2,▷1)

≥ 0.

Here, the first inequality follows from the choice of 𝜆 and the second one by the fact that 𝑠 (𝑥) < 𝑠 (𝑥 + 1) for all 𝑥 ∈ {0, . . . ,
(𝑚

2

)
− 1}, which

means that 𝑠 (
(𝑚

2

)
) − 𝑠 (0) ≥ 𝑠 (𝑦) − 𝑠 (𝑧) for all 𝑦, 𝑧 ∈ {0, . . . ,

(𝑚
2

)
}.

By this analysis, it holds that precisely ▷1 and ▷2 minimize the total score in 𝑅. Without loss of generality, we may thus assume that ▷1 is

chosen, which leaves the voter who reports ≻2 with a utility of 𝑢 (≻2,▷1) =
(𝑚

2

)
− Δ(≻2,▷1) = 1. Now, assume that this voter deviates to

report ▷2 instead. For the resulting profile 𝑅
′
, it holds that 𝑠 (𝑅′,▷2) − 𝑠 (𝑅,▷2) = 𝑠 (0) − 𝑠 (1) < 0 < 𝑠 (

(𝑚
2

)
) − 𝑠 (

(𝑚
2

)
− 1) = 𝑠 (𝑅′,▷1) − 𝑠 (𝑅,▷1).
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Since 𝑠 (𝑅,▷1) = 𝑠 (𝑅,▷2), this means that 𝑠 (𝑅′,▷2) < 𝑠 (𝑅′,▷1). Further, an analogous argument as for 𝑅 shows that 𝑠 (𝑅′,▷2) < 𝑠 (𝑅,▷)
for all ▷ ∈ R \ {▷1,▷2}. Hence, 𝑓 needs to choose the ranking ▷2 for 𝑅. This means that the utility of our voter after the manipulation is

𝑢 (≻2,▷2) =
(𝑚

2

)
− 1, which implies that 𝛾𝑚 (𝑓 ) ≥

(𝑚
2

)
− 1.

It remains to construct the profile 𝑅∗. To this end, we first consider the profile 𝑅≻ , where one voter reports ≻ and another voter reports the

inverse ranking ≻̄. It holds for every ranking ▷ that 𝑠 (𝑅≻ ,▷) = 𝑠 (Δ(≻,▷)) + 𝑠 (Δ(≻̄,▷)) = 𝑠 (Δ(≻,▷)) + 𝑠 (
(𝑚

2

)
− Δ(≻,▷)). Furthermore, we

recall that distance scoring functions satisfy that 𝑠 (𝑥 + 2) − 𝑠 (𝑥 + 1) ≥ 𝑠 (𝑥 + 1) − 𝑠 (𝑥) for all 𝑥 ∈ {0, . . . ,
(𝑚

2

)
. By chaining these inequalities,

it holds that 𝑠 (𝑦 + 1) − 𝑠 (𝑦) ≥ 𝑠 (𝑥 + 1) − 𝑠 (𝑥) for all 𝑥,𝑦 ∈ {0, . . . ,
(𝑚

2

)
− 1 with 𝑥 < 𝑦. When letting 𝑥 ∈ {1, . . . , ⌊

(𝑚
2

)
/2⌋}, this implies that

𝑠 (
(𝑚

2

)
− 𝑥 + 1) − 𝑠 (

(𝑚
2

)
− 𝑥) ≥ 𝑠 (𝑥) − 𝑠 (𝑥 − 1) and thus 𝑠 (

(𝑚
2

)
− 𝑥 + 1) + 𝑠 (𝑥 − 1) ≥ 𝑠 (𝑥) + 𝑠 (

(𝑚
2

)
− 𝑥). For our profile 𝑅≻ , this means for all

▷,▷′ ∈ R that 𝑠 (𝑅≻ ,▷) ≤ 𝑠 (𝑅≻ ,▷′) when |Δ(≻,▷) −
(𝑚

2

)
/2| ≤ |Δ(≻,▷′) −

(𝑚
2

)
/2|. Further, since 𝑓 is not the Kemeny rule, there must be

an index 𝑖 ∈ {1, . . . ,
(𝑚

2

)
− 1} such that 𝑠 (𝑥 + 1) − 𝑠 (𝑥) > 𝑠 (𝑥) − 𝑠 (𝑥 − 1), which implies that 𝑠 (

(𝑚
2

)
) + 𝑠 (0) > 𝑠 (⌈

(𝑚
2

)
/2⌉) + 𝑠 (⌊

(𝑚
2

)
/2⌋). Since

𝑠 (𝑥) + 𝑠 (
(𝑚

2

)
−𝑥) ≤ 𝑠 (𝑦) − 𝑠 (

(𝑚
2

)
−𝑦) for all 𝑥,𝑦 ∈ {0, . . . , ⌊

(𝑚
2

)
⌋} with 𝑥 ≥ 𝑦, we thus conclude that there is an index ℓ ∈ {0, . . . , ⌊

(𝑚
2

)
/2⌋ − 1}

such that

(1) 𝑠 (
(𝑚

2

)
− 𝑥) + 𝑠 (𝑥) = 𝑠 (

(𝑚
2

)
− 𝑦) + 𝑠 (𝑦) for all 𝑥,𝑦 ∈ {⌊

(𝑚
2

)
/2⌋ − ℓ, . . . , ⌊

(𝑚
2

)
/2⌋} and

(2) 𝑠 (
(𝑚

2

)
− 𝑥) + 𝑠 (𝑥) < 𝑠 (

(𝑚
2

)
− 𝑦) + 𝑠 (𝑦) for all 𝑥 ∈ {⌊

(𝑚
2

)
/2⌋ − ℓ, . . . , ⌊

(𝑚
2

)
/2⌋} and 𝑦 ∈ {0, . . . , ⌊

(𝑚
2

)
/2⌋ − ℓ − 1}.

Now, let 𝑋 = {⌊
(𝑚

2

)
/2⌋ − ℓ, . . . , ⌈

(𝑚
2

)
/2⌉ + ℓ}. From our insights on 𝑠 , it follows that 𝑠 (𝑅≻ ,▷) = 𝑠 (𝑅≻ ,▷′) < 𝑠 (𝑅≻ ,▷′′) for all ▷,▷′,▷′′ ∈ R

such that Δ(≻,▷) ∈ 𝑋 , Δ(≻,▷′) ∈ 𝑋 , and Δ(≻,▷′′) ∉ 𝑋 .
Next, we fix our desired output ranking ▷1 and we define 𝐷 (▷1) = {≻ ∈ R : Δ(≻,▷1) ∈ 𝑋 }. Then, we let 𝑅∗ denote the profile that

concatenates the profiles 𝑅≻ for all ≻ ∈ 𝐷 (▷1). Now, we first note that 𝑠 (𝑅∗,▷1) =
∑

≻∈𝐷 (▷1 ) 𝑠 (𝑅
≻ ,▷1) ≤

∑
≻∈𝐷 (▷1 ) 𝑠 (𝑅

≻ ,▷) = 𝑠 (𝑅∗,▷)
for all rankings ▷ ∈ R, because Δ(≻,▷1) ∈ 𝑋 for all ≻ ∈ 𝐷 (▷1). In particular, by the insights of the previous paragraph, this means

that ▷1 is a minimizer of 𝑠 (𝑅≻ ,▷). Secondly, we note for the inverse ranking of ▷1, denoted by ▷2 that 𝑠 (𝑅∗,▷2) = 𝑠 (𝑅∗,▷1) because
𝑠 (𝑅≻ ,▷1) = 𝑠 (𝑅≻ ,▷2) for all ≻ ∈ R. The latter observation is true as Δ(≻,▷1) = Δ(≻̄,▷2) and Δ(≻̄,▷1) = Δ(≻,▷2) (where ≻̄ is the inverse

ranking of ≻), where we use that, if two rankings disagree on a pair of alternatives, the inverse rankings will also disagree on this pair.

Lastly, it remains to show that 𝑠 (𝑅∗,▷1) < 𝑠 (𝑅∗,▷) for all rankings ▷ ∈ R \ {▷1,▷2}. To this end, we first recall that 𝑠 (𝑅≻ ,▷1) ≤ 𝑠 (𝑅≻ ,▷)
for all ≻ ∈ 𝐷 (▷1) and ▷ ∈ R. Hence, it suffices to identify a single ranking ≻ ∈ 𝐷 (▷1) to prove our claim. If ▷ ∈ 𝐷 (▷1), we can simply

pick ▷ for this. Indeed, since Δ(▷,▷) = 0 ∉ 𝑋 , it holds that 𝑠 (𝑅▷,▷1) < 𝑠 (𝑅▷,▷). Hence, assume that ▷ ∉ 𝐷 (▷1), which means that

Δ(▷,▷1) < ⌊
(𝑚

2

)
/2⌋ − ℓ or Δ(▷,▷1) > ⌈

(𝑚
2

)
/2⌉ + ℓ . We focus on the first case, i.e., Δ(▷,▷1) < ⌊

(𝑚
2

)
/2⌋ − ℓ because the other case is symmetric

when exchanging the role of ▷1 and ▷2. Now, let ≻0, . . . , ≻(𝑚
2
) denote a sequence of rankings from ▷1 to ▷2 through ▷. More formally, these

rankings satisfy that ≻0= ▷1, ≻(𝑚
2
)= ▷2, there is 𝑘 ∈ {1, . . . ,

(𝑚
2

)
− 1} such that ≻𝑘= ▷, and for all 𝑖 ∈ {0, . . . ,

(𝑚
2

)
− 1}, ≻𝑖+1 emerges from ≻𝑖

by swapping one pair of alternatives. By the last condition, we know that 𝑘 = Δ(▷,▷1) because each swap must move the ranking further

away from ▷1 and towards ▷2. Now, let ≻ = ≻𝑗 denote the ranking for the index 𝑗 = ⌊
(𝑚

2

)
/2⌋ − ℓ . Since our sequence transforms ▷1 one

after another to ▷2 and 0 < 𝑘 < 𝑗 , it holds that Δ(▷1, ≻) = ⌊
(𝑚

2

)
/2⌋ − ℓ > Δ(▷, ≻). Hence, we have that 𝑠 (𝑅≻ ,▷1) < 𝑠 (𝑅≻ ,▷). Moreover, it

holds by definition that ≻ ∈ 𝐷 (▷1) because Δ(▷1, ≻) ∈ 𝑋 . Since our two cases are exhaustive, we conclude that 𝑠 (𝑅∗,▷1) < 𝑠 (𝑅∗,▷) for all
rankings ▷ ∈ R \ {▷1,▷2}, which completes the proof. □

As the third point of this section, we turn to positional scoring rules.

Proposition 5. For all𝑚 ≥ 3, the incentive ratio of every positional scoring rule 𝑓pos is 𝛾𝑚 (𝑓pos) = ∞.

Proof. For proving this claim, we fix a positional scoring rule 𝑓 and let 𝑝 denote its positional scoring function. To show that

𝛾𝑚 (𝑓positional) = ∞, it suffices to give two profiles 𝑅 and 𝑅′ on𝑚 alternatives and a voter 𝑖 such that 𝑅 and 𝑅′ only differ in the ranking

of voter 𝑖 , this voter obtains a utility of 0 from the ranking ▷ = 𝑓 (𝑅), and a non-zero utility from the ranking ▷′ = 𝑓 (𝑅). To construct

such profiles, we let 𝑅𝑥 denote a profile on𝑚 − 1 voters such that (i) alternative 𝑥 is top-ranked by all voters and (ii) for every alternative

𝑦 ∈ 𝐴 \ {𝑥} and each rank 𝑘 ∈ {2, . . . ,𝑚}, there is one voter such that 𝑟 (≻𝑗 , 𝑦) = 𝑘 . For these profiles, the total score of 𝑥 , denoted by 𝑝 (𝑅𝑥 , 𝑥),
is 𝑝 (𝑅𝑥 , 𝑥) = (𝑚 − 1)𝑝 (1) and the total score of all other alternatives 𝑦 ∈ 𝐴 \ {𝑥} is 𝑝 (𝑅𝑥 , 𝑦) = ∑𝑚

𝑘=2
𝑝 (𝑘). Since 𝑝 (1) ≥ 𝑝 (2) ≥ · · · ≥ 𝑝 (𝑚)

and 𝑝 (1) > 𝑝 (𝑚), this means that 𝑝 (𝑅𝑥 , 𝑥) > 𝑝 (𝑅𝑥 , 𝑦) for all 𝑦 ∈ 𝐴 \ {𝑥}. Next, we define 𝑐 = 𝑝 (𝑅𝑥 , 𝑦) and 𝛿 = 𝑝 (𝑅𝑥 , 𝑥) − 𝑝 (𝑅𝑥 , 𝑌 ) for some

pair of alternatives 𝑥,𝑦 ∈ 𝐴 with 𝑥 ≠ 𝑦 and note that 𝑐 and 𝛿 are independent of the choice of 𝑥 and 𝑦.

We proceed with a case distinction and first suppose that 𝑝 (1) > 𝑝 (𝑚 − 1). In this case, we enumerate the alternatives by 𝑥1, . . . , 𝑥𝑚

and consider the profile 𝑅 that consists of 𝑖 copies of 𝑅𝑥𝑖 for all 𝑖 ∈ {1, . . . ,𝑚 − 1} and 𝑚 − 1 copies of 𝑅𝑥𝑚 . For instance, if 𝑚 = 3,

𝑅 consists one copy of 𝑅𝑥1
, two copies of 𝑅𝑥2

and two copies of 𝑅𝑥3
. In this profile, every alternative 𝑥𝑖 ∈ 𝐴 \ {𝑥𝑚} has a score of

𝑝 (𝑅, 𝑥𝑖 ) = (𝑚 (𝑚+1)
2

− 1) · 𝑐 + 𝑖 · 𝛿 and alternative 𝑥𝑚 has a score of 𝑝 (𝑅, 𝑥𝑚) = (𝑚 (𝑚+1)
2

− 1) · 𝑐 + (𝑚 − 1) · 𝛿 . Hence, it holds that
𝑝 (𝑅, 𝑥𝑚) = 𝑝 (𝑅, 𝑥𝑚−1) > 𝑝 (𝑅, 𝑥𝑚−2) > · · · > 𝑝 (𝑅, 𝑥1). Next, let 𝜆 ∈ N denote an integer such that 𝛿 · 𝜆 > 2(𝑝 (1) − 𝑝 (𝑚)) and let 𝑅

denote the profile that consists of 𝜆 copies of 𝑅, one voter reporting ≻1 = 𝑥1 . . . 𝑥𝑚 , and one voter reporting ≻2 = 𝑥1 . . . 𝑥𝑚−2𝑥𝑚𝑥𝑚−1.

We first note that 𝑝 (𝑅, 𝑥𝑚) = 𝜆𝑝 (𝑅, 𝑥𝑚) + 𝑝 (𝑚 − 1) + 𝑝 (𝑚) = 𝜆𝑝 (𝑅, 𝑥𝑚−1) + 𝑝 (𝑚 − 1) + 𝑝 (𝑚) = 𝑝 (𝑅, 𝑥𝑚−1). Further, by the choice of

𝜆, it holds that 𝑝 (𝑅, 𝑥𝑚−1) > 𝑝 (𝑅, 𝑥𝑚−2) > · · · > 𝑝 (𝑅, 𝑥1) because 𝑝 (𝑅, 𝑥𝑖 ) − 𝑝 (𝑅, 𝑥𝑖−1) = 𝜆 · 𝛿 + 𝑝 (𝑟 (≻1, 𝑥𝑖 )) − 𝑝 (𝑟 (≻1, 𝑥𝑖−1)) + 𝑝 (𝑟 (≻2

, 𝑥𝑖 )) − 𝑝 (𝑟 (≻2, 𝑥𝑖−1)) ≥ 𝜆 · 𝛿 − 2(𝑝 (1) − 𝑝 (𝑚)) > 0 for all 𝑖 ∈ {2, . . . ,𝑚 − 1}. Lastly, we suppose without loss of generality that 𝑓 chooses

the ranking ▷ = 𝑥𝑚 . . . 𝑥1, which means that the voter reporting ≻1 obtains a utility of 0. On the other hand, if this voter deviates to report
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≻′
1
= 𝑥𝑚−1𝑥1 . . . 𝑥𝑚−2𝑥𝑚 , it holds for the resulting profile 𝑅′ that 𝑝 (𝑅′, 𝑥𝑚−1) > 𝑝 (𝑅, 𝑥𝑚−1) = 𝑝 (𝑅, 𝑥𝑚) = 𝑝 (𝑅′, 𝑥𝑚) because 𝑝 (1) > 𝑝 (𝑚−1).

This means that 𝑥𝑚−1 ▷′ 𝑥𝑚 for the ranking chosen for 𝑅′ and therefore 𝑢 (≻1, 𝑓 (𝑅′)) > 0. This completes our proof in this case.

Secondly, we suppose that 𝑝 (1) = 𝑝 (𝑚 − 1). Since 𝑝 (1) ≥ 𝑝 (2) ≥ · · · ≥ 𝑝 (𝑚 − 1), this means that 𝑝 (1) = 𝑝 (2) = · · · = 𝑝 (𝑚 − 1). Moreover,

because 𝑝 (1) > 𝑝 (𝑚), we conclude that 𝑝 (𝑚−1) > 𝑝 (𝑚). In this case, we consider the profile 𝑅 that consists of one copy of 𝑅𝑥1
and 𝑖−1 copies

of 𝑅𝑥𝑖 for all 𝑖 ∈ {2, . . . ,𝑚}. Hence, it holds in this profile that 𝑝 (𝑅, 𝑥1) = (𝑚 (𝑚−1)
2

+ 1)𝑐 + 𝛿 and 𝑝 (𝑅, 𝑥𝑖 ) = (𝑚 (𝑚−1)
2

+ 1)𝑐 + (𝑖 − 1)𝛿 for all

𝑖 ∈ {2, . . . ,𝑚}. This shows that 𝑝 (𝑅, 𝑥𝑚) > · · · > 𝑝 (𝑅, 𝑥2) = 𝑝 (𝑅, 𝑥1). Further, we let 𝜆 again denote an integer such that 𝛿 ·𝜆 > 2(𝑝 (1)−𝑝 (𝑚))
and define 𝑅 as the profile that consists of 𝜆 copies of 𝑅, one voter reporting ≻1 = 𝑥1 . . . 𝑥𝑚 , and another voter reporting ≻2 = 𝑥2𝑥1𝑥3 . . . 𝑥𝑚 .

Just as in the last case, it can still be shown that 𝑝 (𝑅, 𝑥𝑚) > · · · > 𝑝 (𝑅, 𝑥2) = 𝑝 (𝑅, 𝑥1). Without loss of generality, we suppose that

𝑓 (𝑅) = ▷ = 𝑥𝑚 . . . 𝑥1, which means that the voter reporting ≻1 obtains a utility of 0. Lastly, let 𝑅′ denote the profile where this voter deviates
to the ranking ≻′

1
= 𝑥1𝑥3 . . . 𝑥𝑚𝑥2. It holds for this profile that 𝑝 (𝑅′, 𝑥1) = 𝑝 (𝑅, 𝑥1) as the manipulator does not change the position of this

alternative and 𝑝 (𝑅′, 𝑥2) < 𝑝 (𝑅, 𝑥2) because 𝑝 (𝑚) < 𝑝 (2). Hence, we have now that 𝑝 (𝑅′, 𝑥1) > 𝑝 (𝑅′, 𝑥2) which implies that 𝑥1 ▷′ 𝑥2 for the

ranking ▷′ = 𝑓 (𝑅′). This means that 𝑢 (≻1,▷′) > 0 and thus 𝑢 (≻1,▷′)/𝑢 (≻1,▷) = ∞. □

As the last point of this appendix, we turn to the minimal compromise rule defined in Remark 5. To this end, we recall that the min score

of an alternative 𝑥 in a profile 𝑅 is 𝑠min (𝑅, 𝑥) = min𝑖∈𝑁 𝑚 − 𝑟 (≻𝑖 , 𝑥). Then, the minimal compromise rule sorts the alternatives in decreasing

order of their min scores, with ties broken lexicographically.

Proposition 6. For all𝑚 ≥ 4, the incentive ratio of the minimal compromise rule 𝑓min is 𝛾𝑚 (𝑓min) =𝑚 − 2.

Proof. To prove this proposition, we will show that 𝛾𝑚 (𝑓min) ≥ 𝑚 − 2 and 𝛾𝑚 (𝑓min) ≤ 𝑚 − 2 when𝑚 ≥ 4.

Claim 1: 𝛾𝑚 (𝑓min) ≥ 𝑚 − 2. First, to show our lower bound, we construct a profile 𝑅 such that a voter 𝑖 obtains a utility of 1 when

voting truthfully and of𝑚 − 2 when voting dishonestly. To this end, we suppose that the tie-breaking order > is given by 𝑥1 > 𝑥2 > · · · > 𝑥𝑚 .

Now, the ranking of our manipulator will be ≻𝑖 = 𝑥𝑚−1 . . . 𝑥2𝑥𝑚𝑥1. Further, for every alternative 𝑥𝑖 ∈ 𝐴 \ {𝑥𝑚}, there is one voter in 𝑅
who reports a ranking where 𝑥𝑖 is bottom-ranked. By this definition, it follows that 𝑠min (𝑅, 𝑥𝑖 ) = 0 for all 𝑥𝑖 ∈ 𝐴 \ {𝑥𝑚} because each
such alternative is bottom-ranked by one voter. On the other hand, 𝑠min (𝑅, 𝑥𝑚) = 1 because 𝑟 (≻𝑗 , 𝑥𝑚) ≤ 𝑚 − 1 for all voters 𝑗 ∈ 𝑁 and

𝑟 (≻𝑖 , 𝑥𝑚) =𝑚 − 1. Using our tie-breaking, it thus follows that the minimal compromise rule returns the ranking ▷ = 𝑥𝑚𝑥1 . . . 𝑥𝑚−1. On the

other hand, if voter 𝑖 bottom-ranks 𝑥𝑚 , every alternative has a min score of 0, because every alternative is bottom-ranked by a voter. Hence,

in the corresponding profile 𝑅′, the minimal compromise rule picks the ranking ▷′ = 𝑥1 . . . 𝑥𝑚 by our tie-breaking assumption. Finally, we

note that
𝑢 (≻𝑖 ,▷′ )
𝑢 (≻𝑖 ,▷) = 𝑚−2

1
=𝑚 − 2, thus showing our lower bound.

Claim 2: 𝛾𝑚 (𝑓min) ≤ 𝑚 − 2. To prove our upper bound, we will proceed in multiple steps. Firstly, we will show that we can restrict

our analysis to deviations such that the min scores of all alternatives weakly decrease, because the maximal utility gain is attained with such

a deviation. Secondly, we prove that the sum of the min scores is a lower bound of the utility of every voter. Based on these insights, we will

prove this claim in the last step.

Step 1: First, we will show that it suffices to focus on deviations that weakly reduce the min scores of all alternatives. To prove this

claim, let 𝑅 and 𝑅′ denote two profiles and 𝑖 a voter such that 𝑅 and 𝑅′ only differ in the ranking of voter 𝑖 . We will next show that

there are two other profiles 𝑅 and 𝑅 such that (i) ≻̂𝑖 = ≻𝑖 and ≻̂′
𝑖 = ≻′

𝑖
(i.e., voter 𝑖 reports the same ranking in 𝑅 and 𝑅′ as in 𝑅 and 𝑅′,

respectively), (ii) 𝑅 differs from 𝑅′ only in the ranking of voter 𝑖 , (iii) 𝑠min (𝑅′, 𝑥) ≤ 𝑠min (𝑅, 𝑥) for all 𝑥 ∈ 𝐴, and (iv) 𝑓min (𝑅) = 𝑓min (𝑅) and
𝑢 (≻𝑖 , 𝑓min (𝑅′)) ≥ 𝑢 (≻𝑖 , 𝑓min (𝑅′)). This means that the incentive ratio of 𝑓min is maximized when voters only decrease the min scores. Now,

to prove this claim, we define 𝑅 and 𝑅′ as the profiles derived from 𝑅 and 𝑅′ by adding a new voter who reports ≻𝑖 . Clearly, the resulting
profiles 𝑅 and 𝑅′ satisfy our conditions (i) and (ii) by construction. Further, it holds for all 𝑥 ∈ 𝐴 that 𝑠min (𝑅′, 𝑥) = min(𝑚−𝑟 (≻𝑖 , 𝑥),𝑚−𝑟 (≻′

𝑖

, 𝑥),min𝑗∈𝑁 \{𝑖 }𝑚 − 𝑟 (≻𝑗 , 𝑥)) ≤ min(𝑚 − 𝑟 (≻𝑖 , 𝑥),min𝑗∈𝑁 \{𝑖 }𝑚 − 𝑟 (≻𝑗 , 𝑥)) = 𝑠min (𝑅, 𝑥), which proves condition (iii). Moreover, since

cloning rankings does not affect min scores, we have that 𝑠min (𝑅, 𝑥) = 𝑠min (𝑅, 𝑥) for all 𝑥 ∈ 𝐴 and thus 𝑓min (𝑅) = 𝑓min (𝑅).
As the last point, we need to show that 𝑢 (≻𝑖 , 𝑓min (𝑅′)) ≥ 𝑢 (≻𝑖 , 𝑓min (𝑅′)). To ease notation, we set ▷̂ = 𝑓min (𝑅′) and ▷ = 𝑓min (𝑅′) for the

rest of this step. Furthermore, we define for every alternative 𝑥 ∈ 𝐴 the set 𝑆 (𝑥) = {𝑦 ∈ 𝐴 : 𝑥▷𝑦∧𝑦 ▷̂ 𝑥} and note that Δ(▷, ▷̂) = ∑
𝑥∈𝐴 |𝑆 (𝑥) |.

Now, we fix an alternative 𝑥 ∈ 𝐴 and analyze the set 𝑆 (𝑥). To this end, we first observe that 𝑠min (𝑅′, 𝑦) ≤ 𝑠min (𝑅′, 𝑦) for all 𝑦 ∈ 𝐴 because

𝑅′ arises from 𝑅′ by adding a new voter. Hence, if 𝑠min (𝑅′, 𝑥) = 𝑠min (𝑅′, 𝑥), it holds that 𝑆 (𝑥) = ∅ because 𝑠min (𝑅′, 𝑥) = 𝑠min (𝑅′, 𝑥) ≥
𝑠min (𝑅′, 𝑦) ≥ 𝑠 (𝑅′, 𝑦) for all 𝑦 with 𝑥 ▷ 𝑦. Moreover, if this inequality is tight, then 𝑠min (𝑅′, 𝑥) = 𝑠min (𝑅′, 𝑦) and 𝑥 ▷ 𝑦 implies that 𝑥 is

favored lexicographically to 𝑦. Next, we suppose that 𝑠min (𝑅′, 𝑥) < 𝑠min (𝑅′, 𝑥), which means that 𝑠min (𝑅′, 𝑥) =𝑚 − 𝑟 (≻𝑖 , 𝑥). By definition

of 𝑆 (𝑥), it holds that 𝑦 ▷̂ 𝑥 and thus 𝑠min (𝑅′, 𝑦) ≥ 𝑠min (𝑅′, 𝑥) for all 𝑦 ∈ 𝑆 (𝑥). This inequality implies that 𝑦 ≻𝑖 𝑥 for all 𝑦 ∈ 𝑆 (𝑥) because
𝑠min (𝑅′, 𝑥) = 𝑚 − 𝑟 (≻𝑖 , 𝑥). In particular, if 𝑥 ≻𝑖 𝑦, it would hold that 𝑠min (𝑅′, 𝑦) ≤ 𝑚 − 𝑟 (≻𝑖 , 𝑦) < 𝑚 − 𝑟 (≻𝑖 , 𝑥) = 𝑠min (𝑅′, 𝑥), which
contradicts that 𝑦 ▷̂ 𝑥 . By combining our two cases, we infer for all alternatives 𝑥,𝑦 ∈ 𝐴 with 𝑥 ▷ 𝑦 and 𝑦 ▷̂ 𝑥 that 𝑦 ≻𝑖 𝑥 . This means that

Δ(≻𝑖 , ▷̂) = Δ(≻𝑖 ,▷) − Δ(▷, ▷̂) ≤ Δ(≻𝑖 ,▷) and thus 𝑢 (≻𝑖 , ▷̂) ≥ 𝑢 (≻𝑖 ,▷).
Step 2: Next, we will show that the sum of all min scores is a lower bound for the utility of every voter in the considered profile, i.e.,

𝑢 (≻𝑖 , 𝑓min (𝑅)) ≥
∑
𝑥∈𝐴 𝑠min (𝑅, 𝑥). To see this, fix a profile 𝑅 and a voter 𝑖 , and let ▷ = 𝑓min (𝑅) denote the ranking chosen by the minimal

compromise rule for 𝑅. We further define the utility of an alternative 𝑥 ∈ 𝐴 by 𝑢 (𝑥, ≻𝑖 ,▷) = |{𝑦 ∈ 𝐴 : 𝑥 ≻𝑖 𝑦 ∧ 𝑥 ▷ 𝑦}| and note that



The Impossibility of Strategyproof Rank Aggregation AAMAS ’26, May 25 – 29, 2026, Paphos, Cyprus

𝑢 (≻𝑖 ,▷) =
(𝑚

2

)
− Δ(≻𝑖 ,▷) = |{(𝑥,𝑦) ∈ 𝐴2

: 𝑥 ≻𝑖 𝑦 ∧ 𝑥 ▷ 𝑦}| =
∑
𝑥∈𝐴 𝑢 (𝑥, ≻𝑖 ,▷). Finally, fix an alternative 𝑥 ; we will show that 𝑢 (𝑥, ≻𝑖 ,▷) ≥

𝑠min (𝑅, 𝑥). If 𝑠min (𝑅, 𝑥) = 0, this holds trivially, so we suppose that 𝑠min (𝑅, 𝑥) > 0. In this case, let 𝑌 = {𝑦 ∈ 𝐴 : 𝑚− 𝑟 (≻𝑖 , 𝑦) < 𝑠min (𝑅,𝑦)} and
note that |𝑌 | = 𝑠min (𝑅, 𝑥). Further, it holds for all 𝑦 ∈ 𝑌 that 𝑥 ≻𝑖 𝑦 and 𝑥 ▷ 𝑦 because 𝑠min (𝑅,𝑦) ≤ 𝑚 − 𝑟 (≻𝑖 , 𝑦) < 𝑠min (𝑅, 𝑥) ≤ 𝑚 − 𝑟 (≻𝑖 , 𝑥).
This entails that 𝑢𝑖 (𝑥, ≻𝑖 ,▷) ≥ |𝑌 | = 𝑠min (𝑅, 𝑥), thus proving this step.

Step 3: Lastly, we will prove our upper bound. To this end, let 𝑅 and 𝑅′ denote two profiles on𝑚 alternatives that differ only in the ranking

of a single voter 𝑖 and suppose that 𝑅 and 𝑅′ maximize the incentive ratio of the minimal compromise rule. Further, we let ▷ = 𝑓min (𝑅) and
▷′ = 𝑓min (𝑅′). By Step 1, we may assume that 𝑠min (𝑅′, 𝑥) ≤ 𝑠min (𝑅, 𝑥) for all 𝑥 ∈ 𝐴. In turn, this implies that

𝑢 (≻𝑖 ,▷′ )
𝑢 (≻𝑖 ,▷) ≠ ∞. In particular,

if 𝑢 (≻𝑖 ,▷) = 0, then ▷ has to top-rank the bottom-ranked alternative 𝑥∗ of ≻𝑖 . However, it holds that 𝑠min (𝑅, 𝑥∗) = 𝑚 − 𝑟 (≻𝑖 , 𝑥∗) = 0

and thus also that 𝑠min (𝑅, 𝑥) = 0 for all 𝑥 ∈ 𝐴 because 𝑓min sorts the alternatives in decreasing order of their min scores. Finally, because

𝑠min (𝑅′, 𝑥) ≤ 𝑠min (𝑅, 𝑥) for all 𝑥 ∈ 𝐴, we conclude that 𝑠min (𝑅′, 𝑥) = 0 = 𝑠min (𝑅, 𝑥) for all 𝑥 ∈ 𝐴. This implies that ▷ = ▷′
, so a voter with

utility 0 cannot manipulate.

By Step 1, we can also conclude that no voter can manipulate if all min scores are 0. Hence, suppose that 𝑠min (𝑅, 𝑥) > 0 for at least one

alternative 𝑥 . Similar to Step 1, we define the sets 𝑆+ (𝑥) = {𝑦 ∈ 𝐴 : 𝑥▷𝑦∧𝑦▷′𝑥∧𝑦 ≻𝑖 𝑥} and 𝑆− (𝑥) = {𝑦 ∈ 𝐴 : 𝑥▷𝑦∧𝑦▷′𝑥∧𝑥 ≻𝑖 𝑦}. We note

for these sets that {(𝑥,𝑦) ∈ 𝐴2
: 𝑥 ▷𝑦∧𝑦▷′ 𝑥} = {(𝑥,𝑦) ∈ 𝐴2

: 𝑦 ∈ 𝑆+ (𝑥)}∪ {(𝑥,𝑦) ∈ 𝐴2
: 𝑦 ∈ 𝑆− (𝑥)}, so Δ(▷,▷′) = ∑

𝑥∈𝐴 |𝑆+ (𝑥) | + |𝑆− (𝑥) |.
Further, the set {(𝑥,𝑦) ∈ 𝐴2

: 𝑦 ∈ 𝑆+ (𝑥)} contains all pairs of alternatives on which ▷ and ▷′
disagree and that move ▷ closer to ≻𝑖 , whereas

{(𝑥,𝑦) ∈ 𝐴2
: 𝑦 ∈ 𝑆− (𝑥)} contains the pairs of alternatives on which ▷ and ▷′

disagree and that move ▷ further away from ≻𝑖 . In particular,

this means that Δ(≻𝑖 ,▷′) = Δ(≻𝑖 ,▷) +
∑
𝑥∈𝐴 |𝑆− (𝑥) | − |𝑆+ (𝑥) | and thus 𝑢 (≻𝑖 ,▷′) = 𝑢 (≻𝑖 ,▷) +

∑
𝑥∈𝐴 |𝑆+ (𝑥) | − |𝑆− (𝑥) |.

We will next aim to bound the value |𝑆+ (𝑥) | − |𝑆− (𝑥) | for every alterative 𝑥 . To this end, we first note that if 𝑠min (𝑅, 𝑥) = 𝑠min (𝑅′, 𝑥)
for some alternative 𝑥 , then 𝑆+ (𝑥) = 𝑆− (𝑥) = ∅. The reason for this is that if 𝑠min (𝑅, 𝑥) = 𝑠min (𝑅′, 𝑥), then 𝑠min (𝑅′, 𝑥) = 𝑠min (𝑅, 𝑥) ≥
𝑠min (𝑅,𝑦) ≥ 𝑠min (𝑅′, 𝑦) for all 𝑦 with 𝑥 ▷ 𝑦. Hence, we can infer that 𝑥 ▷′ 𝑦 for all such 𝑦, which means that there are no alternatives 𝑥,𝑦

such that 𝑥 ▷ 𝑦 and 𝑦 ▷′ 𝑥 . This implies that |𝑆+ (𝑥) | − |𝑆− (𝑥) | = 0 for all 𝑥 ∈ 𝐴 with 𝑠min (𝑅, 𝑥) = 0.

Next, we turn to alternatives 𝑥 with 𝑠min (𝑅, 𝑥) > 0. In this case, let 𝑥∗ again denote the bottom-ranked alternative in ≻𝑖 and note that

𝑥 ▷ 𝑥∗ as 𝑠min (𝑅, 𝑥) > 0. Now, if 𝑥∗ ▷′ 𝑥 , it holds that |𝑆+ (𝑥) | ≤ 𝑚 − 2 (as 𝑥∗ ∉ 𝑆+ (𝑥) and 𝑥 ∉ 𝑆+ (𝑥)) and |𝑆− (𝑥) | ≥ 1 (as 𝑥∗ ∈ 𝑆− (𝑥)) and
thus |𝑆+ (𝑥) | − |𝑆− (𝑥) | ≤ 𝑚 − 3. Similarly, if 𝑥 ▷′ 𝑥∗ and there is another alternative 𝑦 with 𝑥∗ ▷ 𝑦′, it holds that |𝑆+ (𝑥) | − |𝑆 (𝑥) | ≤ 𝑚 − 3

since 𝑥 ∉ 𝑆+ (𝑥), 𝑥∗ ∉ 𝑆+ (𝑥), and 𝑦 ∉ 𝑆+ (𝑥). To conclude, if 𝑥∗ is not bottom-ranked in ▷′
, then |𝑆+ (𝑥) | − |𝑆 (𝑥) | ≤ 𝑚 − 3 for all 𝑥 ∈ 𝐴 with

𝑠min (𝑅, 𝑥) > 0. Hence, when letting ℓ denote the number of alternatives with 𝑠min (𝑅, 𝑥) > 0, we derive that

𝑢 (≻𝑖 ,▷′)
𝑢 (≻𝑖 ,▷)

=
𝑢 (≻𝑖 ,▷) +

∑
𝑥∈𝐴 |𝑆+ (𝑥) | − |𝑆− (𝑥) |
𝑢 (≻𝑖 ,▷)

≤ 𝑢 (≻𝑖 ,▷) + ℓ (𝑚 − 3)
𝑢 (≻𝑖 ,▷)

≤ ℓ + ℓ (𝑚 − 3)
ℓ

=𝑚 − 2.

Here, the first equality uses the definition of 𝑆+ (𝑥) and 𝑆− (𝑥) and the second uses our insights regarding |𝑆+ (𝑥) | − |𝑆− (𝑥) |. The third step

holds because ℓ ≤ ∑
𝑥∈𝐴 𝑠min (𝑅, 𝑥) ≤ 𝑢 (≻𝑖 ,▷), where the last inequality follows by Step 2. Hence, if ▷′

does not bottom-rank 𝑥∗, our upper
bound on the incentive ratio holds.

As the second case, assume that 𝑥∗ is bottom-ranked in ▷′
. Since 𝑠min (𝑅′, 𝑥) ≤ 𝑠min (𝑅, 𝑥) for all 𝑥 ∈ 𝐴, it holds that {𝑥 ∈ 𝐴 : 𝑠min (𝑅, 𝑥) =

0} ⊆ {𝑥 ∈ 𝐴 : 𝑠min (𝑅′, 𝑥) = 0}. By our lexicographic tie-breaking, this means that 𝑥∗ is also bottom-ranked in ▷ and so 𝑆+ (𝑥∗) = 𝑆− (𝑥∗) = ∅.
Further, let 𝑦𝑖 denote the 𝑖-th best alternative in ▷′

, i.e., 𝑟 (𝑦𝑖 ,▷′) = 𝑖 . By definition of the sets 𝑆+ (𝑥) and 𝑆− (𝑥), it holds for alternatives 𝑦𝑖
with 𝑖 ∈ {1, . . . ,𝑚 − 1} that |𝑆+ (𝑦𝑖 ) | − |𝑆− (𝑦𝑖 ) | ≤ |𝑆+ (𝑦𝑖 ) | ≤ (𝑖 − 1) because there are only 𝑖 − 1 alternatives 𝑥 with 𝑥 ▷′ 𝑦𝑖 . Lastly, since 𝑥∗ is
bottom-ranked in ≻𝑖 and ▷, we conclude that 𝑢 (≻𝑖 ,▷) ≥ 𝑚 − 1 and thus

𝑢 (≻𝑖 ,▷′)
𝑢 (≻𝑖 ,▷)

=
𝑢 (≻𝑖 ,▷) +

∑
𝑥∈𝐴 |𝑆+ (𝑥) | − |𝑆− (𝑥) |
𝑢 (≻𝑖 ,▷)

≤
𝑢 (≻𝑖 ,▷) +

∑𝑚−1

𝑖=1
(𝑖 − 1)

𝑢 (≻𝑖 ,▷)
≤ (𝑚 − 1) + (𝑚 − 2) (𝑚 − 1)/2

𝑚 − 1

=
𝑚

2

≤ 𝑚 − 2.

This chain of (in)equalities follows analogous to the last case, except for the last step where we use that𝑚 ≥ 4 implies
𝑚
2
≤ 𝑚 − 2. □

D PROOF OF PROPOSITION 1
In this section, we will prove one of the base cases of our main impossibility theorem: if there are 𝑛 = 2 voters and𝑚 = 5 alternatives, no

anonymous SWF satisfies both unanimity and strategyproofness. We will prove this statement by contradiction and hence assume that there

is an SWF 𝑓 for the given numbers of voters and alternatives that satisfies our axioms. To derive a contradiction, we will subsequently reason

about numerous profiles and show that, regardless of which outcomes we choose at certain profiles, strategyproofness must be violated. We

start by considering the profile 𝑅∗ shown below.

𝑅∗: 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑

We first note that for this profile, it holds that 𝑓 (𝑅∗) ∈ {𝑎𝑏𝑐𝑑𝑒, 𝑎𝑏𝑐𝑒𝑑, 𝑎𝑐𝑏𝑑𝑒, 𝑎𝑐𝑏𝑒𝑑} because of unanimity. Moreover, an analogous

statement holds for all profiles 𝑅′ = 𝜋 (𝑅∗) that are derived by permuting the alternatives in 𝑅∗ according to a bijection 𝜋 : 𝐴 → 𝐴. In more

detail, it is easy to see that, for each permutation 𝜋 : 𝐴 → 𝐴, it holds that 𝑓 (𝜋 (𝑅∗)) ∈ {𝜋 (𝑎𝑏𝑐𝑑𝑒), 𝜋 (𝑎𝑏𝑐𝑒𝑑), 𝜋 (𝑎𝑐𝑏𝑑𝑒), 𝜋 (𝑎𝑐𝑏𝑒𝑑)} because
unanimity does not depend on the names of the alternatives.

As the first step of our proof, we will show that there is a permutation 𝜋 : 𝐴 → 𝐴 such that 𝑓 (𝜋 (𝑅∗)) ∈ {𝜋 (𝑎𝑏𝑐𝑑𝑒), 𝜋 (𝑎𝑐𝑏𝑒𝑑)}. Assume

for contradiction that this is not true, which means that 𝑓 (𝜋 (𝑅∗)) ∈ {𝜋 (𝑎𝑏𝑐𝑒𝑑), 𝜋 (𝑎𝑐𝑏𝑑𝑒)} for all permutations 𝜋 : 𝐴 → 𝐴. In particular, this

means that 𝑓 (𝑅∗) ∈ {𝑎𝑏𝑐𝑒𝑑, 𝑎𝑐𝑏𝑑𝑒}. We further note that 𝑏 and 𝑐 as well as 𝑐 and 𝑑 are symmetric in 𝑅∗, i.e., it holds that 𝜋∗ (𝑅∗) = 𝑅∗ for
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the permutation 𝜋∗ given by 𝜋∗ (𝑎) = 𝑎, 𝜋∗ (𝑏) = 𝑐 , 𝜋∗ (𝑐) = 𝑏, 𝜋∗ (𝑑) = 𝑒 , and 𝜋∗ (𝑒) = 𝑑 . Consequently, we can assume that 𝑓 (𝑅∗) = 𝑎𝑐𝑏𝑑𝑒;
the case that 𝑓 (𝑅∗) = 𝑎𝑏𝑐𝑒𝑑 follows by simply permuting all profiles and rankings in the subsequent argument with respect to 𝜋∗.

In the following table, we show that our assumptions are in conflict with each other as no feasible outcome remains for the profile 𝑅4
.

Note that we display this simple derivation in the highly compressed form that is used throughout this section. In particular, we will present

all proofs in tabular forms, where each row consists of a profile marker (left most column), the two rankings that make up the profile (second

and third column), and all feasible outcomes. We note that the feasible outcomes are either determined by our assumptions (as, e.g., for 𝑅∗ in
the following table) or correspond to the set of rankings that satisfy unanimity for the given profile (as, e.g., for 𝑅2

in the following table).

Moreover, profiles may appear multiple times in our derivations as we may infer additional information about the possible outcomes.

Based on the assumptions, we show that strategyproofness rules out specific rankings at given profiles. For instance, in the following

derivation, the fact that 𝑓 (𝑅∗) = 𝑎𝑐𝑏𝑑𝑒 entails that 𝑓 (𝑅2) ≠ 𝑎𝑐𝑏𝑒𝑑 as the first voter can otherwise manipulate by deviating from 𝑅2
to 𝑅∗.

Hence, we know that 𝑎𝑐𝑏𝑑𝑒 must be chosen for 𝑅2
, and we will use this fact in further derivations. More generally, all grayed out rankings in

the right most column satisfy unanimity, but violate strategyproofness due to the outcome that has been inferred for the profile indicated in

brackets. We note here that strategyproofness may apply in either directions (i.e., either a voter manipulated from the considered profile

to the one in the brackets or vice versa). Moreover, it is possible that multiple rankings are feasible outcomes for the profile indicated in

brackets; in this case, strategyproofness rules out that the indicated ranking is chosen, regardless of the exact outcome for a given profile.

Note that strategyproofness may be applied in either of the two directions for each of the possible outcomes at the manipulated profile. The

second possibility that a ranking is grayed out is that we explicitly assume that this outcome is not chosen (e.g., for 𝑅4
, our assumption that

𝑓 (𝜋 (𝑅∗) ∈ {𝜋 (𝑎𝑏𝑐𝑒𝑑), 𝜋 (𝑎𝑐𝑏𝑑𝑒)} for all permutations 𝜋 : 𝐴 → 𝐴 rules out that 𝑓 (𝑅4) = 𝑎𝑏𝑐𝑒𝑑 or 𝑓 (𝑅4) = 𝑎𝑐𝑏𝑑𝑒). Lastly, all our proofs end
in a profile where not valid outcome remains, thereby showing that our axioms the assumptions are incompatible with each other.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑏𝑑𝑒 (A)

𝑅2 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 (𝑅∗)
𝑅3 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑑𝑒 𝑎𝑏𝑐𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒

𝑅4 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑏𝑐𝑑𝑒 (𝑅3) 𝑎𝑐𝑏𝑒𝑑 (𝑅2) 𝑎𝑏𝑐𝑒𝑑 (A) 𝑎𝑐𝑏𝑑𝑒 (A)

For this simple derivation, it is straightforward to translate our tabular form into natural language. We assume that 𝑓 (𝑅∗) = 𝑎𝑐𝑏𝑑𝑒 . This
implies that 𝑓 (𝑅2) = 𝑓 (𝑅3) = 𝑎𝑐𝑏𝑑𝑒 as these profiles are derived by letting one of the voters in 𝑅∗ deviate to 𝑎𝑐𝑏𝑑𝑒 . Lastly, for 𝑅4

, we have

by assumption that 𝑓 (𝑅4) ≠ 𝑎𝑏𝑐𝑒𝑑 and 𝑓 (𝑅4) ≠ 𝑎𝑐𝑏𝑑𝑒 . However, if we choose 𝑓 (𝑅4) = 𝑎𝑏𝑐𝑑𝑒 , voter 1 can manipulate by deviating from 𝑅3

to 𝑅4
. Similarly, if 𝑓 (𝑅4) = 𝑎𝑐𝑏𝑒𝑑 , voter 2 can manipulate by deviating from 𝑅2

to 𝑅4
. Hence, no ranking that satisfies unanimity remains for

𝑅4
, thereby showing that our assumptions are in conflict.

By this derivation, we know that 𝑓 (𝜋 (𝑅∗)) ∈ {𝜋 (𝑎𝑏𝑐𝑑𝑒), 𝜋 (𝑎𝑐𝑏𝑒𝑑)} for some permutation 𝜋 : 𝐴 → 𝐴. We will subsequently assume that 𝜋

is given by the identity, i.e., that 𝑓 (𝑅∗) ∈ {𝑎𝑏𝑐𝑑𝑒, 𝑎𝑐𝑏𝑒𝑑}. Our proof applies to any other permutation 𝜋 by simply renaming the alternatives

in all proofs and outcomes accordingly as both unanimity and strategyproofness are independent of the names of alternatives. Further, by

the fact that 𝑏 and 𝑐 , as well as 𝑑 and 𝑒 are symmetric in 𝑅∗, we can assume without loss of generality that 𝑓 (𝑅∗) = 𝑎𝑏𝑐𝑑𝑒 ; if 𝑓 (𝑅∗) = 𝑎𝑐𝑏𝑒𝑑 ,
we can just exchange the roles of 𝑏 and 𝑐 as well as 𝑑 and 𝑒 in the subsequent proofs.

Now, from here on, we proceed with a case distinction with respect to the profile 𝑅+ shown below.

𝑅+: 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑

We note that only three outcomes satisfy unanimity for this profile: 𝑓 (𝑅+) = 𝑒𝑎𝑏𝑐𝑑 , 𝑓 (𝑅+) = 𝑒𝑎𝑐𝑏𝑑 , or 𝑓 (𝑅+) = 𝑒𝑐𝑎𝑏𝑑 . We will next show

that all of these three cases result in a contradiction. To give further structure to our proof, we will discuss each of these cases as a separate

lemma. In particular, we show in the next three lemmas that none of these outcomes is compatible with the fact that 𝑓 is anonymous,

strategyproof, unanimous, and satisfies that 𝑓 (𝑅∗) = 𝑎𝑏𝑐𝑑𝑒 . Note that each case itself breaks down in several subcases and steps. Since

no valid outcome remains for 𝑅+, we conclude that our basic assumptions are in conflict, so no SWF satisfies anonymity, unanimity, and

strategyproofness if𝑚 = 5 and 𝑛 = 2.

Lemma 2. 𝑓 (𝑅+) ≠ 𝑒𝑐𝑎𝑏𝑑 .

Proof. To prove his lemma, we assume for contradiction that 𝑓 (𝑅+) = 𝑒𝑐𝑎𝑏𝑑 . We then proceed in five steps to specify the outcomes for

further profiles, which ultimately results in a contradiction. We note that, except for 𝑅∗ and 𝑅+, we will reset the profile markers for each

step as the corresponding derivations are fully self-contained.

Step 1: Our first goal is to show that 𝑓 (𝑅) = 𝑎𝑒𝑐𝑏𝑑 for the profile 𝑅 where one voter reports 𝑎𝑒𝑏𝑐𝑑 and the other 𝑎𝑒𝑐𝑏𝑑 . We hence assume

for contradiction that 𝑓 (𝑅) ≠ 𝑎𝑒𝑐𝑏𝑑 . The subsequent derivation shows that this assumption is invalid as no feasible outcome remains for

profile 𝑅28
. In this table, the profile 𝑅 appears in Steps 1 and 6 (i.e., 𝑅 = 𝑅1

and 𝑅 = 𝑅6
).

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (A)

𝑅1 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝐴)
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𝑅2 𝑒𝑎𝑏𝑑𝑐 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑏𝑑𝑐 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑

𝑅3 𝑎𝑒𝑏𝑑𝑐 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅+) 𝑎𝑒𝑏𝑑𝑐 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑏𝑑𝑐 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑

𝑅4 𝑎𝑒𝑏𝑑𝑐 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑏𝑑𝑐 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅1) 𝑐𝑎𝑒𝑏𝑑

𝑅5 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅4) 𝑎𝑒𝑏𝑑𝑐 (𝑅4) 𝑎𝑒𝑐𝑏𝑑 (𝑅1)
𝑅6 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑏𝑑𝑐 (𝑅5) 𝑎𝑒𝑐𝑏𝑑 (𝐴)
𝑅7 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅6)
𝑅8 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅+) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑

𝑅9 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅8) 𝑎𝑒𝑏𝑐𝑑 (𝑅8) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑

𝑅10 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅9) 𝑎𝑒𝑏𝑐𝑑 𝑒𝑎𝑏𝑐𝑑

𝑅11 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑏𝑑𝑐 (𝑅2) 𝑒𝑎𝑐𝑏𝑑

𝑅12 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑏𝑑𝑐 (𝑅6) 𝑎𝑒𝑐𝑏𝑑 (𝑅1)
𝑅13 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅14 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅13) 𝑎𝑒𝑐𝑏𝑑 (𝑅13)
𝑅15 𝑎𝑏𝑑𝑒𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑑𝑒𝑐 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 (𝑅14) 𝑎𝑒𝑏𝑑𝑐 (𝑅6) 𝑎𝑒𝑐𝑏𝑑 (𝑅1)
𝑅16 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 (𝑅15) 𝑎𝑒𝑏𝑑𝑐 (𝑅6) 𝑎𝑒𝑐𝑏𝑑 (𝑅1)
𝑅17 𝑎𝑏𝑒𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅9) 𝑎𝑏𝑒𝑑𝑐 (𝑅9) 𝑎𝑒𝑏𝑐𝑑 (𝑅9) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅12) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑏𝑑𝑐 (𝑅11) 𝑒𝑎𝑐𝑏𝑑 (𝑅16)
𝑅18 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅8) 𝑎𝑒𝑏𝑐𝑑 (𝑅8) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅17)
𝑅19 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅9) 𝑎𝑒𝑏𝑐𝑑 (𝑅18) 𝑒𝑎𝑏𝑐𝑑

𝑅20 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅17) 𝑎𝑒𝑏𝑐𝑑 (𝑅15) 𝑎𝑒𝑏𝑑𝑐 (𝑅6) 𝑎𝑒𝑐𝑏𝑑 (𝑅1)
𝑅21 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅20) 𝑎𝑒𝑐𝑏𝑑 (𝑅6)
𝑅22 𝑎𝑏𝑐𝑒𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅19) 𝑎𝑏𝑒𝑐𝑑 (𝑅10) 𝑎𝑒𝑏𝑐𝑑 (𝑅19) 𝑒𝑎𝑏𝑐𝑑

𝑅23 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅21) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑎𝑒𝑐𝑑𝑏 (𝑅21)
𝑅24 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅22) 𝑎𝑒𝑏𝑐𝑑 (𝑅5) 𝑎𝑒𝑐𝑏𝑑 (𝑅5) 𝑒𝑎𝑏𝑐𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑

𝑅25 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 (𝑅8) 𝑎𝑒𝑏𝑐𝑑 (𝑅8) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑎𝑒𝑐𝑑𝑏 (𝑅21) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅18) 𝑒𝑎𝑐𝑑𝑏 (𝑅23)
𝑅26 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑏𝑐𝑑 (𝑅24) 𝑒𝑎𝑐𝑏𝑑 (𝑅25) 𝑒𝑎𝑐𝑑𝑏 (𝑅25)

Step 2: Next, we will showt that 𝑓 (𝑅) = 𝑎𝑒𝑑𝑐𝑏 for the profie 𝑅 where one voters reports 𝑎𝑒𝑐𝑏𝑑 and the other 𝑎𝑒𝑑𝑐𝑏. We hence assume

that 𝑓 (𝑅) ≠ 𝑎𝑒𝑑𝑐𝑏 and infer a contradiction as shown below. The profile 𝑅 corresponds to 𝑅2
and 𝑅13

in the subsequent derivation.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅1 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (A, Step 1)

𝑅2 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑑𝑐𝑏 (𝐴)
𝑅3 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅4 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅5 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅6 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅5)
𝑅7 𝑎𝑏𝑑𝑒𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑑𝑒𝑐 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅1) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅6)
𝑅8 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅1) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅7)
𝑅9 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅8)
𝑅10 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅9) 𝑎𝑒𝑐𝑑𝑏 (𝑅9)
𝑅11 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 (𝑅4) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅10)
𝑅12 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅11)
𝑅13 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅12) 𝑎𝑒𝑑𝑐𝑏 (𝐴)
𝑅14 𝑎𝑑𝑒𝑐𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑑𝑒𝑐𝑏 (𝑅13) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅12) 𝑎𝑒𝑑𝑐𝑏 (𝑅2)
𝑅15 𝑎𝑑𝑒𝑏𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑑𝑒𝑏𝑐 (𝑅14) 𝑎𝑑𝑒𝑐𝑏 (𝑅13) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅12) 𝑎𝑒𝑑𝑏𝑐 (𝑅1) 𝑎𝑒𝑑𝑐𝑏 (𝑅2)
𝑅16 𝑎𝑑𝑒𝑏𝑐 𝑎𝑒𝑐𝑑𝑏 𝑎𝑑𝑒𝑏𝑐 (𝑅15) 𝑎𝑑𝑒𝑐𝑏 (𝑅15) 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑑𝑏𝑐 (𝑅15) 𝑎𝑒𝑑𝑐𝑏

𝑅17 𝑎𝑑𝑏𝑒𝑐 𝑎𝑒𝑐𝑑𝑏 𝑎𝑑𝑏𝑒𝑐 (𝑅16) 𝑎𝑑𝑒𝑏𝑐 (𝑅16) 𝑎𝑑𝑒𝑐𝑏 (𝑅16) 𝑎𝑒𝑐𝑑𝑏 (𝑅10) 𝑎𝑒𝑑𝑏𝑐 (𝑅16) 𝑎𝑒𝑑𝑐𝑏

𝑅18 𝑎𝑑𝑏𝑒𝑐 𝑎𝑒𝑑𝑐𝑏 𝑎𝑑𝑏𝑒𝑐 (𝑅17) 𝑎𝑑𝑒𝑏𝑐 (𝑅17) 𝑎𝑑𝑒𝑐𝑏 (𝑅17) 𝑎𝑒𝑑𝑏𝑐 (𝑅17) 𝑎𝑒𝑑𝑐𝑏
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𝑅19 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑐𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅18) 𝑎𝑒𝑑𝑐𝑏

𝑅20 𝑎𝑑𝑐𝑒𝑏 𝑎𝑒𝑑𝑐𝑏 𝑎𝑑𝑐𝑒𝑏 𝑎𝑑𝑒𝑐𝑏 (𝑅18) 𝑎𝑒𝑑𝑐𝑏

𝑅21 𝑎𝑑𝑒𝑏𝑐 𝑎𝑒𝑏𝑐𝑑 𝑎𝑑𝑒𝑏𝑐 (𝑅15) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅15)
𝑅22 𝑎𝑑𝑒𝑏𝑐 𝑎𝑒𝑏𝑑𝑐 𝑎𝑑𝑒𝑏𝑐 (𝑅21) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐

𝑅23 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅18) 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅9) 𝑎𝑒𝑐𝑑𝑏 (𝑅9) 𝑎𝑒𝑑𝑏𝑐 (𝑅10) 𝑎𝑒𝑑𝑐𝑏 (𝑅2)
𝑅24 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑑𝑐𝑏 𝑎𝑏𝑒𝑑𝑐 (𝑅18) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅18) 𝑎𝑒𝑑𝑐𝑏 (𝑅23)
𝑅25 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑐𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅18) 𝑎𝑒𝑑𝑐𝑏 (𝑅24)
𝑅26 𝑎𝑑𝑒𝑐𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑑𝑒𝑏𝑐 (𝑅22) 𝑎𝑑𝑒𝑐𝑏 (𝑅14) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅19) 𝑎𝑒𝑑𝑐𝑏 (𝑅25)
𝑅27 𝑎𝑑𝑐𝑒𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑑𝑐𝑒𝑏 (𝑅26) 𝑎𝑑𝑒𝑏𝑐 (𝑅22) 𝑎𝑑𝑒𝑐𝑏 (𝑅20) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅19) 𝑎𝑒𝑑𝑐𝑏 (𝑅25)
𝑅28 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 (𝑅27) 𝑎𝑐𝑒𝑑𝑏 (𝑅27) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅25) 𝑎𝑒𝑑𝑏𝑐 (𝑅1) 𝑎𝑒𝑑𝑐𝑏 (𝑅25)
𝑅29 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅28) 𝑎𝑐𝑒𝑑𝑏 (𝑅28) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅12)
𝑅30 𝑎𝑑𝑐𝑒𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑑𝑒𝑏 (𝑅14) 𝑎𝑐𝑒𝑏𝑑 (𝑅29) 𝑎𝑐𝑒𝑑𝑏 (𝑅29) 𝑎𝑑𝑐𝑒𝑏 (𝑅14) 𝑎𝑑𝑒𝑐𝑏 (𝑅13) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅12) 𝑎𝑒𝑑𝑐𝑏 (𝑅2)
𝑅31 𝑎𝑐𝑒𝑏𝑑 𝑎𝑑𝑐𝑒𝑏 𝑎𝑐𝑑𝑒𝑏 (𝑅30) 𝑎𝑐𝑒𝑏𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑐𝑒𝑏 (𝑅30)
𝑅32 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑐𝑒𝑏 𝑎𝑐𝑑𝑒𝑏 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑐𝑒𝑏 (𝑅31)
𝑅33 𝑎𝑑𝑏𝑐𝑒 𝑎𝑒𝑑𝑐𝑏 𝑎𝑑𝑏𝑐𝑒 (𝑅18) 𝑎𝑑𝑏𝑒𝑐 (𝑅18) 𝑎𝑑𝑐𝑏𝑒 (𝑅18) 𝑎𝑑𝑐𝑒𝑏 𝑎𝑑𝑒𝑏𝑐 (𝑅18) 𝑎𝑑𝑒𝑐𝑏 (𝑅18) 𝑎𝑒𝑑𝑏𝑐 (𝑅18) 𝑎𝑒𝑑𝑐𝑏

𝑅34 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑑𝑏 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅5) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑐𝑒𝑑𝑏 (𝑅5)
𝑅35 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑏𝑐𝑒 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅34) 𝑎𝑐𝑒𝑑𝑏 (𝑅34) 𝑎𝑑𝑏𝑐𝑒 (𝑅33) 𝑎𝑑𝑐𝑏𝑒 (𝑅33) 𝑎𝑑𝑐𝑒𝑏 (𝑅32)
𝑅36 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑒𝑑𝑏 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅35) 𝑎𝑐𝑒𝑑𝑏 (𝑅35)
𝑅37 𝑎𝑐𝑑𝑏𝑒 𝑎𝑒𝑐𝑑𝑏 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅36) 𝑎𝑐𝑒𝑑𝑏 (𝑅36) 𝑎𝑒𝑐𝑑𝑏 (𝑅36)
𝑅38 𝑎𝑐𝑑𝑏𝑒 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅36) 𝑎𝑐𝑒𝑑𝑏 (𝑅36) 𝑎𝑑𝑐𝑏𝑒 (𝑅18) 𝑎𝑑𝑐𝑒𝑏 𝑎𝑑𝑒𝑐𝑏 (𝑅18) 𝑎𝑒𝑐𝑑𝑏 (𝑅36) 𝑎𝑒𝑑𝑐𝑏 (𝑅37)
𝑅39 𝑎𝑑𝑏𝑐𝑒 𝑎𝑒𝑑𝑐𝑏 𝑎𝑑𝑏𝑐𝑒 (𝑅18) 𝑎𝑑𝑏𝑒𝑐 (𝑅18) 𝑎𝑑𝑐𝑏𝑒 (𝑅18) 𝑎𝑑𝑐𝑒𝑏 𝑎𝑑𝑒𝑏𝑐 (𝑅18) 𝑎𝑑𝑒𝑐𝑏 (𝑅18) 𝑎𝑒𝑑𝑏𝑐 (𝑅18) 𝑎𝑒𝑑𝑐𝑏 (𝑅38)
𝑅40 𝑎𝑑𝑐𝑒𝑏 𝑎𝑒𝑑𝑐𝑏 𝑎𝑑𝑐𝑒𝑏 𝑎𝑑𝑒𝑐𝑏 (𝑅18) 𝑎𝑒𝑑𝑐𝑏 (𝑅39)
𝑅41 𝑎𝑐𝑑𝑏𝑒 𝑎𝑑𝑏𝑐𝑒 𝑎𝑐𝑑𝑏𝑒 𝑎𝑑𝑏𝑐𝑒 (𝑅35) 𝑎𝑑𝑐𝑏𝑒 (𝑅35)
𝑅42 𝑎𝑑𝑐𝑒𝑏 𝑎𝑒𝑑𝑏𝑐 𝑎𝑑𝑐𝑒𝑏 (𝑅27) 𝑎𝑑𝑒𝑏𝑐 𝑎𝑑𝑒𝑐𝑏 (𝑅20) 𝑎𝑒𝑑𝑏𝑐 (𝑅40) 𝑎𝑒𝑑𝑐𝑏 (𝑅40)
𝑅43 𝑎𝑑𝑐𝑒𝑏 𝑎𝑑𝑒𝑏𝑐 𝑎𝑑𝑐𝑒𝑏 (𝑅42) 𝑎𝑑𝑒𝑏𝑐 𝑎𝑑𝑒𝑐𝑏 (𝑅40)
𝑅44 𝑎𝑐𝑑𝑏𝑒 𝑎𝑑𝑏𝑒𝑐 𝑎𝑐𝑑𝑏𝑒 𝑎𝑑𝑏𝑐𝑒 (𝑅41) 𝑎𝑑𝑏𝑒𝑐 (𝑅41) 𝑎𝑑𝑐𝑏𝑒 (𝑅41)
𝑅45 𝑎𝑐𝑑𝑒𝑏 𝑎𝑑𝑒𝑏𝑐 𝑎𝑐𝑑𝑒𝑏 (𝑅43) 𝑎𝑑𝑐𝑒𝑏 (𝑅43) 𝑎𝑑𝑒𝑏𝑐 𝑎𝑑𝑒𝑐𝑏 (𝑅43)
𝑅46 𝑎𝑐𝑑𝑒𝑏 𝑎𝑑𝑏𝑒𝑐 𝑎𝑐𝑑𝑏𝑒 (𝑅45) 𝑎𝑐𝑑𝑒𝑏 (𝑅45) 𝑎𝑑𝑏𝑐𝑒 (𝑅44) 𝑎𝑑𝑏𝑒𝑐 (𝑅17) 𝑎𝑑𝑐𝑏𝑒 (𝑅44) 𝑎𝑑𝑐𝑒𝑏 (𝑅45) 𝑎𝑑𝑒𝑏𝑐 (𝑅44) 𝑎𝑑𝑒𝑐𝑏 (𝑅44)

Step 3: As our third step, we will show that 𝑓 (𝑅) = 𝑒𝑐𝑎𝑏𝑑 for the profile 𝑅 where one voter reports 𝑎𝑏𝑒𝑐𝑑 and the other reports 𝑒𝑐𝑎𝑏𝑑 . As

usual, we asume that 𝑓 (𝑅) is not our desired outcome, i.e., 𝑓 (𝑅) ≠ 𝑒𝑐𝑎𝑏𝑑 , and derive a contradiction. We use our assumption on 𝑅 at profile

𝑅3
and 𝑅19

.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (A)

𝑅1 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (A, Step 1)

𝑅2 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑒𝑑𝑐𝑏 (A, Step 2)

𝑅3 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅+) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝐴)
𝑅4 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑

𝑅5 𝑎𝑒𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑

𝑅6 𝑎𝑒𝑏𝑑𝑐 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑏𝑑𝑐 (𝑅1) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅3)
𝑅7 𝑎𝑒𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅6)
𝑅8 𝑎𝑒𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅5) 𝑒𝑐𝑎𝑏𝑑 (𝑅7) 𝑒𝑐𝑏𝑎𝑑 (𝑅7)
𝑅9 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅4) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅8)
𝑅10 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅9)
𝑅11 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅12 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅13 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅14 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅13)



The Impossibility of Strategyproof Rank Aggregation AAMAS ’26, May 25 – 29, 2026, Paphos, Cyprus

𝑅15 𝑎𝑏𝑑𝑒𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑑𝑒𝑐 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅1) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅14)
𝑅16 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅1) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅15)
𝑅17 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅16)
𝑅18 𝑒𝑎𝑏𝑑𝑐 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑏𝑑𝑐 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑

𝑅19 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅+) 𝑎𝑒𝑐𝑏𝑑 (𝑅17) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝐴)
𝑅20 𝑏𝑒𝑎𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 𝑏𝑒𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑏𝑎𝑐𝑑 (𝑅+) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅19) 𝑒𝑐𝑏𝑎𝑑 (𝑅10)
𝑅21 𝑒𝑏𝑎𝑑𝑐 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑏𝑑𝑐 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑏𝑎𝑐𝑑 (𝑅+) 𝑒𝑏𝑎𝑑𝑐 (𝑅18) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅20) 𝑒𝑐𝑏𝑎𝑑 (𝑅10)
𝑅22 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅21) 𝑒𝑐𝑏𝑎𝑑 (𝑅10)
𝑅23 𝑒𝑏𝑎𝑑𝑐 𝑒𝑏𝑐𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅21) 𝑒𝑏𝑎𝑑𝑐 (𝑅21) 𝑒𝑏𝑐𝑎𝑑

𝑅24 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅5) 𝑒𝑏𝑎𝑐𝑑 (𝑅8) 𝑒𝑏𝑐𝑎𝑑 (𝑅8) 𝑒𝑐𝑎𝑏𝑑 (𝑅7) 𝑒𝑐𝑏𝑎𝑑 (𝑅7)
𝑅25 𝑒𝑎𝑐𝑑𝑏 𝑒𝑏𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅22) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑏𝑎𝑐𝑑 (𝑅24) 𝑒𝑏𝑐𝑎𝑑 (𝑅24) 𝑒𝑐𝑎𝑏𝑑 (𝑅22) 𝑒𝑐𝑎𝑑𝑏 (𝑅22) 𝑒𝑐𝑏𝑎𝑑 (𝑅24)
𝑅26 𝑒𝑎𝑑𝑏𝑐 𝑒𝑏𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑏𝑑𝑐 (𝑅23) 𝑒𝑎𝑑𝑏𝑐 𝑒𝑏𝑎𝑐𝑑 (𝑅23) 𝑒𝑏𝑎𝑑𝑐 (𝑅23) 𝑒𝑏𝑐𝑎𝑑 (𝑅25)
𝑅27 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑑𝑏𝑐 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑏𝑑𝑐 (𝑅26) 𝑒𝑎𝑑𝑏𝑐

𝑅28 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅29 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅12) 𝑎𝑒𝑐𝑏𝑑 (𝑅17) 𝑎𝑒𝑐𝑑𝑏 (𝑅17)
𝑅30 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 (𝑅11) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅29)
𝑅31 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅30)
𝑅32 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 (𝑅2) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑏𝑐 (𝑅29) 𝑎𝑒𝑑𝑐𝑏 (𝑅29)
𝑅33 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑑𝑐𝑏 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅32) 𝑎𝑒𝑑𝑐𝑏 (𝑅32)
𝑅34 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑐𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 𝑎𝑒𝑑𝑐𝑏 (𝑅33)
𝑅35 𝑎𝑏𝑒𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅17) 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 𝑏𝑒𝑐𝑎𝑑 (𝑅24) 𝑒𝑎𝑏𝑐𝑑 (𝑅19) 𝑒𝑏𝑎𝑐𝑑 (𝑅24) 𝑒𝑏𝑐𝑎𝑑 (𝑅24)
𝑅36 𝑏𝑎𝑒𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 𝑏𝑒𝑐𝑎𝑑 (𝑅35) 𝑒𝑏𝑎𝑐𝑑 (𝑅23) 𝑒𝑏𝑐𝑎𝑑 (𝑅35)
𝑅37 𝑏𝑒𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑏𝑒𝑎𝑐𝑑 𝑏𝑒𝑐𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅23) 𝑒𝑏𝑐𝑎𝑑 (𝑅36)
𝑅38 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅12) 𝑎𝑒𝑐𝑏𝑑 (𝑅17) 𝑎𝑒𝑐𝑑𝑏 (𝑅17) 𝑒𝑎𝑏𝑐𝑑 (𝑅19) 𝑒𝑎𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑐𝑑𝑏 (𝑅19)
𝑅39 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑐𝑑𝑏 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅38) 𝑒𝑎𝑐𝑑𝑏 (𝑅38) 𝑒𝑏𝑎𝑐𝑑 (𝑅25)
𝑅40 𝑏𝑒𝑎𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 𝑏𝑒𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑏𝑎𝑐𝑑 (𝑅+) 𝑒𝑏𝑐𝑎𝑑 (𝑅37) 𝑒𝑐𝑎𝑏𝑑 (𝑅19) 𝑒𝑐𝑏𝑎𝑑 (𝑅10)
𝑅41 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑐𝑑𝑏 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅40) 𝑒𝑎𝑐𝑏𝑑 (𝑅38) 𝑒𝑎𝑐𝑑𝑏 (𝑅38) 𝑒𝑏𝑎𝑐𝑑 (𝑅25)
𝑅42 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑑𝑏𝑐 𝑏𝑒𝑎𝑐𝑑 𝑏𝑒𝑎𝑑𝑐 𝑒𝑎𝑏𝑐𝑑 (𝑅40) 𝑒𝑎𝑏𝑑𝑐 (𝑅26) 𝑒𝑎𝑑𝑏𝑐 (𝑅41) 𝑒𝑏𝑎𝑐𝑑 (𝑅39) 𝑒𝑏𝑎𝑑𝑐

𝑅43 𝑒𝑎𝑑𝑏𝑐 𝑒𝑏𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑏𝑑𝑐 (𝑅23) 𝑒𝑎𝑑𝑏𝑐 (𝑅42) 𝑒𝑏𝑎𝑐𝑑 (𝑅23) 𝑒𝑏𝑎𝑑𝑐 (𝑅23) 𝑒𝑏𝑐𝑎𝑑 (𝑅25)
𝑅44 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑑𝑏𝑐 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑏𝑑𝑐 (𝑅26) 𝑒𝑎𝑑𝑏𝑐 (𝑅43)
𝑅45 𝑒𝑎𝑏𝑐𝑑 𝑒𝑑𝑎𝑏𝑐 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑏𝑑𝑐 (𝑅27) 𝑒𝑎𝑑𝑏𝑐 (𝑅44) 𝑒𝑑𝑎𝑏𝑐 (𝑅44)
𝑅46 𝑑𝑒𝑎𝑏𝑐 𝑒𝑎𝑏𝑐𝑑 𝑑𝑒𝑎𝑏𝑐 (𝑅45) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑏𝑑𝑐 (𝑅27) 𝑒𝑎𝑑𝑏𝑐 (𝑅44) 𝑒𝑑𝑎𝑏𝑐 (𝑅44)
𝑅47 𝑎𝑑𝑒𝑏𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑑𝑒𝑏𝑐 𝑎𝑑𝑒𝑐𝑏 𝑎𝑒𝑏𝑐𝑑 (𝑅2) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑏𝑐 (𝑅1) 𝑎𝑒𝑑𝑐𝑏

𝑅48 𝑎𝑑𝑒𝑏𝑐 𝑒𝑎𝑏𝑐𝑑 𝑎𝑑𝑒𝑏𝑐 (𝑅46) 𝑎𝑒𝑏𝑐𝑑 (𝑅47) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅44) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑏𝑑𝑐 (𝑅27) 𝑒𝑎𝑑𝑏𝑐 (𝑅44)
𝑅49 𝑎𝑑𝑒𝑏𝑐 𝑎𝑒𝑏𝑐𝑑 𝑎𝑑𝑒𝑏𝑐 (𝑅48) 𝑎𝑒𝑏𝑐𝑑 (𝑅47) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅48)
𝑅50 𝑎𝑑𝑒𝑏𝑐 𝑎𝑒𝑏𝑑𝑐 𝑎𝑑𝑒𝑏𝑐 (𝑅49) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅49)
𝑅51 𝑎𝑑𝑒𝑐𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑑𝑒𝑏𝑐 (𝑅50) 𝑎𝑑𝑒𝑐𝑏 (𝑅50) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅50) 𝑎𝑒𝑑𝑐𝑏 (𝑅34)
𝑅52 𝑎𝑑𝑐𝑒𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑑𝑐𝑒𝑏 (𝑅51) 𝑎𝑑𝑒𝑏𝑐 (𝑅50) 𝑎𝑑𝑒𝑐𝑏 (𝑅50) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅50) 𝑎𝑒𝑑𝑐𝑏 (𝑅34)
𝑅53 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 (𝑅52) 𝑎𝑐𝑒𝑑𝑏 (𝑅52) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅28) 𝑎𝑒𝑑𝑏𝑐 (𝑅1) 𝑎𝑒𝑑𝑐𝑏 (𝑅34)
𝑅54 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅53) 𝑎𝑐𝑒𝑑𝑏 (𝑅53) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅31)
𝑅55 𝑎𝑑𝑒𝑏𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑑𝑒𝑏𝑐 (𝑅48) 𝑎𝑑𝑒𝑐𝑏 (𝑅48) 𝑎𝑒𝑏𝑐𝑑 (𝑅2) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑏𝑐 (𝑅1) 𝑎𝑒𝑑𝑐𝑏

𝑅56 𝑎𝑑𝑒𝑏𝑐 𝑎𝑒𝑐𝑑𝑏 𝑎𝑑𝑒𝑏𝑐 (𝑅55) 𝑎𝑑𝑒𝑐𝑏 (𝑅55) 𝑎𝑒𝑐𝑑𝑏 (𝑅47) 𝑎𝑒𝑑𝑏𝑐 (𝑅55) 𝑎𝑒𝑑𝑐𝑏

𝑅57 𝑎𝑑𝑏𝑒𝑐 𝑎𝑒𝑐𝑑𝑏 𝑎𝑑𝑏𝑒𝑐 (𝑅56) 𝑎𝑑𝑒𝑏𝑐 (𝑅56) 𝑎𝑑𝑒𝑐𝑏 (𝑅56) 𝑎𝑒𝑐𝑑𝑏 (𝑅29) 𝑎𝑒𝑑𝑏𝑐 (𝑅56) 𝑎𝑒𝑑𝑐𝑏

𝑅58 𝑎𝑑𝑏𝑒𝑐 𝑎𝑒𝑑𝑐𝑏 𝑎𝑑𝑏𝑒𝑐 (𝑅57) 𝑎𝑑𝑒𝑏𝑐 (𝑅57) 𝑎𝑑𝑒𝑐𝑏 (𝑅57) 𝑎𝑒𝑑𝑏𝑐 (𝑅57) 𝑎𝑒𝑑𝑐𝑏

𝑅59 𝑎𝑑𝑐𝑒𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑑𝑒𝑏 (𝑅52) 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑐𝑒𝑑𝑏 (𝑅54) 𝑎𝑑𝑐𝑒𝑏 (𝑅52) 𝑎𝑑𝑒𝑐𝑏 (𝑅55) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅60 𝑎𝑑𝑐𝑒𝑏 𝑎𝑒𝑑𝑐𝑏 𝑎𝑑𝑐𝑒𝑏 (𝑅59) 𝑎𝑑𝑒𝑐𝑏 (𝑅58) 𝑎𝑒𝑑𝑐𝑏

𝑅61 𝑎𝑑𝑏𝑐𝑒 𝑎𝑒𝑑𝑐𝑏 𝑎𝑑𝑏𝑐𝑒 (𝑅58) 𝑎𝑑𝑏𝑒𝑐 (𝑅58) 𝑎𝑑𝑐𝑏𝑒 (𝑅58) 𝑎𝑑𝑐𝑒𝑏 (𝑅60) 𝑎𝑑𝑒𝑏𝑐 (𝑅58) 𝑎𝑑𝑒𝑐𝑏 (𝑅58) 𝑎𝑒𝑑𝑏𝑐 (𝑅58) 𝑎𝑒𝑑𝑐𝑏
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𝑅62 𝑎𝑐𝑑𝑏𝑒 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑑𝑏𝑒 (𝑅61) 𝑎𝑐𝑑𝑒𝑏 (𝑅60) 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑐𝑏𝑒 (𝑅58) 𝑎𝑑𝑐𝑒𝑏 (𝑅60) 𝑎𝑑𝑒𝑐𝑏 (𝑅58) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅63 𝑎𝑐𝑑𝑏𝑒 𝑎𝑒𝑐𝑑𝑏 𝑎𝑐𝑑𝑏𝑒 (𝑅62) 𝑎𝑐𝑑𝑒𝑏 (𝑅62) 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑑𝑏

𝑅64 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑒𝑑𝑏 𝑎𝑐𝑑𝑏𝑒 (𝑅63) 𝑎𝑐𝑑𝑒𝑏 𝑎𝑐𝑒𝑑𝑏

𝑅65 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑑𝑏 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅13) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑐𝑒𝑑𝑏 (𝑅13)
𝑅66 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑏𝑐𝑒 𝑎𝑐𝑑𝑏𝑒 (𝑅64) 𝑎𝑐𝑑𝑒𝑏 (𝑅65) 𝑎𝑐𝑒𝑑𝑏 (𝑅65) 𝑎𝑑𝑏𝑐𝑒 (𝑅61) 𝑎𝑑𝑐𝑏𝑒 (𝑅61) 𝑎𝑑𝑐𝑒𝑏

𝑅67 𝑎𝑑𝑏𝑐𝑒 𝑎𝑑𝑐𝑒𝑏 𝑎𝑑𝑏𝑐𝑒 (𝑅66) 𝑎𝑑𝑐𝑏𝑒 (𝑅66) 𝑎𝑑𝑐𝑒𝑏

𝑅68 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑐𝑒𝑏 𝑎𝑐𝑑𝑒𝑏 (𝑅66) 𝑎𝑐𝑒𝑑𝑏 (𝑅66) 𝑎𝑑𝑐𝑒𝑏

𝑅69 𝑎𝑐𝑏𝑒𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅70 𝑎𝑐𝑒𝑏𝑑 𝑎𝑑𝑐𝑒𝑏 𝑎𝑐𝑑𝑒𝑏 (𝑅68) 𝑎𝑐𝑒𝑏𝑑 (𝑅59) 𝑎𝑐𝑒𝑑𝑏 (𝑅68) 𝑎𝑑𝑐𝑒𝑏

𝑅71 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑑𝑏 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑑𝑏𝑒 (𝑅64) 𝑎𝑐𝑑𝑒𝑏 (𝑅13) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑐𝑒𝑑𝑏 (𝑅13)
𝑅72 𝑎𝑏𝑐𝑑𝑒 𝑎𝑑𝑐𝑒𝑏 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑑𝑐𝑒 (𝑅67) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑑𝑏𝑒 (𝑅71) 𝑎𝑐𝑑𝑒𝑏 (𝑅13) 𝑎𝑑𝑏𝑐𝑒 (𝑅67) 𝑎𝑑𝑐𝑏𝑒 (𝑅71) 𝑎𝑑𝑐𝑒𝑏 (𝑅71)
𝑅73 𝑎𝑐𝑏𝑒𝑑 𝑎𝑑𝑐𝑒𝑏 𝑎𝑐𝑏𝑑𝑒 (𝑅70) 𝑎𝑐𝑏𝑒𝑑 (𝑅70) 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅68) 𝑎𝑐𝑒𝑏𝑑 (𝑅69) 𝑎𝑐𝑒𝑑𝑏 (𝑅68) 𝑎𝑑𝑐𝑏𝑒 (𝑅67) 𝑎𝑑𝑐𝑒𝑏 (𝑅72)
𝑅74 𝑎𝑐𝑑𝑏𝑒 𝑎𝑑𝑐𝑒𝑏 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅68) 𝑎𝑑𝑐𝑏𝑒 (𝑅67) 𝑎𝑑𝑐𝑒𝑏 (𝑅73)
𝑅75 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑒𝑑𝑏 𝑎𝑐𝑑𝑏𝑒 (𝑅63) 𝑎𝑐𝑑𝑒𝑏 (𝑅74) 𝑎𝑐𝑒𝑑𝑏

𝑅76 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑏𝑑𝑒 (𝑅73) 𝑎𝑐𝑏𝑒𝑑 (𝑅73) 𝑎𝑐𝑑𝑏𝑒

𝑅77 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑒𝑑𝑏 𝑎𝑐𝑏𝑑𝑒 (𝑅75) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑑𝑏𝑒 (𝑅64) 𝑎𝑐𝑑𝑒𝑏 (𝑅65) 𝑎𝑐𝑒𝑏𝑑 (𝑅65) 𝑎𝑐𝑒𝑑𝑏 (𝑅65)
𝑅78 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅77) 𝑎𝑐𝑒𝑑𝑏 (𝑅77)
𝑅79 𝑎𝑐𝑑𝑒𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑑𝑒𝑏 (𝑅54) 𝑎𝑐𝑒𝑏𝑑 (𝑅54) 𝑎𝑐𝑒𝑑𝑏 (𝑅54) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅31)
𝑅80 𝑎𝑐𝑑𝑏𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅79) 𝑎𝑐𝑏𝑒𝑑 (𝑅76) 𝑎𝑐𝑑𝑏𝑒 (𝑅79) 𝑎𝑐𝑑𝑒𝑏 (𝑅54) 𝑎𝑐𝑒𝑏𝑑 (𝑅54) 𝑎𝑐𝑒𝑑𝑏 (𝑅54) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅31)
𝑅81 𝑎𝑐𝑏𝑒𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅80) 𝑎𝑐𝑒𝑏𝑑 (𝑅54) 𝑎𝑒𝑐𝑏𝑑

𝑅82 𝑎𝑐𝑑𝑏𝑒 𝑎𝑑𝑒𝑐𝑏 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅74) 𝑎𝑑𝑐𝑏𝑒 (𝑅74) 𝑎𝑑𝑐𝑒𝑏 (𝑅74) 𝑎𝑑𝑒𝑐𝑏 (𝑅74)
𝑅83 𝑎𝑐𝑑𝑏𝑒 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑑𝑏𝑒 (𝑅61) 𝑎𝑐𝑑𝑒𝑏 (𝑅60) 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑐𝑏𝑒 (𝑅58) 𝑎𝑑𝑐𝑒𝑏 (𝑅60) 𝑎𝑑𝑒𝑐𝑏 (𝑅58) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏 (𝑅82)
𝑅84 𝑎𝑐𝑏𝑒𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑏𝑒𝑑 (𝑅81) 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑐𝑒𝑑𝑏 (𝑅78) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏 (𝑅83)

Step 4: Fourthly, we will show that 𝑓 (𝑅) = 𝑎𝑑𝑐𝑏𝑒 . Once again, we assume this to be wrong, which means that 𝑓 (𝑅) ≠ 𝑎𝑑𝑐𝑏𝑒 . The

subsequent derivation shows taht this is impossible. We note that our assumption that 𝑓 (𝑅) ≠ 𝑎𝑑𝑐𝑏𝑒 is only used at profile 𝑅40
, i.e., 𝑅 = 𝑅40

.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅1 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (A, Step 1)

𝑅2 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑒𝑑𝑐𝑏 (A, Step 2)

𝑅3 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (A, Step 3)

𝑅4 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅5 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅6 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅7 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅6)
𝑅8 𝑎𝑏𝑑𝑒𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑑𝑒𝑐 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅1) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅7)
𝑅9 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅1) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅8)
𝑅10 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅9)
𝑅11 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅4) 𝑎𝑒𝑐𝑏𝑑 (𝑅10) 𝑎𝑒𝑐𝑑𝑏 (𝑅10)
𝑅12 𝑎𝑏𝑒𝑐𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅3) 𝑎𝑏𝑒𝑐𝑑 (𝑅3) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅10) 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅10) 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑

𝑅13 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅12) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅10) 𝑎𝑐𝑒𝑑𝑏 (𝑅11) 𝑎𝑒𝑏𝑐𝑑 (𝑅4) 𝑎𝑒𝑐𝑏𝑑 (𝑅10) 𝑎𝑒𝑐𝑑𝑏 (𝑅10)
𝑅14 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑐𝑒𝑑𝑏 (𝑅13)
𝑅15 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑

𝑅16 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 (𝑅2) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑏𝑐 (𝑅11) 𝑎𝑒𝑑𝑐𝑏 (𝑅11)
𝑅17 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑑𝑐𝑏 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅16) 𝑎𝑒𝑑𝑐𝑏 (𝑅16)
𝑅18 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑐𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 𝑎𝑒𝑑𝑐𝑏 (𝑅17)
𝑅19 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅20 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 (𝑅5) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅11)
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𝑅21 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅20)
𝑅22 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅10) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅10)
𝑅23 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅22) 𝑎𝑒𝑏𝑐𝑑 (𝑅10) 𝑒𝑎𝑏𝑐𝑑

𝑅24 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅10) 𝑎𝑒𝑐𝑑𝑏 (𝑅10) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅10) 𝑒𝑎𝑐𝑑𝑏 (𝑅11)
𝑅25 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅24) 𝑒𝑎𝑐𝑑𝑏 (𝑅24)
𝑅26 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅27 𝑎𝑏𝑐𝑒𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅23) 𝑎𝑏𝑒𝑐𝑑 (𝑅23) 𝑎𝑒𝑏𝑐𝑑 (𝑅23) 𝑒𝑎𝑏𝑐𝑑

𝑅28 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅23) 𝑎𝑏𝑒𝑐𝑑 (𝑅23) 𝑎𝑐𝑏𝑒𝑑 (𝑅27) 𝑎𝑐𝑒𝑏𝑑 (𝑅27) 𝑎𝑒𝑏𝑐𝑑 (𝑅23) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅25)
𝑅29 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑑𝑏 𝑎𝑐𝑏𝑒𝑑 (𝑅28) 𝑎𝑐𝑒𝑏𝑑 (𝑅28) 𝑎𝑐𝑒𝑑𝑏 (𝑅14) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑐𝑑𝑏

𝑅30 𝑎𝑐𝑏𝑒𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑏𝑒𝑑 (𝑅29) 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑐𝑒𝑑𝑏 (𝑅14) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅31 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑒𝑑𝑏 (𝑅30) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅32 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅27) 𝑎𝑒𝑏𝑐𝑑 (𝑅26) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅25)
𝑅33 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 (𝑅32) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅34 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 (𝑅33) 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅19) 𝑎𝑒𝑑𝑏𝑐 (𝑅1) 𝑎𝑒𝑑𝑐𝑏 (𝑅18)
𝑅35 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅34) 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅21)
𝑅36 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 (𝑅33) 𝑎𝑐𝑒𝑑𝑏 (𝑅31) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅19) 𝑎𝑒𝑑𝑏𝑐 (𝑅1) 𝑎𝑒𝑑𝑐𝑏 (𝑅18)
𝑅37 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅34) 𝑎𝑐𝑒𝑑𝑏 (𝑅36) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅21)
𝑅38 𝑎𝑐𝑏𝑒𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅39 𝑎𝑐𝑑𝑒𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑑𝑒𝑏 (𝑅37) 𝑎𝑐𝑒𝑏𝑑 (𝑅35) 𝑎𝑐𝑒𝑑𝑏 (𝑅37) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅21)
𝑅40 𝑎𝑐𝑏𝑒𝑑 𝑎𝑑𝑐𝑒𝑏 𝑎𝑐𝑏𝑑𝑒 (𝑅30) 𝑎𝑐𝑏𝑒𝑑 (𝑅30) 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 𝑎𝑐𝑒𝑏𝑑 (𝑅38) 𝑎𝑐𝑒𝑑𝑏 (𝑅14) 𝑎𝑑𝑐𝑏𝑒 (𝐴) 𝑎𝑑𝑐𝑒𝑏

𝑅41 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑑𝑒𝑏 𝑎𝑐𝑏𝑑𝑒 (𝑅40) 𝑎𝑐𝑏𝑒𝑑 (𝑅40) 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅39) 𝑎𝑐𝑒𝑏𝑑 (𝑅40) 𝑎𝑐𝑒𝑑𝑏 (𝑅14)
𝑅42 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑏𝑑𝑒 (𝑅41) 𝑎𝑐𝑏𝑒𝑑 (𝑅41) 𝑎𝑐𝑑𝑏𝑒

𝑅43 𝑎𝑐𝑑𝑏𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅39) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑑𝑏𝑒 (𝑅39) 𝑎𝑐𝑑𝑒𝑏 (𝑅37) 𝑎𝑐𝑒𝑏𝑑 (𝑅35) 𝑎𝑐𝑒𝑑𝑏 (𝑅37) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅21)
𝑅44 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑑𝑏𝑒 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅15) 𝑎𝑏𝑒𝑐𝑑 (𝑅13) 𝑎𝑐𝑏𝑑𝑒 (𝑅43) 𝑎𝑐𝑏𝑒𝑑 (𝑅42) 𝑎𝑐𝑑𝑏𝑒 (𝑅43)
𝑅45 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 (𝑅44)
𝑅46 𝑎𝑐𝑑𝑏𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅39) 𝑎𝑐𝑏𝑒𝑑 (𝑅42) 𝑎𝑐𝑑𝑏𝑒 (𝑅39) 𝑎𝑐𝑑𝑒𝑏 (𝑅37) 𝑎𝑐𝑒𝑏𝑑 (𝑅35) 𝑎𝑐𝑒𝑑𝑏 (𝑅37) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅21)
𝑅47 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 (𝑅46) 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 (𝑅45) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅6)

Step 5: Finally, we will show that the information we have inferred so far is contradictory.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅1 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (A, Step 1)

𝑅2 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑒𝑑𝑐𝑏 (A, Step 2)

𝑅3 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (A, Step 3)

𝑅4 𝑎𝑐𝑏𝑒𝑑 𝑎𝑑𝑐𝑒𝑏 𝑎𝑑𝑐𝑏𝑒 (A, Step 4)

𝑅5 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅6 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅7 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅8 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅7)
𝑅9 𝑎𝑏𝑑𝑒𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑑𝑒𝑐 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅1) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅8)
𝑅10 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅1) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅9)
𝑅11 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅10)
𝑅12 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅5) 𝑎𝑒𝑐𝑏𝑑 (𝑅11) 𝑎𝑒𝑐𝑑𝑏 (𝑅11)
𝑅13 𝑎𝑏𝑒𝑐𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅3) 𝑎𝑏𝑒𝑐𝑑 (𝑅3) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅11) 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅11) 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑

𝑅14 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅13) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅11) 𝑎𝑐𝑒𝑑𝑏 (𝑅12) 𝑎𝑒𝑏𝑐𝑑 (𝑅5) 𝑎𝑒𝑐𝑏𝑑 (𝑅11) 𝑎𝑒𝑐𝑑𝑏 (𝑅11)
𝑅15 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑐𝑒𝑑𝑏 (𝑅14)
𝑅16 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅17 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑
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𝑅18 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 (𝑅6) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅12)
𝑅19 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅18)
𝑅20 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 (𝑅4) 𝑎𝑐𝑑𝑏𝑒

𝑅21 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅11) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅11)
𝑅22 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅21) 𝑎𝑒𝑏𝑐𝑑 (𝑅11) 𝑒𝑎𝑏𝑐𝑑

𝑅23 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅11) 𝑎𝑒𝑐𝑑𝑏 (𝑅11) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅11) 𝑒𝑎𝑐𝑑𝑏 (𝑅12)
𝑅24 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅23) 𝑒𝑎𝑐𝑑𝑏 (𝑅23)
𝑅25 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅26 𝑎𝑐𝑏𝑒𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑏𝑒𝑑 (𝑅4) 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑐𝑒𝑑𝑏 (𝑅15) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅27 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑑𝑐𝑏 𝑎𝑏𝑒𝑐𝑑 (𝑅26) 𝑎𝑏𝑒𝑑𝑐 (𝑅26) 𝑎𝑒𝑏𝑐𝑑 (𝑅2) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑏𝑐 (𝑅12) 𝑎𝑒𝑑𝑐𝑏 (𝑅12)
𝑅28 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑐𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑑𝑏𝑐 (𝑅27) 𝑎𝑒𝑑𝑐𝑏 (𝑅27)
𝑅29 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑑𝑐𝑏 𝑎𝑐𝑒𝑑𝑏 (𝑅26) 𝑎𝑒𝑐𝑑𝑏 (𝑅2) 𝑎𝑒𝑑𝑐𝑏

𝑅30 𝑎𝑏𝑐𝑒𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅22) 𝑎𝑏𝑒𝑐𝑑 (𝑅22) 𝑎𝑒𝑏𝑐𝑑 (𝑅22) 𝑒𝑎𝑏𝑐𝑑

𝑅31 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅30) 𝑎𝑒𝑏𝑐𝑑 (𝑅25) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅24)
𝑅32 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 (𝑅31) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑

𝑅33 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 (𝑅32) 𝑎𝑐𝑒𝑑𝑏 (𝑅29) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑏𝑑𝑐 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅16) 𝑎𝑒𝑑𝑏𝑐 (𝑅1) 𝑎𝑒𝑑𝑐𝑏 (𝑅28)
𝑅34 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅33) 𝑎𝑐𝑒𝑑𝑏 (𝑅33) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅19)
𝑅35 𝑎𝑐𝑑𝑒𝑏 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑑𝑒𝑏 (𝑅34) 𝑎𝑐𝑒𝑏𝑑 (𝑅34) 𝑎𝑐𝑒𝑑𝑏 (𝑅34) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅19)
𝑅36 𝑎𝑐𝑑𝑏𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅35) 𝑎𝑐𝑏𝑒𝑑 (𝑅20) 𝑎𝑐𝑑𝑏𝑒 (𝑅35) 𝑎𝑐𝑑𝑒𝑏 (𝑅34) 𝑎𝑐𝑒𝑏𝑑 (𝑅34) 𝑎𝑐𝑒𝑑𝑏 (𝑅34) 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑐𝑑𝑏 (𝑅19)
𝑅37 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑑𝑏𝑒 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅17) 𝑎𝑏𝑒𝑐𝑑 (𝑅14) 𝑎𝑐𝑏𝑑𝑒 (𝑅36) 𝑎𝑐𝑏𝑒𝑑 (𝑅20) 𝑎𝑐𝑑𝑏𝑒 (𝑅36)
𝑅38 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 (𝑅36) 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅7)
𝑅39 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 (𝑅38) 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 (𝑅37)

Since Step 5 only uses the assumption on 𝑅∗ and the insights proven in the previous steps, this proves our lemma. □

Lemma 3. 𝑓 (𝑅+) ≠ 𝑒𝑎𝑐𝑏𝑑 .

Proof. We again assume for contradiction that 𝑓 (𝑅+) = 𝑒𝑎𝑐𝑏𝑑 and derive a contradiction in multiple steps.

Step 1: First, we will show that 𝑓 (𝑅) = 𝑒𝑎𝑐𝑏𝑑 for the profile 𝑅 where one voter reports 𝑐𝑒𝑎𝑏𝑑 and the other reports 𝑒𝑎𝑐𝑏𝑑 . The following

derivation shows that we get an impossibility if 𝑓 (𝑅) ≠ 𝑒𝑎𝑐𝑏𝑑 , thus proving our claim. Our assumption taht 𝑓 (𝑅) ≠ 𝑒𝑎𝑐𝑏𝑑 is used at profile

𝑅1
and 𝑅41

.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A)

𝑅1 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝐴) 𝑒𝑐𝑎𝑏𝑑

𝑅2 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅1) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅3 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑑𝑐 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑏𝑑𝑐 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅1) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅4 𝑒𝑎𝑏𝑑𝑐 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑏𝑑𝑐 (𝑅3) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅5 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅4) 𝑒𝑎𝑏𝑑𝑐 (𝑅4) 𝑒𝑎𝑐𝑏𝑑

𝑅6 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅7 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅6) 𝑎𝑒𝑐𝑏𝑑 (𝑅6)
𝑅8 𝑎𝑏𝑐𝑒𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅7) 𝑎𝑒𝑏𝑐𝑑 (𝑅7) 𝑎𝑒𝑐𝑏𝑑 (𝑅7)
𝑅9 𝑎𝑏𝑐𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅8) 𝑎𝑒𝑏𝑐𝑑 (𝑅8) 𝑎𝑒𝑐𝑏𝑑 (𝑅8) 𝑒𝑎𝑏𝑐𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅8)
𝑅10 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅9)
𝑅11 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅9)
𝑅12 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅11) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅13 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅12) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅14 𝑎𝑒𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅13) 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅1) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅15 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅14) 𝑎𝑒𝑐𝑏𝑑

𝑅16 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅10)
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𝑅17 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑

𝑅18 𝑎𝑏𝑑𝑒𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑑𝑒𝑐 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 (𝑅7) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅7)
𝑅19 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 (𝑅18) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅18)
𝑅20 𝑎𝑏𝑒𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 (𝑅19) 𝑎𝑒𝑏𝑑𝑐 (𝑅5) 𝑎𝑒𝑐𝑏𝑑 (𝑅19) 𝑒𝑎𝑏𝑐𝑑 (𝑅5) 𝑒𝑎𝑏𝑑𝑐 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅9)
𝑅21 𝑏𝑒𝑎𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 𝑏𝑒𝑎𝑑𝑐 𝑒𝑎𝑏𝑐𝑑 (𝑅5) 𝑒𝑎𝑏𝑑𝑐 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅20) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑎𝑑𝑐 (𝑅5)
𝑅22 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅21) 𝑒𝑏𝑎𝑐𝑑

𝑅23 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅22) 𝑒𝑏𝑎𝑐𝑑

𝑅24 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅15) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅16)
𝑅25 𝑎𝑐𝑒𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅15) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅17) 𝑒𝑎𝑐𝑏𝑑 (𝑅16) 𝑒𝑏𝑎𝑐𝑑 (𝑅24)
𝑅26 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅23) 𝑒𝑎𝑏𝑐𝑑 (𝑅17) 𝑒𝑎𝑐𝑏𝑑 (𝑅23) 𝑒𝑏𝑎𝑐𝑑 (𝑅25)
𝑅27 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅26)
𝑅28 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅1) 𝑒𝑏𝑎𝑐𝑑 (𝑅2) 𝑒𝑏𝑐𝑎𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑

𝑅29 𝑒𝑏𝑎𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅23) 𝑒𝑏𝑎𝑐𝑑 (𝑅28) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅+) 𝑒𝑐𝑏𝑎𝑑

𝑅30 𝑒𝑏𝑎𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅29) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑏𝑎𝑑

𝑅31 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅6)
𝑅32 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑑𝑒 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑑𝑒 (𝑅∗)
𝑅33 𝑎𝑐𝑒𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅15) 𝑎𝑒𝑐𝑏𝑑 (𝑅23) 𝑒𝑎𝑏𝑐𝑑 (𝑅17) 𝑒𝑎𝑐𝑏𝑑 (𝑅16) 𝑒𝑏𝑎𝑐𝑑 (𝑅24)
𝑅34 𝑎𝑐𝑒𝑏𝑑 𝑏𝑎𝑒𝑐𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅33) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅6) 𝑎𝑒𝑏𝑐𝑑 (𝑅15) 𝑎𝑒𝑐𝑏𝑑 (𝑅33) 𝑏𝑎𝑐𝑒𝑑 (𝑅33) 𝑏𝑎𝑒𝑐𝑑 (𝑅25)
𝑅35 𝑎𝑏𝑐𝑒𝑑 𝑏𝑎𝑒𝑐𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 𝑏𝑎𝑐𝑒𝑑 𝑏𝑎𝑒𝑐𝑑 (𝑅34)
𝑅36 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑏𝑑𝑐 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅3) 𝑒𝑎𝑏𝑑𝑐 (𝑅3) 𝑒𝑎𝑐𝑏𝑑 (𝑅16)
𝑅37 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅15) 𝑎𝑒𝑏𝑑𝑐 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅3) 𝑒𝑎𝑏𝑑𝑐 (𝑅3) 𝑒𝑎𝑐𝑏𝑑 (𝑅16)
𝑅38 𝑎𝑏𝑒𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅37) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅6) 𝑎𝑒𝑏𝑐𝑑 (𝑅15) 𝑎𝑒𝑏𝑑𝑐 (𝑅36) 𝑎𝑒𝑐𝑏𝑑 (𝑅19)
𝑅39 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 (𝑅38)
𝑅40 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅41 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝐴) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅42 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅27) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅12) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅43 𝑒𝑎𝑏𝑑𝑐 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅3) 𝑒𝑎𝑏𝑑𝑐 (𝑅3) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑎𝑑𝑐 (𝑅3) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅4) 𝑒𝑐𝑏𝑎𝑑

𝑅44 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅27) 𝑒𝑎𝑏𝑐𝑑 (𝑅43) 𝑒𝑎𝑐𝑏𝑑 (𝑅13) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅42) 𝑒𝑐𝑎𝑏𝑑 (𝑅40) 𝑒𝑐𝑏𝑎𝑑 (𝑅13)
𝑅45 𝑒𝑎𝑏𝑑𝑐 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅3) 𝑒𝑎𝑏𝑑𝑐 (𝑅3) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅30) 𝑒𝑏𝑎𝑑𝑐 (𝑅3) 𝑒𝑏𝑐𝑎𝑑 (𝑅44) 𝑒𝑐𝑎𝑏𝑑 (𝑅4) 𝑒𝑐𝑏𝑎𝑑 (𝑅44)
𝑅46 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅45) 𝑒𝑐𝑏𝑎𝑑 (𝑅45)
𝑅47 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑑𝑎 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅46) 𝑒𝑐𝑏𝑎𝑑 (𝑅46) 𝑒𝑐𝑏𝑑𝑎 (𝑅46)
𝑅48 𝑐𝑒𝑏𝑑𝑎 𝑒𝑎𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅46) 𝑐𝑒𝑏𝑑𝑎 (𝑅47) 𝑒𝑎𝑐𝑏𝑑 (𝑅1) 𝑒𝑐𝑎𝑏𝑑 (𝑅41) 𝑒𝑐𝑏𝑎𝑑 (𝑅46) 𝑒𝑐𝑏𝑑𝑎 (𝑅46)
𝑅49 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑑𝑎 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅48) 𝑐𝑒𝑏𝑑𝑎 (𝑅48)
𝑅50 𝑒𝑏𝑎𝑑𝑐 𝑒𝑐𝑏𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅30) 𝑒𝑏𝑎𝑑𝑐 (𝑅43) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑏𝑎𝑑

𝑅51 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅49) 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅1) 𝑒𝑏𝑎𝑐𝑑 (𝑅2) 𝑒𝑏𝑐𝑎𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑

𝑅52 𝑒𝑏𝑎𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅23) 𝑒𝑏𝑎𝑐𝑑 (𝑅28) 𝑒𝑏𝑐𝑎𝑑 (𝑅51) 𝑒𝑐𝑎𝑏𝑑 (𝑅+) 𝑒𝑐𝑏𝑎𝑑

𝑅53 𝑒𝑏𝑎𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅29) 𝑒𝑏𝑐𝑎𝑑 (𝑅52) 𝑒𝑐𝑏𝑎𝑑

𝑅54 𝑏𝑎𝑒𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅53) 𝑏𝑒𝑐𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅30) 𝑒𝑏𝑐𝑎𝑑 (𝑅44) 𝑒𝑐𝑏𝑎𝑑 (𝑅44)
𝑅55 𝑏𝑒𝑎𝑑𝑐 𝑒𝑐𝑏𝑎𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅53) 𝑏𝑒𝑎𝑑𝑐 (𝑅50) 𝑏𝑒𝑐𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅30) 𝑒𝑏𝑎𝑑𝑐 (𝑅43) 𝑒𝑏𝑐𝑎𝑑 (𝑅53) 𝑒𝑐𝑏𝑎𝑑 (𝑅54)
𝑅56 𝑏𝑒𝑎𝑑𝑐 𝑏𝑒𝑐𝑎𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅55) 𝑏𝑒𝑎𝑑𝑐 (𝑅55) 𝑏𝑒𝑐𝑎𝑑

𝑅57 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑

𝑅58 𝑒𝑏𝑎𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅28) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅+) 𝑒𝑐𝑏𝑎𝑑

𝑅59 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅33) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅33) 𝑒𝑎𝑐𝑏𝑑 (𝑅16) 𝑒𝑐𝑎𝑏𝑑 (𝑅33) 𝑒𝑐𝑏𝑎𝑑 (𝑅25)
𝑅60 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅59) 𝑒𝑐𝑎𝑏𝑑 (𝑅59) 𝑒𝑐𝑏𝑎𝑑 (𝑅59)
𝑅61 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅49) 𝑒𝑏𝑐𝑎𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑

𝑅62 𝑏𝑒𝑎𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅53) 𝑏𝑒𝑐𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅30) 𝑒𝑏𝑐𝑎𝑑 (𝑅53) 𝑒𝑐𝑏𝑎𝑑 (𝑅54)
𝑅63 𝑏𝑒𝑎𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅52) 𝑏𝑒𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅22) 𝑒𝑏𝑎𝑐𝑑 (𝑅58) 𝑒𝑏𝑐𝑎𝑑 (𝑅52) 𝑒𝑐𝑎𝑏𝑑 (𝑅+) 𝑒𝑐𝑏𝑎𝑑 (𝑅62)
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𝑅64 𝑏𝑒𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑏𝑒𝑐𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅52) 𝑒𝑐𝑎𝑏𝑑 (𝑅29) 𝑒𝑐𝑏𝑎𝑑 (𝑅63)
𝑅65 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅22) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅46) 𝑒𝑐𝑎𝑏𝑑 (𝑅23) 𝑒𝑐𝑏𝑎𝑑 (𝑅46)
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𝑅68 𝑏𝑒𝑐𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 𝑏𝑐𝑒𝑎𝑑 (𝑅67) 𝑏𝑒𝑐𝑎𝑑 (𝑅67) 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅64) 𝑐𝑒𝑏𝑎𝑑 (𝑅49) 𝑒𝑏𝑐𝑎𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑 (𝑅64)
𝑅69 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅68) 𝑐𝑒𝑏𝑎𝑑 (𝑅49)
𝑅70 𝑏𝑒𝑐𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅56) 𝑏𝑒𝑐𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅64)
𝑅71 𝑒𝑏𝑎𝑑𝑐 𝑒𝑐𝑏𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅30) 𝑒𝑏𝑎𝑑𝑐 (𝑅43) 𝑒𝑏𝑐𝑎𝑑 (𝑅53) 𝑒𝑐𝑏𝑎𝑑

𝑅72 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑐𝑑𝑎 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅49) 𝑐𝑒𝑏𝑑𝑎 (𝑅49) 𝑒𝑏𝑐𝑎𝑑 (𝑅2) 𝑒𝑏𝑐𝑑𝑎 (𝑅67) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑 (𝑅67) 𝑒𝑐𝑏𝑑𝑎 (𝑅49)
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𝑅74 𝑒𝑏𝑐𝑑𝑎 𝑒𝑐𝑏𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅53) 𝑒𝑏𝑐𝑑𝑎 (𝑅73) 𝑒𝑐𝑏𝑎𝑑 𝑒𝑐𝑏𝑑𝑎 (𝑅73)
𝑅75 𝑒𝑏𝑑𝑐𝑎 𝑒𝑐𝑏𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅53) 𝑒𝑏𝑐𝑑𝑎 (𝑅74) 𝑒𝑏𝑑𝑐𝑎 (𝑅71) 𝑒𝑐𝑏𝑎𝑑 𝑒𝑐𝑏𝑑𝑎 (𝑅74)
𝑅76 𝑏𝑒𝑑𝑐𝑎 𝑒𝑐𝑏𝑎𝑑 𝑏𝑒𝑐𝑎𝑑 𝑏𝑒𝑐𝑑𝑎 (𝑅74) 𝑏𝑒𝑑𝑐𝑎 (𝑅75) 𝑒𝑏𝑐𝑎𝑑 (𝑅53) 𝑒𝑏𝑐𝑑𝑎 (𝑅74) 𝑒𝑏𝑑𝑐𝑎 (𝑅71) 𝑒𝑐𝑏𝑎𝑑 (𝑅62) 𝑒𝑐𝑏𝑑𝑎 (𝑅62)
𝑅77 𝑏𝑒𝑐𝑎𝑑 𝑏𝑒𝑑𝑐𝑎 𝑏𝑒𝑐𝑎𝑑 𝑏𝑒𝑐𝑑𝑎 (𝑅76) 𝑏𝑒𝑑𝑐𝑎 (𝑅76)
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𝑅79 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅6)
𝑅80 𝑐𝑏𝑒𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅69) 𝑐𝑒𝑏𝑎𝑑 (𝑅46) 𝑒𝑎𝑐𝑏𝑑 (𝑅1) 𝑒𝑐𝑎𝑏𝑑 (𝑅41) 𝑒𝑐𝑏𝑎𝑑 (𝑅46)
𝑅81 𝑐𝑏𝑒𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑏𝑐𝑒𝑎𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅28) 𝑏𝑒𝑐𝑎𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅69) 𝑒𝑏𝑎𝑐𝑑 (𝑅28) 𝑒𝑏𝑐𝑎𝑑 (𝑅28) 𝑒𝑐𝑏𝑎𝑑 (𝑅80)
𝑅82 𝑏𝑐𝑒𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑏𝑐𝑒𝑎𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅70) 𝑏𝑒𝑐𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅81) 𝑒𝑏𝑐𝑎𝑑 (𝑅70)
𝑅83 𝑏𝑒𝑐𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅56) 𝑏𝑒𝑐𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅82) 𝑒𝑏𝑐𝑎𝑑 (𝑅64)
𝑅84 𝑏𝑒𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅56) 𝑏𝑒𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅64) 𝑒𝑏𝑎𝑐𝑑 (𝑅83) 𝑒𝑏𝑐𝑎𝑑 (𝑅64)
𝑅85 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅27) 𝑒𝑎𝑏𝑐𝑑 (𝑅43) 𝑒𝑎𝑐𝑏𝑑 (𝑅13) 𝑒𝑏𝑎𝑐𝑑 (𝑅30) 𝑒𝑏𝑐𝑎𝑑 (𝑅42) 𝑒𝑐𝑎𝑏𝑑 (𝑅40) 𝑒𝑐𝑏𝑎𝑑 (𝑅13)
𝑅86 𝑎𝑒𝑏𝑐𝑑 𝑏𝑒𝑐𝑎𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅84) 𝑎𝑒𝑏𝑐𝑑 (𝑅84) 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅85) 𝑏𝑒𝑐𝑎𝑑 (𝑅85) 𝑒𝑎𝑏𝑐𝑑 (𝑅42) 𝑒𝑏𝑎𝑐𝑑 (𝑅85) 𝑒𝑏𝑐𝑎𝑑 (𝑅42)
𝑅87 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑐𝑎𝑑 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅54) 𝑏𝑒𝑐𝑎𝑑 (𝑅86)
𝑅88 𝑎𝑒𝑏𝑐𝑑 𝑏𝑎𝑒𝑐𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅86) 𝑎𝑒𝑏𝑐𝑑 (𝑅86) 𝑏𝑎𝑒𝑐𝑑

𝑅89 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑐𝑑𝑎 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅54) 𝑏𝑒𝑐𝑎𝑑 (𝑅87) 𝑏𝑒𝑐𝑑𝑎 (𝑅87)
𝑅90 𝑏𝑒𝑐𝑎𝑑 𝑏𝑒𝑑𝑎𝑐 𝑏𝑒𝑎𝑐𝑑 (𝑅56) 𝑏𝑒𝑎𝑑𝑐 (𝑅56) 𝑏𝑒𝑐𝑎𝑑 𝑏𝑒𝑐𝑑𝑎 (𝑅77) 𝑏𝑒𝑑𝑎𝑐 (𝑅56) 𝑏𝑒𝑑𝑐𝑎 (𝑅77)
𝑅91 𝑏𝑑𝑒𝑎𝑐 𝑏𝑒𝑐𝑎𝑑 𝑏𝑑𝑒𝑎𝑐 (𝑅90) 𝑏𝑑𝑒𝑐𝑎 (𝑅77) 𝑏𝑒𝑎𝑐𝑑 (𝑅56) 𝑏𝑒𝑎𝑑𝑐 (𝑅56) 𝑏𝑒𝑐𝑎𝑑 𝑏𝑒𝑐𝑑𝑎 (𝑅77) 𝑏𝑒𝑑𝑎𝑐 (𝑅56) 𝑏𝑒𝑑𝑐𝑎 (𝑅77)
𝑅92 𝑏𝑑𝑒𝑎𝑐 𝑏𝑒𝑐𝑑𝑎 𝑏𝑑𝑒𝑎𝑐 (𝑅91) 𝑏𝑑𝑒𝑐𝑎 (𝑅91) 𝑏𝑒𝑐𝑑𝑎 𝑏𝑒𝑑𝑎𝑐 (𝑅91) 𝑏𝑒𝑑𝑐𝑎

𝑅93 𝑏𝑑𝑎𝑒𝑐 𝑏𝑒𝑐𝑑𝑎 𝑏𝑑𝑎𝑒𝑐 (𝑅92) 𝑏𝑑𝑒𝑎𝑐 (𝑅92) 𝑏𝑑𝑒𝑐𝑎 (𝑅92) 𝑏𝑒𝑐𝑑𝑎 𝑏𝑒𝑑𝑎𝑐 (𝑅92) 𝑏𝑒𝑑𝑐𝑎

𝑅94 𝑏𝑑𝑎𝑒𝑐 𝑏𝑒𝑐𝑑𝑎 𝑏𝑑𝑎𝑒𝑐 (𝑅92) 𝑏𝑑𝑒𝑎𝑐 (𝑅92) 𝑏𝑑𝑒𝑐𝑎 (𝑅92) 𝑏𝑒𝑐𝑑𝑎 (𝑅89) 𝑏𝑒𝑑𝑎𝑐 (𝑅92) 𝑏𝑒𝑑𝑐𝑎

𝑅95 𝑏𝑑𝑎𝑒𝑐 𝑏𝑒𝑑𝑐𝑎 𝑏𝑑𝑎𝑒𝑐 (𝑅93) 𝑏𝑑𝑒𝑎𝑐 (𝑅93) 𝑏𝑑𝑒𝑐𝑎 (𝑅94) 𝑏𝑒𝑑𝑎𝑐 (𝑅94) 𝑏𝑒𝑑𝑐𝑎

𝑅96 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑑𝑐𝑎 𝑏𝑎𝑒𝑐𝑑 𝑏𝑎𝑒𝑑𝑐 (𝑅95) 𝑏𝑒𝑎𝑐𝑑 (𝑅54) 𝑏𝑒𝑎𝑑𝑐 𝑏𝑒𝑐𝑎𝑑 (𝑅87) 𝑏𝑒𝑐𝑑𝑎 (𝑅76) 𝑏𝑒𝑑𝑎𝑐 (𝑅76) 𝑏𝑒𝑑𝑐𝑎 (𝑅76)
𝑅97 𝑏𝑎𝑑𝑒𝑐 𝑏𝑒𝑑𝑐𝑎 𝑏𝑎𝑑𝑒𝑐 (𝑅95) 𝑏𝑎𝑒𝑑𝑐 (𝑅95) 𝑏𝑑𝑎𝑒𝑐 (𝑅95) 𝑏𝑑𝑒𝑎𝑐 (𝑅95) 𝑏𝑑𝑒𝑐𝑎 (𝑅95) 𝑏𝑒𝑎𝑑𝑐 𝑏𝑒𝑑𝑎𝑐 (𝑅95) 𝑏𝑒𝑑𝑐𝑎 (𝑅96)
𝑅98 𝑏𝑎𝑑𝑒𝑐 𝑏𝑒𝑎𝑑𝑐 𝑏𝑎𝑑𝑒𝑐 (𝑅97) 𝑏𝑎𝑒𝑑𝑐 (𝑅97) 𝑏𝑒𝑎𝑑𝑐

𝑅99 𝑏𝑎𝑒𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅53) 𝑏𝑒𝑐𝑎𝑑 (𝑅87) 𝑒𝑏𝑎𝑐𝑑 (𝑅30) 𝑒𝑏𝑐𝑎𝑑 (𝑅44) 𝑒𝑐𝑏𝑎𝑑 (𝑅44)
𝑅100 𝑏𝑎𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅88) 𝑎𝑒𝑏𝑐𝑑 (𝑅88) 𝑎𝑒𝑐𝑏𝑑 (𝑅20) 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅87) 𝑒𝑎𝑏𝑐𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅9) 𝑒𝑏𝑎𝑐𝑑 (𝑅99)
𝑅101 𝑎𝑐𝑒𝑏𝑑 𝑏𝑎𝑒𝑐𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅33) 𝑎𝑐𝑏𝑒𝑑 (𝑅100) 𝑎𝑐𝑒𝑏𝑑 (𝑅6) 𝑎𝑒𝑏𝑐𝑑 (𝑅15) 𝑎𝑒𝑐𝑏𝑑 (𝑅33) 𝑏𝑎𝑐𝑒𝑑 (𝑅33) 𝑏𝑎𝑒𝑐𝑑 (𝑅25)
𝑅102 𝑎𝑏𝑐𝑒𝑑 𝑏𝑎𝑒𝑐𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅88) 𝑏𝑎𝑐𝑒𝑑 (𝑅101) 𝑏𝑎𝑒𝑐𝑑 (𝑅34)
𝑅103 𝑏𝑎𝑑𝑐𝑒 𝑏𝑒𝑎𝑑𝑐 𝑏𝑎𝑑𝑐𝑒 (𝑅98) 𝑏𝑎𝑑𝑒𝑐 (𝑅98) 𝑏𝑎𝑒𝑑𝑐 (𝑅98) 𝑏𝑒𝑎𝑑𝑐

𝑅104 𝑎𝑏𝑐𝑒𝑑 𝑏𝑒𝑎𝑐𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅102) 𝑏𝑎𝑐𝑒𝑑 (𝑅102) 𝑏𝑎𝑒𝑐𝑑 (𝑅35) 𝑏𝑒𝑎𝑐𝑑 (𝑅102)
𝑅105 𝑎𝑐𝑏𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅79) 𝑎𝑏𝑒𝑐𝑑 (𝑅78) 𝑎𝑐𝑏𝑑𝑒 (𝑅32) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅31) 𝑎𝑒𝑏𝑐𝑑 (𝑅79) 𝑎𝑒𝑐𝑏𝑑 (𝑅78)
𝑅106 𝑎𝑐𝑏𝑑𝑒 𝑏𝑎𝑒𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅105) 𝑎𝑏𝑒𝑐𝑑 (𝑅34) 𝑎𝑐𝑏𝑑𝑒 (𝑅32) 𝑎𝑐𝑏𝑒𝑑 (𝑅100) 𝑏𝑎𝑐𝑑𝑒 𝑏𝑎𝑐𝑒𝑑 (𝑅34) 𝑏𝑎𝑒𝑐𝑑 (𝑅34)
𝑅107 𝑎𝑏𝑐𝑒𝑑 𝑏𝑒𝑎𝑑𝑐 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅102) 𝑎𝑏𝑒𝑑𝑐 (𝑅39) 𝑏𝑎𝑐𝑒𝑑 (𝑅102) 𝑏𝑎𝑒𝑐𝑑 (𝑅35) 𝑏𝑎𝑒𝑑𝑐 (𝑅102) 𝑏𝑒𝑎𝑐𝑑 (𝑅102) 𝑏𝑒𝑎𝑑𝑐 (𝑅104)
𝑅108 𝑏𝑎𝑐𝑑𝑒 𝑏𝑒𝑎𝑑𝑐 𝑏𝑎𝑐𝑑𝑒 (𝑅103) 𝑏𝑎𝑐𝑒𝑑 (𝑅103) 𝑏𝑎𝑑𝑐𝑒 (𝑅98) 𝑏𝑎𝑑𝑒𝑐 (𝑅98) 𝑏𝑎𝑒𝑐𝑑 𝑏𝑎𝑒𝑑𝑐 (𝑅107) 𝑏𝑒𝑎𝑐𝑑 (𝑅107) 𝑏𝑒𝑎𝑑𝑐 (𝑅107)
𝑅109 𝑏𝑎𝑐𝑑𝑒 𝑏𝑎𝑒𝑐𝑑 𝑏𝑎𝑐𝑑𝑒 (𝑅108) 𝑏𝑎𝑐𝑒𝑑 (𝑅108) 𝑏𝑎𝑒𝑐𝑑 (𝑅106)
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Step 2: Our next goal is to show that 𝑓 (𝑅) = 𝑎𝑒𝑏𝑐𝑑 for the profile 𝑅 where one voter reports 𝑎𝑒𝑏𝑐𝑑 and teh other reports 𝑒𝑐𝑎𝑏𝑑 . We hence

assume htat 𝑓 (𝑅) ≠ 𝑎𝑒𝑏𝑐𝑑 and derive a contradiction, as shown in the following table. The profile 𝑅 appears at Steps 2 and 11 (i.e., 𝑅2
and

𝑅11
) of our derivation.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A)

𝑅1 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A, Step 1)

𝑅2 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝐴) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅3 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅4 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅5 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅4) 𝑎𝑒𝑐𝑏𝑑 (𝑅4)
𝑅6 𝑎𝑏𝑐𝑒𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅5) 𝑎𝑒𝑏𝑐𝑑 (𝑅5) 𝑎𝑒𝑐𝑏𝑑 (𝑅5)
𝑅7 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅8 𝑎𝑏𝑐𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅6) 𝑎𝑒𝑏𝑐𝑑 (𝑅6) 𝑎𝑒𝑐𝑏𝑑 (𝑅6) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅6)
𝑅9 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅7) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅8)
𝑅10 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅9) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅11 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝐴) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅10) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅12 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅11) 𝑒𝑎𝑐𝑏𝑑 (𝑅11) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅13 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅12) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅12) 𝑒𝑐𝑎𝑏𝑑 (𝑅3) 𝑒𝑐𝑏𝑎𝑑 (𝑅12)
𝑅14 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅13)
𝑅15 𝑒𝑎𝑏𝑑𝑐 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅16 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅15) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑

𝑅17 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑

𝑅18 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅11) 𝑎𝑒𝑐𝑏𝑑

𝑅19 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅11) 𝑎𝑒𝑐𝑏𝑑

𝑅20 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅18) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅12)
𝑅21 𝑎𝑐𝑒𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅18) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅17) 𝑒𝑎𝑐𝑏𝑑 (𝑅12) 𝑒𝑏𝑎𝑐𝑑 (𝑅20)
𝑅22 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅19) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅21) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅21)
𝑅23 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅22)
𝑅24 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅19) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅22) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅22) 𝑒𝑏𝑐𝑎𝑑 (𝑅22) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑

𝑅25 𝑐𝑎𝑒𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅24) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅14)
𝑅26 𝑎𝑏𝑑𝑒𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑑𝑒𝑐 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 (𝑅5) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅5)
𝑅27 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅25) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅25)
𝑅28 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 (𝑅26) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅26)
𝑅29 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1)
𝑅30 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅29) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅21) 𝑒𝑏𝑐𝑎𝑑 (𝑅27) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑 (𝑅27)
𝑅31 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅30) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅22)
𝑅32 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅31) 𝑒𝑎𝑏𝑐𝑑 (𝑅31) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅23)
𝑅33 𝑎𝑏𝑒𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑏𝑐𝑑 (𝑅28) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅28) 𝑒𝑎𝑏𝑐𝑑 (𝑅16) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 (𝑅28)
𝑅34 𝑏𝑒𝑎𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅31) 𝑏𝑒𝑎𝑑𝑐 (𝑅32) 𝑒𝑎𝑏𝑐𝑑 (𝑅16) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 (𝑅33) 𝑒𝑏𝑎𝑐𝑑 (𝑅23) 𝑒𝑏𝑎𝑑𝑐 (𝑅31)
𝑅35 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅15) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 (𝑅34)
𝑅36 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑑𝑐 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅29) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 (𝑅35) 𝑒𝑐𝑎𝑏𝑑 (𝑅1)
𝑅37 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅31) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅23) 𝑒𝑏𝑐𝑎𝑑 (𝑅24) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅38 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 (𝑅36) 𝑎𝑒𝑏𝑐𝑑 (𝑅18) 𝑎𝑒𝑏𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 (𝑅35) 𝑒𝑎𝑏𝑐𝑑 (𝑅15) 𝑒𝑎𝑏𝑑𝑐 (𝑅20) 𝑒𝑎𝑐𝑏𝑑 (𝑅12)
𝑅39 𝑎𝑐𝑒𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅38) 𝑎𝑒𝑏𝑐𝑑 (𝑅18) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅17) 𝑒𝑎𝑐𝑏𝑑 (𝑅12) 𝑒𝑏𝑎𝑐𝑑 (𝑅20)
𝑅40 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅19) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅21) 𝑒𝑎𝑐𝑏𝑑 (𝑅39) 𝑒𝑏𝑎𝑐𝑑 (𝑅21)
𝑅41 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅32) 𝑎𝑒𝑏𝑐𝑑 (𝑅7) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅31) 𝑒𝑎𝑐𝑏𝑑 (𝑅8)
𝑅42 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅19) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅22) 𝑒𝑎𝑐𝑏𝑑 (𝑅40) 𝑒𝑏𝑎𝑐𝑑 (𝑅22) 𝑒𝑏𝑐𝑎𝑑 (𝑅22) 𝑒𝑐𝑎𝑏𝑑 (𝑅37) 𝑒𝑐𝑏𝑎𝑑 (𝑅40)
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𝑅43 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅31) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅23) 𝑒𝑏𝑐𝑎𝑑 (𝑅24) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑 (𝑅42)
𝑅44 𝑎𝑏𝑐𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅41) 𝑎𝑏𝑒𝑐𝑑 (𝑅32) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅6) 𝑎𝑒𝑏𝑐𝑑 (𝑅6) 𝑎𝑒𝑐𝑏𝑑 (𝑅6) 𝑒𝑎𝑏𝑐𝑑 (𝑅31) 𝑒𝑎𝑐𝑏𝑑 (𝑅6)
𝑅45 𝑐𝑏𝑒𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑐𝑏𝑑 (𝑅44) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑 (𝑅43)
𝑅46 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑐𝑏𝑑 (𝑅45) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑 (𝑅43)

Step 3: As the next step, we will show that 𝑓 (𝑅) = 𝑎𝑒𝑏𝑐𝑑 for the profile 𝑅 where one voter reports 𝑎𝑐𝑒𝑏𝑑 and the other reports 𝑎𝑒𝑏𝑐𝑑 . Once

again, we assume for contradiction that this is not true and derive a contraidction. The profile 𝑅 is called 𝑅3
in the subsequent derivation.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A)

𝑅1 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A, Step 1)

𝑅2 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (A, Step 2)

𝑅3 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝐴) 𝑎𝑒𝑐𝑏𝑑 (𝑅2)
𝑅4 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅5 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅4)
𝑅6 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑑𝑒 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑑𝑒 (𝑅∗)
𝑅7 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑐𝑏𝑑

𝑅8 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅9 𝑒𝑎𝑏𝑑𝑐 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅10 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅9) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑

𝑅11 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅2)
𝑅12 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅4)
𝑅13 𝑎𝑐𝑏𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅12) 𝑎𝑏𝑒𝑐𝑑 (𝑅3) 𝑎𝑐𝑏𝑑𝑒 (𝑅6) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅5) 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅2)
𝑅14 𝑎𝑐𝑏𝑑𝑒 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅5) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑒𝑎𝑐𝑏𝑑 (𝑅13)
𝑅15 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑒𝑎𝑐𝑏𝑑 (𝑅14)
𝑅16 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑐𝑏𝑑 (𝑅15)
𝑅17 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 (𝑅16)
𝑅18 𝑎𝑐𝑒𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 (𝑅3) 𝑒𝑎𝑐𝑏𝑑 (𝑅16) 𝑒𝑏𝑎𝑐𝑑 (𝑅17)
𝑅19 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅18) 𝑒𝑎𝑐𝑏𝑑 (𝑅16) 𝑒𝑐𝑎𝑏𝑑 (𝑅8) 𝑒𝑐𝑏𝑎𝑑 (𝑅18)
𝑅20 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅19) 𝑒𝑐𝑎𝑏𝑑 (𝑅19) 𝑒𝑐𝑏𝑎𝑑 (𝑅19)
𝑅21 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1)
𝑅22 𝑐𝑎𝑒𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅20) 𝑒𝑏𝑐𝑎𝑑 (𝑅20) 𝑒𝑐𝑎𝑏𝑑 (𝑅20) 𝑒𝑐𝑏𝑎𝑑 (𝑅20)
𝑅23 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅21) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅18) 𝑒𝑏𝑐𝑎𝑑 (𝑅18) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅24 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅23) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅22)
𝑅25 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑑𝑐 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅3) 𝑎𝑒𝑏𝑑𝑐 (𝑅3) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 (𝑅3) 𝑒𝑎𝑏𝑑𝑐 (𝑅17) 𝑒𝑎𝑐𝑏𝑑 (𝑅16)
𝑅26 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑑𝑐 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅21) 𝑒𝑎𝑏𝑑𝑐 (𝑅25) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1)
𝑅27 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅9) 𝑒𝑎𝑏𝑑𝑐 (𝑅26) 𝑒𝑎𝑐𝑏𝑑

𝑅28 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅21) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅18) 𝑒𝑏𝑐𝑎𝑑 (𝑅18) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑 (𝑅24)
𝑅29 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅27) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅28)
𝑅30 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅31 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅30) 𝑒𝑎𝑏𝑐𝑑 (𝑅30) 𝑒𝑎𝑐𝑏𝑑 (𝑅30)
𝑅32 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅29) 𝑒𝑎𝑏𝑐𝑑 (𝑅27) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅29)
𝑅33 𝑏𝑒𝑎𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅29) 𝑏𝑒𝑎𝑑𝑐 (𝑅32) 𝑒𝑎𝑏𝑐𝑑 (𝑅10) 𝑒𝑎𝑏𝑑𝑐 (𝑅27) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅29) 𝑒𝑏𝑎𝑑𝑐 (𝑅27)
𝑅34 𝑎𝑏𝑒𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅32) 𝑎𝑏𝑒𝑑𝑐 (𝑅33) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑏𝑑𝑐 (𝑅27) 𝑎𝑒𝑐𝑏𝑑 (𝑅31) 𝑒𝑎𝑏𝑐𝑑 (𝑅31) 𝑒𝑎𝑏𝑑𝑐 (𝑅27) 𝑒𝑎𝑐𝑏𝑑 (𝑅31)
𝑅35 𝑎𝑏𝑒𝑑𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅34) 𝑎𝑏𝑒𝑑𝑐 (𝑅34) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑏𝑑𝑐 (𝑅34) 𝑎𝑒𝑐𝑏𝑑 (𝑅11)
𝑅36 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅4) 𝑎𝑒𝑐𝑏𝑑 (𝑅11)
𝑅37 𝑎𝑏𝑑𝑒𝑐 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑑𝑒𝑐 (𝑅35) 𝑎𝑏𝑒𝑐𝑑 (𝑅35) 𝑎𝑏𝑒𝑑𝑐 (𝑅35) 𝑎𝑒𝑏𝑐𝑑 (𝑅36) 𝑎𝑒𝑏𝑑𝑐 (𝑅35) 𝑎𝑒𝑐𝑏𝑑 (𝑅11)
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Step 4: Fourthly, we will show that 𝑓 (𝑅) = 𝑎𝑏𝑒𝑐𝑑 for the profile 𝑅 where one voter reports 𝑎𝑐𝑏𝑑𝑒 and the other reports 𝑎𝑒𝑏𝑐𝑑 . In more

detail, the following derivation shows that 𝑓 (𝑅) ≠ 𝑎𝑏𝑒𝑐𝑑 results in a contradiction. The profile 𝑅 is called 𝑅9
in the following table.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A)

𝑅1 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A, Step 1)

𝑅2 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (A, Step 2)

𝑅3 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (A, Step 3)

𝑅4 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑑𝑒 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑑𝑒 (𝑅∗)
𝑅5 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3)
𝑅6 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑎𝑒𝑐𝑑𝑏

𝑅7 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅8 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅7)
𝑅9 𝑎𝑐𝑏𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅8) 𝑎𝑏𝑒𝑐𝑑 (𝐴) 𝑎𝑐𝑏𝑑𝑒 (𝑅4) 𝑎𝑐𝑏𝑒𝑑 (𝑅3) 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅8) 𝑎𝑒𝑐𝑏𝑑 (𝑅3)
𝑅10 𝑎𝑐𝑑𝑒𝑏 𝑎𝑒𝑏𝑐𝑑 𝑎𝑐𝑑𝑒𝑏 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑐𝑒𝑑𝑏 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅9) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑎𝑒𝑐𝑑𝑏

𝑅11 𝑎𝑒𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑐𝑎𝑒𝑏𝑑 (𝑅3) 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅12 𝑎𝑒𝑏𝑐𝑑 𝑐𝑎𝑒𝑑𝑏 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑐𝑒𝑑𝑏 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅10) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑎𝑒𝑐𝑑𝑏 𝑐𝑎𝑒𝑏𝑑 (𝑅3) 𝑐𝑎𝑒𝑑𝑏 (𝑅11)
𝑅13 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 (𝑅12) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑎𝑒𝑐𝑑𝑏

𝑅14 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 (𝑅9) 𝑎𝑒𝑏𝑐𝑑 (𝑅7)
𝑅15 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 (𝑅13) 𝑎𝑒𝑏𝑐𝑑 (𝑅13) 𝑎𝑒𝑐𝑏𝑑 (𝑅6) 𝑎𝑒𝑐𝑑𝑏

𝑅16 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅17 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅16) 𝑒𝑎𝑏𝑐𝑑 (𝑅16) 𝑒𝑎𝑐𝑏𝑑 (𝑅16)
𝑅18 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 (𝑅14) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅7) 𝑎𝑒𝑐𝑏𝑑 (𝑅5)
𝑅19 𝑎𝑏𝑐𝑒𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅18) 𝑎𝑒𝑏𝑐𝑑 (𝑅18) 𝑎𝑒𝑐𝑏𝑑 (𝑅5)
𝑅20 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅15) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅16) 𝑒𝑎𝑏𝑐𝑑 (𝑅16) 𝑒𝑎𝑐𝑏𝑑 (𝑅16)
𝑅21 𝑎𝑏𝑐𝑒𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑏𝑐𝑒𝑑 (𝑅15) 𝑎𝑏𝑒𝑐𝑑 (𝑅13) 𝑎𝑐𝑏𝑒𝑑 (𝑅15) 𝑎𝑐𝑒𝑏𝑑 (𝑅19) 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 (𝑅13) 𝑎𝑒𝑐𝑏𝑑 (𝑅6) 𝑎𝑒𝑐𝑑𝑏 (𝑅19)
𝑅22 𝑎𝑏𝑐𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅21) 𝑎𝑏𝑒𝑐𝑑 (𝑅20) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅19) 𝑎𝑒𝑏𝑐𝑑 (𝑅19) 𝑎𝑒𝑐𝑏𝑑 (𝑅17) 𝑒𝑎𝑏𝑐𝑑 (𝑅17) 𝑒𝑎𝑐𝑏𝑑 (𝑅17)
𝑅23 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅22) 𝑎𝑐𝑏𝑒𝑑

𝑅24 𝑎𝑐𝑏𝑒𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅23) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅3) 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅8) 𝑎𝑒𝑐𝑏𝑑 (𝑅3)
𝑅25 𝑎𝑒𝑏𝑐𝑑 𝑏𝑎𝑒𝑐𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅24) 𝑏𝑎𝑒𝑐𝑑

𝑅26 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅7)
𝑅27 𝑐𝑏𝑒𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑐𝑏𝑑 (𝑅22) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅28 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑐𝑏𝑑 (𝑅27) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅29 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅28) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅30 𝑒𝑎𝑏𝑑𝑐 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅31 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅2) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑 (𝑅2)
𝑅32 𝑒𝑎𝑏𝑑𝑐 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅30) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 (𝑅29) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑎𝑑𝑐 𝑒𝑏𝑐𝑎𝑑 (𝑅31) 𝑒𝑐𝑎𝑏𝑑 (𝑅31) 𝑒𝑐𝑏𝑎𝑑 (𝑅31)
𝑅33 𝑒𝑏𝑎𝑑𝑐 𝑒𝑐𝑏𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑎𝑑𝑐 𝑒𝑏𝑐𝑎𝑑 (𝑅32) 𝑒𝑐𝑏𝑎𝑑 (𝑅32)
𝑅34 𝑒𝑏𝑎𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅33)
𝑅35 𝑏𝑎𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅20) 𝑎𝑒𝑏𝑐𝑑 (𝑅25) 𝑎𝑒𝑐𝑏𝑑 (𝑅17) 𝑏𝑎𝑒𝑐𝑑 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅17) 𝑒𝑎𝑐𝑏𝑑 (𝑅17) 𝑒𝑏𝑎𝑐𝑑

𝑅36 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅35) 𝑒𝑎𝑐𝑏𝑑 (𝑅35) 𝑒𝑏𝑎𝑐𝑑

𝑅37 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅36) 𝑒𝑏𝑎𝑐𝑑

𝑅38 𝑎𝑐𝑏𝑑𝑒 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅26) 𝑎𝑒𝑐𝑏𝑑 (𝑅9) 𝑒𝑎𝑐𝑏𝑑 (𝑅9)
𝑅39 𝑎𝑒𝑏𝑐𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅24) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅3) 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅8) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑐𝑎𝑏𝑒𝑑 (𝑅11) 𝑐𝑎𝑒𝑏𝑑 (𝑅3)
𝑅40 𝑐𝑎𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅22) 𝑎𝑒𝑐𝑏𝑑 (𝑅38) 𝑐𝑎𝑏𝑒𝑑 (𝑅39) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑒𝑎𝑐𝑏𝑑 (𝑅38) 𝑒𝑐𝑎𝑏𝑑 (𝑅1)
𝑅41 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅40)
𝑅42 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅43 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅28) 𝑒𝑐𝑏𝑎𝑑
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𝑅44 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅38) 𝑒𝑎𝑐𝑏𝑑 (𝑅38)
𝑅45 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅44)
𝑅46 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅43) 𝑒𝑐𝑎𝑏𝑑 (𝑅29) 𝑒𝑐𝑏𝑎𝑑

𝑅47 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1)
𝑅48 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅28) 𝑒𝑎𝑐𝑏𝑑 (𝑅28) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅49 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅47) 𝑒𝑎𝑐𝑏𝑑 (𝑅37) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑 (𝑅34)
𝑅50 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅49) 𝑐𝑒𝑏𝑎𝑑 (𝑅49) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅48) 𝑒𝑐𝑏𝑎𝑑

𝑅51 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅22) 𝑎𝑒𝑐𝑏𝑑 (𝑅38) 𝑒𝑎𝑐𝑏𝑑 (𝑅38)
𝑅52 𝑐𝑎𝑒𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅50) 𝑐𝑒𝑎𝑏𝑑 (𝑅50) 𝑐𝑒𝑏𝑎𝑑 (𝑅46) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅48) 𝑒𝑐𝑏𝑎𝑑

𝑅53 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅52) 𝑐𝑒𝑎𝑏𝑑 (𝑅52) 𝑐𝑒𝑏𝑎𝑑 (𝑅43) 𝑒𝑐𝑎𝑏𝑑 (𝑅29) 𝑒𝑐𝑏𝑎𝑑

𝑅54 𝑎𝑐𝑏𝑒𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅51) 𝑎𝑒𝑐𝑏𝑑 (𝑅44) 𝑐𝑎𝑏𝑒𝑑 (𝑅41) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅51) 𝑒𝑎𝑐𝑏𝑑 (𝑅44) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅55 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅53) 𝑎𝑒𝑐𝑏𝑑 (𝑅29) 𝑐𝑎𝑒𝑏𝑑 (𝑅53) 𝑐𝑒𝑎𝑏𝑑 (𝑅53) 𝑐𝑒𝑏𝑎𝑑 (𝑅43) 𝑒𝑎𝑐𝑏𝑑 (𝑅45) 𝑒𝑐𝑎𝑏𝑑 (𝑅42) 𝑒𝑐𝑏𝑎𝑑

𝑅56 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅55) 𝑎𝑒𝑐𝑏𝑑 (𝑅55) 𝑐𝑎𝑒𝑏𝑑 (𝑅55) 𝑐𝑒𝑎𝑏𝑑 (𝑅54) 𝑒𝑎𝑐𝑏𝑑 (𝑅45) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)

Step 5: In our fifth step, we will prove that 𝑓 (𝑅) = 𝑎𝑐𝑏𝑒𝑑 for the profile 𝑅 where one voter reports 𝑎𝑐𝑏𝑒𝑑 and the other reports 𝑒𝑎𝑐𝑏𝑑 . To

this end, we assume that 𝑓 (𝑅) ≠ 𝑎𝑐𝑏𝑒𝑑 and derive a contradiction. Our assumption that 𝑓 (𝑅) ≠ 𝑎𝑐𝑏𝑒𝑑 appears at profile 𝑅12
and 𝑅27

.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A)

𝑅1 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A, Step 1)

𝑅2 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (A, Step 2)

𝑅3 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (A, Step 3)

𝑅4 𝑎𝑐𝑏𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑒𝑐𝑑 (A, Step 4)

𝑅5 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3)
𝑅6 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 (𝑅4) 𝑎𝑏𝑐𝑒𝑑 (𝑅4) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅4)
𝑅7 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅8 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑒𝑎𝑏𝑐𝑑 (𝑅7) 𝑒𝑎𝑐𝑏𝑑 (𝑅7)
𝑅9 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 (𝑅6) 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅6) 𝑎𝑒𝑐𝑏𝑑 (𝑅5)
𝑅10 𝑎𝑏𝑐𝑒𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅9) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅9) 𝑎𝑒𝑏𝑐𝑑 (𝑅9) 𝑎𝑒𝑐𝑏𝑑 (𝑅5)
𝑅11 𝑎𝑏𝑐𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅10) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅10) 𝑎𝑒𝑏𝑐𝑑 (𝑅10) 𝑎𝑒𝑐𝑏𝑑 (𝑅10) 𝑒𝑎𝑏𝑐𝑑 (𝑅8) 𝑒𝑎𝑐𝑏𝑑 (𝑅10)
𝑅12 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 (𝐴) 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅11)
𝑅13 𝑎𝑏𝑐𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅10) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅12) 𝑎𝑐𝑒𝑏𝑑 (𝑅10) 𝑎𝑒𝑏𝑐𝑑 (𝑅10) 𝑎𝑒𝑐𝑏𝑑 (𝑅10) 𝑒𝑎𝑏𝑐𝑑 (𝑅8) 𝑒𝑎𝑐𝑏𝑑 (𝑅10)
𝑅14 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅13) 𝑒𝑏𝑎𝑐𝑑

𝑅15 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅16 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅15)
𝑅17 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅14) 𝑒𝑏𝑎𝑐𝑑

𝑅18 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅19 𝑎𝑐𝑏𝑑𝑒 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅4) 𝑎𝑐𝑏𝑒𝑑 (𝑅12) 𝑎𝑐𝑒𝑏𝑑 (𝑅16) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅11)
𝑅20 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅19) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅12)
𝑅21 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1)
𝑅22 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑

𝑅23 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅21) 𝑒𝑎𝑐𝑏𝑑 (𝑅17) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅24 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅23) 𝑐𝑒𝑏𝑎𝑑 (𝑅23) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅23) 𝑒𝑐𝑏𝑎𝑑

𝑅25 𝑎𝑐𝑒𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 (𝑅22) 𝑒𝑎𝑐𝑏𝑑 (𝑅20) 𝑒𝑏𝑎𝑐𝑑

𝑅26 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅5) 𝑒𝑎𝑏𝑐𝑑 (𝑅25) 𝑒𝑎𝑐𝑏𝑑 (𝑅17) 𝑒𝑏𝑎𝑐𝑑

𝑅27 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 (𝐴) 𝑎𝑐𝑒𝑏𝑑 (𝑅19) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅11)
𝑅28 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅13) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑒𝑎𝑏𝑐𝑑 (𝑅7) 𝑒𝑎𝑐𝑏𝑑 (𝑅7)
𝑅29 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅28) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
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𝑅30 𝑎𝑐𝑏𝑒𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅12) 𝑎𝑐𝑒𝑏𝑑 (𝑅27) 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅27) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅29) 𝑒𝑎𝑐𝑏𝑑 (𝑅12) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅31 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅20) 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅30) 𝑒𝑎𝑐𝑏𝑑 (𝑅20) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅32 𝑐𝑎𝑒𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅24) 𝑐𝑒𝑎𝑏𝑑 (𝑅24) 𝑐𝑒𝑏𝑎𝑑 (𝑅24) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅24) 𝑒𝑐𝑏𝑎𝑑

𝑅33 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅20) 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅31) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅20) 𝑒𝑐𝑎𝑏𝑑 (𝑅18) 𝑒𝑐𝑏𝑎𝑑 (𝑅31)
𝑅34 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅32) 𝑐𝑒𝑎𝑏𝑑 (𝑅32) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅33)
𝑅35 𝑐𝑎𝑒𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅24) 𝑐𝑒𝑎𝑏𝑑 (𝑅24) 𝑐𝑒𝑏𝑎𝑑 (𝑅24) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅24) 𝑒𝑐𝑏𝑎𝑑 (𝑅34)
𝑅36 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅35) 𝑎𝑒𝑐𝑏𝑑 (𝑅5) 𝑒𝑎𝑏𝑐𝑑 (𝑅26) 𝑒𝑎𝑐𝑏𝑑 (𝑅35) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅24) 𝑒𝑐𝑏𝑎𝑑 (𝑅35)
𝑅37 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅36) 𝑎𝑒𝑐𝑏𝑑 (𝑅5) 𝑒𝑎𝑏𝑐𝑑 (𝑅25) 𝑒𝑎𝑐𝑏𝑑 (𝑅17) 𝑒𝑏𝑎𝑐𝑑

𝑅38 𝑎𝑐𝑒𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅37) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 (𝑅22) 𝑒𝑎𝑐𝑏𝑑 (𝑅20) 𝑒𝑏𝑎𝑐𝑑

𝑅39 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅20) 𝑎𝑒𝑐𝑏𝑑 (𝑅38) 𝑐𝑎𝑒𝑏𝑑 (𝑅34) 𝑐𝑒𝑎𝑏𝑑 (𝑅31) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅20) 𝑒𝑐𝑎𝑏𝑑 (𝑅18) 𝑒𝑐𝑏𝑎𝑑 (𝑅31)
𝑅40 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅39)
𝑅41 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅39) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅42 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑐𝑏𝑑 (𝑅41) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑 (𝑅40)

Step 6: Finally, we derive a contradiction by showing that the insights of our previous steps are incompatible with each other.

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A)

𝑅1 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (A, Step 1)

𝑅2 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 (A, Step 2)

𝑅3 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (A, Step 3)

𝑅4 𝑎𝑐𝑏𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑒𝑐𝑑 (A, Step 4)

𝑅5 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 (A, Step 5)

𝑅6 𝑎𝑒𝑏𝑐𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅4) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅4) 𝑎𝑐𝑒𝑏𝑑 (𝑅4) 𝑎𝑒𝑏𝑐𝑑 (𝑅4) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑐𝑎𝑏𝑒𝑑 (𝑅4) 𝑐𝑎𝑒𝑏𝑑 (𝑅3)
𝑅7 𝑐𝑎𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅5) 𝑎𝑒𝑐𝑏𝑑 (𝑅5) 𝑐𝑎𝑏𝑒𝑑 (𝑅6) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅5) 𝑒𝑐𝑎𝑏𝑑 (𝑅5)
𝑅8 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅7)
𝑅9 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅10 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅5)
𝑅11 𝑐𝑏𝑒𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑐𝑏𝑑 (𝑅5) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅12 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑐𝑏𝑑 (𝑅11) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅13 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅12) 𝑒𝑐𝑏𝑎𝑑

𝑅14 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅12) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅15 𝑎𝑒𝑏𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅2) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑 (𝑅2)
𝑅16 𝑒𝑎𝑏𝑑𝑐 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅14) 𝑒𝑎𝑏𝑑𝑐 𝑒𝑎𝑐𝑏𝑑 (𝑅14) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑎𝑑𝑐 𝑒𝑏𝑐𝑎𝑑 (𝑅15) 𝑒𝑐𝑎𝑏𝑑 (𝑅15) 𝑒𝑐𝑏𝑎𝑑 (𝑅15)
𝑅17 𝑒𝑏𝑎𝑑𝑐 𝑒𝑐𝑏𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑎𝑑𝑐 𝑒𝑏𝑐𝑎𝑑 (𝑅16) 𝑒𝑐𝑏𝑎𝑑 (𝑅16)
𝑅18 𝑒𝑏𝑎𝑐𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅17)
𝑅19 𝑎𝑒𝑏𝑐𝑑 𝑏𝑎𝑒𝑐𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅4) 𝑏𝑎𝑒𝑐𝑑

𝑅20 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅13) 𝑒𝑐𝑎𝑏𝑑 (𝑅14) 𝑒𝑐𝑏𝑎𝑑

𝑅21 𝑎𝑐𝑏𝑒𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅5) 𝑎𝑒𝑐𝑏𝑑 (𝑅5) 𝑐𝑎𝑏𝑒𝑑 (𝑅8) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅5) 𝑒𝑐𝑎𝑏𝑑 (𝑅5)
𝑅22 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅21) 𝑒𝑎𝑐𝑏𝑑 (𝑅10) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅23 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅14) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅22) 𝑐𝑒𝑏𝑎𝑑 (𝑅13) 𝑒𝑎𝑐𝑏𝑑 (𝑅10) 𝑒𝑐𝑎𝑏𝑑 (𝑅9) 𝑒𝑐𝑏𝑎𝑑 (𝑅22)
𝑅24 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅13) 𝑒𝑐𝑎𝑏𝑑 (𝑅14) 𝑒𝑐𝑏𝑎𝑑 (𝑅23)
𝑅25 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅12) 𝑒𝑎𝑐𝑏𝑑 (𝑅12) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑

𝑅26 𝑐𝑎𝑒𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅20) 𝑒𝑏𝑐𝑎𝑑 (𝑅24) 𝑒𝑐𝑎𝑏𝑑 (𝑅25) 𝑒𝑐𝑏𝑎𝑑 (𝑅24)
𝑅27 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅26) 𝑒𝑐𝑎𝑏𝑑 (𝑅25) 𝑒𝑐𝑏𝑎𝑑 (𝑅26)
𝑅28 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅+) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅1)
𝑅29 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑏𝑐𝑑 (𝑅28) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅27) 𝑒𝑏𝑐𝑎𝑑 (𝑅27) 𝑒𝑐𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑏𝑎𝑑 (𝑅18)
𝑅30 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑒𝑎𝑏𝑐𝑑 (𝑅29) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅29)
𝑅31 𝑎𝑏𝑒𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑒𝑎𝑏𝑐𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
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𝑅32 𝑎𝑏𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅31) 𝑒𝑎𝑏𝑐𝑑 (𝑅31) 𝑒𝑎𝑐𝑏𝑑 (𝑅5)
𝑅33 𝑏𝑒𝑎𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅30) 𝑒𝑎𝑏𝑐𝑑 (𝑅30) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 (𝑅30)
𝑅34 𝑏𝑎𝑒𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅33) 𝑎𝑒𝑏𝑐𝑑 (𝑅19) 𝑎𝑒𝑐𝑏𝑑 (𝑅32) 𝑏𝑎𝑒𝑐𝑑 (𝑅33) 𝑏𝑒𝑎𝑐𝑑 (𝑅30) 𝑒𝑎𝑏𝑐𝑑 (𝑅32) 𝑒𝑎𝑐𝑏𝑑 (𝑅5) 𝑒𝑏𝑎𝑐𝑑 (𝑅30)

This concludes the proof of this lemma. □

Lemma 4. 𝑓 (𝑅+) ≠ 𝑒𝑎𝑏𝑐𝑑 .

Proof. As usual, we will assume for contradiction that 𝑓 (𝑅+) = 𝑒𝑎𝑏𝑐𝑑𝑒 . Howbever, in contrast to the previous two lemmas, we will

derive a contradiction by means of a further case distinction. Specifically, we will consider the outcomes for the profile 𝑅1
shown below.

𝑅1
: 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑

For this profile, only three ranings satisfy unanimity: 𝑓 (𝑅1) = 𝑐𝑎𝑒𝑏𝑑 , 𝑓 (𝑅1) = 𝑐𝑒𝑎𝑏𝑑 , and 𝑓 (𝑅1) = 𝑐𝑒𝑏𝑎𝑑 . We will show that none of these

outcomes is compatible with our other assumptions on 𝑓 .

Case 1: We first assume that 𝑓 (𝑅1) = 𝑐𝑒𝑎𝑏𝑑 . In this case, we immediately can derive a contradiction as wittnessed by the following

deduction.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (A)

𝑅1 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (A)

𝑅2 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅3 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑

𝑅4 𝑎𝑏𝑐𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅∗)
𝑅5 𝑎𝑐𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅4)
𝑅6 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅7 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅6)
𝑅8 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑

𝑅9 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 𝑒𝑐𝑎𝑏𝑑

𝑅10 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑

𝑅11 𝑐𝑎𝑏𝑒𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅8) 𝑐𝑒𝑎𝑏𝑑

𝑅12 𝑐𝑒𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅3) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑

𝑅13 𝑎𝑏𝑐𝑒𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅8) 𝑐𝑒𝑎𝑏𝑑 (𝑅2)
𝑅14 𝑎𝑐𝑏𝑑𝑒 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅7) 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅5) 𝑐𝑎𝑒𝑏𝑑 (𝑅8) 𝑐𝑒𝑎𝑏𝑑 (𝑅13)
𝑅15 𝑐𝑎𝑏𝑑𝑒 𝑐𝑒𝑎𝑏𝑑 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅8) 𝑐𝑒𝑎𝑏𝑑 (𝑅14)
𝑅16 𝑐𝑎𝑏𝑒𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅8) 𝑐𝑒𝑎𝑏𝑑 (𝑅15)
𝑅17 𝑐𝑎𝑏𝑒𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅9) 𝑐𝑒𝑎𝑏𝑑 (𝑅16) 𝑒𝑐𝑎𝑏𝑑 (𝑅16)
𝑅18 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅17)
𝑅19 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅12) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑

𝑅20 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅12) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑐𝑎𝑏𝑑 (𝑅18) 𝑒𝑐𝑏𝑎𝑑

𝑅21 𝑐𝑎𝑏𝑒𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅19) 𝑐𝑎𝑒𝑏𝑑 (𝑅11) 𝑐𝑏𝑎𝑒𝑑 (𝑅20) 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅12) 𝑐𝑒𝑏𝑎𝑑 (𝑅16) 𝑒𝑐𝑎𝑏𝑑 (𝑅16) 𝑒𝑐𝑏𝑎𝑑 (𝑅17)
𝑅22 𝑐𝑎𝑏𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅21) 𝑐𝑏𝑎𝑒𝑑 (𝑅21) 𝑐𝑏𝑒𝑎𝑑

𝑅23 𝑎𝑐𝑏𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅22) 𝑐𝑎𝑏𝑒𝑑 (𝑅22) 𝑐𝑏𝑎𝑒𝑑 (𝑅22) 𝑐𝑏𝑒𝑎𝑑

𝑅24 𝑎𝑐𝑏𝑒𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅23) 𝑎𝑐𝑒𝑏𝑑 (𝑅23) 𝑐𝑎𝑏𝑒𝑑 (𝑅23) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑏𝑎𝑒𝑑 (𝑅23) 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅1)
𝑅25 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅24) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅1)
𝑅26 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅25) 𝑐𝑎𝑒𝑏𝑑 (𝑅8) 𝑐𝑒𝑎𝑏𝑑

𝑅27 𝑎𝑐𝑑𝑒𝑏 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑑𝑒𝑏 𝑎𝑐𝑒𝑏𝑑 (𝑅26) 𝑎𝑐𝑒𝑑𝑏 (𝑅26) 𝑐𝑎𝑑𝑒𝑏 𝑐𝑎𝑒𝑏𝑑 (𝑅8) 𝑐𝑎𝑒𝑑𝑏 𝑐𝑒𝑎𝑏𝑑 (𝑅14) 𝑐𝑒𝑎𝑑𝑏

𝑅28 𝑐𝑎𝑑𝑒𝑏 𝑐𝑒𝑎𝑏𝑑 𝑐𝑎𝑑𝑒𝑏 𝑐𝑎𝑒𝑏𝑑 (𝑅8) 𝑐𝑎𝑒𝑑𝑏 𝑐𝑒𝑎𝑏𝑑 (𝑅27) 𝑐𝑒𝑎𝑑𝑏

𝑅29 𝑐𝑎𝑒𝑑𝑏 𝑐𝑒𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑎𝑒𝑑𝑏 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑎𝑑𝑏 𝑐𝑒𝑏𝑎𝑑 (𝑅1)
𝑅30 𝑐𝑎𝑒𝑑𝑏 𝑐𝑒𝑎𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅8) 𝑐𝑎𝑒𝑑𝑏 𝑐𝑒𝑎𝑏𝑑 (𝑅28) 𝑐𝑒𝑎𝑑𝑏

𝑅31 𝑐𝑏𝑒𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅20) 𝑒𝑐𝑏𝑎𝑑 (𝑅21)
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𝑅32 𝑐𝑎𝑒𝑑𝑏 𝑐𝑒𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑎𝑒𝑑𝑏 𝑐𝑒𝑎𝑏𝑑 (𝑅30) 𝑐𝑒𝑎𝑑𝑏 𝑐𝑒𝑏𝑎𝑑 (𝑅1)
𝑅33 𝑐𝑎𝑒𝑑𝑏 𝑐𝑏𝑒𝑎𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅22) 𝑐𝑎𝑒𝑏𝑑 (𝑅22) 𝑐𝑎𝑒𝑑𝑏 𝑐𝑏𝑎𝑒𝑑 (𝑅22) 𝑐𝑏𝑒𝑎𝑑 (𝑅32) 𝑐𝑒𝑎𝑏𝑑 (𝑅30) 𝑐𝑒𝑎𝑑𝑏 𝑐𝑒𝑏𝑎𝑑 (𝑅29)
𝑅34 𝑐𝑏𝑒𝑎𝑑 𝑒𝑐𝑎𝑑𝑏 𝑐𝑏𝑒𝑎𝑑 (𝑅33) 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑎𝑑𝑏 𝑐𝑒𝑏𝑎𝑑 (𝑅31) 𝑒𝑐𝑎𝑏𝑑 (𝑅31) 𝑒𝑐𝑎𝑑𝑏 𝑒𝑐𝑏𝑎𝑑 (𝑅31)
𝑅35 𝑐𝑏𝑒𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅34) 𝑐𝑒𝑎𝑏𝑑 (𝑅10) 𝑐𝑒𝑏𝑎𝑑 (𝑅31) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅31) 𝑒𝑐𝑏𝑎𝑑 (𝑅31)
𝑅36 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅20) 𝑒𝑐𝑏𝑎𝑑 (𝑅35)
𝑅37 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅1)
𝑅38 𝑐𝑎𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅35) 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅17) 𝑐𝑎𝑏𝑒𝑑 (𝑅35) 𝑐𝑎𝑒𝑏𝑑 (𝑅11) 𝑐𝑒𝑎𝑏𝑑 (𝑅10) 𝑒𝑎𝑐𝑏𝑑 (𝑅17) 𝑒𝑐𝑎𝑏𝑑 (𝑅16)
𝑅39 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅19) 𝑎𝑒𝑐𝑏𝑑 (𝑅20) 𝑐𝑎𝑒𝑏𝑑 (𝑅37) 𝑐𝑒𝑎𝑏𝑑 (𝑅12) 𝑐𝑒𝑏𝑎𝑑 (𝑅37) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅20) 𝑒𝑐𝑏𝑎𝑑 (𝑅36)
𝑅40 𝑎𝑐𝑒𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅39) 𝑎𝑒𝑐𝑏𝑑 (𝑅38) 𝑒𝑎𝑐𝑏𝑑 (𝑅38)

Case 2: As the second case, we assume 𝑓 (𝑅1) = 𝑐𝑎𝑒𝑏𝑑 . In this case, we proceed with a third tier case distinction with respect to the profile

𝑅2
where one voter reports 𝑐𝑎𝑒𝑏𝑑 and the other reports 𝑒𝑐𝑎𝑏𝑑 .

Case 2.1: First, we assume that 𝑓 (𝑅2) ≠ 𝑐𝑎𝑒𝑏𝑑 . Then, our assumption become incompatible as shown by the following derivation.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅1 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (A)

𝑅2 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝐴) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑒𝑐𝑎𝑏𝑑

𝑅3 𝑐𝑎𝑏𝑒𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑 (𝑅2) 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑

𝑅4 𝑐𝑎𝑏𝑑𝑒 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑏𝑑𝑒 (𝑅3) 𝑐𝑎𝑏𝑒𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑 (𝑅2) 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑

𝑅5 𝑐𝑎𝑏𝑑𝑒 𝑐𝑒𝑎𝑏𝑑 𝑐𝑎𝑏𝑑𝑒 (𝑅4) 𝑐𝑎𝑏𝑒𝑑 (𝑅4) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑

𝑅6 𝑐𝑎𝑏𝑑𝑒 𝑐𝑒𝑏𝑎𝑑 𝑐𝑎𝑏𝑑𝑒 (𝑅4) 𝑐𝑎𝑏𝑒𝑑 (𝑅4) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑎𝑑𝑒 (𝑅4) 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1)
𝑅7 𝑐𝑎𝑏𝑑𝑒 𝑐𝑒𝑎𝑏𝑑 𝑐𝑎𝑏𝑑𝑒 (𝑅4) 𝑐𝑎𝑏𝑒𝑑 (𝑅4) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅6)
𝑅8 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑏𝑑𝑒 (𝑅5) 𝑐𝑎𝑏𝑒𝑑 (𝑅7) 𝑐𝑎𝑒𝑏𝑑

𝑅9 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑏𝑑𝑎 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑐𝑒𝑏𝑑𝑎 (𝑅1)
𝑅10 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑒𝑑𝑎 𝑐𝑎𝑏𝑒𝑑 (𝑅8) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅1) 𝑐𝑏𝑒𝑑𝑎 (𝑅9) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑐𝑒𝑏𝑑𝑎 (𝑅1)
𝑅11 𝑐𝑎𝑏𝑒𝑑 𝑐𝑏𝑒𝑑𝑎 𝑐𝑎𝑏𝑒𝑑 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅10) 𝑐𝑏𝑒𝑑𝑎 (𝑅10)
𝑅12 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑑𝑎 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑏𝑒𝑑𝑎 (𝑅11)
𝑅13 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅8) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑎𝑒𝑑

𝑅14 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅15 𝑎𝑏𝑐𝑑𝑒 𝑐𝑎𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅∗) 𝑐𝑎𝑒𝑏𝑑 (𝑅14)
𝑅16 𝑎𝑐𝑏𝑑𝑒 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅8) 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅15) 𝑐𝑎𝑏𝑑𝑒 (𝑅8) 𝑐𝑎𝑏𝑒𝑑 (𝑅15) 𝑐𝑎𝑒𝑏𝑑 (𝑅15)
𝑅17 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅16) 𝑐𝑎𝑏𝑒𝑑 (𝑅8) 𝑐𝑎𝑒𝑏𝑑 (𝑅16)
𝑅18 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅17) 𝑎𝑐𝑒𝑑𝑏

𝑅19 𝑏𝑐𝑎𝑑𝑒 𝑐𝑎𝑒𝑏𝑑 𝑏𝑐𝑎𝑑𝑒 𝑏𝑐𝑎𝑒𝑑 𝑐𝑎𝑏𝑑𝑒 (𝑅8) 𝑐𝑎𝑏𝑒𝑑 (𝑅15) 𝑐𝑎𝑒𝑏𝑑 (𝑅15) 𝑐𝑏𝑎𝑑𝑒 (𝑅8) 𝑐𝑏𝑎𝑒𝑑

𝑅20 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑑𝑎𝑒 𝑐𝑎𝑏𝑑𝑒 (𝑅8) 𝑐𝑎𝑏𝑒𝑑 (𝑅8) 𝑐𝑎𝑒𝑏𝑑 (𝑅19) 𝑐𝑏𝑎𝑑𝑒 (𝑅8) 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑑𝑎𝑒

𝑅21 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑒𝑑𝑎 𝑐𝑎𝑏𝑒𝑑 (𝑅8) 𝑐𝑎𝑒𝑏𝑑 (𝑅20) 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅1) 𝑐𝑏𝑒𝑑𝑎 (𝑅9) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑐𝑒𝑏𝑑𝑎 (𝑅1)
𝑅22 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅8) 𝑐𝑎𝑒𝑏𝑑 (𝑅21) 𝑐𝑏𝑎𝑒𝑑

𝑅23 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑑𝑎 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅21) 𝑐𝑏𝑒𝑑𝑎 (𝑅11)
𝑅24 𝑐𝑎𝑒𝑑𝑏 𝑐𝑏𝑎𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅13) 𝑐𝑎𝑒𝑏𝑑 (𝑅22) 𝑐𝑎𝑒𝑑𝑏 (𝑅22) 𝑐𝑏𝑎𝑒𝑑

𝑅25 𝑐𝑏𝑎𝑒𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑 (𝑅2) 𝑐𝑏𝑎𝑒𝑑 (𝑅3) 𝑐𝑏𝑒𝑎𝑑 (𝑅3) 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑

𝑅26 𝑐𝑏𝑎𝑒𝑑 𝑐𝑒𝑎𝑑𝑏 𝑐𝑎𝑏𝑒𝑑 (𝑅13) 𝑐𝑎𝑒𝑏𝑑 (𝑅22) 𝑐𝑎𝑒𝑑𝑏 (𝑅22) 𝑐𝑏𝑎𝑒𝑑 (𝑅25) 𝑐𝑏𝑒𝑎𝑑 (𝑅23) 𝑐𝑒𝑎𝑏𝑑 (𝑅22) 𝑐𝑒𝑎𝑑𝑏 (𝑅24) 𝑐𝑒𝑏𝑎𝑑

𝑅27 𝑐𝑏𝑎𝑒𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑏𝑎𝑒𝑑 (𝑅26) 𝑐𝑏𝑒𝑎𝑑 (𝑅23) 𝑐𝑒𝑏𝑎𝑑

𝑅28 𝑎𝑐𝑏𝑒𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅17) 𝑐𝑎𝑏𝑒𝑑 (𝑅6) 𝑐𝑎𝑒𝑏𝑑 (𝑅17) 𝑐𝑏𝑎𝑒𝑑 (𝑅27) 𝑐𝑏𝑒𝑎𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1)
𝑅29 𝑎𝑐𝑏𝑒𝑑 𝑐𝑏𝑎𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅17) 𝑐𝑏𝑎𝑒𝑑 (𝑅28)
𝑅30 𝑎𝑐𝑒𝑑𝑏 𝑐𝑏𝑎𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅18) 𝑎𝑐𝑒𝑑𝑏 (𝑅24) 𝑐𝑎𝑏𝑒𝑑 (𝑅13) 𝑐𝑎𝑒𝑏𝑑 (𝑅22) 𝑐𝑎𝑒𝑑𝑏 (𝑅22) 𝑐𝑏𝑎𝑒𝑑 (𝑅29)
𝑅31 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅17) 𝑎𝑐𝑒𝑑𝑏 (𝑅30)
𝑅32 𝑐𝑒𝑎𝑑𝑏 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅26) 𝑐𝑒𝑎𝑑𝑏 (𝑅26) 𝑐𝑒𝑏𝑎𝑑

𝑅33 𝑎𝑐𝑏𝑒𝑑 𝑐𝑒𝑎𝑑𝑏 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅17) 𝑎𝑐𝑒𝑑𝑏 (𝑅31) 𝑐𝑎𝑏𝑒𝑑 (𝑅17) 𝑐𝑎𝑒𝑏𝑑 (𝑅17) 𝑐𝑎𝑒𝑑𝑏 (𝑅17) 𝑐𝑒𝑎𝑏𝑑 (𝑅17) 𝑐𝑒𝑎𝑑𝑏 (𝑅28)
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𝑅34 𝑐𝑎𝑏𝑒𝑑 𝑐𝑒𝑎𝑑𝑏 𝑐𝑎𝑏𝑒𝑑 (𝑅3) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑒𝑑𝑏 (𝑅33) 𝑐𝑒𝑎𝑏𝑑 (𝑅33) 𝑐𝑒𝑎𝑑𝑏 (𝑅33)
𝑅35 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑑𝑏 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑒𝑑𝑏 (𝑅34) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑑𝑏 (𝑅34)
𝑅36 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑑𝑏𝑎 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑒𝑑𝑏 (𝑅35) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑑𝑏 (𝑅35) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑐𝑒𝑏𝑑𝑎 (𝑅1) 𝑐𝑒𝑑𝑎𝑏 (𝑅9) 𝑐𝑒𝑑𝑏𝑎 (𝑅9)
𝑅37 𝑐𝑏𝑎𝑒𝑑 𝑐𝑒𝑑𝑏𝑎 𝑐𝑏𝑎𝑒𝑑 (𝑅26) 𝑐𝑏𝑒𝑎𝑑 (𝑅23) 𝑐𝑏𝑒𝑑𝑎 (𝑅12) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅23) 𝑐𝑒𝑑𝑏𝑎 (𝑅36)
𝑅38 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑑𝑏𝑎 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅37) 𝑐𝑒𝑑𝑏𝑎 (𝑅37)
𝑅39 𝑐𝑑𝑒𝑏𝑎 𝑐𝑒𝑏𝑎𝑑 𝑐𝑑𝑒𝑏𝑎 (𝑅38) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅38) 𝑐𝑒𝑑𝑏𝑎 (𝑅38)
𝑅40 𝑐𝑑𝑒𝑎𝑏 𝑐𝑒𝑏𝑎𝑑 𝑐𝑑𝑒𝑎𝑏 (𝑅39) 𝑐𝑑𝑒𝑏𝑎 (𝑅38) 𝑐𝑒𝑎𝑏𝑑 (𝑅32) 𝑐𝑒𝑎𝑑𝑏 (𝑅32) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅38) 𝑐𝑒𝑑𝑎𝑏 (𝑅32) 𝑐𝑒𝑑𝑏𝑎 (𝑅38)
𝑅41 𝑐𝑎𝑑𝑒𝑏 𝑐𝑒𝑏𝑎𝑑 𝑐𝑎𝑑𝑒𝑏 (𝑅40) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑒𝑑𝑏 (𝑅32) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑑𝑏 (𝑅32) 𝑐𝑒𝑏𝑎𝑑 (𝑅1)
𝑅42 𝑐𝑎𝑑𝑒𝑏 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑑𝑒𝑏 (𝑅41) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑒𝑑𝑏 (𝑅35)
𝑅43 𝑐𝑒𝑏𝑎𝑑 𝑑𝑐𝑒𝑏𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅38) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅38) 𝑐𝑒𝑑𝑏𝑎 (𝑅38) 𝑑𝑐𝑒𝑏𝑎 (𝑅39)
𝑅44 𝑐𝑒𝑏𝑑𝑎 𝑑𝑐𝑒𝑏𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅43) 𝑐𝑒𝑏𝑑𝑎 𝑐𝑒𝑑𝑏𝑎 𝑑𝑐𝑒𝑏𝑎 (𝑅43)
𝑅45 𝑐𝑑𝑒𝑎𝑏 𝑐𝑒𝑏𝑑𝑎 𝑐𝑑𝑒𝑎𝑏 (𝑅40) 𝑐𝑑𝑒𝑏𝑎 (𝑅40) 𝑐𝑒𝑏𝑑𝑎 𝑐𝑒𝑑𝑎𝑏 (𝑅40) 𝑐𝑒𝑑𝑏𝑎

𝑅46 𝑐𝑎𝑒𝑏𝑑 𝑐𝑑𝑎𝑒𝑏 𝑐𝑎𝑑𝑒𝑏 (𝑅42) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑒𝑑𝑏 (𝑅35) 𝑐𝑑𝑎𝑒𝑏 (𝑅36)
𝑅47 𝑐𝑑𝑎𝑒𝑏 𝑐𝑒𝑏𝑑𝑎 𝑐𝑑𝑎𝑒𝑏 (𝑅46) 𝑐𝑑𝑒𝑎𝑏 (𝑅45) 𝑐𝑑𝑒𝑏𝑎 (𝑅44) 𝑐𝑒𝑏𝑑𝑎 (𝑅9) 𝑐𝑒𝑑𝑎𝑏 (𝑅45) 𝑐𝑒𝑑𝑏𝑎

𝑅48 𝑐𝑑𝑎𝑒𝑏 𝑐𝑒𝑑𝑏𝑎 𝑐𝑑𝑎𝑒𝑏 (𝑅47) 𝑐𝑑𝑒𝑎𝑏 (𝑅47) 𝑐𝑑𝑒𝑏𝑎 (𝑅47) 𝑐𝑒𝑑𝑎𝑏 (𝑅47) 𝑐𝑒𝑑𝑏𝑎

𝑅49 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑑𝑏𝑎 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑒𝑑𝑏 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑑𝑏 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑐𝑒𝑏𝑑𝑎 (𝑅1) 𝑐𝑒𝑑𝑎𝑏 (𝑅9) 𝑐𝑒𝑑𝑏𝑎 (𝑅9)
𝑅50 𝑐𝑎𝑑𝑒𝑏 𝑐𝑒𝑑𝑏𝑎 𝑐𝑎𝑑𝑒𝑏 (𝑅48) 𝑐𝑎𝑒𝑑𝑏 (𝑅48) 𝑐𝑑𝑎𝑒𝑏 (𝑅48) 𝑐𝑑𝑒𝑎𝑏 (𝑅48) 𝑐𝑑𝑒𝑏𝑎 (𝑅49) 𝑐𝑒𝑎𝑑𝑏 𝑐𝑒𝑑𝑎𝑏 (𝑅49) 𝑐𝑒𝑑𝑏𝑎 (𝑅49)
𝑅51 𝑐𝑎𝑑𝑒𝑏 𝑐𝑒𝑎𝑑𝑏 𝑐𝑎𝑑𝑒𝑏 (𝑅50) 𝑐𝑎𝑒𝑑𝑏 (𝑅50) 𝑐𝑒𝑎𝑑𝑏

𝑅52 𝑐𝑎𝑑𝑏𝑒 𝑐𝑒𝑎𝑑𝑏 𝑐𝑎𝑑𝑏𝑒 (𝑅51) 𝑐𝑎𝑑𝑒𝑏 (𝑅51) 𝑐𝑎𝑒𝑑𝑏 (𝑅51) 𝑐𝑒𝑎𝑑𝑏

𝑅53 𝑎𝑐𝑑𝑏𝑒 𝑐𝑒𝑎𝑑𝑏 𝑎𝑐𝑑𝑏𝑒 (𝑅52) 𝑎𝑐𝑑𝑒𝑏 (𝑅51) 𝑎𝑐𝑒𝑑𝑏 𝑐𝑎𝑑𝑏𝑒 (𝑅51) 𝑐𝑎𝑑𝑒𝑏 (𝑅51) 𝑐𝑎𝑒𝑑𝑏 (𝑅33) 𝑐𝑒𝑎𝑑𝑏 (𝑅33)
𝑅54 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑒𝑑𝑏 𝑎𝑐𝑑𝑏𝑒 (𝑅53) 𝑎𝑐𝑑𝑒𝑏 (𝑅53) 𝑎𝑐𝑒𝑑𝑏

𝑅55 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑑𝑏 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅14) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑐𝑒𝑑𝑏 (𝑅14)
𝑅56 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑏𝑐𝑒 𝑎𝑐𝑑𝑏𝑒 (𝑅54) 𝑎𝑐𝑑𝑒𝑏 (𝑅55) 𝑎𝑐𝑒𝑑𝑏 (𝑅55) 𝑎𝑑𝑏𝑐𝑒 𝑎𝑑𝑐𝑏𝑒 (𝑅54) 𝑎𝑑𝑐𝑒𝑏

𝑅57 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑐𝑏𝑒 𝑎𝑐𝑑𝑏𝑒 (𝑅54) 𝑎𝑐𝑑𝑒𝑏 (𝑅54) 𝑎𝑐𝑒𝑑𝑏 (𝑅56) 𝑎𝑑𝑐𝑏𝑒 (𝑅54) 𝑎𝑑𝑐𝑒𝑏

𝑅58 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑐𝑒𝑏 𝑎𝑐𝑑𝑒𝑏 (𝑅54) 𝑎𝑐𝑒𝑑𝑏 (𝑅57) 𝑎𝑑𝑐𝑒𝑏

𝑅59 𝑐𝑎𝑒𝑏𝑑 𝑑𝑐𝑎𝑒𝑏 𝑐𝑎𝑑𝑒𝑏 (𝑅42) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑒𝑑𝑏 (𝑅35) 𝑐𝑑𝑎𝑒𝑏 (𝑅36) 𝑑𝑐𝑎𝑒𝑏 (𝑅46)
𝑅60 𝑎𝑑𝑐𝑒𝑏 𝑐𝑒𝑎𝑑𝑏 𝑎𝑐𝑑𝑒𝑏 (𝑅51) 𝑎𝑐𝑒𝑑𝑏 (𝑅58) 𝑎𝑑𝑐𝑒𝑏 𝑐𝑎𝑑𝑒𝑏 (𝑅51) 𝑐𝑎𝑒𝑑𝑏 (𝑅51) 𝑐𝑒𝑎𝑑𝑏 (𝑅53)
𝑅61 𝑎𝑑𝑐𝑒𝑏 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑑𝑒𝑏 (𝑅42) 𝑎𝑐𝑒𝑏𝑑 (𝑅58) 𝑎𝑐𝑒𝑑𝑏 (𝑅58) 𝑎𝑑𝑐𝑒𝑏 (𝑅59) 𝑐𝑎𝑑𝑒𝑏 (𝑅42) 𝑐𝑎𝑒𝑏𝑑 (𝑅60) 𝑐𝑎𝑒𝑑𝑏 (𝑅35)

Case 2.2: As our second subcase, we suppose that 𝑓 (𝑅2) = 𝑐𝑎𝑒𝑏𝑑 . We again derive a contradiction for this case, as shown in the followign.

By combining our two subcases, it follows that 𝑓 (𝑅1) = 𝑐𝑎𝑒𝑏𝑑 must be wrong.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (A)

𝑅1 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (A)

𝑅2 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (A)

𝑅3 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅4 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑐𝑒𝑏𝑎𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅+) 𝑒𝑐𝑏𝑎𝑑 (𝑅+)
𝑅5 𝑐𝑒𝑏𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅4) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅4)
𝑅6 𝑐𝑒𝑏𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅5) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑏𝑎𝑑

𝑅7 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑏𝑑𝑎 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑐𝑒𝑏𝑑𝑎 (𝑅1)
𝑅8 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑏𝑑𝑎 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑐𝑒𝑏𝑑𝑎 (𝑅1) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑 (𝑅2) 𝑒𝑐𝑏𝑑𝑎 (𝑅7)
𝑅9 𝑐𝑎𝑒𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑏𝑐𝑎𝑑 (𝑅8) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑 (𝑅2)
𝑅10 𝑐𝑒𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅3) 𝑐𝑒𝑏𝑎𝑑 (𝑅6) 𝑒𝑏𝑐𝑎𝑑 (𝑅9) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅9)
𝑅11 𝑐𝑒𝑎𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅10) 𝑒𝑐𝑎𝑏𝑑

𝑅12 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑒𝑑𝑎 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅1) 𝑐𝑏𝑒𝑑𝑎 (𝑅7) 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑐𝑒𝑏𝑑𝑎 (𝑅1)
𝑅13 𝑐𝑎𝑏𝑒𝑑 𝑐𝑏𝑒𝑑𝑎 𝑐𝑎𝑏𝑒𝑑 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅12) 𝑐𝑏𝑒𝑑𝑎 (𝑅12)
𝑅14 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑑𝑎 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑏𝑒𝑑𝑎 (𝑅13)
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𝑅15 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 (𝑅10) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅10)
𝑅16 𝑐𝑎𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 (𝑅9) 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅3) 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑒𝑎𝑏𝑐𝑑 (𝑅9) 𝑒𝑎𝑐𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅17 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅16) 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅16)
𝑅18 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅11) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅15)
𝑅19 𝑎𝑒𝑐𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅17) 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅17) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅1)
𝑅20 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅18) 𝑐𝑒𝑏𝑎𝑑 (𝑅19) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅18)
𝑅21 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅11) 𝑐𝑒𝑏𝑎𝑑 (𝑅20) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅15)
𝑅22 𝑐𝑏𝑒𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅21) 𝑐𝑒𝑎𝑏𝑑 (𝑅11) 𝑐𝑒𝑏𝑎𝑑 (𝑅21) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅15)
𝑅23 𝑐𝑏𝑎𝑒𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅22) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 (𝑅22) 𝑐𝑏𝑒𝑎𝑑 (𝑅21) 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑐𝑒𝑏𝑎𝑑 (𝑅21) 𝑒𝑐𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑏𝑎𝑑 (𝑅2)
𝑅24 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅23) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 (𝑅23)
𝑅25 𝑐𝑎𝑏𝑑𝑒 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅26 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅27 𝑎𝑏𝑐𝑑𝑒 𝑐𝑎𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅∗) 𝑐𝑎𝑒𝑏𝑑 (𝑅26)
𝑅28 𝑏𝑐𝑎𝑑𝑒 𝑐𝑎𝑒𝑏𝑑 𝑏𝑐𝑎𝑑𝑒 𝑏𝑐𝑎𝑒𝑑 (𝑅9) 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅27) 𝑐𝑎𝑒𝑏𝑑 (𝑅27) 𝑐𝑏𝑎𝑑𝑒 (𝑅24) 𝑐𝑏𝑎𝑒𝑑 (𝑅24)
𝑅29 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑒𝑑𝑎 𝑐𝑎𝑏𝑒𝑑 (𝑅24) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 (𝑅24) 𝑐𝑏𝑒𝑎𝑑 (𝑅1) 𝑐𝑏𝑒𝑑𝑎 (𝑅7) 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑐𝑒𝑏𝑎𝑑 (𝑅1) 𝑐𝑒𝑏𝑑𝑎 (𝑅1)
𝑅30 𝑐𝑎𝑒𝑏𝑑 𝑐𝑏𝑑𝑎𝑒 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅24) 𝑐𝑎𝑒𝑏𝑑 (𝑅28) 𝑐𝑏𝑎𝑑𝑒 (𝑅24) 𝑐𝑏𝑎𝑒𝑑 (𝑅24) 𝑐𝑏𝑑𝑎𝑒 (𝑅29)
𝑅31 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑒𝑏𝑑 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅24) 𝑐𝑎𝑒𝑏𝑑 (𝑅30)
𝑅32 𝑐𝑎𝑏𝑑𝑒 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅22) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑒𝑐𝑎𝑏𝑑 (𝑅2)
𝑅33 𝑐𝑎𝑏𝑑𝑒 𝑐𝑒𝑎𝑏𝑑 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅32) 𝑐𝑎𝑒𝑏𝑑 (𝑅31) 𝑐𝑒𝑎𝑏𝑑 (𝑅25)
𝑅34 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑎𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅29) 𝑐𝑏𝑒𝑑𝑎 (𝑅29) 𝑐𝑒𝑎𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅29)
𝑅35 𝑐𝑏𝑑𝑒𝑎 𝑐𝑒𝑎𝑏𝑑 𝑐𝑏𝑑𝑒𝑎 (𝑅34) 𝑐𝑏𝑒𝑎𝑑 (𝑅34) 𝑐𝑏𝑒𝑑𝑎 (𝑅34) 𝑐𝑒𝑎𝑏𝑑 (𝑅33) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅34)
𝑅36 𝑐𝑏𝑑𝑒𝑎 𝑒𝑐𝑏𝑑𝑎 𝑐𝑏𝑑𝑒𝑎 (𝑅35) 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑏𝑑𝑎 𝑒𝑐𝑏𝑑𝑎

𝑅37 𝑐𝑏𝑑𝑒𝑎 𝑐𝑒𝑏𝑎𝑑 𝑐𝑏𝑑𝑒𝑎 (𝑅35) 𝑐𝑏𝑒𝑎𝑑 (𝑅35) 𝑐𝑏𝑒𝑑𝑎 (𝑅35) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅35)
𝑅38 𝑐𝑏𝑎𝑒𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅37) 𝑐𝑒𝑏𝑎𝑑

𝑅39 𝑐𝑎𝑏𝑑𝑒 𝑐𝑒𝑏𝑎𝑑 𝑐𝑎𝑏𝑑𝑒 𝑐𝑎𝑏𝑒𝑑 (𝑅32) 𝑐𝑎𝑒𝑏𝑑 (𝑅31) 𝑐𝑏𝑎𝑑𝑒 (𝑅37) 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅1)
𝑅40 𝑐𝑏𝑑𝑎𝑒 𝑐𝑒𝑏𝑎𝑑 𝑐𝑏𝑎𝑑𝑒 (𝑅37) 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑑𝑎𝑒 (𝑅37) 𝑐𝑏𝑑𝑒𝑎 (𝑅37) 𝑐𝑏𝑒𝑎𝑑 (𝑅37) 𝑐𝑏𝑒𝑑𝑎 (𝑅37) 𝑐𝑒𝑏𝑎𝑑 (𝑅39) 𝑐𝑒𝑏𝑑𝑎 (𝑅37)
𝑅41 𝑐𝑏𝑎𝑒𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅37) 𝑐𝑒𝑏𝑎𝑑 (𝑅40)
𝑅42 𝑐𝑏𝑎𝑒𝑑 𝑒𝑐𝑏𝑑𝑎 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅38) 𝑐𝑏𝑒𝑑𝑎 (𝑅14) 𝑐𝑒𝑏𝑎𝑑 (𝑅41) 𝑐𝑒𝑏𝑑𝑎 (𝑅8) 𝑒𝑐𝑏𝑎𝑑 (𝑅8) 𝑒𝑐𝑏𝑑𝑎 (𝑅8)
𝑅43 𝑐𝑏𝑑𝑎𝑒 𝑒𝑐𝑏𝑑𝑎 𝑐𝑏𝑑𝑎𝑒 𝑐𝑏𝑑𝑒𝑎 (𝑅36) 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑏𝑑𝑎 (𝑅40) 𝑒𝑐𝑏𝑑𝑎 (𝑅42)
𝑅44 𝑐𝑏𝑑𝑒𝑎 𝑒𝑐𝑏𝑑𝑎 𝑐𝑏𝑑𝑒𝑎 (𝑅35) 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑏𝑑𝑎 (𝑅43) 𝑒𝑐𝑏𝑑𝑎 (𝑅43)
𝑅45 𝑐𝑏𝑒𝑑𝑎 𝑒𝑐𝑏𝑑𝑎 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑏𝑑𝑎 (𝑅44) 𝑒𝑐𝑏𝑑𝑎 (𝑅44)
𝑅46 𝑐𝑏𝑒𝑑𝑎 𝑒𝑐𝑎𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅21) 𝑐𝑏𝑒𝑑𝑎 (𝑅22) 𝑐𝑒𝑎𝑏𝑑 (𝑅11) 𝑐𝑒𝑏𝑎𝑑 (𝑅21) 𝑐𝑒𝑏𝑑𝑎 (𝑅21) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅15) 𝑒𝑐𝑏𝑑𝑎

𝑅47 𝑐𝑏𝑒𝑑𝑎 𝑒𝑐𝑑𝑎𝑏 𝑐𝑏𝑒𝑑𝑎 (𝑅46) 𝑐𝑒𝑏𝑑𝑎 (𝑅46) 𝑐𝑒𝑑𝑎𝑏 𝑐𝑒𝑑𝑏𝑎 𝑒𝑐𝑏𝑑𝑎 (𝑅45) 𝑒𝑐𝑑𝑎𝑏 𝑒𝑐𝑑𝑏𝑎 (𝑅45)
𝑅48 𝑐𝑏𝑒𝑑𝑎 𝑒𝑐𝑑𝑏𝑎 𝑐𝑏𝑒𝑑𝑎 (𝑅47) 𝑐𝑒𝑏𝑑𝑎 (𝑅45) 𝑐𝑒𝑑𝑏𝑎 𝑒𝑐𝑏𝑑𝑎 (𝑅45) 𝑒𝑐𝑑𝑏𝑎 (𝑅45)
𝑅49 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑑𝑏𝑎 𝑐𝑏𝑒𝑑𝑎 (𝑅48) 𝑐𝑒𝑏𝑑𝑎 (𝑅45) 𝑐𝑒𝑑𝑏𝑎

𝑅50 𝑐𝑒𝑏𝑑𝑎 𝑐𝑒𝑑𝑏𝑎 𝑐𝑒𝑏𝑑𝑎 (𝑅49) 𝑐𝑒𝑑𝑏𝑎

𝑅51 𝑏𝑐𝑒𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 𝑏𝑐𝑒𝑎𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅37) 𝑐𝑒𝑏𝑎𝑑

𝑅52 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑑𝑏𝑎 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅37) 𝑐𝑒𝑑𝑏𝑎

𝑅53 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑑𝑏𝑎 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑏𝑑𝑎 (𝑅45) 𝑐𝑒𝑑𝑏𝑎

𝑅54 𝑏𝑐𝑒𝑑𝑎 𝑐𝑒𝑑𝑏𝑎 𝑏𝑐𝑒𝑑𝑎 (𝑅49) 𝑐𝑏𝑒𝑑𝑎 (𝑅49) 𝑐𝑒𝑏𝑑𝑎 (𝑅53) 𝑐𝑒𝑑𝑏𝑎

𝑅55 𝑐𝑏𝑎𝑒𝑑 𝑐𝑒𝑑𝑏𝑎 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅38) 𝑐𝑏𝑒𝑑𝑎 (𝑅14) 𝑐𝑒𝑏𝑎𝑑 (𝑅41) 𝑐𝑒𝑏𝑑𝑎 (𝑅52) 𝑐𝑒𝑑𝑏𝑎 (𝑅42)
𝑅56 𝑏𝑐𝑒𝑎𝑑 𝑐𝑒𝑑𝑏𝑎 𝑏𝑐𝑒𝑎𝑑 (𝑅54) 𝑏𝑐𝑒𝑑𝑎 (𝑅49) 𝑐𝑏𝑒𝑎𝑑 (𝑅51) 𝑐𝑏𝑒𝑑𝑎 (𝑅49) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅52) 𝑐𝑒𝑑𝑏𝑎 (𝑅55)
𝑅57 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑑𝑏𝑎 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅37) 𝑐𝑒𝑑𝑏𝑎 (𝑅56)
𝑅58 𝑐𝑒𝑏𝑎𝑑 𝑑𝑐𝑒𝑏𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅37) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅37) 𝑐𝑒𝑑𝑏𝑎 𝑑𝑐𝑒𝑏𝑎

𝑅59 𝑐𝑑𝑒𝑏𝑎 𝑐𝑒𝑏𝑎𝑑 𝑐𝑑𝑒𝑏𝑎 (𝑅37) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅37) 𝑐𝑒𝑑𝑏𝑎

𝑅60 𝑏𝑐𝑒𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 𝑏𝑐𝑒𝑎𝑑 (𝑅56) 𝑐𝑏𝑒𝑎𝑑 (𝑅37) 𝑐𝑒𝑏𝑎𝑑

𝑅61 𝑐𝑑𝑒𝑏𝑎 𝑐𝑒𝑏𝑎𝑑 𝑐𝑑𝑒𝑏𝑎 (𝑅37) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅37) 𝑐𝑒𝑑𝑏𝑎 (𝑅57)
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𝑅62 𝑐𝑒𝑏𝑎𝑑 𝑑𝑐𝑒𝑏𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅37) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅37) 𝑐𝑒𝑑𝑏𝑎 (𝑅57) 𝑑𝑐𝑒𝑏𝑎 (𝑅61)
𝑅63 𝑐𝑒𝑏𝑑𝑎 𝑑𝑐𝑒𝑏𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅58) 𝑐𝑒𝑏𝑑𝑎 (𝑅50) 𝑐𝑒𝑑𝑏𝑎 𝑑𝑐𝑒𝑏𝑎 (𝑅62)
𝑅64 𝑐𝑒𝑑𝑏𝑎 𝑑𝑐𝑒𝑏𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅63) 𝑐𝑒𝑑𝑏𝑎 𝑑𝑐𝑒𝑏𝑎 (𝑅63)
𝑅65 𝑐𝑒𝑑𝑏𝑎 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅6) 𝑐𝑒𝑏𝑑𝑎 (𝑅52) 𝑐𝑒𝑑𝑏𝑎 (𝑅56) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑏𝑐𝑑𝑎 (𝑅54) 𝑒𝑐𝑏𝑎𝑑 𝑒𝑐𝑏𝑑𝑎 𝑒𝑐𝑑𝑏𝑎 (𝑅56)
𝑅66 𝑐𝑒𝑑𝑏𝑎 𝑒𝑏𝑐𝑑𝑎 𝑐𝑒𝑏𝑑𝑎 (𝑅49) 𝑐𝑒𝑑𝑏𝑎 (𝑅65) 𝑒𝑏𝑐𝑑𝑎 (𝑅54) 𝑒𝑐𝑏𝑑𝑎 𝑒𝑐𝑑𝑏𝑎

𝑅67 𝑐𝑒𝑑𝑏𝑎 𝑒𝑐𝑏𝑑𝑎 𝑐𝑒𝑏𝑑𝑎 (𝑅49) 𝑐𝑒𝑑𝑏𝑎 (𝑅66) 𝑒𝑐𝑏𝑑𝑎 𝑒𝑐𝑑𝑏𝑎

𝑅68 𝑐𝑑𝑒𝑏𝑎 𝑒𝑐𝑏𝑑𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅59) 𝑐𝑒𝑏𝑑𝑎 𝑐𝑒𝑑𝑏𝑎 (𝑅67) 𝑒𝑐𝑏𝑑𝑎 𝑒𝑐𝑑𝑏𝑎

𝑅69 𝑏𝑐𝑑𝑒𝑎 𝑐𝑒𝑏𝑎𝑑 𝑏𝑐𝑑𝑒𝑎 (𝑅37) 𝑏𝑐𝑒𝑎𝑑 (𝑅60) 𝑏𝑐𝑒𝑑𝑎 (𝑅37) 𝑐𝑏𝑑𝑒𝑎 (𝑅37) 𝑐𝑏𝑒𝑎𝑑 (𝑅37) 𝑐𝑏𝑒𝑑𝑎 (𝑅37) 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑑𝑎 (𝑅37)
𝑅70 𝑏𝑐𝑑𝑒𝑎 𝑐𝑒𝑏𝑑𝑎 𝑏𝑐𝑑𝑒𝑎 (𝑅69) 𝑏𝑐𝑒𝑑𝑎 (𝑅69) 𝑐𝑏𝑑𝑒𝑎 (𝑅69) 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑏𝑑𝑎

𝑅71 𝑐𝑏𝑑𝑎𝑒 𝑐𝑒𝑑𝑏𝑎 𝑐𝑏𝑑𝑎𝑒 𝑐𝑏𝑑𝑒𝑎 (𝑅43) 𝑐𝑏𝑒𝑑𝑎 (𝑅49) 𝑐𝑑𝑏𝑎𝑒 𝑐𝑑𝑏𝑒𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅55) 𝑐𝑒𝑏𝑑𝑎 (𝑅40) 𝑐𝑒𝑑𝑏𝑎 (𝑅55)
𝑅72 𝑏𝑐𝑑𝑒𝑎 𝑐𝑒𝑑𝑏𝑎 𝑏𝑐𝑑𝑒𝑎 (𝑅54) 𝑏𝑐𝑒𝑑𝑎 (𝑅49) 𝑐𝑏𝑑𝑒𝑎 (𝑅49) 𝑐𝑏𝑒𝑑𝑎 (𝑅49) 𝑐𝑑𝑏𝑒𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅64) 𝑐𝑒𝑏𝑑𝑎 (𝑅53) 𝑐𝑒𝑑𝑏𝑎 (𝑅71)
𝑅73 𝑏𝑐𝑑𝑒𝑎 𝑐𝑒𝑏𝑑𝑎 𝑏𝑐𝑑𝑒𝑎 (𝑅69) 𝑏𝑐𝑒𝑑𝑎 (𝑅69) 𝑐𝑏𝑑𝑒𝑎 (𝑅69) 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑏𝑑𝑎 (𝑅72)
𝑅74 𝑏𝑑𝑐𝑒𝑎 𝑐𝑒𝑏𝑑𝑎 𝑏𝑐𝑑𝑒𝑎 (𝑅70) 𝑏𝑐𝑒𝑑𝑎 (𝑅70) 𝑏𝑑𝑐𝑒𝑎 (𝑅70) 𝑐𝑏𝑑𝑒𝑎 (𝑅70) 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑏𝑑𝑎

𝑅75 𝑏𝑑𝑐𝑒𝑎 𝑐𝑒𝑏𝑑𝑎 𝑏𝑐𝑑𝑒𝑎 (𝑅70) 𝑏𝑐𝑒𝑑𝑎 (𝑅70) 𝑏𝑑𝑐𝑒𝑎 (𝑅70) 𝑐𝑏𝑑𝑒𝑎 (𝑅70) 𝑐𝑏𝑒𝑑𝑎 𝑐𝑒𝑏𝑑𝑎 (𝑅73)
𝑅76 𝑏𝑑𝑐𝑒𝑎 𝑐𝑏𝑒𝑑𝑎 𝑏𝑐𝑑𝑒𝑎 (𝑅74) 𝑏𝑐𝑒𝑑𝑎 (𝑅75) 𝑏𝑑𝑐𝑒𝑎 (𝑅74) 𝑐𝑏𝑑𝑒𝑎 (𝑅75) 𝑐𝑏𝑒𝑑𝑎

𝑅77 𝑐𝑒𝑑𝑏𝑎 𝑑𝑏𝑐𝑒𝑎 𝑐𝑑𝑏𝑒𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅64) 𝑐𝑒𝑑𝑏𝑎 (𝑅72) 𝑑𝑏𝑐𝑒𝑎 𝑑𝑐𝑏𝑒𝑎 (𝑅64) 𝑑𝑐𝑒𝑏𝑎 (𝑅64)
𝑅78 𝑐𝑏𝑒𝑑𝑎 𝑑𝑏𝑐𝑒𝑎 𝑏𝑐𝑑𝑒𝑎 (𝑅76) 𝑏𝑐𝑒𝑑𝑎 (𝑅76) 𝑏𝑑𝑐𝑒𝑎 (𝑅76) 𝑐𝑏𝑑𝑒𝑎 (𝑅76) 𝑐𝑏𝑒𝑑𝑎 𝑐𝑑𝑏𝑒𝑎 𝑑𝑏𝑐𝑒𝑎 (𝑅76) 𝑑𝑐𝑏𝑒𝑎 (𝑅76)
𝑅79 𝑐𝑒𝑑𝑏𝑎 𝑑𝑏𝑐𝑒𝑎 𝑐𝑑𝑏𝑒𝑎 𝑐𝑑𝑒𝑏𝑎 (𝑅64) 𝑐𝑒𝑑𝑏𝑎 (𝑅72) 𝑑𝑏𝑐𝑒𝑎 (𝑅78) 𝑑𝑐𝑏𝑒𝑎 (𝑅64) 𝑑𝑐𝑒𝑏𝑎 (𝑅64)
𝑅80 𝑐𝑑𝑏𝑒𝑎 𝑑𝑏𝑐𝑒𝑎 𝑐𝑑𝑏𝑒𝑎 𝑑𝑏𝑐𝑒𝑎 (𝑅79) 𝑑𝑐𝑏𝑒𝑎 (𝑅77)
𝑅81 𝑏𝑐𝑑𝑒𝑎 𝑐𝑑𝑏𝑒𝑎 𝑏𝑐𝑑𝑒𝑎 (𝑅72) 𝑐𝑏𝑑𝑒𝑎 (𝑅72) 𝑐𝑑𝑏𝑒𝑎

𝑅82 𝑐𝑑𝑏𝑒𝑎 𝑑𝑏𝑒𝑐𝑎 𝑐𝑑𝑏𝑒𝑎 𝑑𝑏𝑐𝑒𝑎 (𝑅80) 𝑑𝑏𝑒𝑐𝑎 (𝑅80) 𝑑𝑐𝑏𝑒𝑎 (𝑅80)
𝑅83 𝑐𝑑𝑏𝑒𝑎 𝑒𝑐𝑏𝑑𝑎 𝑐𝑏𝑑𝑒𝑎 (𝑅36) 𝑐𝑏𝑒𝑑𝑎 𝑐𝑑𝑏𝑒𝑎 (𝑅68) 𝑐𝑑𝑒𝑏𝑎 (𝑅68) 𝑐𝑒𝑏𝑑𝑎 (𝑅43) 𝑐𝑒𝑑𝑏𝑎 (𝑅67) 𝑒𝑐𝑏𝑑𝑎 (𝑅43) 𝑒𝑐𝑑𝑏𝑎 (𝑅43)
𝑅84 𝑏𝑑𝑒𝑐𝑎 𝑐𝑑𝑏𝑒𝑎 𝑏𝑐𝑑𝑒𝑎 (𝑅81) 𝑏𝑑𝑐𝑒𝑎 (𝑅81) 𝑏𝑑𝑒𝑐𝑎 (𝑅82) 𝑐𝑏𝑑𝑒𝑎 (𝑅81) 𝑐𝑑𝑏𝑒𝑎 𝑑𝑏𝑐𝑒𝑎 (𝑅80) 𝑑𝑏𝑒𝑐𝑎 (𝑅80) 𝑑𝑐𝑏𝑒𝑎 (𝑅80)
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𝑅87 𝑏𝑒𝑑𝑐𝑎 𝑐𝑏𝑒𝑑𝑎 𝑏𝑐𝑒𝑑𝑎 (𝑅76) 𝑏𝑒𝑐𝑑𝑎 (𝑅86) 𝑏𝑒𝑑𝑐𝑎 (𝑅76) 𝑐𝑏𝑒𝑑𝑎

𝑅88 𝑏𝑒𝑑𝑎𝑐 𝑐𝑏𝑒𝑑𝑎 𝑏𝑐𝑒𝑑𝑎 (𝑅76) 𝑏𝑒𝑐𝑑𝑎 (𝑅86) 𝑏𝑒𝑑𝑎𝑐 (𝑅87) 𝑏𝑒𝑑𝑐𝑎 (𝑅76) 𝑐𝑏𝑒𝑑𝑎

𝑅89 𝑏𝑒𝑎𝑐𝑑 𝑐𝑏𝑒𝑑𝑎 𝑏𝑐𝑒𝑎𝑑 𝑏𝑐𝑒𝑑𝑎 (𝑅76) 𝑏𝑒𝑎𝑐𝑑 (𝑅88) 𝑏𝑒𝑐𝑎𝑑 (𝑅86) 𝑏𝑒𝑐𝑑𝑎 (𝑅86) 𝑐𝑏𝑒𝑎𝑑 𝑐𝑏𝑒𝑑𝑎

𝑅90 𝑏𝑒𝑎𝑐𝑑 𝑐𝑏𝑒𝑎𝑑 𝑏𝑐𝑒𝑎𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅89) 𝑏𝑒𝑐𝑎𝑑 (𝑅89) 𝑐𝑏𝑒𝑎𝑑

𝑅91 𝑐𝑏𝑎𝑒𝑑 𝑒𝑏𝑐𝑎𝑑 𝑏𝑐𝑎𝑒𝑑 𝑏𝑐𝑒𝑎𝑑 𝑏𝑒𝑐𝑎𝑑 (𝑅9) 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅38) 𝑐𝑒𝑏𝑎𝑑 (𝑅6) 𝑒𝑏𝑐𝑎𝑑 (𝑅9) 𝑒𝑐𝑏𝑎𝑑 (𝑅9)
𝑅92 𝑐𝑏𝑒𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 𝑏𝑐𝑒𝑎𝑑 𝑏𝑒𝑐𝑎𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅22) 𝑐𝑒𝑏𝑎𝑑 (𝑅6) 𝑒𝑏𝑐𝑎𝑑 (𝑅91) 𝑒𝑐𝑏𝑎𝑑

𝑅93 𝑐𝑏𝑒𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑏𝑐𝑒𝑎𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅90) 𝑏𝑒𝑐𝑎𝑑 (𝑅90) 𝑐𝑏𝑒𝑎𝑑 (𝑅5) 𝑐𝑒𝑏𝑎𝑑 (𝑅5) 𝑒𝑏𝑎𝑐𝑑 (𝑅90) 𝑒𝑏𝑐𝑎𝑑 (𝑅92) 𝑒𝑐𝑏𝑎𝑑 (𝑅5)
𝑅94 𝑏𝑐𝑒𝑎𝑑 𝑒𝑏𝑎𝑐𝑑 𝑏𝑐𝑒𝑎𝑑 𝑏𝑒𝑎𝑐𝑑 (𝑅93) 𝑏𝑒𝑐𝑎𝑑 (𝑅93) 𝑒𝑏𝑎𝑐𝑑 (𝑅93) 𝑒𝑏𝑐𝑎𝑑 (𝑅93)
𝑅95 𝑏𝑐𝑒𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑏𝑐𝑒𝑎𝑑 (𝑅22) 𝑏𝑒𝑐𝑎𝑑 (𝑅15) 𝑐𝑏𝑒𝑎𝑑 (𝑅21) 𝑐𝑒𝑎𝑏𝑑 (𝑅11) 𝑐𝑒𝑏𝑎𝑑 (𝑅21) 𝑒𝑏𝑐𝑎𝑑 (𝑅15) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅15)
𝑅96 𝑏𝑐𝑒𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 𝑏𝑐𝑒𝑎𝑑 (𝑅95) 𝑏𝑒𝑎𝑐𝑑 (𝑅94) 𝑏𝑒𝑐𝑎𝑑 (𝑅95) 𝑒𝑎𝑏𝑐𝑑 (𝑅94) 𝑒𝑏𝑎𝑐𝑑 (𝑅94) 𝑒𝑏𝑐𝑎𝑑 (𝑅94)

Case 3: Lastly, we suppose that 𝑓 (𝑅1) = 𝑐𝑒𝑏𝑎𝑑 . To derive a contradiction in this case, we will use a further case distinction with respect

to the profile 𝑅2
where one voter repots 𝑎𝑒𝑐𝑏𝑑 and the other reports 𝑐𝑎𝑏𝑒𝑑 . It can be checked that there are 5 possible outcomes for this

profile 𝑓 (𝑅2) ∈ {𝑎𝑐𝑏𝑒𝑑, 𝑎𝑐𝑒𝑏𝑑, 𝑎𝑒𝑐𝑏𝑑, 𝑐𝑎𝑏𝑒𝑑, 𝑐𝑎𝑒𝑏𝑑}. We will subsequenlty show that none of these outcoems is feasible by considering four

separate cases.

Case 3.1:As the first case, we suppose that 𝑓 (𝑅2) ∉ {𝑎𝑐𝑏𝑒𝑑, 𝑎𝑐𝑒𝑏𝑑, 𝑎𝑒𝑐𝑏𝑑}. In this case, the following derivation shows that our assumptions

are incompatible. Noet that the profile 𝑅2
appears again at 𝑅11

as we can conclude that 𝑓 (𝑅2) = 𝑓 (𝑅11) = 𝑐𝑎𝑏𝑒𝑑 at this point.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (A)

𝑅1 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (A)

𝑅2 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝐴) 𝑎𝑐𝑒𝑏𝑑 (𝐴) 𝑎𝑒𝑐𝑏𝑑 (𝐴) 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑

𝑅3 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑

𝑅4 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅1) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑
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𝑅5 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅4) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑

𝑅6 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅7 𝑐𝑎𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅6) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑐𝑎𝑒𝑏𝑑 (𝑅6) 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅8 𝑎𝑒𝑏𝑐𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅7) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑐𝑎𝑒𝑏𝑑 (𝑅7)
𝑅9 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅8) 𝑎𝑒𝑐𝑑𝑏

𝑅10 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑 (𝑅8)
𝑅11 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝐴) 𝑎𝑐𝑒𝑏𝑑 (𝐴) 𝑎𝑒𝑐𝑏𝑑 (𝐴) 𝑐𝑎𝑏𝑒𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅10)
𝑅12 𝑎𝑒𝑏𝑐𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅11) 𝑎𝑐𝑏𝑒𝑑 (𝑅8) 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑒𝑏𝑐𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑐𝑎𝑏𝑒𝑑 (𝑅8) 𝑐𝑎𝑒𝑏𝑑 (𝑅8)
𝑅13 𝑎𝑏𝑐𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅11) 𝑐𝑎𝑏𝑒𝑑 (𝑅12)
𝑅14 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅15 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 (𝑅12) 𝑎𝑒𝑏𝑐𝑑 (𝑅14)
𝑅16 𝑎𝑐𝑑𝑒𝑏 𝑎𝑒𝑏𝑐𝑑 𝑎𝑐𝑑𝑒𝑏 𝑎𝑐𝑒𝑏𝑑 (𝑅8) 𝑎𝑐𝑒𝑑𝑏 (𝑅8) 𝑎𝑒𝑏𝑐𝑑 (𝑅15) 𝑎𝑒𝑐𝑏𝑑 (𝑅8) 𝑎𝑒𝑐𝑑𝑏

𝑅17 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅8) 𝑎𝑐𝑒𝑑𝑏 (𝑅8) 𝑎𝑒𝑏𝑐𝑑 (𝑅16) 𝑎𝑒𝑐𝑏𝑑 (𝑅8) 𝑎𝑒𝑐𝑑𝑏

𝑅18 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 (𝑅17) 𝑎𝑒𝑐𝑏𝑑 (𝑅8) 𝑎𝑒𝑐𝑑𝑏

𝑅19 𝑎𝑏𝑐𝑒𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅13) 𝑎𝑐𝑒𝑏𝑑 (𝑅5) 𝑐𝑎𝑏𝑒𝑑 (𝑅13) 𝑐𝑎𝑒𝑏𝑑 (𝑅13) 𝑐𝑒𝑎𝑏𝑑 (𝑅6)
𝑅20 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅13) 𝑎𝑐𝑒𝑏𝑑 (𝑅19) 𝑎𝑐𝑒𝑑𝑏 (𝑅19)
𝑅21 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅17) 𝑎𝑐𝑏𝑒𝑑 (𝑅20) 𝑎𝑐𝑒𝑏𝑑 (𝑅20) 𝑎𝑐𝑒𝑑𝑏 (𝑅20) 𝑎𝑒𝑏𝑐𝑑 (𝑅17) 𝑎𝑒𝑐𝑏𝑑 (𝑅20) 𝑎𝑒𝑐𝑑𝑏 (𝑅20)
𝑅22 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 (𝑅18) 𝑎𝑒𝑏𝑐𝑑 (𝑅18) 𝑎𝑒𝑐𝑏𝑑 (𝑅9) 𝑎𝑒𝑐𝑑𝑏 (𝑅21)

Case 3.2: Next, we assume that 𝑓 (𝑅2) = 𝑎𝑐𝑏𝑒𝑑 and derive a contradiction as shown below.

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (A)

𝑅1 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (A)

𝑅2 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (A)

𝑅3 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅4 𝑐𝑎𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅3) 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅5 𝑎𝑒𝑏𝑐𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅4) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅4)
𝑅6 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅5)
𝑅7 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅1) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑

𝑅8 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅7) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑

𝑅9 𝑎𝑒𝑐𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅7) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑

𝑅10 𝑎𝑒𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅8) 𝑎𝑒𝑐𝑏𝑑 (𝑅9) 𝑐𝑎𝑒𝑏𝑑 (𝑅6) 𝑐𝑒𝑎𝑏𝑑 (𝑅3) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑

𝑅11 𝑎𝑒𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅10) 𝑒𝑎𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑

𝑅12 𝑐𝑒𝑎𝑑𝑏 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑐𝑒𝑎𝑑𝑏 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑐𝑎𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑑𝑏 (𝑅+)
𝑅13 𝑐𝑒𝑎𝑑𝑏 𝑒𝑎𝑑𝑏𝑐 𝑐𝑒𝑎𝑑𝑏 (𝑅12) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑑𝑏𝑐 𝑒𝑎𝑑𝑐𝑏 𝑒𝑐𝑎𝑑𝑏 (𝑅12)
𝑅14 𝑐𝑒𝑎𝑑𝑏 𝑒𝑎𝑑𝑐𝑏 𝑐𝑒𝑎𝑑𝑏 (𝑅13) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑑𝑐𝑏 𝑒𝑐𝑎𝑑𝑏 (𝑅13)
𝑅15 𝑒𝑎𝑑𝑐𝑏 𝑒𝑐𝑎𝑑𝑏 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑑𝑐𝑏 𝑒𝑐𝑎𝑑𝑏 (𝑅14)
𝑅16 𝑎𝑏𝑐𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅2)
𝑅17 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅2)
𝑅18 𝑎𝑐𝑏𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 (𝑅2)
𝑅19 𝑎𝑐𝑏𝑑𝑒 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅18) 𝑎𝑒𝑐𝑏𝑑 (𝑅18) 𝑒𝑎𝑐𝑏𝑑 (𝑅18)
𝑅20 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅19) 𝑒𝑎𝑐𝑏𝑑 (𝑅19)
𝑅21 𝑎𝑐𝑏𝑒𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅8) 𝑐𝑎𝑏𝑒𝑑 (𝑅17) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑

𝑅22 𝑎𝑏𝑐𝑒𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅8) 𝑐𝑎𝑏𝑒𝑑 (𝑅16) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅3)
𝑅23 𝑎𝑐𝑏𝑒𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅8) 𝑐𝑎𝑏𝑒𝑑 (𝑅17) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅22)
𝑅24 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅7) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅23)
𝑅25 𝑎𝑐𝑏𝑒𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅21) 𝑎𝑒𝑐𝑏𝑑 (𝑅20) 𝑐𝑎𝑏𝑒𝑑 (𝑅17) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅23) 𝑒𝑎𝑐𝑏𝑑 (𝑅20) 𝑒𝑐𝑎𝑏𝑑 (𝑅20)
𝑅26 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅7) 𝑎𝑒𝑐𝑏𝑑 (𝑅11) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅24) 𝑒𝑎𝑐𝑏𝑑 (𝑅25) 𝑒𝑐𝑎𝑏𝑑 (𝑅25)



AAMAS ’26, May 25 – 29, 2026, Paphos, Cyprus Manuel Eberl and Patrick Lederer

𝑅27 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅7) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑐𝑎𝑒𝑏𝑑 (𝑅7) 𝑐𝑒𝑎𝑏𝑑 (𝑅7) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅7) 𝑒𝑐𝑎𝑏𝑑 (𝑅26) 𝑒𝑐𝑏𝑎𝑑 (𝑅26)
𝑅28 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅27)
𝑅29 𝑐𝑒𝑎𝑑𝑏 𝑒𝑎𝑐𝑑𝑏 𝑐𝑒𝑎𝑑𝑏 (𝑅14) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑐𝑎𝑑𝑏

𝑅30 𝑎𝑐𝑏𝑒𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅7) 𝑎𝑐𝑒𝑏𝑑 (𝑅1) 𝑐𝑎𝑏𝑒𝑑 (𝑅1) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑

𝑅31 𝑎𝑐𝑏𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅30) 𝑐𝑎𝑏𝑒𝑑 (𝑅17) 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑

𝑅32 𝑎𝑐𝑏𝑒𝑑 𝑐𝑏𝑎𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅31) 𝑐𝑎𝑏𝑒𝑑 (𝑅17) 𝑐𝑏𝑎𝑒𝑑

𝑅33 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅28)
𝑅34 𝑎𝑒𝑐𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅7) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅28)
𝑅35 𝑎𝑒𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅8) 𝑎𝑒𝑐𝑏𝑑 (𝑅9) 𝑐𝑎𝑒𝑏𝑑 (𝑅6) 𝑐𝑒𝑎𝑏𝑑 (𝑅3) 𝑒𝑎𝑐𝑏𝑑 (𝑅34) 𝑒𝑐𝑎𝑏𝑑

𝑅36 𝑎𝑒𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅10) 𝑒𝑎𝑐𝑏𝑑 (𝑅35) 𝑒𝑐𝑎𝑏𝑑

𝑅37 𝑎𝑒𝑐𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅32) 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑐𝑎𝑏𝑒𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑 (𝑅6) 𝑐𝑏𝑎𝑒𝑑

𝑅38 𝑐𝑏𝑎𝑒𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅32) 𝑐𝑎𝑒𝑏𝑑 (𝑅37) 𝑐𝑏𝑎𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅37) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅37) 𝑒𝑐𝑏𝑎𝑑 (𝑅37)
𝑅39 𝑐𝑏𝑒𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅33) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅38) 𝑒𝑐𝑏𝑎𝑑 (𝑅33)
𝑅40 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅39) 𝑒𝑐𝑏𝑎𝑑 (𝑅28)
𝑅41 𝑎𝑐𝑒𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅7) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑐𝑎𝑒𝑏𝑑 (𝑅7) 𝑐𝑒𝑎𝑏𝑑 (𝑅7) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅7) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑

𝑅42 𝑎𝑒𝑐𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅1) 𝑎𝑒𝑐𝑏𝑑 (𝑅7) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅7) 𝑒𝑐𝑎𝑏𝑑 (𝑅40) 𝑒𝑐𝑏𝑎𝑑 (𝑅28)
𝑅43 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑑𝑏 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑑𝑏 (𝑅29) 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅7) 𝑒𝑎𝑐𝑑𝑏 (𝑅42) 𝑒𝑐𝑎𝑏𝑑 (𝑅40) 𝑒𝑐𝑎𝑑𝑏 (𝑅40) 𝑒𝑐𝑏𝑎𝑑 (𝑅28)
𝑅44 𝑒𝑎𝑐𝑑𝑏 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅41) 𝑒𝑎𝑐𝑑𝑏 (𝑅43) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑎𝑑𝑏 (𝑅43) 𝑒𝑐𝑏𝑎𝑑

𝑅45 𝑒𝑎𝑑𝑐𝑏 𝑒𝑐𝑏𝑎𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅41) 𝑒𝑎𝑐𝑑𝑏 (𝑅44) 𝑒𝑎𝑑𝑐𝑏 (𝑅44) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑎𝑑𝑏 (𝑅14) 𝑒𝑐𝑏𝑎𝑑

𝑅46 𝑒𝑎𝑑𝑐𝑏 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅36) 𝑒𝑎𝑐𝑑𝑏 (𝑅45) 𝑒𝑎𝑑𝑐𝑏 (𝑅45) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑎𝑑𝑏 (𝑅14)
𝑅47 𝑒𝑎𝑑𝑐𝑏 𝑒𝑐𝑎𝑑𝑏 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑑𝑐𝑏 (𝑅46) 𝑒𝑐𝑎𝑑𝑏 (𝑅14)
𝑅48 𝑎𝑒𝑑𝑐𝑏 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅11) 𝑎𝑒𝑐𝑑𝑏 (𝑅36) 𝑎𝑒𝑑𝑐𝑏 (𝑅46) 𝑒𝑎𝑐𝑏𝑑 (𝑅36) 𝑒𝑎𝑐𝑑𝑏 (𝑅46) 𝑒𝑎𝑑𝑐𝑏 (𝑅46) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑎𝑑𝑏 (𝑅46)
𝑅49 𝑎𝑒𝑑𝑐𝑏 𝑒𝑐𝑎𝑑𝑏 𝑎𝑒𝑐𝑑𝑏 (𝑅48) 𝑎𝑒𝑑𝑐𝑏 (𝑅48) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑑𝑐𝑏 (𝑅47) 𝑒𝑐𝑎𝑑𝑏 (𝑅15)
𝑅50 𝑎𝑒𝑑𝑐𝑏 𝑒𝑎𝑐𝑑𝑏 𝑎𝑒𝑐𝑑𝑏 (𝑅49) 𝑎𝑒𝑑𝑐𝑏 (𝑅49) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑑𝑐𝑏 (𝑅49)
𝑅51 𝑎𝑐𝑒𝑑𝑏 𝑒𝑎𝑐𝑑𝑏 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑑𝑏 (𝑅50) 𝑒𝑎𝑐𝑑𝑏

𝑅52 𝑐𝑒𝑎𝑑𝑏 𝑒𝑎𝑑𝑐𝑏 𝑐𝑒𝑎𝑑𝑏 (𝑅13) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑑𝑐𝑏 (𝑅46) 𝑒𝑐𝑎𝑑𝑏 (𝑅13)
𝑅53 𝑐𝑒𝑎𝑑𝑏 𝑒𝑎𝑐𝑑𝑏 𝑐𝑒𝑎𝑑𝑏 (𝑅14) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑐𝑎𝑑𝑏 (𝑅52)
𝑅54 𝑐𝑒𝑑𝑏𝑎 𝑒𝑎𝑐𝑑𝑏 𝑐𝑒𝑎𝑑𝑏 (𝑅29) 𝑐𝑒𝑑𝑎𝑏 (𝑅53) 𝑐𝑒𝑑𝑏𝑎 𝑒𝑎𝑐𝑑𝑏 (𝑅43) 𝑒𝑐𝑎𝑑𝑏 (𝑅43) 𝑒𝑐𝑑𝑎𝑏 𝑒𝑐𝑑𝑏𝑎

𝑅55 𝑒𝑎𝑐𝑑𝑏 𝑒𝑐𝑑𝑏𝑎 𝑒𝑎𝑐𝑑𝑏 (𝑅54) 𝑒𝑐𝑎𝑑𝑏 (𝑅53) 𝑒𝑐𝑑𝑎𝑏 𝑒𝑐𝑑𝑏𝑎

𝑅56 𝑐𝑎𝑒𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅26) 𝑒𝑐𝑎𝑏𝑑 (𝑅26)
𝑅57 𝑐𝑒𝑏𝑎𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 (𝑅42) 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑏𝑎𝑐𝑑 (𝑅42) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅+) 𝑒𝑐𝑏𝑎𝑑 (𝑅+)
𝑅58 𝑐𝑒𝑏𝑎𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (𝑅57) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅28)
𝑅59 𝑒𝑎𝑐𝑑𝑏 𝑒𝑐𝑑𝑎𝑏 𝑒𝑎𝑐𝑑𝑏 (𝑅55) 𝑒𝑐𝑎𝑑𝑏 (𝑅53) 𝑒𝑐𝑑𝑎𝑏

𝑅60 𝑐𝑎𝑒𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅58) 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅56) 𝑒𝑐𝑏𝑎𝑑 (𝑅56)
𝑅61 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑐𝑎𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅9) 𝑎𝑒𝑐𝑏𝑑 (𝑅9) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅9) 𝑒𝑏𝑎𝑐𝑑 𝑒𝑏𝑐𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 (𝑅60) 𝑒𝑐𝑏𝑎𝑑 (𝑅58)
𝑅62 𝑎𝑒𝑐𝑏𝑑 𝑒𝑏𝑎𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅61) 𝑎𝑒𝑐𝑏𝑑 (𝑅61) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅61) 𝑒𝑏𝑎𝑐𝑑

𝑅63 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅62) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+)
𝑅64 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑑𝑏 𝑎𝑐𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑏𝑑 (𝑅20) 𝑎𝑒𝑐𝑑𝑏 (𝑅50) 𝑒𝑎𝑐𝑏𝑑 (𝑅20) 𝑒𝑎𝑐𝑑𝑏 (𝑅20)
𝑅65 𝑎𝑑𝑒𝑐𝑏 𝑒𝑎𝑐𝑑𝑏 𝑎𝑑𝑒𝑐𝑏 (𝑅50) 𝑎𝑒𝑐𝑑𝑏 (𝑅50) 𝑎𝑒𝑑𝑐𝑏 (𝑅50) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑑𝑐𝑏 (𝑅50)
𝑅66 𝑎𝑐𝑑𝑏𝑒 𝑒𝑎𝑐𝑑𝑏 𝑎𝑐𝑑𝑏𝑒 𝑎𝑐𝑑𝑒𝑏 (𝑅65) 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑑𝑏 (𝑅50) 𝑒𝑎𝑐𝑑𝑏 (𝑅64)
𝑅67 𝑎𝑑𝑐𝑒𝑏 𝑒𝑎𝑐𝑑𝑏 𝑎𝑐𝑑𝑒𝑏 (𝑅65) 𝑎𝑐𝑒𝑑𝑏 𝑎𝑑𝑐𝑒𝑏 (𝑅65) 𝑎𝑑𝑒𝑐𝑏 (𝑅50) 𝑎𝑒𝑐𝑑𝑏 (𝑅50) 𝑎𝑒𝑑𝑐𝑏 (𝑅50) 𝑒𝑎𝑐𝑑𝑏 (𝑅66) 𝑒𝑎𝑑𝑐𝑏 (𝑅50)
𝑅68 𝑎𝑐𝑒𝑑𝑏 𝑒𝑎𝑐𝑑𝑏 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑐𝑑𝑏 (𝑅50) 𝑒𝑎𝑐𝑑𝑏 (𝑅67)
𝑅69 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑑𝑎𝑏 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑐𝑎𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑑𝑏 (𝑅+) 𝑒𝑐𝑑𝑎𝑏

𝑅70 𝑐𝑒𝑎𝑑𝑏 𝑒𝑎𝑑𝑏𝑐 𝑐𝑒𝑎𝑑𝑏 (𝑅12) 𝑒𝑎𝑐𝑑𝑏 𝑒𝑎𝑑𝑏𝑐 𝑒𝑎𝑑𝑐𝑏 (𝑅52) 𝑒𝑐𝑎𝑑𝑏 (𝑅12)
𝑅71 𝑐𝑎𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅63) 𝑐𝑎𝑒𝑏𝑑 (𝑅3) 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅72 𝑎𝑐𝑒𝑑𝑏 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅3) 𝑎𝑐𝑒𝑑𝑏 (𝑅71) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅63) 𝑎𝑒𝑐𝑑𝑏 (𝑅51) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑎𝑐𝑑𝑏 (𝑅68)
𝑅73 𝑎𝑐𝑒𝑑𝑏 𝑒𝑎𝑑𝑏𝑐 𝑎𝑐𝑒𝑑𝑏 (𝑅72) 𝑎𝑒𝑐𝑑𝑏 (𝑅51) 𝑎𝑒𝑑𝑏𝑐 𝑎𝑒𝑑𝑐𝑏 𝑒𝑎𝑐𝑑𝑏 (𝑅68) 𝑒𝑎𝑑𝑏𝑐 𝑒𝑎𝑑𝑐𝑏 (𝑅70)
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𝑅74 𝑎𝑐𝑒𝑑𝑏 𝑒𝑑𝑎𝑐𝑏 𝑎𝑐𝑒𝑑𝑏 (𝑅73) 𝑎𝑒𝑐𝑑𝑏 (𝑅51) 𝑎𝑒𝑑𝑐𝑏 𝑒𝑎𝑐𝑑𝑏 (𝑅68) 𝑒𝑎𝑑𝑐𝑏 (𝑅68) 𝑒𝑑𝑎𝑐𝑏

𝑅75 𝑐𝑒𝑎𝑑𝑏 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑐𝑒𝑎𝑑𝑏 (𝑅3) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑎𝑐𝑑𝑏 (𝑅72) 𝑒𝑐𝑎𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑑𝑏 (𝑅+)
𝑅76 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑑𝑎𝑏 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑎𝑐𝑑𝑏 (𝑅59) 𝑒𝑐𝑎𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑑𝑏 (𝑅+) 𝑒𝑐𝑑𝑎𝑏 (𝑅75)
𝑅77 𝑒𝑎𝑑𝑏𝑐 𝑒𝑐𝑑𝑎𝑏 𝑒𝑎𝑐𝑑𝑏 (𝑅59) 𝑒𝑎𝑑𝑏𝑐 𝑒𝑎𝑑𝑐𝑏 (𝑅70) 𝑒𝑐𝑎𝑑𝑏 (𝑅69) 𝑒𝑐𝑑𝑎𝑏 (𝑅76) 𝑒𝑑𝑎𝑏𝑐 𝑒𝑑𝑎𝑐𝑏 𝑒𝑑𝑐𝑎𝑏 (𝑅76)
𝑅78 𝑎𝑒𝑑𝑐𝑏 𝑒𝑐𝑑𝑎𝑏 𝑎𝑒𝑐𝑑𝑏 (𝑅48) 𝑎𝑒𝑑𝑐𝑏 (𝑅48) 𝑒𝑎𝑐𝑑𝑏 (𝑅59) 𝑒𝑎𝑑𝑐𝑏 (𝑅48) 𝑒𝑐𝑎𝑑𝑏 (𝑅49) 𝑒𝑐𝑑𝑎𝑏 (𝑅77) 𝑒𝑑𝑎𝑐𝑏 𝑒𝑑𝑐𝑎𝑏

𝑅79 𝑎𝑒𝑑𝑐𝑏 𝑒𝑑𝑎𝑐𝑏 𝑎𝑒𝑑𝑐𝑏 (𝑅78) 𝑒𝑎𝑑𝑐𝑏 (𝑅74) 𝑒𝑑𝑎𝑐𝑏

𝑅80 𝑎𝑐𝑒𝑑𝑏 𝑒𝑑𝑎𝑐𝑏 𝑎𝑐𝑒𝑑𝑏 (𝑅73) 𝑎𝑒𝑐𝑑𝑏 (𝑅51) 𝑎𝑒𝑑𝑐𝑏 (𝑅79) 𝑒𝑎𝑐𝑑𝑏 (𝑅68) 𝑒𝑎𝑑𝑐𝑏 (𝑅68) 𝑒𝑑𝑎𝑐𝑏

𝑅81 𝑒𝑐𝑎𝑏𝑑 𝑒𝑑𝑎𝑐𝑏 𝑒𝑎𝑐𝑏𝑑 (𝑅36) 𝑒𝑎𝑐𝑑𝑏 (𝑅46) 𝑒𝑎𝑑𝑐𝑏 (𝑅46) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑎𝑑𝑏 (𝑅46) 𝑒𝑐𝑑𝑎𝑏 𝑒𝑑𝑎𝑐𝑏 (𝑅46) 𝑒𝑑𝑐𝑎𝑏 (𝑅46)
𝑅82 𝑒𝑐𝑎𝑑𝑏 𝑒𝑑𝑎𝑐𝑏 𝑒𝑎𝑐𝑑𝑏 (𝑅80) 𝑒𝑎𝑑𝑐𝑏 (𝑅47) 𝑒𝑐𝑎𝑑𝑏 (𝑅15) 𝑒𝑐𝑑𝑎𝑏 𝑒𝑑𝑎𝑐𝑏 (𝑅81) 𝑒𝑑𝑐𝑎𝑏 (𝑅81)
𝑅83 𝑒𝑐𝑑𝑎𝑏 𝑒𝑑𝑎𝑐𝑏 𝑒𝑐𝑑𝑎𝑏 (𝑅78) 𝑒𝑑𝑎𝑐𝑏 (𝑅82) 𝑒𝑑𝑐𝑎𝑏 (𝑅82)

Case 3.3: Thridly, we show that 𝑓 (𝑅2) = 𝑎𝑐𝑒𝑏𝑑 is not possible. As usual, we assume the opposite, i.e., that 𝑓 (𝑅2) = 𝑎𝑐𝑒𝑏𝑑 and infer a

contradiction with the following table.

𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (A)

𝑅1 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (A)

𝑅2 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑐𝑒𝑏𝑑 (A)

𝑅3 𝑎𝑒𝑐𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅2) 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑐𝑎𝑏𝑒𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑 (𝑅2) 𝑐𝑏𝑎𝑒𝑑 (𝑅2)
𝑅4 𝑎𝑐𝑏𝑒𝑑 𝑐𝑏𝑎𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 𝑐𝑏𝑎𝑒𝑑 (𝑅3)
𝑅5 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅1) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑

𝑅6 𝑎𝑐𝑏𝑒𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅5) 𝑎𝑐𝑒𝑏𝑑 (𝑅1) 𝑐𝑎𝑏𝑒𝑑 (𝑅1) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑏𝑎𝑒𝑑 (𝑅4) 𝑐𝑏𝑒𝑎𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑

𝑅7 𝑎𝑐𝑏𝑒𝑑 𝑐𝑏𝑒𝑎𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅6) 𝑐𝑎𝑏𝑒𝑑 (𝑅6) 𝑐𝑏𝑎𝑒𝑑 (𝑅4) 𝑐𝑏𝑒𝑎𝑑

𝑅8 𝑎𝑐𝑏𝑒𝑑 𝑐𝑏𝑎𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅7) 𝑐𝑎𝑏𝑒𝑑 𝑐𝑏𝑎𝑒𝑑 (𝑅3)
𝑅9 𝑎𝑐𝑏𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅8) 𝑐𝑎𝑏𝑒𝑑

𝑅10 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅5) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑

𝑅11 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑 (𝑅2)
𝑅12 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅13 𝑐𝑎𝑒𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅12) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅11) 𝑐𝑎𝑒𝑏𝑑 (𝑅11) 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅14 𝑎𝑒𝑏𝑐𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅13) 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅11) 𝑐𝑎𝑒𝑏𝑑 (𝑅11)
𝑅15 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅14) 𝑎𝑒𝑐𝑑𝑏

𝑅16 𝑎𝑐𝑏𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 (𝑅2) 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅2)
𝑅17 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅18 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 (𝑅16) 𝑎𝑐𝑒𝑏𝑑 (𝑅17)
𝑅19 𝑎𝑐𝑏𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 (𝑅2) 𝑎𝑐𝑒𝑏𝑑 (𝑅18) 𝑎𝑒𝑐𝑏𝑑 (𝑅2)
𝑅20 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 (𝑅19) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅2) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗) 𝑎𝑒𝑏𝑐𝑑 (𝑅17) 𝑎𝑒𝑐𝑏𝑑 (𝑅2)
𝑅21 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑏𝑐𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑏𝑒𝑐𝑑 (𝑅20) 𝑎𝑒𝑏𝑐𝑑 (𝑅17)
𝑅22 𝑎𝑒𝑏𝑐𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅2) 𝑎𝑐𝑒𝑏𝑑 (𝑅14) 𝑎𝑒𝑏𝑐𝑑 (𝑅21) 𝑎𝑒𝑐𝑏𝑑 (𝑅2) 𝑐𝑎𝑏𝑒𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑 (𝑅2)
𝑅23 𝑎𝑏𝑐𝑒𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅9) 𝑐𝑎𝑏𝑒𝑑 (𝑅22)
𝑅24 𝑎𝑒𝑏𝑐𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅11) 𝑐𝑎𝑒𝑏𝑑 (𝑅11)
𝑅25 𝑎𝑐𝑑𝑒𝑏 𝑎𝑒𝑏𝑐𝑑 𝑎𝑐𝑑𝑒𝑏 𝑎𝑐𝑒𝑏𝑑 (𝑅14) 𝑎𝑐𝑒𝑑𝑏 (𝑅14) 𝑎𝑒𝑏𝑐𝑑 (𝑅21) 𝑎𝑒𝑐𝑏𝑑 (𝑅24) 𝑎𝑒𝑐𝑑𝑏

𝑅26 𝑎𝑐𝑒𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅14) 𝑎𝑐𝑒𝑑𝑏 (𝑅14) 𝑎𝑒𝑏𝑐𝑑 (𝑅25) 𝑎𝑒𝑐𝑏𝑑 (𝑅24) 𝑎𝑒𝑐𝑑𝑏

𝑅27 𝑎𝑒𝑏𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑒𝑏𝑐𝑑 (𝑅26) 𝑎𝑒𝑐𝑏𝑑 (𝑅14) 𝑎𝑒𝑐𝑑𝑏

𝑅28 𝑎𝑏𝑐𝑒𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅23) 𝑎𝑐𝑒𝑏𝑑 (𝑅10) 𝑐𝑎𝑏𝑒𝑑 (𝑅23) 𝑐𝑎𝑒𝑏𝑑 (𝑅23) 𝑐𝑒𝑎𝑏𝑑 (𝑅12)
𝑅29 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑏𝑐𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅23) 𝑎𝑐𝑒𝑏𝑑 (𝑅28) 𝑎𝑐𝑒𝑑𝑏 (𝑅28)
𝑅30 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑒𝑑𝑏 𝑎𝑏𝑐𝑒𝑑 𝑎𝑏𝑒𝑐𝑑 (𝑅26) 𝑎𝑐𝑏𝑒𝑑 (𝑅29) 𝑎𝑐𝑒𝑏𝑑 (𝑅29) 𝑎𝑐𝑒𝑑𝑏 (𝑅29) 𝑎𝑒𝑏𝑐𝑑 (𝑅26) 𝑎𝑒𝑐𝑏𝑑 (𝑅29) 𝑎𝑒𝑐𝑑𝑏 (𝑅29)
𝑅31 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑑𝑏 𝑎𝑏𝑒𝑐𝑑 (𝑅27) 𝑎𝑒𝑏𝑐𝑑 (𝑅27) 𝑎𝑒𝑐𝑏𝑑 (𝑅15) 𝑎𝑒𝑐𝑑𝑏 (𝑅30)

Case 3.4: Lastly, we assume that 𝑓 (𝑅2) = 𝑎𝑒𝑐𝑏𝑑 and derive again a contradiction, as demonstrated with the following table.
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𝑅∗ 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑏𝑒𝑑 𝑎𝑏𝑐𝑑𝑒 (A)

𝑅+ 𝑒𝑎𝑏𝑐𝑑 𝑒𝑐𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 (A)

𝑅1 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑐𝑒𝑏𝑎𝑑 (A)

𝑅2 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 𝑎𝑒𝑐𝑏𝑑 (A)

𝑅3 𝑎𝑐𝑒𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅1) 𝑐𝑎𝑒𝑏𝑑 (𝑅1) 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑

𝑅4 𝑎𝑒𝑐𝑏𝑑 𝑐𝑏𝑎𝑒𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅2) 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑏𝑒𝑑 (𝑅2) 𝑐𝑎𝑒𝑏𝑑 (𝑅2) 𝑐𝑏𝑎𝑒𝑑 (𝑅2)
𝑅5 𝑎𝑒𝑐𝑏𝑑 𝑐𝑒𝑏𝑎𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 (𝑅3) 𝑐𝑎𝑒𝑏𝑑 (𝑅2) 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑐𝑒𝑏𝑎𝑑 (𝑅4) 𝑒𝑎𝑐𝑏𝑑 (𝑅3) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅4)
𝑅6 𝑎𝑒𝑐𝑏𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑒𝑐𝑏𝑑 (𝑅5) 𝑒𝑎𝑐𝑏𝑑 (𝑅5) 𝑒𝑐𝑎𝑏𝑑

𝑅7 𝑎𝑐𝑏𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅2) 𝑎𝑐𝑏𝑒𝑑 (𝑅2) 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑

𝑅8 𝑎𝑐𝑏𝑑𝑒 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅7) 𝑎𝑐𝑏𝑒𝑑 (𝑅7) 𝑎𝑐𝑒𝑏𝑑 (𝑅7) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑

𝑅9 𝑎𝑐𝑏𝑒𝑑 𝑒𝑎𝑐𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅8) 𝑎𝑐𝑒𝑏𝑑 (𝑅8) 𝑎𝑒𝑐𝑏𝑑 𝑒𝑎𝑐𝑏𝑑

𝑅10 𝑎𝑏𝑐𝑑𝑒 𝑎𝑐𝑒𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 𝑎𝑏𝑐𝑒𝑑 (𝑅∗) 𝑎𝑐𝑏𝑑𝑒 (𝑅∗) 𝑎𝑐𝑏𝑒𝑑 (𝑅∗) 𝑎𝑐𝑒𝑏𝑑 (𝑅∗)
𝑅11 𝑎𝑏𝑐𝑑𝑒 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑐𝑑𝑒 (𝑅7) 𝑎𝑏𝑐𝑒𝑑 (𝑅2) 𝑎𝑏𝑒𝑐𝑑 𝑎𝑐𝑏𝑑𝑒 (𝑅2) 𝑎𝑐𝑏𝑒𝑑 (𝑅2) 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑒𝑏𝑐𝑑 (𝑅10) 𝑎𝑒𝑐𝑏𝑑 (𝑅10)
𝑅12 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑐𝑏𝑑 𝑎𝑏𝑒𝑐𝑑 𝑎𝑒𝑏𝑐𝑑 (𝑅11) 𝑎𝑒𝑐𝑏𝑑 (𝑅11)
𝑅13 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 𝑐𝑎𝑒𝑏𝑑 (𝑅2)
𝑅14 𝑐𝑒𝑏𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅1) 𝑐𝑒𝑏𝑎𝑑 (𝑅5) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅5)
𝑅15 𝑐𝑒𝑎𝑏𝑑 𝑒𝑎𝑏𝑐𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅+) 𝑒𝑎𝑏𝑐𝑑 𝑒𝑎𝑐𝑏𝑑 (𝑅+) 𝑒𝑐𝑎𝑏𝑑 (𝑅+)
𝑅16 𝑐𝑏𝑒𝑎𝑑 𝑒𝑐𝑎𝑏𝑑 𝑐𝑏𝑒𝑎𝑑 (𝑅14) 𝑐𝑒𝑎𝑏𝑑 (𝑅14) 𝑐𝑒𝑏𝑎𝑑 (𝑅14) 𝑒𝑐𝑎𝑏𝑑 𝑒𝑐𝑏𝑎𝑑 (𝑅14)
𝑅17 𝑎𝑒𝑐𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑒𝑏𝑑 (𝑅2) 𝑎𝑒𝑐𝑏𝑑 (𝑅5) 𝑐𝑎𝑒𝑏𝑑 (𝑅2) 𝑐𝑒𝑎𝑏𝑑 (𝑅2) 𝑒𝑎𝑐𝑏𝑑 (𝑅5) 𝑒𝑐𝑎𝑏𝑑

𝑅18 𝑎𝑐𝑏𝑒𝑑 𝑒𝑐𝑎𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅9) 𝑎𝑐𝑒𝑏𝑑 (𝑅6) 𝑎𝑒𝑐𝑏𝑑 (𝑅6) 𝑐𝑎𝑏𝑒𝑑 (𝑅16) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅14) 𝑒𝑎𝑐𝑏𝑑 (𝑅6) 𝑒𝑐𝑎𝑏𝑑

𝑅19 𝑎𝑐𝑏𝑒𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑐𝑏𝑒𝑑 (𝑅18) 𝑎𝑐𝑒𝑏𝑑 (𝑅17) 𝑐𝑎𝑏𝑒𝑑 (𝑅18) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑

𝑅20 𝑎𝑏𝑐𝑒𝑑 𝑐𝑒𝑎𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅19) 𝑎𝑐𝑏𝑒𝑑 (𝑅19) 𝑎𝑐𝑒𝑏𝑑 (𝑅17) 𝑐𝑎𝑏𝑒𝑑 (𝑅19) 𝑐𝑎𝑒𝑏𝑑 𝑐𝑒𝑎𝑏𝑑 (𝑅15)
𝑅21 𝑎𝑏𝑐𝑒𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅20) 𝑎𝑐𝑏𝑒𝑑 (𝑅20) 𝑎𝑐𝑒𝑏𝑑 (𝑅20) 𝑐𝑎𝑏𝑒𝑑 (𝑅20) 𝑐𝑎𝑒𝑏𝑑

𝑅22 𝑎𝑏𝑒𝑐𝑑 𝑐𝑎𝑒𝑏𝑑 𝑎𝑏𝑐𝑒𝑑 (𝑅21) 𝑎𝑏𝑒𝑐𝑑 (𝑅21) 𝑎𝑐𝑏𝑒𝑑 (𝑅21) 𝑎𝑐𝑒𝑏𝑑 (𝑅13) 𝑎𝑒𝑏𝑐𝑑 (𝑅12) 𝑎𝑒𝑐𝑏𝑑 (𝑅12) 𝑐𝑎𝑏𝑒𝑑 (𝑅13) 𝑐𝑎𝑒𝑏𝑑 (𝑅13)

Since no valid ranking remains for 𝑅2
, this means that 𝑓 (𝑅1) = 𝑐𝑒𝑏𝑎𝑑 is not possible either. Since we exhausted all cases for 𝑓 (𝑅1), this

proves the lemma. □

𝑅 𝑏𝑎𝑑𝑐 𝑐𝑏𝑎𝑑 𝑑𝑐𝑏𝑎

𝑅1 𝑐𝑏𝑎𝑑 𝑐𝑏𝑎𝑑 𝑑𝑐𝑏𝑎

𝑅2 𝑏𝑎𝑑𝑐 𝑑𝑐𝑏𝑎 𝑑𝑐𝑏𝑎

𝑅3 𝑏𝑎𝑑𝑐 𝑐𝑏𝑎𝑑 𝑐𝑏𝑎𝑑

Step 1: For our first step, we will analyze the profile 𝑅, where voter 1 reports 𝑎𝑏𝑐𝑑 , voter 2 reports 𝑐𝑏𝑑𝑎, and voter 3 reports

𝑑𝑏𝑎𝑐 . Specifically, we will show for this profile that 𝑓 (𝑅) ∈ {𝑏𝑎𝑐𝑑, 𝑏𝑐𝑑𝑎, 𝑏𝑑𝑎𝑐}. To prove this claim, we consider the following profiles.

𝑅 𝑎𝑏𝑐𝑑 𝑐𝑏𝑑𝑎 𝑑𝑏𝑎𝑐

𝑅1 𝑎𝑏𝑑𝑐 𝑐𝑏𝑑𝑎 𝑑𝑏𝑎𝑐

𝑅2 𝑎𝑏𝑐𝑑 𝑐𝑏𝑎𝑑 𝑑𝑏𝑎𝑐

𝑅3 𝑎𝑏𝑐𝑑 𝑐𝑏𝑑𝑎 𝑑𝑏𝑐𝑎

We first note that the majority relation for 𝑅1
, 𝑅2

, and 𝑅3
all form a ranking. Specifically, the majority relation for 𝑅1

, 𝑅2
, and 𝑅3

correspond

to the rankings 𝑏𝑑𝑎𝑐 , 𝑏𝑎𝑐𝑑 , and 𝑏𝑐𝑑𝑎. Hence, majority consistency requires that 𝑓 (𝑅1) = 𝑏𝑑𝑎𝑐 , 𝑓 (𝑅2) = 𝑏𝑎𝑐𝑑 , and 𝑓 (𝑅3) = 𝑏𝑐𝑑𝑎. In turn,

strategyproofness from 𝑅 to these three profiles results in the following inequalities, where ▷̄ is the ranking chosen for 𝑅.

(1) Strategyproofness from 𝑅 to 𝑅1
requires that Δ(𝑎𝑏𝑐𝑑, ▷̄) ≤ Δ(𝑎𝑏𝑐𝑑, 𝑏𝑑𝑎𝑐) = 3.

(2) Strategyproofness from 𝑅 to 𝑅2
requires that Δ(𝑐𝑏𝑑𝑎, ▷̄) ≤ Δ(𝑐𝑏𝑑𝑎, 𝑏𝑎𝑐𝑑) = 3.

(3) Strategyproofness from 𝑅 to 𝑅3
requires that Δ(𝑑𝑏𝑎𝑐, ▷̄) ≤ Δ(𝑑𝑏𝑎𝑐, 𝑏𝑐𝑑𝑎) = 3.

We claim that these inequalities imply that ▷̄ ∈ {𝑏𝑎𝑐𝑑, 𝑏𝑐𝑑𝑎, 𝑏𝑑𝑎𝑐}. To this end, we first show that 𝑏 must be top-ranked by ▷̄. Assume

that this is not the case. If 𝑎 is top-ranked by ▷̄, then either Condition (2) or Condition (3) is violated. In more detail, if ▷̄ is top-ranked by 𝑎

and is not 𝑎𝑐𝑏𝑑 , then Δ(𝑐𝑏𝑑𝑎, ▷̄) > 3, which violates Condition (2). On the other hand, if ▷̄ = 𝑎𝑐𝑏𝑑 , then Condition (3) is violated because

Δ(𝑑𝑏𝑎𝑐, ▷̄) = 4. Next, if 𝑐 is top-ranked by ▷̄, then we either Condition (1) or (3) is violated. In more detail, any ranking ▷ that top-ranks 𝑐

other than 𝑐𝑑𝑏𝑎 fails Condition (3) since Δ(𝑑𝑏𝑎𝑐,▷) > 3. On the other hand, the ranking 𝑐𝑑𝑏𝑎 fails Condition (1) because Δ(𝑎𝑏𝑐𝑑, 𝑐𝑑𝑏𝑎) = 4.

Lastly, a symmetric argument based on Conditions (1) and (2) shows that 𝑑 cannot be top-ranked by ▷̄. By our analysis so far, we have that 𝑏
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is top-ranked by ▷̄. Our claim now follows by observing that the rankings 𝑏𝑎𝑑𝑐 , 𝑏𝑐𝑎𝑑 , and 𝑏𝑑𝑐𝑎 respectively fail Conditions (2), (3), and (1)

since Δ(𝑐𝑏𝑑𝑎, 𝑏𝑎𝑑𝑐) = 4, Δ(𝑑𝑏𝑎𝑐, 𝑏𝑐𝑎𝑑) = 4, and Δ(𝑎𝑏𝑐𝑑, 𝑏𝑑𝑐𝑎) = 4. Hence, it follows that 𝑓 (𝑅) ∈ {𝑏𝑎𝑐𝑑, 𝑏𝑑𝑎𝑐, 𝑏𝑐𝑑𝑎}.
Finally, we note that we can without loss of generality assume that 𝑓 (𝑅) = 𝑏𝑑𝑎𝑐 .
Step 2: For our second step, we consider the profile 𝑅, where voter 1 reports 𝑎𝑏𝑑𝑐 ,

𝑅 𝑎𝑏𝑐𝑑 𝑐𝑑𝑏𝑎 𝑑𝑏𝑎𝑐

𝑅1 𝑎𝑏𝑐𝑑 𝑐𝑑𝑏𝑎 𝑏𝑑𝑐𝑎

𝑅2 𝑐𝑑𝑏𝑎 𝑐𝑑𝑏𝑎 𝑑𝑏𝑎𝑐

𝑅 𝑎𝑏𝑐𝑑 𝑐𝑏𝑑𝑎 𝑑𝑏𝑎𝑐

We first note that the majority relation for 𝑅1
corresponds to the ranking 𝑏𝑐𝑑𝑎. Hence, majority consistency postulates that 𝑓 (𝑅1) = 𝑏𝑐𝑑𝑎.

Similarly, it is easy see that the majority relation in 𝑅2
is 𝑐𝑑𝑏𝑎, so 𝑓 (𝑅2) = 𝑐𝑑𝑏𝑎. Finally, we have by our previous analysis that 𝑓 (𝑅) =
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