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Abstract
We introduce and analyze distance preservation
games (DPGs). In DPGs, agents express ideal dis-
tances to other agents and need to choose locations
in the unit interval while preserving their ideal dis-
tances as closely as possible. We analyze the exis-
tence and computation of location profiles that are
jump stable (i.e., no agent can benefit by moving
to another location) or welfare optimal for DPGs,
respectively. Specifically, we prove that there are
DPGs without jump stable location profiles and
identify important cases where such outcomes al-
ways exist and can be computed efficiently. Simi-
larly, we show that finding welfare optimal location
profiles is NP-complete and present approximation
algorithms for finding solutions with social welfare
close to optimal. Finally, we prove that DPGs have
a price of anarchy of at most 2.

1 Introduction
Assume a university management wants to optimize the as-
signment of researchers to offices by taking the relationships
between the researchers into account to promote collabora-
tions. For example, scholars who like each other should be
seated close to each other, scholars who dislike each other
should be seated far away from each other, and some scholars
may want to be neither too close nor too far from each other.
However, given this information, how should we decide on
the new office assignment? And can we, e.g., ensure that no
researcher would prefer to move to another office?

In recent years, questions similar to these have been ac-
tively researched for numerous models (e.g., Brânzei and Lar-
son, 2011; Bullinger et al., 2021; Agarwal et al., 2021; Berri-
aud et al., 2023; Bullinger and Suksompong, 2024). For in-
stance, Bullinger and Suksompong (2024) study topological
distance games for which agents need to be assigned to the
nodes of a graph and each agent’s utility depends on its dis-
tance to the other agents in the graph. All of these models
have in common that for each agent, the other agents can be
partitioned into friends, enemies, and neutrals: agents want to
be as close as possible to their friends, as far away as possible
from their enemies, and they do not care about the positions
of neutrals. In practice, the agents’ preferences may be more

complicated. In our office assignment example, it seems plau-
sible that senior researchers want to be at some distance from
their PhD students to ensure that they are not interrupted too
much, but the PhD students should not be as far away as pos-
sible since this makes in-person meetings between the PhD
student and the senior researcher cumbersome.

To capture such distance preferences and explore their ef-
fects, we introduce and analyze distance preservation games
(DPGs). In these games, each agent specifies an ideal dis-
tance for each other agent or indicates that the other agent’s
position does not matter to them. Based on this information,
the agents need to choose locations in the unit interval with
the aim of preserving their ideal distances as closely as possi-
ble. Specifically, we assume that an agent’s utility linearly de-
creases when the difference between the actual distance and
their ideal distance to an agent increases. Given a DPG, we
aim to find location profiles that are jump stable (i.e., no agent
can benefit by jumping to another location) or welfare opti-
mal (i.e., the location profile maximizes utilitarian the social
welfare), respectively. Put differently, this means we seek lo-
cation profiles that preserve the agents’ ideal distances well.

Example 1. To further illustrate DPGs, consider the follow-
ing example where three researchers need to be assigned to
one of many identical offices in a corridor. The agents are a
PhD student a, a postdoc b, and a professor c. The PhD stu-
dent wants to be neither too far nor too close to the professor
and does not care about the location of the postdoc. The post-
doc wants to be as far away as possible from the PhD student
and as close as possible to the professor. Lastly, the professor
wants to be at a moderate distance from both other agents.

We capture this as a DPG as follows: the PhD student a
has an ideal distance of 1

2 to c and does not care about the
position of b. The postdoc b has an ideal distance of 1 to a
and of 0 to c. Finally, the professor c has an ideal distance of
1
2 to both a and b. We note that DPGs can also be presented
via preference graphs, where an edge from x to y with weight
z means that agent x wants to be at distance z to agent y. The
preference graph of our toy example is shown in Figure 1.

Now, if we locate the PhD student at 0, the postdoc at 1
2 ,

and the professor at 1, the postdoc b wants to change their
location to be closer to the professor. By contrast, if the PhD
student is at 0, the professor at 1

2 , and the postdoc at 1, we
preserve the agents’ ideal distances optimally and no agent
has an incentive to change their position.
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Figure 1: The preference graph of the DPG in Example 1

Our Contribution. In this paper, we initiate the study of
distance preservation games. Specifically, we will analyze
these games with respect to jump stability and welfare opti-
mality. Roughly speaking, a location profile is jump stable
if no agent can benefit by moving to another position. In
our setting, this corresponds to the notion of Nash equilib-
ria. On the other hand, a location profile is welfare optimal
if it maximizes the (utilitarian) social welfare, i.e., the sum
of the agents’ utilities. An overview of our results is given in
Table 1.

We first examine jump stable location profiles and show
the following results.
• We prove that there are DPGs without jump stable location

profiles and that deciding whether a DPG admits such a
location profile is NP-complete.

• With the aim of deriving more positive results, we study
two natural classes of DPGs, namely symmetric and acyclic
ones. First, we say a DPG is symmetric if the ideal distance
for i to j is the same as the ideal distance for j to i for all
agents i and j. For such symmetric DPGs, we show that
jump stable location profiles are guaranteed to exist and can
be computed by a best response dynamics. However, we
also prove that this best response dynamics may need ex-
ponential time and, more generally, that finding jump stable
location profiles in symmetric DPGs is PLS-complete.

• As a second restriction, we investigate acyclic DPGs, which
are defined to have an acyclic preference graph. For this
class of DPGs, we show that jump stable location profiles
always exist and can be computed efficiently.
Secondly, we analyze welfare optimal location profiles and

show the following results.
• We prove that it is NP-complete to find welfare optimal

location profiles, even for some of the simplest classes of
DPGs. In more detail, we show this claim for DPGs where
the preference graph forms a path or where the agents’ ideal
distances, if any, are required to be 1.

• We then focus on finding approximately welfare optimal lo-
cation profiles and show that a greedy algorithm guarantees
half of the optimal social welfare.

• We prove that the price of anarchy of every DPG, i.e., the
ratio between the optimal social welfare and the social wel-
fare of the worst jump stable location profile, is at most 2.

Related Work. The problem of assigning agents to posi-
tions on some topology based on their preferences among
each other has recently attracted significant attention. We re-
fer to the papers by Bullinger and Suksompong (2024) and
Berriaud et al. (2023) for a more extensive discussion of this
literature. The most relevant related models include the fol-
lowing:

• In Schelling games (e.g., Agarwal et al., 2021; Bilò et al.,
2022; Bullinger et al., 2021; Kreisel et al., 2024), the agents
are partitioned into classes and located on the nodes of a
graph. An agent’s utility depends on the fraction of agents
of the same class in their neighborhood of the graph.

• In the dinner party arrangement problem (e.g., Berriaud et
al., 2023; Bodlaender et al., 2020; Ceylan et al., 2023; Aziz
et al., 2024), n agents have to be located on a graph with
n nodes. Each agent has a utility function over the other
agents and an agent’s utility in an assignment is the sum of
the utilities for their neighbors in the graph.

• In topological distance games (e.g., Bullinger and Suksom-
pong, 2024; Deligkas et al., 2024), agents are located on the
nodes of a graph and have utilities for the other agents. An
agent’s utility for a position depends on their utilities and
the distances to the other agents in the graph.

The central question for all of these models is to find de-
sirable assignments of the agents to the nodes of the graph.
Thus, these papers consider similar problems to ours but they
focus on different settings. In particular, DPGs differ from the
aforementioned models in two crucial aspects: the agents re-
port ideal distances over the other agents instead of utilities,
and our underlying topology is the continuous unit interval
instead of a discrete graph.

Further, our work is related to facility location on the real
line (e.g., Procaccia and Tennenholtz, 2013; Feldman et al.,
2016; Chan et al., 2021). In this setting, the goal is to place
one or multiple facilities on the real line depending on the
agents’ preferences on the location of the facilities. In par-
ticular, an agent’s disutility for a location is typically the dis-
tance to their own location. One can thus see facility location
as a variant of our model, where the agents report positions
and their ideal distance to the facility is 0. We note that Filos-
Ratsikas et al. (2017) considered an extension of facility lo-
cation where agents report both ideal distances to the facility
and their location, which is, to our knowledge, the only other
game-theoretic paper that studies the idea of ideal distances.

More broadly, DPGs are also connected to many other top-
ics in computational social choice, such as hedonic games
(see Aziz and Savani, 2016) and social distance games (e.g.,
Brânzei and Larson, 2011; Balliu et al., 2022), where the
agents need to be partitioned into coalitions based on their
preferences over each other.

Finally, DPGs are related to problems considered in ma-
chine learning because they can be seen as a game-theoretic
variant of unidimensional scaling, a special case of the multi-
dimensional scaling problem (e.g., Dunn-Rankin et al., 2014;
Borg et al., 2018). Specifically, in unidimensional scaling, we
are given ideal distances between all pairs of objects and the
goal is to locate the objects based on this information on the
real line while preserving the distances between the agents
(e.g., McIver, 1981; Pliner, 1996; Groenen et al., 1998). This
can be seen as a variant of DPGs without agents. However,
the prior work in unidimensional scaling is limited to heuris-
tics and experimental evaluations of algorithms. Moreover,
our work has similarities with clustering problems as a loca-
tion profile can be seen as an aggregate similarity measure for
agents (e.g., Bansal et al., 2004; Xu and Wunsch, 2008).



2 Model
In a distance preservation game (DPG), there is a set N =
{1, . . . , n} of agents who express ideal distances over each
other. In more detail, each agent i ∈ N has a relationship set
Mi ⊆ N \{i} which contains the agents about whom i cares,
and an ideal distance function di : Mi → [0, 1] which spec-
ifies the ideal distance of agent i to all agents in Mi. Given
this information, the agents must choose locations in the unit
interval. Hence, the outcome of a DPG is a location profile
A ∈ [0, 1]n, which specifies for every agent i ∈ N a loca-
tion Ai in the unit interval.

In DPGs, the agents aim to preserve their ideal distances
as closely as possible. Specifically, we assume that the util-
ity of each agent i from an agent j ∈ Mi linearly decreases
when the absolute difference between their actual distance
and agent i’s ideal distance to j increases, i.e.,

ui(A, j) = 1−
∣∣∣∣|Ai −Aj | − di(j)

∣∣∣∣.
By this definition, it holds that ui(A, j) ∈ [0, 1] for all

location profiles A and agents i ∈ N , j ∈ Mi. Furthermore,
agent i’s utility for agent j is 1 precisely if the actual distance
between these two agents is equal to agent i’s ideal distance
to j. The utility of each agent i ∈ N for a location profile
A is the sum of the utilities that i receives from the agents in
Mi, i.e., ui(A) =

∑
j∈Mi

ui(A, j).
We note that the utility function ui(A, j) is an affine trans-

formation of the cost ci(A, j) = ||Ai − Aj | − di(j)|. As a
consequence, all our results except for approximation ratios
remain valid when using the cost ci instead of the utility ui.
We decided to focus on utilities instead of the cost because
the minimum social cost turns out to be inapproximable.

We emphasize that the action space of every DPG is the
unit interval and the agents’ ideal distances induce their util-
ity functions. Hence, a distance preservation game (DPG) is
fully described by a tuple I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ spec-
ifying the set of agents N , their relationship sets Mi, and
their ideal distance functions di. We will frequently repre-
sent DPGs via graphs. Specifically, the preference graph GI

of a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ is a weighted directed
graph GI = (N,E, d) on the agents such that (i, j) ∈ E if
and only if j ∈ Mi and d(i, j) = di(j) for all i ∈ N , j ∈ Mi.
That is, an edge from i to j with weight x in the preference
graph indicates that i wants to be at distance x from j.

2.1 Objectives
Given a DPG, our aim is to find a location profile that guaran-
tees high utilities to the agents. We will formalize this idea by
two standard concepts, namely jump stability and welfare op-
timality. These concepts have been repeatedly considered in
related settings (Agarwal et al., 2021; Bullinger et al., 2021;
Kreisel et al., 2024; Bullinger and Suksompong, 2024).

Jump stability. Given a location profile, jump stability re-
quires that no agent can increase their utility by unilaterally
jumping to another location in the unit interval. Formally, we
denote by Ai 7→x the location profile derived from another lo-
cation profile A by placing agent i at Ai 7→x

i = x and all other

agents j ∈ N \ {i} at Ai 7→x
j = Aj . We say a location pro-

file A is jump stable for a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩
if ui(A) ≥ ui(A

i7→x) for all agents i ∈ N and locations
x ∈ [0, 1]. We note that jump stable location profiles are
equivalent to Nash equilibria, but we prefer to use the term
“jump stability” since it is commonly used in related works.

Welfare optimality. Welfare optimality requires of a lo-
cation profile that its (utilitarian) social welfare, i.e., the
sum of the agents’ utilities, is maximal. To this end, we
define the social welfare of an assignment A for a DPG
I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ by SWI(A) =

∑
i∈N ui(A).

Then, a location profile A is welfare optimal for a DPG I if
SWI(A) ≥ SWI(A

′) for all other location profiles A′.

2.2 Classes of Distance Preservation Games
In our analysis of DPGs, we will often focus on more con-
strained subclasses of these games. In particular, we will
discuss the following restrictions of distance preservation
games. The first three restrictions capture large natural
classes of DPGs, whereas the remaining two classes are rather
restricted and will mainly be used for hardness results.

Symmetric DPG. Intuitively, a DPG is symmetric if for
each pair of agents i, j ∈ N , agents i and j have the
same ideal distance to each other. More formally, a DPG
I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ is symmetric if for all agents
i, j ∈ N , i ∈ Mj implies that j ∈ Mi and di(j) = dj(i).

k-discrete DPGs. The high-level idea of k-discrete DPGs
is that there is a precision parameter k ∈ N and that the agents
are only allowed to report ideal distances that are multiples
of 1

k . More formally, a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ is
k-discrete if di(j) ∈ { 0

k ,
1
k , . . . ,

k
k} for all i ∈ N , j ∈ Mi.

We believe that this assumption is rather natural as, e.g., 100-
discrete DPGs ask the agents to specify their ideal distances
with up to 2 decimal digits.

Acyclic DPGs. In acyclic DPGs, the preference graph of
the game is acyclic. That is, we restrict the relationship struc-
ture between the agents instead of their ideal distances. For-
mally, we call a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ acyclic if
there is no sequence of agents i1, . . . , ik such that ij+1 ∈ Mij
for all j ∈ {1, . . . , k− 1} and i1 ∈ Mik . Acyclic DPGs arise
naturally in hierarchical settings where agents only care about
the distances to their superiors.

Enemies and Neutrals DPGs. In an enemies and neutrals
DPG, all agents are either enemies and want to be as far away
from each other as possible, or they do not care about each
other’s location. Moreover, we require enemies and neutrals
DPGs to be symmetric. Formally, we thus say that a DPG
I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ is an enemies and neutrals DPG
if it is symmetric and di(j) = 1 for all i ∈ N , j ∈ Mi.

Path DPGs. A path DPG is a special case of an acyclic
DPG where the preference graph forms a path. That is, a
DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ is called a path DPG if
the agents can be ordered such that ij+1 ∈ Mij for all j ∈
{1, . . . , n− 1} and Min = ∅.



3 Jump Stability
We will now analyze the existence and computation of jump
stable location profiles. To this end, we first show that such
location profiles do not exist for all DPGs.
Proposition 1. There are DPGs without jump stable location
profiles.

Proof. Let I be a DPG with two agents N = {1, 2} such
that M1 = {2}, M2 = {1}, d1(2) = 1, and d2(1) = 0. In-
tuitively, this means that agent 1 wants to be as far away as
possible from agent 2 and agent 2 wants to be as close as pos-
sible to agent 1. Hence, in a location profile A with A1 ̸= A2,
agent 2 can improve their utility by changing their location to
A1. By contrast, if A1 = A2, agent 1 can improve their util-
ity by moving to any other location. Consequently, one of the
two agents always has an incentive to deviate. Therefore, no
jump stable location profile exists.

Motivated by this example, we examine computational
questions regarding jump stability in Section 3.1. Moreover,
we turn to restricted classes of DPGs in Sections 3.2 and 3.3
with the aim of deriving more positive results. We defer most
proofs to Appendix A and give proof sketches instead.

3.1 Checking for Jump Stability
We first consider the problem of deciding whether a location
profile is jump stable for a DPG. As we show next, this prob-
lem can be solved efficiently because we only need to check a
linear number of locations for every agent to decide whether
they can improve their utility by changing their position.
Theorem 1. It can be verified in polynomial time whether a
location profile is jump stable for a DPG.

Proof Sketch. For deciding whether a location profile A is
jump stable for a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩, we
need to check for every agent i whether there is a benefi-
cial jump. To this end, we consider an agent i ∈ N and
let hj(x) = ui(A

i 7→x, j) denote the utility agent i receives
from an agent j ∈ Mi when jumping to x. Moreover, let
Lj = max(0, Aj − di(j)) and Rj = min(1, Aj + di(j)).
Our key insight is that hj(x) is linear on the intervals [0, Lj ],
[Lj , Aj ], [Aj , Rj ], and [Rj , 1]. Applying this for all agents
in Mi implies that h(x) = ui(A

i 7→x) =
∑

j∈Mi
hj(x) is a

piecewise linear function with at most 3n+ 1 linear regions.
Because linear functions on a closed interval are maximized
at one of the endpoints of the interval, it suffices to check
whether i can benefit by jumping to one of the 3n + 2 end-
points. This can be done in polynomial time.

Thus, the problem of deciding whether a DPG admits a
jump stable location profile is in NP. Unfortunately, we now
show that this problem is NP-complete for general DPGs.
Theorem 2. It is NP-complete to decide whether a DPG
I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ admits a jump stable location
profile, even if |Mi| ≤ 1 for all i ∈ N .

Proof. It follows from Theorem 1 that the problem is in NP.
To show NP-hardness, we will give a reduction from BAL-
ANCEDPARTITION (Garey and Johnson, 1979). In this prob-
lem, we are given a set of items S = {s1, . . . , sk} with

weights w : S → N such that w(s) ≤ 1
2

∑
x∈S w(x) for

all s ∈ S, and we need to decide whether there is a partition
(X,S \ X) such that

∑
s∈X w(s) =

∑
s∈S\X w(s). Given

an instance (S,w) of BALANCEDPARTITION, we define B =∑
s∈S w(s) and we construct the following “cyclic” DPG: we

set N = {1, . . . , k}, Mi = {i+1} and di(i+1) = w(si)
B for

all i ∈ N \ {k}, and Mk = {1} and dk(1) =
w(sk)
B . To ease

notation, we let Ak+1 = A1 and dk(k + 1) = dk(1).
Since w(s) ≤ B

2 for all s ∈ S, it holds that di(i+ 1) ≤ 1
2

for all i ∈ N . This implies that x − di(i + 1) ∈ [0, 1] or
x + di(i + 1) ∈ [0, 1] for all i ∈ N , x ∈ [0, 1]. Hence, if
ui(A) < 1 for an agent i and a location profile A, this agent
can benefit by jumping to Ai+1−di(i+1) or Ai+1+di(i+1).
Thus, a location profile A is jump stable for the constructed
DPG if and only if ui(A) = 1 for all i ∈ N .

We will now show that a jump stable location profile ex-
ists if and only if there is a solution to the instance (S,w)
of BALANCEDPARTITION. First, suppose that there is a
jump stable location profile A. Consequently, ui(A) = 1
for all i ∈ N , so |Ai − Ai+1| − di(i + 1) = 0. Be-
cause di(i + 1) = w(st)

B > 0, it holds that Ai ̸= Ai+1

for all i ∈ N . Next, let R = {i ∈ N : Ai > Ai+1} and
L = {i ∈ N : Ai < Ai+1}. By definition, the set L and R
are disjoint. Moreover, it holds for the agent i minimizing Ai

that Ai < Ai+1 and Ai > Ai−1, so i ∈ L and i − 1 ∈ R.
Now, since |Ai−Ai+1| = di(i+1) for all i ∈ N , it holds that
Ai − Ai+1 = di(i+ 1) if i ∈ R and Ai+1 − Ai = di(i+ 1)
if i ∈ L. This means that∑
i∈L

di(i+1)−
∑
i∈R

di(i+1)=
∑
i∈L

Ai+1−Ai−
∑
i∈R

Ai−Ai+1

=
∑
i∈N

Ai+1−Ai

=0.

Here, the last step follows as
∑

i∈N Ai+1−Ai = Ak+1−A1

and Ak+1 = A1 by definition. Since di(i+1) = w(si)
B for all

i ∈ N , this implies that
∑

i∈L w(si) =
∑

i∈R w(si), which
shows that there is a solution to the partition instance.

For the converse, let there be a partition (X,S \X) such
that

∑
s∈X w(s) =

∑
s∈S\X w(s). Without loss of gen-

erality, we assume that sk ∈ X . Now, consider the loca-
tion profile A given by A1 = 1

2 , Ai = Ai−1 + di−1(i)
for all si ∈ X \ {s1}, and Ai = Ai−1 − di−1(i) for all
si ∈ S \ (X ∪ {x1}). We observe that A is a valid loca-
tion profile since Ai ∈ [0, 1] for all i ∈ N . This holds
because

∑
si∈X di(i + 1) = 1

B

∑
si∈X w(si) = 1

2 and∑
si∈S\X di(i+ 1) = 1

B

∑
si∈S\X w(si) =

1
2 .

Further, it holds for all agents i ∈ N \ {k} that ui(A) = 1
since |Ai − Ai+1| = di(i + 1). Finally, for agent k, we note
that

∑
si∈X\{sk} w(si) −

∑
si∈S\X w(si) = −w(sk) since

sk ∈ X and
∑

si∈X w(si) =
∑

si∈S\X w(si). This implies
that

∑
si∈X\{sk} di(i+ 1)−

∑
si∈S\X di(i+ 1) = −dk(1).

Thus, Ak = A1 +
∑

si∈X\{sk} di(i+ 1)−
∑

si∈S\X di(i+

1) = A1 − dk(1). This shows that uk(A) = 1, so A is jump
stable as all agents get their maximal utility.



ALGORITHM 1: Best Response Dynamics
Input: A symmetric DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩
Output: A location profile A

1 Let A be a location profile s.t. Ai = 0 for all i ∈ N ;
2 while exists x ∈ [0, 1] and i ∈ N s.t. ui(A

i 7→x) > ui(A)
do

3 x∗ ← min{x ∈ [0, 1] : x ∈ argmaxy∈A ui(A
i 7→y)};

4 A← Ai 7→x∗
;

5 Return A;

3.2 Symmetric Distance Preservation Games
Observe that both Proposition 1 and Theorem 2 rely on asym-
metric ideal distances and cyclic preference graphs. We hence
examine next how our results when disallowing these features
and start by analyzing symmetric DPGs.

In particular, we show next that jump stable location pro-
files are guaranteed to exist for symmetric DPGs and that they
can be computed by a simple best response dynamics. In
more detail, in the best response dynamics, which is outlined
in Algorithm 1, agents repeatedly change their location to the
left-most position that maximizes their utility given the posi-
tion of the other agents. Further, we will prove that this best
response dynamics terminates after at most O(kn2) iterations
of the while loop if the DPG is additionally k-discrete.

Theorem 3. For symmetric DPGs, jump stable location pro-
files are guaranteed to exist. If the DPG is additionally k-
discrete for some k ∈ N, the best response dynamics finds a
jump stable location profile in O(kn2) steps.

Proof Sketch. To prove the existence of jump stable location
profiles, we show that, for symmetric DPGs, a beneficial
jump always increases the social welfare. This implies that
welfare optimal location profiles are jump stable, so jump sta-
ble location profile are guaranteed to exist. Moreover, if the
considered DPG is additionally k-discrete, we prove that an
optimal jump increases the social welfare by at least 2

k . Since
the social welfare is at most

∑
i∈N |Mi| ≤ n(n− 1), the best

response dynamics converges in at most O(kn2) steps.

Theorem 3 suggests a tradeoff between the precision of the
agents’ ideal distances and the runtime of the best response
dynamics: the smaller the k such that a DPG is k-discrete, the
faster a jump stable location profile is found. We next show
that this tradeoff is tight because the best response dynamics
may indeed need Ω(k) steps for symmetric k-discrete DPGs.

Example 2. Consider the DPG given by the preference graph
in Figure 2 and assume that all agents start at 0. First, agents
1, 2, 3, and 4 do not have an incentive to move because they
are at their ideal distance from each other. Next, agents 7, 8,
9, and 10 have no incentive to move as long as they are at the
same position as at least two of their friends (5, 6, and one of
11 and 12). Thirdly, the agents in 11 and 12 will not move as
long as they are at the same position as 7, 8 and 9, 10. Hence,
the only agents who want to move are 5 and 6. At their current
positions, these agents receive a utility of 4+ (1− 1

k ). If they
move to 1

k , they obtain the best possible utility of 5. In turn,

1 2 3 4

5 6

7 8 9 10

11 12

0 0 0

0 0

0

1 1 1 11 1 1 1

0 0 0 00 0 0 00 0

1
k

0 0

1
k

Figure 2: The preference graph of the DPG of Example 2. The edges
are bidirectional and colorcoded to ease readability. Blue edges in-
dicate an ideal distance of 0, red edges of 1, and green edges of 1/k.

agents 7, · · · , 10 will move to 1
k . Lastly, the agents 11 and 12

will also move to this position. However, now agents 5 and 6,
again, have an incentive to move to the location 2

k , and the
agents 7, · · · , 12 will follow again. This process repeats until
the agents 5, · · · , 12 are at 1 and thus requires Ω(k) steps.

Example 2 demonstrates that the best response dynamics
may need exponential time if, e.g., k = 2n. This leads to
the question of whether jump stable location profiles can be
found efficiently for all symmetric DPGs. We next answer
this question by showing that finding jump stable location
profiles in symmetric DPGs is PLS-complete. Specifically,
the complexity class PLS (“Polynomial Local Search”) cap-
tures optimization problems for which (locally) optimal so-
lutions are guaranteed to exist due to local search arguments.
However, it is believed that it is not possible to efficiently find
locally optimal solutions for PLS-hard problems.
Theorem 4. Finding a jump stable location profile in a sym-
metric DPG is PLS-complete.

Proof Sketch. The membership in PLS follows as we can
use the social welfare as a potential function. In particu-
lar, by combining Theorem 1 with the fact that each ben-
eficial jump increases the social welfare, we can find in
polynomial time another location profile with higher social
welfare or prove the local optimality of a location profile.
For PLS-hardness, we provide a reduction from the PLS-
complete problem MAXCUT under the FLIP neighborhood
(Schäffer and Yannakakis, 1991). In this problem, we are
given a weighted undirected graph G = (V,E,w) with edge
weights w : E → R>0 and the goal is to find a parti-
tion of the vertices (X,V \ X) such that the cut weight∑

(x,y)∈E : x∈X,y∈V \X w(x, y) cannot be increased by mov-
ing a vertex from X to V \ X or vice versa. In our reduc-
tion, we map each vertex v ∈ V to a vertex agent iv , and
we define the ideal distance between all vertex agents ix, iy
with {x, y} ∈ E by dix(iy) = diy (ix) =

1
2 + w({x,y})

2maxe∈E w(e) .
Next, we add several auxiliary agents to ensure that the ver-
tex agents can only be located at 0 or 1 in a jump stable lo-
cation profile. We hence get a partition of the vertices by
considering the vertex agents at 0 and 1, and we will show
that this partition is locally optimal for MAXCUT under the
FLIP neighborhood if and only if the corresponding location
profile is jump stable.



3.3 Acyclic Distance Preservation Games
As a second escape route to Proposition 1 and Theorem 2,
we will next investigate acyclic DPGs. For these DPGs, we
show that jump stable location profiles always exist and can
be efficiently computed.

Theorem 5. For acyclic DPGs, a jump stable location profile
always exists and can be computed in polynomial time.

Proof Sketch. For acyclic DPGs I = ⟨N, (Mi)i∈N , (di)i∈N ⟩
there is an order i1, . . . , in over the agents such that Mit ⊆
{i1, . . . , it−1} for all it ∈ N . We iterate through the agents
in this order and place each agent it at the optimal position
given the locations of the agents i1, . . . , it−1, which are al-
ready fixed. An optimal position for it can be found in poly-
nomial time by using Theorem 1. Since it only cares about
the agents i1, . . . , it−1 and their position maximizes their util-
ity subject to the positions of these agents, this process indeed
finds a jump stable location profile.

4 Welfare optimality
We now turn to welfare optimal location profiles, which, by
definition, always exist. However, as we show next, finding
such location profiles is computationally intractable even for
some of the simplest classes of DPGs.

Theorem 6. Given a DPG I and value q ∈ Q, it is NP-
complete to decide whether there is a location profile A such
that SWI(A) ≥ q even if I is (i) a path DPG or (ii) an ene-
mies and neutrals DPG.

Proof Sketch. First, for both variants, membership in NP is
straightforward as a location profile with sufficient social wel-
fare can be verified in polynomial time. On the other hand,
for NP-hardness, we provide two independent reductions. In
more detail, for path DPGs, we show NP-hardness by a reduc-
tion from BALANCEDPARTITION similar to the one in The-
orem 2. Specifically, given an instance of BALANCEDPAR-
TITION with k items, we construct a path DPG with k + 5
agents such that an assignment with a social welfare of k + 4
exists if and only if the partition instance has a solution.

For enemies and neutrals DPGs, we provide a reduction
from MAXCUT. In this problem, we are given an undirected
graph G = (V,E) and a value k, and we need to decide if
there is a cut in G with weight at least k. Given such an in-
stance, we construct an enemies and neutrals DPG by using
G as the preference graph: for each vertex v ∈ V , we intro-
duce an agent iv with Miv = {iu ∈ N : {u, v} ∈ E} and
div (j) = 1 for all j ∈ Mi. We then show for enemies and
neutrals DPGs that we can assume Ai ∈ {0, 1} for each agent
i ∈ N without decreasing the social welfare. Further, the so-
cial welfare of such solutions corresponds to the weight of the
partition {v ∈ V : Aiv = 0} and {v ∈ V : Aiv = 1}.

The reduction for path DPGs shows that it is NP-hard to de-
termine for a DPG whether there is a location profile where
every agent i gets the maximum possible utility of |Mi|. Con-
sequently, it is also computationally intractable to find Pareto-
optimal location profiles or location profiles that maximize

the egalitarian social welfare. Further, our reduction for en-
emies and neutrals DPGs shows that, for this case, maximiz-
ing social welfare is effectively equivalent to solving MAX-
CUT. Hence, the inapproximability results for MAXCUT
carry over to DPGs (Papadimitriou and Yannakakis, 1991;
Håstad, 2001), which yields the following corollary.
Corollary 1. For enemies and neutrals DPGs, there is no
polynomial time algorithm that computes location profiles
whose social welfare is guaranteed to be at least 16

17 of the
optimal social welfare, unless P = NP .

4.1 Approximation Algorithms
Theorem 6 shows that for many interesting DPGs, it is impos-
sible to efficiently compute welfare optimal location profiles.
In light of this, we now provide approximation algorithms
for computing location profiles with close to optimal social
welfare. In particular, we show next that a greedy approach
guarantees at least half of the optimal social welfare.
Theorem 7. Given a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩,
we can compute a location profile A with SWI(A) ≥
1
2

∑
i∈N |Mi| in polynomial time.

Proof Sketch. Given a DPG I , we choose an arbitrary or-
der i1, . . . , in over the agents and construct a location profile
as follows. First, we place agent i1 at 0. Then, we iterate
through our sequence and place each agent it with t > 1
at 0 or 1, depending on which position generates a higher
social welfare for the agents i1, · · · , it. We then show that,
when the agents i1, . . . , it−1 have already been placed, plac-
ing agent it at the better of these two positions generates a
welfare of at least 1

2 |{i ∈ {i1, . . . , it} : it ∈ Mi| + 1
2 |{i ∈

{i1, . . . , it} : i ∈ Mit |. From this insight, we infer the the-
orem since SWI(A) ≥ 1

2

∑n
ℓ=1 |{i ∈ {i1, . . . , iℓ} : iℓ ∈

Mi|+ |{i ∈ {i1, . . . , iℓ} : i ∈ Miℓ | = 1
2

∑
i∈N |Mi|.

Given the location profile A constructed in the proof of
Theorem 7, we can further increase the social welfare by a
linear programming approach. For this, let i1, . . . , in be an
arbitrary order over the agents such that Ai1 ≤ · · · ≤ Ain .
It is then possible to formulate a linear program (LP) that
uses the agents’ positions Bi1 , . . . , Bin as variables and max-
imizes the social welfare subject to the condition that 0 ≤
Bi1 ≤ · · · ≤ Bin ≤ 1 (see the supplementary material).
Since the location profile A is feasible solution for this lin-
ear program, the optimal solution A∗ of this LP satisfies that
SWI(A

∗) ≥ SWI(A) ≥ 1
2

∑
i∈N |Mi|. Note that, while this

linear program can be used for all orders of the agents, we
cannot give a lower bound on its social welfare in general.

Additionally to our general approximation, we can obtain
better approximation algorithms in many special cases. In
particular, in the next theorem, we analyze approximation ra-
tios for the simple DPGs considered in Theorem 6.
Theorem 8. The following claims holds:
(1) For path DPGs, there is an FPTAS for computing the op-

timal social welfare.
(2) For enemies and neutrals DPGs, there is a polynomial

time algorithm that computes location profiles whose so-
cial welfare is at least 0.879 of the optimal social welfare.



Paths Enemies & Neutrals Acyclic Symmetric General

Jump Stability in P in P in P PLS-complete NP-complete

Welfare Optimality NP-complete
FPTAS

APX-hard
0.879-Approx.

NP-complete
1
2 -Approx.

APX-hard
1
2 -Approx.

APX-hard
1
2 -Approx.

Table 1: Summary of our results. Each column indicates a subclass of DPGs and the corresponding entries show the computational complexity
of finding a jump stable and welfare optimal location profiles as well as our approximation ratios for the optimal social welfare.

Proof Sketch. For enemies and neutrals DPGs, we use the
close connection between MAXCUT and finding a welfare
optimal location profile. In particular, this connection al-
lows us to apply the approximation algorithm of Goemans
and Williamson (1994) for MAXCUT to our setting.

For path DPGs, we design an FPTAS by introducing a set
of possible locations L = { 0

k ,
1
k , . . . ,

k
k}. We then show that

we can find the location profile A∗ that maximizes the social
welfare subject to the condition that A∗

i ∈ L for all i ∈ N
in polynomial time with respect to |N | and k. Specifically,
we reduce this problem to finding a longest path in a directed
acyclic graph with nk vertices. Moreover, we prove that the
social welfare of A∗ is at least 1− 2

k times the optimal social
welfare, so our algorithm is indeed an FPTAS.

4.2 Price of Anarchy
Finally, we relate our results for welfare optimality and jump
stability by investigating the price of anarchy of DPGs. The
price of anarchy, as suggested by Koutsoupias and Papadim-
itriou (2009), is the ratio between the optimal social welfare
and that of the worst jump stable location profile. To formally
define this concept, let JS(I) denote the set of jump stable lo-
cation profiles for a DPG I . Then, the price of anarchy of a
DPG I with JS(I) ̸= ∅ is

PoA(I) =
maxA∈[0,1]n SWI(A)

minA∈JS(I) SWI(A)
.

We next show that every DPG (that permits jump stable
location profiles) has a price of anarchy of at most 2. Conse-
quently, every algorithm for computing jump stable location
profiles guarantees at least half of the optimal social welfare.

Theorem 9. It holds that PoA(I) ≤ 2 for all DPGs I with
JS(I) ̸= ∅. Further, there is a DPG I with JS(I) ̸= ∅ and
PoA(I) = 2.

Proof. Consider a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ and let
A ∈ JS(I). We focus on an agent i ∈ N and will show that
ui(A) ≥ |Mi|

2 . For this, we observe that ui(A) ≥ ui(A
i 7→0)

and ui(A) ≥ ui(A
i 7→1) since A is jump stable. Next, let j

denote an agent in Mi. When agent i jumps to 0, we have that
ui(A

i 7→0, j) = 1 − |A(j) − di(j))|. Similarly, it holds that
ui(A

i 7→1, j) = 1− |1−A(j)− di(j)|. Next, it can be shown
by a case distinction with respect to the absolute values that
|A(j)−di(j)|+|1−A(j)−di(j)| ≤ 1, so 1−|A(j)−di(j))|+
1−|1−A(j)−di(j)| ≥ 1. Applying the same argument for all
agents in Mi shows that ui(A

i 7→0)+ui(A
i7→1) ≥ |Mi|. Since

ui(A) ≥ ui(A
i 7→0) and ui(A) ≥ ui(A

i 7→1), this means that

3 4

1 2

1

1

1

1

Figure 3: Preference graph of the DPG in the proof of Theorem 9

ui(A) ≥ |Mi|
2 . Finally, by summing over all agents, it follows

that the social welfare of A is at least half of the optimum.
Next, to show that our bound on the price of anarchy is

tight, let I be the symmetric DPG illustrated in Figure 3.
Moreover, let A denote the location profile where A1 = A2 =
0 and A3 = A4 = 1. For each agent i, both agents in Mi are
at the opposite ends of the unit interval in A. Thus, all points
in [0, 1] yield utility 1 for each agent. Consequently, A is
jump stable and SWI(A) = 4. However, in the location pro-
file A′ with A′

1 = A′
3 = 0 and A′

2 = A′
4 = 1, every agent’s

utility is 2 and SWI(A
′) = 8. Hence, PoA(I) = 2.

The proof of Theorem 3 shows that welfare optimality im-
plies jump stability for symmetric DPGs. Thus, for symmet-
ric DPGs, the price of stability, i.e., the ratio between the op-
timal social welfare and that of the best jump stable location
profile (Anshelevich et al., 2008), is 1. In contrast, the price
of stability can be arbitrarily close to 2 for general DPGs.

5 Conclusion
We initiate the study of distance preservation games (DPGs)
where multiple agents need to choose locations in the unit
interval based on their ideal distances to each other. For
these games, we examine the existence and computation of
both jump stable and welfare optimal location profiles. In
more detail, we first show that jump stable location profiles
are not guaranteed to exist and that it is NP-complete to de-
cide whether a DPG admits such a location profile. On the
other hand, we derive more positive results by focusing on
large and realistic subclasses of DPGs, namely symmetric
and acyclic DPGs. Specifically, we show for these DPGs that
jump stable location profiles always exist and that they can
often be computed efficiently. Furthermore, we prove that it
is computationally intractable to find welfare optimal location
profiles even for severely restricted DPGs. We thus design a
1
2 -approximation for the social welfare of general DPGs. Fi-
nally, we show that DPGs have a price of anarchy of at most 2.

Our work points to several directions for future work. First,
we believe it to be worthwhile to study the effect of ideal dis-
tances between agents for further settings. For instance, one



could also analyze DPGs when assuming a discrete graph or
higher dimensional continuous spaces as the topology instead
of the unit interval. Another interesting direction is to add ad-
ditional constraints to DGPs. For example, one could study
these games under the condition that there must be a small
distance between each pair of agents.
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A Appendix: Omitted Proofs
In this appendix, we provide all proofs missing from the main
body. For better readability, we place the proof of each theo-
rem in a separate subsection.

A.1 Proof of Theorem 1
Theorem 1. It can be verified in polynomial time whether a
location profile is jump stable for a DPG.

Proof. To prove this theorem, we will show that it suffices to
check for each agent at most 3|Mi| + 2 points for deciding
whether the agent has a beneficial deviation in a location pro-
file A and a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩. We therefore
only need to check a total of at most O(n2) possible devia-
tions, which is possible in polynomial time.

Since the utility of an agent i in a location profile A is the
sum of their utility for other agents, we first analyze agent i’s
utility from a single agent j ∈ Mi. In particular, we define
by hj(x) = ui(A

i7→x, j) the utility agent i gets from agent
j when jumping to position x. Due to the definition of the
agents’ utilities, the function hj(x) is piecewise linear. To
make this more precise, we let Lj = max(0, Aj − di(j)) and
Rj = min(1, Aj+di(j)). Intuitively, these two points are the
two local optima of hj in the interval [0, 1]. By the definition
of ui(A, j), it follows that h(x) is linearly increasing in the
intervals [0, Lj ] and [Aj , Rj ] and linearly decreasing in the
intervals [Lj , Aj ] and [Rj , 1].

Now, to move from a single agent j ∈ Mi to all agents,
we note that ui(A

i 7→x) =
∑

j∈Mi
ui(A

i7→x, j). Hence, the
utility function of agent i is a sum of finitely many piecewise
linear functions and thus itself piecewise linear. We will next
show that h(x) = ui(A

i 7→x) has at most 3n + 1 linear re-
gions. To this end, we recall the definition of Lj and Rj and
define the set S = {0, 1} ∪

⋃
j∈Mi

{Lj , Aj , Rj}. Clearly,
S has at most 3|Mi| + 2 elements and we order these ele-
ments such that x1 < x2 < · · · < x|S|. Now, it holds for all
t ∈ {1, . . . , |S| − 1} and j ∈ Mi that [xt, xt+1] is a subset
of either [0, Lj ], [Lj , Aj ], [Aj , Rj ], or [Rj , 1]. Hence, all hj ,
and consequently also h, are linear on each interval [xt, xt+1].

Finally, we note that a linear function on a closed inter-
val is maximal at one of the endpoints of the interval. This
implies that h(x) = ui(A

i 7→x) is maximized by a point in
S. Therefore, we only need to check whether there is a point
x ∈ S such that h(x) > h(Ai) to decide whether agent i has
a beneficial jump. This means that we only need to compute
agent i’s utility for at most 3|Mi|+3 points (namely those in
S and Ai) to decide whether the agent has a beneficial jump.
By applying this to all agents, it follows that we only need
to check at most O(n2) possible jumps to decide whether a
location profile is jump stable.

A.2 Proof of Theorem 3
Theorem 3. For symmetric DPGs, jump stable location pro-
files are guaranteed to exist. If the DPG is additionally k-
discrete for some k ∈ N, the best response dynamics finds a
jump stable location profile in O(kn2) steps.

Proof. The theorem consists of two independent claims:
firstly, we need to show that jump stable location profiles ex-
ist for all symmetric DPGs. Secondly, we will prove that the
best response dynamics presented in Algorithm 1 finds such a
jump stable location profile for all symmetric and k-discrete
DPGs in at most O(kn2) steps. We prove these two claims
separately.

Claim 1: Each symmetric DPG has a jump stable loca-
tion profile.

To prove this claim, we will show that welfare-optimal
location profiles are jump stable for symmetric DPGs. To
this end, let I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ denote a symmetric
DPG and let A denote a welfare optimal location profile for I .
We assume for contradiction that A is not jump stable, which
means that there is an agent i ∈ N and a location x ∈ [0, 1]
such that ui(A

i 7→x) > ui(A). We will derive a contradiction
by showing that SWI(A

i 7→x)−SWI(A) > 0 since this shows
that A is not welfare optimal.

To this end, we observe that by definition
SWI(A) =

∑
j∈N

∑
k∈Mj

uj(A, k) and SWI(A
i 7→x) =∑

j∈N

∑
k∈Mj

uj(A
i 7→x, k). Since uj(A, k) = uj(A

i 7→x, k)

for all j, k ∈ N \ {i}, this means that

SWI(A
i 7→x)− SWI(A) =

∑
j∈Mi

ui(A
i 7→x, j)− ui(A, j)

+
∑

j∈N : i∈Mj

uj(A
i7→x, i)− uj(A, i).

Finally, by symmetry, we have that i ∈ Mj and dj(i) =
di(j) for all j ∈ N with i ∈ Mj . This means that
uj(A

′, i) = 1 − ||A′
i − A′

j | − dj(i)| = 1 − ||A′
i − A′

j | −
di(j)| = ui(A

′, j) for all location profiles A′. Hence,
we conclude that

∑
j∈N : i∈Mj

uj(A
i 7→x, i) − uj(A, i) =∑

j∈Mi
ui(A

i 7→x, j)− ui(A, j). We derive now that

SWI(A
i 7→x)− SWI(A) = 2

∑
j∈Mi

ui(A
i7→x, j)− ui(A, j).

Finally, we note that
∑

j∈Mi
ui(A

i 7→x, j) = ui(A
i7→x)

and
∑

j∈Mi
ui(A, j) = ui(A). Since we assumed that

ui(A
i 7→x) > ui(A), this then means that SWI(A

i 7→x) >
SWI(A), which contradicts the welfare optimality of A. This
contradiction show that our initial assumption is wrong. Con-
sequenlty, every welfare optimal location profile is also jump
stable for symmetric DPGs, which means that jump stable
location profiles always exist for these games.

Claim 2: For symmetric and k-discrete DPGs, the best
response dynamics converges in at most O(kn2) steps.

We first note that our analysis in Claim 1 shows that ev-
ery beneficial jump of an agent increases the social welfare
for symmetric DPGs. This immediately implies that the best
response dynamics in Algorithm 1 converges to a jump sta-
ble location profile by using the social welfare as potential.
To prove the speed of convergence, we will next show that
during every step of the best response dynamics, the social
welfare increases by at least 2

k . Since the social welfare is



trivially upper bounded by
∑

i∈N |Mi| ≤ n(n − 1), it then
follows that there can be at most O(kn2) steps.

To prove that every step of the best response dynamics in-
creases the social welfare by at least 2

k , we fix a k-discrete
and symmetric DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ and define
the set K = {0, 1

k , . . . ,
k−1
k , 1}. We will next show the fol-

lowing auxiliary claim: if agent i has a beneficial jump for a
location profile A such that Aj ∈ K for all j ∈ N , the left-
most position x∗ that maximizes agent i’s utility is also in K.
Since our best response dynamics starts in the location profile
A with Aj = 0 for all j ∈ N , this means that all location pro-
files A′ during the execution of the best response dynamics
satisfy that A′

j ∈ K for all j ∈ N .
For showing our auxiliary claim, we fix a profile A such

that Aj ∈ K for all j ∈ N consider the function hj(x) =
ui(A

i 7→x, j) that measures the utility that agent i receives
from agent j ∈ Mi when jumping to x. Just as in the proof
of Theorem 1, we note that the function hj is piecewise lin-
ear. To make this more precise, we define Lj = max(0, Aj −
di(j)) and Rj = min(1, Aj + di(j)). Then, hj is linearly in-
creasing on the intervals [0, Lj ] and [Aj , Rj ] and linearly de-
creasing on the intervals [Lj , Aj ] and [Rj , 1]. Next, we define
again h(x) =

∑
j∈Mi

ui(A
i7→x, j) =

∑
j∈M hj(x) and note

that this function is also piecewise linear. More specifically,
we define the set S = {0, 1}∪

⋃
j∈Mi

{Lj , Aj , Rj} and order
the elements of S such that x1 < x2 < · · · < x|S|. Then, h
is linear on each interval [xk, xk+1] for k ∈ {1, . . . , |S| − 1}.

Because a linear function on a closed interval takes its max-
imal value at one of the two endpoints of the interval, it fol-
lows that x∗, the left-most maximizer of h, is in S. We will
next show that S ⊆ K and thus x∗ ∈ K. To this end, we
note that Aj ∈ K for all j ∈ Mi by the definition of A.
Moreover, since I is a k-discrete DPG, it follows that Lj =
max(0, Aj −di(j)) ∈ K and Rj = min(1, Aj +di(j)) ∈ K
for all j ∈ Mi. This proves that x∗ ∈ K. Consequently, our
best response dynamics satisfies the invariant that A′

j ∈ K
for all j ∈ N and all location profiles A′ during its execution.

Finally, we will show that during every step of the best
response dynamics, the social welfare increases by at least 2

k .
To this end, fix a location profile A such that Aj ∈ K for all
j ∈ N . It holds that for every ℓ ∈ {0, . . . , k − 1} and every
voter j ∈ Mi that |hj(

ℓ
k ) − hj(

ℓ+1
k )| = 1

k . The reason for
this is that | ℓk − Aj | ∈ K, | ℓ+1

k − Aj | ∈ K, and di(j) ∈ K.
Hence, if voter i moves from ℓ

k to ℓ+1
k , the difference between

their actual and ideal distance to voter j either increases or
decreases by 1

k . By applying this argument to all agents in
Mj , it further follows that |h( ℓ

k )| − h( ℓ+1
k )| = c

k for some
integer c ∈ Z. Finally, by applying the “telescoping sum”
technique, we infer for all ℓ1, ℓ2 ∈ {0, . . . , k} with ℓ1 < ℓ2
that h( ℓ1k ) − h( ℓ2k ) =

∑ℓ2−1
ℓ=ℓ1

h( ℓ
k ) − h( ℓ+1

k ) = c′

k for some
c′ ∈ Z.

Since a step in the best response dynamics moves an agent
from one position Ai ∈ K to another position x∗ ∈ K such
that ui(A

i 7→x∗
) > ui(A), it follows from this analysis that

ui(A
i 7→x∗

) − ui(A) ≥ 1
k . Finally, by the computations in

Claim 1, it follows that the social welfare increases by 2
k , i.e.,

that SWI(A
i 7→x∗

)− SWI(A) ≥ 2
k . This completes the proof

of this theorem.

A.3 Proof of Theorem 4
Theorem 4. Finding a jump stable location profile in a sym-
metric DPG is PLS-complete.

Proof. First membership in PLS is clear by using the social
welfare as a potential function. In combination with The-
orem 1, this means that we can decide whether a location
profile is jump stable or find a “better” successor. For PLS-
hardness, we give a reduction from the PLS-complete prob-
lem MAXCUT under the FLIP neighborhood (Schäffer and
Yannakakis, 1991).

Reduction Setup. In this problem, we are given an undi-
rected graph G = (V,E,w) with positive edge weights
w : E → R>0 and the goal is to find a parti-
tion (X,V \ X) such that we cannot increase the weight∑

{x,y}∈E : x∈X,y∈V \X w({x, y}) by moving a vertex from
X to V \ X or vice versa. Subsequently, we assume that
|V | ≥ 3 in our proofs and we define by W the maximal edge
weight in G. Given an instance of MAXCUT, we then con-
struct the following distance preservation game:

• For each vertex v ∈ V , we add a vertex agent iv to N .

• We add |V | midpoint agents m1, . . . ,m|V | to N .

• For each midpoint agent mj , we add 4|V | endpoint
agents, which are partitioned into two sets Lj and Rj

with |Lj | = |Rj |. In both Lj and Rj , there is one desig-
nated agent ℓ∗j and r∗j that will behave slightly differently
than the other agents.

Next, the relationship sets and distances are given as follows:

• Each midpoint agent mj cares about all vertex agents,
and the endpoint agents in Lj ∪ Rj . The ideal distance
to all vertex agents is 1 and the ideal distance to all end-
point agents except for ℓ∗j and r∗j is 1

2 . The ideal distance
to ℓ∗j and r∗j is 1.

• For each j ∈ {1, . . . , |V |}, each endpoint agent ℓ ∈ Lj

only cares about the endpoint agents in Rj and the mid-
point agent mj . The ideal distance to all endpoint agents
is 1 and the ideal distance to mj is 1

2 (unless ℓ = ℓ∗j for
which the ideal distance to mj is 1). Endpoint agents in
Rj are symmetric, i.e., they only care about the agents
in Lj and about mj and have symmetric ideal distances.

• Each vertex agent ix cares about all midpoint agents
and about each vertex agent iy such that {x, y} ∈ E.
The ideal distance to each midpoint agent is 1 and the
ideal distance to another vertex agent iy ∈ Mix is
1
2 + w({x,y})

2W .

The intuition of this instance is the following: first, in a
jump stable location profile, all endpoint agents will be placed
either at 0 or 1. This will then entail that the corresponding
midpoint agent is at 1

2 . Next, since all midpoint agents are at
1
2 , all vertex agents will be again either at 0 or at 1. Hence, the
vertex agents form a partition by considering which of them
are located at 0 or 1. As it will turn out, every such location



profile that is jump stable will correspond to a partition that is
locally optimal for MAXCUT under the FLIP neighborhood.

We will next make this reasoning precise and thus consider
a jump stable location profile A for our constructed DPG. To
avoid double indices, we will subsequently write, e.g., A(mj)
instead of Amj

.

All midpoint agents must be at 1
2 . Our first goal is to show

that all midpoint agents mj are at A(mj) = 1
2 . Assume for

contradiction that this is not true. This means that there is a
midpoint agent mj with A(mj) ̸= 1

2 and we suppose with-
out loss of generality that A(mj) < 1

2 . We first consider
the corresponding endpoint agents in Lj ∪ Rj . In particu-
lar, we let Lj = {ℓ1, . . . , ℓ2|V |} and Rj = {r1, . . . , r2|V |}
and we assume that A(ℓ1) ≤ A(ℓ2) ≤ · · · ≤ A(ℓ2|V |) and
A(r1) ≤ A(r2) ≤ · · · ≤ A(r2|V |). Since the sets Lj and Rj

are completely symmetric, we suppose without loss of gen-
erality that A(ℓ|V |) ≤ A(r|V |). From this assumption, we
infer for each agent ℓi with i ∈ {1, . . . , |V |} that there are at
most |V | − 1 agents r ∈ Rj with A(r) < A(ℓi) and at least
|V |+ 1 agents r ∈ Rj with A(ℓi) ≤ A(r). This implies that
all agents ℓ1, . . . , ℓ|V | must be located at 0. Otherwise, we
can move each such agent to 0. This increases their utility by
at least (|V |+1)A(ℓi)−|V |A(ℓi) > 0 as we increase the dis-
tance of ℓi to at least |V |+1 agents in Rj and we decrease the
distance to at most |V | − 1 agents in Rj and possibly worsen
the distance to the midpoint agent mj .

Next, if also A(ℓ|V |+1) ≤ A(r|V |), we can use an analo-
gous argument to also show that agent ℓ|V |+1 must be at 0. In
turn, this means for every agent ri that A(ℓ|V |+1) ≤ A(ri),
we can use symmetric reasoning for the agents in Rj to show
that all these agents are at 1. By applying our argument one
last time for the remaining agents in Lj , we derive that all
agents in Lj are located at 0 and all agents in Rj are located
at 1. However, it then is better for each agent mj to move
to 1

2 . In more detail, if this agent moves from A(mj) to 1
2 ,

their utility for each of the 4|V | − 2 > 3|V | endpoint agents
other than ℓ∗j and r∗j increases by 1

2 −A(mj) and their utility
for each of the |V | vertex agents and the 2 agents ℓ∗j and rj∗
decreases at most by 1

2 − A(mj). This is the desired contra-
diction, which shows that A(mj) ̸= 1

2 is not possible in this
case.

For our second case, we assume that A(ℓ|V |+1) > A(r|V |).
If also A(r|V |+1) ≥ A(ℓ|V |+1), we can use a symmetric
argument as before to infer that all agents r|V |+1, . . . , r2|V |
must be at 1. This means for every agent ℓi with i ∈
{|V | + 1, . . . , 2|V |} that there are |V | agents in Rj that are
right of ℓi and |V | agents that are left of ℓi. Consequently, the
utility of ℓi from the agents in Rj is the same for every posi-
tion in the interval [A(r|V |), 1], i.e.,

∑
r∈Ri

uℓi(A
ℓi 7→x, r) =∑

r∈Ri
uℓi(A

ℓi 7→y, r) for all x, y ∈ [A(r|V |), 1]. Thus, each
agent ℓi chooses the location in this interval that optimizes
their distance to mj . Since there are |V | > 1 such agents, at
least one of them has an optimal distance of 1

2 to mj . Now,
if A(mj) +

1
2 ≤ A(r|V |), this agent has to be located at

A(r|V |) as they can otherwise improve their utility by jump-
ing there. By our ordering assumption, this further means that

A(ℓ|V |+1) = A(r|V |), which contradicts our initial assump-
tion that A(ℓ|V |+1) > A(r|V |).

On the other hand, if A(mj) +
1
2 > A(r|V |), agent ℓi

will be at the position A(mj) + 1
2 . In turn, this means

that A(ℓ|V |+1) = A(mj) +
1
2 since ℓ|V |+1 is the left-most

agent among ℓ|V |+1, . . . , ℓ2|V |. Next, we turn to the agents
r1, . . . , r|V | and note for each such agent ri that there are |V |
agents of Lj that are left of ri and |V | agents that are right of
ri. This means that the utility of each such agent ri from the
agents in Lj is the same for every position in [0, A(ℓ|V |+1)].
We hence get again that the position of the these agents in
the interval [0, A(ℓ|V |+1)] is determined by mj . In particu-
lar, since A(mj) < 1

2 and A(ℓ|V |+1) = A(mj) +
1
2 , there

will be at least one agent in r1, . . . , r|V | that needs to be lo-
cated at A(ℓ|V |+1). This implies that A(r|V |) = A(ℓ|V |+1),
a contradiction to our original assumption.

As the last case, we suppose that A(r|V |) ≤ A(r|V |+1) <
A(ℓ|V |+1). This time, we infer again by our initial argu-
ment that the agents ℓ|V |+1, . . . , ℓ2|V | must be at 1. In turn,
this means that for each agent ri that A(ℓ|V |) ≤ A(ri) ≤
A(ℓ|V |+1). Hence, the utility of each agent ri from the agents
in Lj is constant for every position in [0, 1]. As a conse-
quence, every agent in Rj will be at the optimal distance
to mj . This means that A(r1) = · · · = A(r2|V |−1) =

A(mj) +
1
2 and A(r2|V |) = 1 as r∗j has an ideal distance

of 1 to mj . We claim that there is an agent ℓi at 1 who bene-
fits by jumping to 0. To this end, let ℓi denote an agent whose
ideal distance to mj is 1

2 . The utility of this agent at 1 is at
most ∑

rj∈Rj : A(rj )̸=1

(
1−

∣∣∣∣|1− (
1

2
+A(mj))| − 1

∣∣∣∣)

+

(
1−

∣∣∣∣|1−A(mj)| −
1

2

∣∣∣∣)
= (

1

2
−A(mj))(2|V | − 1) +A(mj) +

1

2
.

Here, the first term is the agent’s utility from the agents in
Rj and the second term is their utility from mj . On the other
hand, if our agent is at 0, their utility is lower bounded by∑

rj∈Rj : A(rj )̸=1

(
1−

∣∣∣∣|0− (
1

2
+A(mj))| − 1

∣∣∣∣)

+

(
1−

∣∣∣∣|0− 1| − 1

∣∣∣∣)
1 + (

1

2
+A(mj))(2|V | − 1).

Here, the first term is the utility of agent ℓi for the 2|V | − 1
agents in Rj that are not at 1 and the second term is his utility
for the agent r∗j at 1. The utility of agent ℓi for mj is omitted
as it is not necessary for our lower bound. Since 1

2+A(mj) <

1 as A(mj) <
1
2 and 1

2 − A(mj) <
1
2 + A(mj), this means

that our agent ℓi is better of at 0. However, this contradicts
that A is jump stable. Since we have a contradiction in every
case, our initial assumption that A(mj) ̸= 1

2 is wrong.



Vertex agents at 0 or 1. We now turn to the vertex agents.
First, we note that all these agents must be at 0 or 1. Indeed,
as there are |V | midpoint agents, all of which are placed at 1

2 ,
we can always increase the utility of an agent by moving it to
its closer endpoint. For example, if a vertex agent iv is located
in the interval [0, 1

2 ], moving them to 0 increases their utility
by at least |V |A(iv) (for the mid point agents) and decreases
their utility by at most (|V | − 1)A(iv) (for the other vertex
agents). Hence, in A, every vertex agent must be at 0 or 1.

Jump Stability to Local Optimum. Now, let X = {v ∈
V : A(iv) = 0} and X̄ = {v ∈ V : A(iv) = 1}. Moreover,
we consider a vertex agent ix ∈ X and define the sets L =
{y ∈ X : iy ∈ Mix} and R = {y ∈ X̄ : iy ∈ Mix}. The
utility of agent ix for A is

uix(A) =
1

2
|V |+

∑
y∈L

1− dix(iy) +
∑
y∈R

dix(iy).

Here the first term is given by the midpoint agents, the sec-
ond term by the agents in L, and the third term by the agents
in R. On the other hand, the utility of this agent in the assign-
ment Aix 7→1 is the following:

uix(A
ix 7→1) =

1

2
|V |+

∑
y ̸=L

dix(iy) +
∑
y∈R

1− dix(iy).

Jump stability implies that uix(A) ≥ uix(A
ix 7→1), so we

derive that ∑
y∈L

1− dix(iy) +
∑
y∈R

dix(iy)

≥
∑
y∈L

dix(iy) +
∑
y∈R

1− dix(iy).

Using the definition of the ideal distance between vertex
agents, this equivalently means that∑

y∈L

1

2
− w({x, y})

2W
+
∑
y∈R

1

2
+

w({x, y})
2W

≥
∑
y∈L

1

2
+

w({x, y})
2W

+
∑
y∈R

1

2
− w({x, y})

2W

Solving this inequality shows that
∑

y∈R w({x, y}) ≥∑
y∈L w({x, y}). This implies that we cannot improve the

weight of the cut (X, X̄) by moving x from X to X̄ .
Since a similar argument shows for the agents x ∈ X̄ that∑

y∈L w({x, y}) ≥
∑

y∈R w({x, y}), the partition (X, X̄)
is a local optimum for MAXCUT under FLIP neighborhood.

The case of constructing an jump stable solution from a
local optimal follows analogously. Given a local optimum
(X, X̄), place all ix for x ∈ X at 0, place iy for y ∈ X̄ at
1, place all lj at 0, all rj at 1 and all mj at 1

2 . By a similar
argument, such a solution must always be jump stable.

A.4 Proof of Theorem 5
Theorem 5. For acyclic DPGs, a jump stable location profile
always exists and can be computed in polynomial time.

ALGORITHM 2: Jump Stability for Acyclic Relationships
Input: An acyclic DPG I = ⟨N, (Mi)i∈, (di)i∈N ⟩
Output: A location profile A

1 Let GI be the dependence graph of I
2 Let i1, · · · , in be a reverse topological ordering on GI

3 for k = 1, · · · , n do
4 if Mik = ∅ then
5 Set Aik ← 0
6 else
7 Let A′

j = Aj for all j ∈Mik and A′
j = 0 for all

j /∈Mik

8 Choose x ∈ argmaxx′∈[0,1] uik (x,A
′
−i)

9 Set Aik ← x

10 Return A

Proof. We prove this theorem with the help of Algorithm 2.
Given an acyclic DPG I , this algorithm first constructs a re-
verse topological ordering i1, · · · , in for the preference graph
GI . Then, the algorithm iterates over all agents and place
them at one of the position that maximizes their utility given
the locations of the agents that have already been located. We
note that we can efficiently find such a position by using the
ideas of the proof of Theorem 1.

This algorithm produces a jump stable location profile be-
cause if j ∈ Mi, then j occurs earlier in the reverse topolog-
ical order than i. Hence, when agent i is placed, all agents
in Mi have already been placed. This means that given the
positions of the other agents, i has no beneficial jump. Since
this holds for all agents, the location profile returned by Al-
gorithm 2 is jump stable.

It is also easy to see that this algorithm runs in polynomial
time. Firstly, we can straightforwardly compute the prefer-
ence graph GI and the reverse topological order of the agents
by standard tools. Finally, for choosing the position of each
agent, we only need to check at most 3n + 2 positions, as
explained in Theorem 1. Since we need to check these po-
sitions for n agents and each such check takes at most O(n)
time (as we need to compute a sum over all other agents), this
means that the for-loop of Algorithm 2 needs time at most
O(n3).

A.5 Proof of Theorem 6
Theorem 6. Given a DPG I and value q ∈ Q, it is NP-
complete to decide whether there is a location profile A such
that SWI(A) ≥ q even if I is (i) a path DPG or (ii) an ene-
mies and neutrals DPG.

This theorem consists of two independent claims, which
we will prove in two separate propositions. We start by prov-
ing the claim on path DPGs.
Proposition 2. Given a path DPG I and an value q, it is NP-
hard to decide whether there is a location profile A such that
SWI(A) ≥ q.

Proof. First, the membership in NP is clear as we can give
a location profile with sufficient social welfare as a poly-
nomial time verifiable witness for yes-instances. For NP-
hardness, we give a reduction from BALANCEDPARTITION,



similar to the reduction for Theorem 2. We thus recall
that, for BALANCEDPARTITION, we are given a set of items
S = {s1, . . . , sk} and a weight function w : S → N such
that w(s) ≤ 1

2

∑
t∈S w(t) for all s ∈ S, and the goal is

to decide whether there is a partition (X,S \ X) such that∑
s∈X w(s) =

∑
s∈S\X w(s). Given an instance (S,w) of

BALANCEDPARTITION, we let B =
∑

s∈S w(s) and define
the following path DPG with 2k + 5 agents:
• We add two head agents 1 and 2, as well as three tail agents
k + 3, k + 4, and k + 5. Moreover, for each si ∈ S, we
create an element agent i+ 2.

• For all i ∈ N \ {k+5}, we set Mi = {i+1} and Mk+5 =
∅.

• We set d1(2) = 1, d2(3) = 1
2 , di(i + 1) = w(si−2)

B for all
i ∈ {3, . . . , k+2}, dk+3(k+4) = 1

2 , and dk+4(k+5) = 1.
We will show that there is a location profile A with

SWI(A) = k+4 if and only if there is a partition (X,S \X)
with

∑
s∈S w(s) =

∑
s∈S\X w(s). This means that it is

NP-hard to decide whether there is a location profile with the
maximal possible social welfare of at least q ≥ k + 4.

First, assume that there is a location profile A such that
SWI(A) ≥ k + 4. Since our DPG has only k + 4 edges,
this means that all agents i ∈ N \ {k + 5} are at their ideal
distance to their successor i + 1 in A. In particular, agents 1
and 2 are at distance 1, so agent 2 is either at 0 or 1. Moreover,
agent 3 is at distance of 1

2 from agent 2, so A3 = 1
2 . By an

analogous argument for the tail agents, it follows that Ak+3 =
1
2 , too. Next, we note that di(i + 1) = w(si−2)

B > 0 for all
i ∈ {3, . . . , k + 2}, so we infer that Ai ̸= Ai+1 for all these
agents. Now, let R = {i ∈ {3, . . . , k + 2} : Ai > Ai+1} and
L = {i ∈ {3, . . . , k + 2}|Ai < Ai+1}. We note that, since
A3 = 1

2 and
∑k+2

i=3 di(i+ 1) = 1, it must be that both L and
R are non-empty; otherwise some agent in L∪R is not at the
ideal distance to its successor.

Now, since all agents i ∈ N \ {k + 5} are at their ideal
distance to their successor i + 1, we have that di(i + 1) =
Ai+1 − Ai for all i ∈ L and di(i + 1) = Ai − Ai+1 for all
i ∈ R. This means that

∑
i∈L di(i+ 1)−

∑
i∈R di(i+ 1) =∑k+2

i=3 Ai+1 − Ai = Ak+3 − A3. Moreover, since A3 =
Ak+3 = 1

2 , it follows that
∑

i∈L di(i+1)−
∑

i∈R di(i+1) =
0. Finally, by the definition of our ideal distances, this means
that

∑
i∈L w(si) =

∑
i∈R w(si) and there thus is a solution

to the instance of BALANCEDPARTITION.
For the converse, we suppose that there is a partition

(X,S \ X) such that
∑

s∈X w(s) =
∑

s∈S\X w(s). More-
over, we suppose without loss of generality that sk ∈ X .
Now, consider the location profile A where A1 = Ak+5 = 0,
A2 = Ak+4 = 1, and A3 = Ak+3 = 1

2 . Moreover, for
each i ∈ {4, . . . , k − 2}, we set Ai = Ai−1 + di−1(i) if
si−3 ∈ X and Ai = Ai−1 − di−1(i) if si−3 ∈ S \X . Since∑

s∈S w(s) =
∑

s∈S\S w(s) = 1
2B, we have that Ai ∈ [0, 1]

for all i ∈ {4, . . . , k − 2}. This means that A is a valid loca-
tion profile. Moreover, it holds for all agents i ∈ N \ {k +
2, k + 5} that ui(A) = 1 as we place the successors of these
agents at their ideal distances. Lastly, for agent k+2, we note
that

∑
si∈X\{sk} w(si)−

∑
si∈S\X w(si) = −w(sk). Since

di(i + 1) = w(si−2)
B for all i ∈ {3, . . . , k + 2}, this means

that Ak+2 = A3 +
∑

si∈X\{sk}
w(si)
B −

∑
si∈S\X

w(si)
B =

A3 − w(sk)
B . This means that uk+2(A) = 1, too, because

A3 = Ak+3 = 1
2 and dk+2(k + 3) = w(sk)

B . Hence,
all agents are at their ideal distance to their successors and
SWI(A) = k + 4.

We next turn to enemies and neutrals DPGs. We note that
our subsequent reduction effectively shows that finding wel-
fare optimal location profiles for enemies and neutrals DPGs
is equivalent to solving MAXCUT, so our subsequent result
even demonstrates APX-hardness.

Proposition 3. Given an enemies and neutrals DPG I and a
value q, it is NP-complete to decide whether there is a loca-
tion profile A such that SWI(A) ≥ q.

Proof. The membership in NP is again clear as we can guess
and verify a suitable location profile for yes-instances. For
NP-hardness, we will give a reduction from the NP-complete
problem MAXCUT (Karp, 1972). In this problem, we are
given an unweighted undirected graph G = (V,E) and a
value q ∈ N, and we need to decide whether there is a cut
(or partition of the vertices) (X,V \X) such that |{{v, w} ∈
E : v ∈ X,w ∈ V \X}| ≥ q. Given such a graph G = (V,E)
and a threshold value q, we construct the following enemies
and neutrals DPG I: for every vertex v ∈ V , we create an
agent iv . Moreover, for every edge {v, w} ∈ E, we add iw to
Miv , iv to Miw , and set div (iw) = diw(iv) = 1. We note that
the DPG I is symmetric by definition. We will next show that
there is a solution to the MAXCUT instance if and only if our
DPG admits a location profile A with SWI(A) ≥ 2q.

To this end, suppose first that there is a cut (X,V \X) with
a weight of at least q. We consider the location profile A such
that Aiv = 0 for all v ∈ X and Aiv = 1 for all v ∈ V \X .
Observe that uiv (A) = |{w ∈ V \ X : {v, w} ∈ E}| for
all v ∈ X and uiv (A) = |{w ∈ X : {v, w} ∈ E}| for all
v ∈ V \X . Thus, the social welfare of A is

SWI(A) =
∑
iv∈N

uiv (A)

‘ =
∑
v∈X

|{w ∈ V \X : {v, w} ∈ E}|

+
∑

v∈V \X

|{w ∈ X : {v, w} ∈ E}|

= 2|{{v, w} ∈ E : v ∈ X,w ∈ V \X}|.

This means that SWI(A) ≥ 2q because the weight of the cut
(X,V \X) is at least q.

For the other direction, suppose that there is a location pro-
file A such that SWI(A) ≥ 2q. We will show that there is a
location profile A′ such that SWI(A

′) ≥ 2q and A′
i ∈ {0, 1}

for all i ∈ N . To this end, let SA = {0, 1} ∪ {Ai : i ∈ N}
denote the set of positions occupied by the agents in N (plus
0 and 1), and assume that |SA| > 2. This means that there
is a location x ̸∈ {0, 1} and an agent i such that Ai = x.
Now, let L = {i ∈ N : Ai < x} denote the agents that
are left of x, Z = {i ∈ N : Ai = x} denote the agents at



x, and {i ∈ N : Ai > x} denote the agents that are right
of x. Moreover, let xℓ = max{y ∈ SA : y < x} and
xr = min{y ∈ SA : y > x} denote closest points to x in
S.

We will show that we can move the agents in Z either to
xℓ or to xr without reducing the social welfare. For this, let
Aℓ and Ar denote the location profiles such that Aℓ

i = Ar
i =

Ai for all i ∈ L ∪ R, Aℓ
i = xℓ for all i ∈ Z, and Ar

i =
xr for all i ∈ Z. Now, when moving from A to Aℓ, the
utility of the agents in Z for the agents in R increases and
their utility for the agents in L decreases as all ideal distances
are 1. Furthermore, by the symmetry of our DPG, the utility
of the agents in R for Z increases and the utility of the agents
in L for those in Z decreases. In more detail, it holds that

SWI(A
ℓ)− SWI(A)

= 2
∑
i∈Z

∑
j∈R∩Mi

(x− xℓ)− 2
∑
i∈Z

∑
j∈L∩Mi

(x− xℓ)

= 2(x− xℓ)

(∑
i∈Z

|Mi ∩R| −
∑
i∈Z

|Mi ∩ L|

)
.

Conversely, when moving the agents in Z to xr, the utility
of the agents in Z for the agents in L increases and the util-
ity of the agents in Z for the agents in R decreases. By the
symmetry of the DPG, we get that

SWI(A
r)− SWI(A)

= 2
∑
i∈Z

∑
j∈L∩Mi

(xr − x)− 2
∑
i∈Z

∑
j∈R∩Mi

(xr − x)

= 2(xr − x)

(∑
i∈Z

|Mi ∩ L| −
∑
i∈Z

|Mi ∩R|

)
.

Since both x−xℓ > 0 and xr −x > 0, we now derive that
either SWI(A

ℓ)−SWI(A) ≥ 0 or SWI(A
r)−SWI(A) ≥ 0.

Moreover, it holds that the sets SAℓ = {0, 1} ∪ {Aℓ
i : i ∈ N}

and SAℓ = {0, 1} ∪ {Ar
i : i ∈ N} have cardinality |SA| − 1.

Hence, we can repeat this construction until we arrive at a
profile A′ such that SWI(A

′) ≥ SWI(A) and |SA′ | = 2.
This means that A′

i ∈ {0, 1} for all i ∈ N .
Finally, consider the cut given by X = {v ∈ V : A′

iv
= 0}

and V \ X = {v ∈ V : A′
iv

= 1}. It holds that the util-
ity of every agent i in A′ is 1 for all agents j ∈ Mi that
are on the opposite end of the interval and 0 for all agents
j ∈ Mi that are at the same endpoint. Hence, the social wel-
fare of A′ is SWI(A

′) =
∑

i∈N ui(A
′) =

∑
i∈N : A′

i=0 |{j ∈
Mi : A

′
j = 1}| +

∑
i∈N : A′

i=1 |{j ∈ Mi : A
′
j = 0}. By the

definition of our relationship sets, this means that SWI(A
′) =∑

v∈X |{w ∈ V \ X : {v, w} ∈ E}| +
∑

v∈V \X |{w ∈
X : {v, w} ∈ E}| = 2|{{v, w} ∈ E : v ∈ X,w ∈ V \X}|.
Since SWI(A

′) ≥ SWI(A) ≥ 2q, it follows that the cut
(X,V \X) has a weight of at least q.

A.6 Proof of Theorem 7
Theorem 7. Given a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩,
we can compute a location profile A with SWI(A) ≥
1
2

∑
i∈N |Mi| in polynomial time.

Proof. Let I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ be an arbitrary DPG
and fix an order i1, . . . , in over the agents. We construct our
assignment A as follows: we first locate agent i1 at position 0
(i.e., Ai1 = 0). Next, we iteratively place each agent it with
t ∈ {2, . . . n} on 0 or 1 depending on which position results
in a higher social welfare for the agents {i1, . . . , it}. Put dif-
ferently, we construct a location profile where every agent is
at 0 or 1 by greedily deciding for every agent where to put
them given the locations of the previously assigned agents.

We will show by an induction on k ∈ {1, . . . , n}
that

∑k
t=1

∑
j∈Mit∩{i1,...,ik} uit(A, j) ≥ 1

2

∑k
t=1 |Mit ∩

{i1, . . . , ik}|. The induction basis k = 1 is trivially true since
Mi1 ∩ {i1} = ∅. Next, we fix some k ∈ {1, . . . , n− 1}
and assume that

∑k
t=1

∑
j∈Mit∩{i1,...,ik} uit(A, j) ≥

1
2

∑k
t=1 |Mit ∩ {i1, . . . , ik}|. We aim to show the same for

k + 1. To this end, let it ∈ {i1, . . . , ik} denote an agent
such that ik+1 ∈ Mit . Moreover, we suppose without loss of
generality that Ait = 0. Our key insight is now that

uit(A
ik+1 7→0, ik+1) + uit(A

ik+1 7→1, ik+1)

= (1− |(0− 0)− dit(ik+1)|)
+ (1− |(1− 0)− dit(ik+1)|)

= 1− dit(ik+1) + dit(ik+1)

= 1.

A symmetric argument holds if Ait = 1. Moreover,
analogous reasoning also shows that uik+1

(Aik+1 7→0, it) +

uik+1
(Aik+1 7→1, it) = 1 for all it ∈ Mik+1

∩ {i1, . . . , ik+1}.
Now, let X1 = {it ∈ {i1, . . . , ik} : ik+1 ∈ Mit} and
X2 = {it ∈ {i1, . . . , ik} : it ∈ Mik+1

}. By our previous
argument, we have that

∑
it∈X1

uit(A
ik+1 7→0, ik+1) + uit((A

ik+1 7→1, ik+1)

+
∑

it∈X2

uik+1
(Aik+1 7→0, it) + uik+1

((Aik+1 7→1, it)

= |X1|+ |X2|.

This means that either
∑

it∈X1
uit(A

ik+1 7→0, ik+1) +∑
it∈X2

uik+1
(Aik+1 7→0, it) ≥ 1

2 (|X1| + |X2|) or∑
it∈X1

uit(A
ik+1 7→1, ik+1)+

∑
it∈X2

uik+1
(Aik+1 7→1, it) ≥

1
2 (|X1| + |X2|). In particular, since we place ik+1 on the
position that generates the higher social welfare, it holds
that

∑
it∈X1

uit(A, ik+1) +
∑

it∈X2
uik+1

(A, it) ≥
1
2 (|X1| + |X2|). Based on this insight and the induction



hypothesis, we derive that

k+1∑
t=1

∑
j∈Mit∩{i1,...,ik+1}

uit(A, j)

=

k∑
t=1

∑
j∈Mit∩{i1,...,ik}

uit(A, j)

+
∑

it∈X1

uit(A, ik+1) +
∑

it∈X2

uik+1
(A, it)

≥ 1

2

k∑
t=1

|Mit ∩ {i1, . . . , ik}|+
1

2
|X1|+

1

2
|X2|

=
1

2

k+1∑
t=1

|Mit ∩ {i1, . . . , ik+1}|.

This completes the proof of the induction step and there-
fore also of this theorem.

A.7 Proof of Theorem 8
Theorem 8. The following claims holds:

(1) For path DPGs, there is an FPTAS for computing the op-
timal social welfare.

(2) For enemies and neutrals DPGs, there is a polynomial
time algorithm that computes location profiles whose so-
cial welfare is at least 0.879 of the optimal social welfare.

Proof. We prove both claims of the theorem separately.

Claim (1): We let I = ⟨N, (Mi)i∈N , (di)i∈N ⟩ denote an
arbitrary path DPG and we assume without loss of generality
that Mi = {i+1} for all i ∈ N \ {n} and Mn = ∅. We will
next show that, for every constant ϵ ∈ (0, 1), we can find a
location profile A with a social welfare of at least 1− ϵ of the
optimum with an algorithm that needs time that is polynomial
in n and 1

ϵ . To this end, fix some ϵ, let k ∈ N such that
ϵ
2 ≥ 1

k ≥ ϵ
4 , and let S = { 0

k ,
1
k , . . . ,

k
k}. We will show

that we can find the location profile A that maximizes the
social welfare subject to Ai ∈ S for all i ∈ N in time that is
polynomial in n · k.

To this end, we construct the weighted directed graph G =
(V,E,w) such that V = {xs

i : i ∈ N, s ∈ S} and E =⋃
i∈{1,...,k}{(xs

i , x
t
i+1) : s, t ∈ S}. Less formally, our graph

introduces for every agent i ∈ N and every position s ∈ S
a vertex xs

i and we connect all vertices for agent i with all
vertices for agent i+ 1. Moreover, we set the weight of each
edge (xs

i , x
t
i+1) to the utility of agent i when i is located at

position s and i+ 1 is located at position t, i.e.,

w(xs
i , x

t
i+1) = 1−

∣∣∣∣|s− t| − di(ii+1)

∣∣∣∣.
We note that every location profile A with Ai ∈ S for all

i ∈ N naturally corresponds to the path (xA1
1 , xA2

2 , . . . , xAn
n )

in the graph G, and that every path with n vertices in G
induces a location profile. Moreover, by the definition of
the weights w, the length of a path (xs1

1 , . . . , xsn
n ), i.e.,

∑n−1
i=1 w(xsi

i , x
si+1

i+1 ), is equivalent to the social welfare of the
corresponding location profile (s1, . . . , sn). Since every lo-
cation profile A with Ai ∈ S for all i ∈ N corresponds to
such a path in G, it follows that finding a location profile
that maximizes the social welfare among all such profiles is
equivalent to finding the longest path in G. Since our graph
is a directed acyclic graph, this can be done in polynomial
time (with respect to G) by standard techniques (e.g., by dy-
namic programming or finding the shortest path in the graph
G− = (V,E,−w)). Hence, our algorithm meets our running
time requirements.

Finally, it remains to show that the location profile A re-
turned by the algorithm has a social welfare of at least 1 − ϵ
of the optimum. To this end, let A′ denote a welfare optimal
location profile. Next, let Ā denote the location profile given
by Āi = max{s ∈ S : s ≤ Ai}, i.e., we derive Ā from A
by moving every agent to the closest position on its left that

is in S. It is easy to see that
∣∣∣∣|Ai − Aj | − |Āi − Āj |

∣∣∣∣ ≤ 1
k

for all agents i, j ∈ N . This means that ui(Ā, i + 1) ≥
ui(A, i + 1) − 1

k for all i ∈ N \ {n}. Hence, we have
that SWI(Ā) ≥ SWI(A

′) − n−1
k . Furthermore, it holds by

Theorem 7 that SWI(A
′) ≥ 1

2

∑
i∈N |Mi| = n−1

2 . This
then means that SWI(Ā) ≥ (1 − 2

k )SWI(A
′). Finally, we

note that SWI(A) ≥ SWI(Ā) since A maximizes the so-
cial welfare among all location profiles that use only posi-
tions in S, and that ϵ

2 ≥ 1
k by definition. Thus, it follows that

SWI(A) ≥ (1 − ϵ)SWI(A
′), which concludes the proof of

this claim.

Claim (2): For our claim on enemies and neutrals DPGs,
we note that our reduction in Proposition 3 shows that every
cut (X,V \ X) of weight q in the preference graph can be
transformed into a location profile A with a social welfare of
2q by placing all agents in X on 0 and all agents in V \X on 1.
Moreover, our reduction also shows that if there is a location
profile A with SWI(A) = 2q, there is cut in the preference
graph of weight q. This means that every approximation al-
gorithm for MAXCUT is also an approximation algorithm for
finding a welfare optimal location profile for friends and ene-
mies DPGs. Hence, Claim (2) follows by noting that the best
known approximation algorithm for MAXCUT is a 0.879-
approximation by Goemans and Williamson (1994).

B Linear Program for Optimizing the Social
Welfare

As mentioned in Section 4.1, it is possible to compute the lo-
cation profile A that optimizes the social welfare subject to
the condition Ai1 ≤ Ai2 ≤ · · · ≤ Ain for a fixed order of
the agents i1, . . . , in by linear programming. In more detail,
given a DPG I = ⟨N, (Mi)i∈N , (di)i∈N ⟩, we subsequently
suppose that the order over the agents is given by 1, 2, . . . , n.
Then, the following linear program computes a location pro-
file with optimal social welfare subject to the constraint that
A1 ≤ A2 ≤ · · · ≤ An.



max
∑

i∈N

∑
j∈Mi

1− θi,j

s.t. Ai ≤ Aj ∀i, j ∈ N : i < j

θi,j ≥ Aj −Ai − di(j) ∀i, j ∈ N : i < j

θi,j ≥ −Aj +Ai + di(j) ∀i, j ∈ N : i < j

θi,j ≥ Ai −Aj − di(j) ∀i, j ∈ N : j < i

θi,j ≥ −Ai +Aj + di(j) ∀i, j ∈ N : j < i

Intuitively, this LP works because the assumption that
Ai ≤ Aj for all i, j ∈ N with i < j allows us to re-
solve the inner absolute value of our utility function. In
more detail, if, e.g., j > i, we know that Aj ≥ Ai, so
||Ai−Aj |−di(j)| = |Aj−Ai−di(j)|. Hence, it follows that
||Ai−Aj |−di(j)| = Aj−Ai−di(j) or ||Ai−Aj |−di(j)| =
−Aj+Ai+di(j). By the definition of θi,j , we thus have that
θi,j ≥ ||Ai − Aj | − di(j)|. Finally, since this is the only
constraint on θi,j and we maximize

∑
i∈N

∑
j∈Mi

1 − θi,j ,
our LP will choose θi,j = ||Ai − Aj | − di(j)| in an opti-
mal solution. Hence, the value of an optimal solution indeed
corresponds to the social welfare of a location profile A with
A1 ≤ A2 ≤ · · · ≤ An. Moreover, it is straightforward that
it every such location profile can be turned into an solution
of our LP. This proves that we indeed compute the location
profile with maximal social welfare.
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