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Abstract
We study committee voting rules under ranked pref-
erences, which map the voters’ preference relations
to a subset of the alternatives of predefined size. In
this setting, the compatibility between proportional
representation and committee monotonicity is a fun-
damental open problem that has been mentioned in
several works. We address this research question
by designing a new committee voting rule called
the Solid Coalition Refinement (SCR) rule that si-
multaneously satisfies committee monotonicity and
Dummett’s PSC as well as one of its variants called
inclusion PSC. This is the first rule known to satisfy
both of these properties. Moreover, we show that
this is effectively the best that we can hope for as
other fairness notions adapted from approval voting
are incompatible with committee monotonicity. Fi-
nally, we prove that, for truncated preferences, the
SCR rule still satisfies PSC and a property called
independence of losing voter blocs, thereby refuting
a conjecture of Graham-Squire et al. (2024).

1 Introduction
A ubiquitous phenomenon in collective decision-making is the
task of choosing a fixed-size subset of candidates based on
the possibly conflicting preferences of multiple agents. For
instance, this problem captures parliamentary elections and
the shortlisting of finalists for competitions as well as technical
applications such as recommender systems. Due to this wide
range of applications, mechanisms for selecting the winning
candidates based on the agents’ preferences have recently
garnered significant attention in the field of computational
social choice (see, e.g., Faliszewski et al., 2017; Lackner and
Skowron, 2023). More specifically, such mechanisms are
typically called committee voting rules and are formalized as
functions that map the agents’ preferences to a subset of the
candidates with a predefined size.

We are interested in two properties of committee vot-
ing rules, namely proportional representation and committee
monotonicity. Roughly, proportional representation formal-
izes that every group of voters with similar preferences should
be represented proportionally to their size. Such proportion-
ality notions have recently attracted significant attention in

various settings (e.g., Lackner and Skowron, 2023; Rey and
Maly, 2023; Aziz et al., 2020; Ebadian and Micha, 2025). On
the other hand, committee monotonicity is a basic consistency
axiom which requires that when the target size of the com-
mittee is increased, the previously selected candidates remain
selected. This axiom is especially desirable for online or se-
quential problems, where it is necessary to adapt a committee
voting rule to select a ranking over the candidates rather than
a subset (Skowron et al., 2017; Israel and Brill, 2024).

In our work, we focus on the setting of (weak) ranked
preferences. That is, voters submit ballots where they rank
all candidates while possibly indicating indifference between
candidates. For this setting, committee monotonicity has the
additional interpretation of rank aggregation: voters submit
rankings over candidates which then get aggregated into a
single ranking. Perhaps surprisingly, while there are several
proportional committee voting rules for ranked preferences
(e.g., Aziz and Lee, 2020; Brill and Peters, 2023; Delemazure
and Peters, 2024) and proportional rank aggregation methods
(Lederer et al., 2024), no rule is known to satisfy committee
monotonicity together with strong notions of proportional
representation. Thus, our main question is the following:

“To what extent are proportional representation and
committee monotonicity compatible in committee
voting with ranked preferences?”

For proportional representation, we focus on variants of
Dummett’s Proportionality for Solid Coalitions (PSC) (Dum-
mett, 1984) that has been referred to as “a sine qua non for a
fair election rule” (Woodall, 1994). The compatibility between
PSC and committee monotonicity has been mentioned as an
open problem that also has a bearing on finding proportional
rankings. For instance, Lederer et al. (2024, p. 18) write that
“it is an open question whether axioms for proportional multi-
winner rules (such as Proportionality for Solid Coalitions,
PSC, Aziz and Lee, 2020) are compatible with committee
monotonicity, which is necessary to adapt a multi-winner rule
to output a ranking.” Moreover, Lackner and Skowron (2023,
p. 105) list the compatibility of committee monotonicity and
proportional representation as one of the major problems of
the field (although they focus on approval preferences).

Contributions. In this paper, we aim to design voting rules
that satisfy both committee monotonicity and PSC. A graphi-
cal overview of our results is given in Figure 1.



In more detail, we first show that all committee voting
rules known to satisfy PSC fail committee monotonicity. This
makes it necessary to design new voting rules. For strict pref-
erences, we show that there is a wide variety of rules satisfying
our desired properties, by developing a simple scheme that
turns any voting rule satisfying PSC into a committee mono-
tone voting rules satisfying PSC (Theorem 1). This scheme
operates by running the rule in a “reverse sequential” mode.

Unfortunately, this construction does not work for weak
preferences. We hence design a new voting rule called the
Solid Coalition Refinement (SCR) rule which repeatedly adds
the candidates that represent the most underrepresented groups
of voters to the winning committee. As we show, this rule
satisfies both PSC (or, more precisely, a generalization of this
axiom called inclusion PSC) and committee monotonicity,
even if the voters report weak preferences (Theorem 2). To
our knowledge, the SCR rule is the first committee voting rule
that satisfies both of these properties at the same time.

Moreover, we use the SCR rule to refute a hypothesis by
Graham-Squire et al. (2024). In more detail, these authors con-
jecture that for truncated preferences (i.e., voters do not need
to rank all candidates), no voting rule satisfies both PSC and a
property called independence of losing voter blocs. Roughly,
this property requires that the outcome of a rule is not allowed
to change if we delete voters who only rank unselected can-
didates. However, we show that the SCR rule satisfies both
PSC and independence of losing voter blocs for truncated
preferences (Theorem 3), thus disproving the conjecture.

Finally, we examine the compatibility of committee mono-
tonicity with a family of proportionality notions due to Brill
and Peters (2023) that adapt fairness axioms from approval-
based committee voting to ranked preferences. However, it
turns out that committee monotonicity is even incompatible
with Rank-JR, the weakest such proportionality notion (The-
orem 4). This suggests that it may be impossible to attain
stronger proportionality conditions than PSC with committee
monotone voting rules.

2 Related Work
We next discuss the prior works on proportional representation
and committee monotonicity for ranked preferences.

Proportional Representation. The problem of finding rep-
resentative committees has a long tradition. Already in the
19th century, a rule called Single Transferable Vote (STV) was
proposed for finding such committees. We refer the reader
to the article by Tideman (1995) for historical details on the
development of this rule. STV is now widespread and used for
elections in many countries such as Australia, Ireland, India,
and Pakistan. Further, it has been shown that STV provides
proportional representation since it satisfies PSC (Woodall,
1994; Tideman and Richardson, 2000). As a consequence of
its widespread use, many works have focused on better under-
standing STV (e.g., Bartholdi, III and Orlin, 1991; Elkind et
al., 2017; Delemazure and Peters, 2024).

Moreover, numerous other committee voting rules have
been suggested with the aim of finding representative out-
comes. Examples include the Chamberlin-Courant rule
(Chamberlin and Courant, 1983; Lu and Boutilier, 2011), Mon-
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Figure 1: A summary of our results. Axioms in the green boxes are
compatible with committee monotonicity, whereas the axioms in the
red boxes are incompatible. An arrow from one axiom to another
means that the first implies the second. “D-” is short for Droop and
“H-” for Hare. Definitions for GPSC (Generalized PSC), Rank-PJR,
and Rank-PJR+ as well as proofs of the relationships between the
axioms can be found in the work of Brill and Peters (2023).

roe’s rule (Monroe, 1995), and various forms of positional
scoring rules (Faliszewski et al., 2019). However, none of
these rules are known to satisfy PSC. Indeed, there are only
two rules other than STV in the literature that satisfy this con-
dition: the Quota Borda System (QBS) of Dummett (1984) and
the Expanding Approvals Rule (EAR) of Aziz and Lee (2020).
Both of these rules were defined specifically to attain PSC
while addressing some flaws of STV. In particular, Dummett
(1984) suggests QBS with the informal argument that it is less
chaotic than STV, while Aziz and Lee (2020) motivate EAR
by the observation that it satisfies monotonicity conditions
that STV fails. Moreover, it was shown by Brill and Peters
(2023) that EAR satisfies a fairness condition called Rank-
PJR+ which is violated by STV. Finally, we note that Aziz and
Lee (2022) give a characterization of committees satisfying
PSC in terms of minimal demand rules; however, it is not clear
how to derive appealing rules from this characterization.

Committee Monotonicity. Committee monotonicity (called
house monotonicity in other settings) was identified early on
as a desirable property of committee elections. For instance, in
1880, the chief clerk of the census office of the United States
noticed that Alabama would be allocated 8 seats in a 299-seat
parliament but only 7 seats in a 300-seat parliament (Balinski
and Young, 2001). However, in contrast to proportional rep-
resentation, committee monotonicity has attracted much less
attention in the literature. It is known that committee mono-
tonicity and proportional representation are compatible in the
simpler setting of (approval-based) apportionment (Balinski
and Young, 2001; Brill et al., 2024), where voters vote for
parties which can be assigned multiple seats. By contrast,
the analysis of committee monotonicity for committee elec-
tions consists largely of counterexamples showing that specific
classes of rules fail this axiom (Staring, 1986; Ratliff, 2003;
Barberà and Coelho, 2008; Kamwa, 2013; Elkind et al., 2017;
McCune and Graham-Squire, 2024). For instance, Elkind et
al. (2017) present a counterexample showing that STV fails
committee monotonicity. On the other hand, Janson (2016)
showed that several rules, such as Phragmén’s Ordered Method
and Thiele’s Ordered Method, satisfy committee monotonicity.
However, these rules fail PSC.
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Committee monotonicity is also often considered when
studying rules that return a ranking over the candidates rather
than a set of winning candidates. In particular, Elkind et
al. (2017) noted that committee monotonicity is necessary
and sufficient to turn a committee voting rule into a ranking
rule. This means that the study of fair rank aggregation rules
(e.g., Skowron et al., 2017; Lederer et al., 2024) can also
be interpreted as a study of fair and committee monotone
voting rules for committee elections. However, these authors
focus on fairness notions specific to rank aggregation and
their results are hence not directly related to ours. Finally,
also for approval-based committee elections, no voting rule
is known to satisfy both committee monotonicity and strong
proportionality guarantees (Lackner and Skowron, 2023).

3 Preliminaries
Let N = {1, . . . , n} denote a set of n voters and let C =
{c1, . . . , cm} denote a set of m candidates. We assume that
every voter i ∈ N reports a (weak) preference relation ≿i over
the candidates, which is formally a complete and transitive
binary relation on C. The notation c ≿i c

′ denotes that voter
i weakly prefers candidate c to c′, whereas c ≻i c

′ indicates
a strict preference. We call a preference relation strict if it
is antisymmetric, i.e., there is no indifference between any
two candidates. The set of all weak preference relations is
denoted by R and the set of all strict preference relations
by L. A preference profile R is the collection of the voters’
preferences, i.e., it is a function from N to R. A preference
profile is strict if all voters have strict preference relations.
The set of all preference profiles isRN and the set of all strict
preference profiles is LN .

Given a preference profile, our goal is to select a committee,
which is formally a subset of the candidates of a given size k.
To this end, we use committee voting rules, which for every
preference profile and committee size k return a committee of
that size. More formally, a committee voting rule f for weak
(resp. strict) preferences maps every profile R ∈ RN (resp.
LN ) and target committee size k ∈ {1, . . . ,m} to a winning
committee W = f(R, k) with |W | = k. We emphasize that
committee voting rules always choose a single committee.

We next introduce our central axioms, namely commit-
tee monotonicity and proportionality for solid coalitions.

3.1 Committee Monotonicity
The idea of committee monotonicity is that if some candidate
is selected for a committee size k, then it should also be
selected for a committee size k′ > k. More formally, we
define committee monotonicity as follows:

Definition 1 (Committee monotonicity). A committee voting
rule f is committee monotone if f(R, k)⊆f(R, k + 1) for all
preference profiles R and committee sizes k∈{1, . . . ,m− 1}.

Faliszewski et al. (2017) deem committee monotonicity a
necessity for excellence-based elections, where the goal is
to choose the individually best candidates for the considered
problem. Moreover, Elkind et al. (2017) have shown that every
committee monotone rule can be transformed into a rule that
returns rankings of the candidates instead of committees.

3.2 Proportionality for Solid Coalitions
Next, we introduce proportionality for solid coalitions (PSC).
The rough idea of this axiom is that, if there is a sufficiently
large set of voters N ′ ⊆ N that all prefer the candidates in a
subset C ′ ⊆ C to the candidates in C \ C ′, then this group
should be represented by a number of candidates in C ′ that
is proportional to the size of N ′. Following Dummett (1984),
we will first define this axiom for strict preferences before
presenting a variant called inclusion PSC (IPSC) due to Aziz
and Lee (2021) that can also accommodate weak preferences.
Moreover, we will define these axioms as properties of com-
mittees; a committee voting rule satisfies PSC or IPSC if its
selected committee always satisfies the given axiom.

To formalize PSC, we define a solid coalition for a set
of candidates C ′ ⊆ C as a group of voters N ′ ⊆ N such
that c′ ≻i c for all voters i ∈ N ′ and candidates c′ ∈ C ′,
c ∈ C \ C ′. In this case, we also say that the voters in N ′

support the candidates C ′. We emphasize that the voters in
N ′ do not have to agree on the order of the candidates in C ′

and that a voter can be part of multiple solid coalitions. Now,
proportionality for solid coalitions postulates that each solid
coalition N ′ of size |N ′| > ℓ · n

k+1 (for some ℓ ∈ N) should be
represented by at least ℓ candidates or the set C ′ if |C ′| < ℓ.
Definition 2 (Proportionality for Solid Coalitions (Dummett,
1984)). A committee W satisfies proportionality for solid coali-
tions (PSC) for a preference profile R and a committee size k if
for all integers ℓ ∈ N and solid coalitions N ′ supporting a set
C ′ with |N ′| > ℓ · n

k+1 , it holds that C ′ ⊆W or |W ∩C ′| ≥ ℓ.
We will next present a generalization of PSC to weak pref-

erences due to Aziz and Lee (2021). To this end, we call a
set of voters N ′ ⊆ N a generalized solid coalition supporting
a set of candidates C ′ ⊆ C if for all voters i ∈ N ′, we have
c′ ≿i c for all candidates c′ ∈ C ′ and c ∈ C \ C ′. That is,
generalized solid coalitions only have to weakly prefer the
candidates in C ′ to those in C \ C ′. Furthermore, following
Aziz and Lee (2021), we define the periphery C ′(N ′) = {c ∈
C : there exists i ∈ N ′and c′ ∈ C ′ such that c ≿i c

′} of C ′

with respect to N ′. This is a “closure” of C ′, containing C ′ as
well as all candidates that at least one member of N ′ weakly
prefers to a member of C ′. Then, IPSC demands that, for
every generalized solid coalition N ′ supporting a set C ′, a
number of candidates proportional to |N ′| needs to the chosen
from the periphery C

′
(N ′).

Definition 3 (Inclusion PSC (Aziz and Lee, 2021)). A com-
mittee W satisfies inclusion PSC (IPSC) for a profile R and
committee size k if for all integers ℓ ∈ N and generalized solid
coalitions N ′ supporting a set C ′ with |N ′| > ℓ · n

k+1 , it holds
that C ′ ⊆W or |W ∩ C ′(N ′)| ≥ ℓ.

We note that both PSC and IPSC are sometimes defined
based on a parameter q ∈ (n/(k + 1), n/k] and the require-
ment that |N ′| ≥ ℓ · q instead of |N ′| > ℓ · n

k+1 . Our variants
of these axioms choose the minimal quota q in this inter-
val, which results in the strongest proportionality notion. In
particular, our proportionality notions are sometimes called
Droop-PSC and Droop-IPSC (see, e.g., Aziz and Lee, 2020).
Another commonly studied variant of these axioms is obtained
for q = n

k , which are called Hare-PSC and Hare-IPSC.
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4 PSC and Committee Monotonicity
We will now investigate the compatibility of PSC and com-
mittee monotonicity. To this end, we recall that there are only
three rules known to satisfy PSC: STV, EAR, and QBS. In
Appendix A, we define these rules and show that all of them
fail committee monotonicity. We further show that Dummett’s
family of Quota Preference Score rules that generalize QBS
to use any positional scoring rule for tie-breaking are also
incompatible with committee monotonicity.

Since none of the known committee voting rules satisfy both
PSC and committee monotonicity, we will design new voting
rules to achieve both axioms simultaneously. As our first re-
sult we show that for strict preferences, there is a simple way
to achieve PSC and committee monotonicity by modifying
existing rules. To this end, we introduce the reverse sequential
rule fRS of a committee voting rule f . Roughly, these reverse
sequential rules compute the winning committee by repeatedly
using the original rule f to identify alternatives that should
be removed from the winning committee. To make this more
formal, we let R|X denote the restriction of a preference pro-
file R to the set X ⊆ C, i.e., we derive R|X by deleting the
alternatives C \X from R. Then, the reverse sequential rule
fRS of a committee voting rule f is defined recursively by
fRS (R,m) = C and fRS (R, k) = f(R|fRS (R,k+1), k) for
all k ∈ {m− 1, . . . , 1}.

We show next that for strict preferences, the reverse sequen-
tial rule fRS satisfies committee monotonicity and PSC if the
original rule f satisfies PSC. This means that, e.g., the reverse
sequential rule of STV satisfies both of our desiderata.
Theorem 1. For strict preferences, the reverse sequential rule
fRS of every committee voting rule f is committee monotone.
Moreover, if f satisfies PSC, then fRS satisfies PSC, too.

Proof. It is straightforward that the reverse sequential rule
fRS of a committee voting rule f satisfies committee
monotonicity because fRS (R, k) = f(R|fRS (R,k+1), k) ⊆
fRS (R, k + 1) for all k ∈ {1, . . . ,m− 1} and R ∈ LN .

Next, assume that f satisfies PSC and fix a profile R ∈ LN .
We show via backwards induction on the committee size k ∈
{1, . . . ,m} that fRS (R, k) satisfies PSC, too. The induction
basis k = m is trivial since every rule satisfies PSC for the
committee size m. Now, fix k ∈ {1, . . . ,m− 1} and assume
that the committee W = fRS (R, k + 1) satisfies PSC for the
profile R and committee size k + 1. We will show that the
committee W ′ = fRS (R, k) satisfies PSC, too.

For this, let N ′ ⊆ N be a solid coalition such that
|N ′| > ℓ n

k+1 for some ℓ ∈ N, and let C ′ ⊆ C denote the
set of candidates supported by N ′. Since ℓ n

k+1 > ℓ n
k+2 and

W satisfies PSC on R by the induction hypothesis, we get that
|C ′ ∩W | ≥ min(ℓ, |C ′|). Next, W ′ satisfies PSC for the pro-
file R|W and the committee size k because f(R|W , k) = W ′

and f satisfies PSC by definition. Since N ′ solidly supports
the set C ′ ∩W in R|W , we derive that

|C ′ ∩W ′| = |(C ′ ∩W ) ∩W ′| ≥ min(|C ′ ∩W |, ℓ)
≥ min(min(ℓ, |C ′|), ℓ) = min(ℓ, |C ′|).

Thus, W ′ satisfies PSC for the profile R, which proves the
induction step.

Unfortunately, Theorem 1 does not extend to weak prefer-
ences and IPSC. To see this, consider the proportional approval
voting (PAV) rule which is defined for approval preferences, a
special case of weak preferences, and satisfies IPSC (Brill and
Peters, 2023). If Theorem 1 held for weak prefernces, then the
reverse sequential version of PAV should also satisfy IPSC,
and thus also the weaker axioms PJR and JR (Aziz and Lee,
2021). But reverse sequential PAV fails JR (Aziz, 2017).

5 The Solid Coalition Refinement Rule
A drawback of Theorem 1 is that the rules it produces (e.g.,
the reverse sequential rule of STV) seem unnatural. In this
section, we design a more intuitive rulewhich we call the Solid
Coalition Refinement rule (or the SCR rule or simply SCR). It
has the additional advantage of working for weak preferences
as well, for which it satisfies IPSC. The basic idea of this rule
is to repeatedly identify the generalized solid coalition for
which IPSC is currently violated the most and add one of the
supported candidates of this solid coalition to the outcome.

To formally define the SCR rule, we need to introduce ad-
ditional notation. First, we let ρ(W,N ′, C ′) = |N ′|

|W∩C′(N ′)|+1

denote the underrepresentation value of a committee W for
a generalized solid coalition N ′ supporting the set C ′. In
words, this value computes the ratio between the size of the
generalized solid coalition N ′ and the number of selected
candidates in C ′(N ′) plus one. Hence, a large underrepresen-
tation value means that the generalized solid coalition N ′ is
far from being proportionally represented. Moreover, it can
be shown that a committee W satisfies IPSC for a profile R
and a committee size k if and only if ρ(W,N ′, C ′) ≤ n

k+1

for all generalized solid coalitions N ′ that support a candidate
set C ′ with C ′ ̸⊆ W . Finally, we denote by Φ(R,W,D) =
{(N ′, C ′) : C ′ ⊊ D, C ′ ̸⊆ W, and N ′ is a generalized solid
coalition supporting C ′ in R} the set of generalized solid
coalitions N ′ supporting a set C ′ with C ′ ⊊ D and C ′ ̸⊆W .

We are now ready to define the SCR rule. Starting from
W = ∅, this rule computes the winning committee by re-
peatedly adding single candidates to W . The next candidate
is chosen as follows: we first identify the generalized solid
coalition N ′ supporting a set C ′ ̸⊆W such that (N ′, C ′) max-
imizes the underrepresentation value ρ(W,N ′, C ′) among all
generalized solid coalitions in Φ(R,W,C). The goal is then
to select a candidate from C ′ \W . Moreover, to decide which
candidate from C ′ \W to choose, we identify the general-
ized solid coalition N ′′ supporting a candidate set C ′′ with
C ′′ ⊊ C ′ and C ′′ ̸⊆ W such that ρ(W,N ′′, C ′′) is maximal
among all generalized solid coalitions in Φ(R,W,C ′). By
repeating this step, we will eventually arrive at a generalized
solid coalition N∗ supporting a set C∗ such that |C∗\W | = 1,
and we add the single candidate in C∗ \W to W . Put differ-
ently, starting from D = C, we repeatedly update D to be the
set of candidates C∗ corresponding to a generalized solid coali-
tion N∗ such that (N∗, C∗) maximizes ρ(W,N∗, C∗) among
all elements in Φ(R,W,D) until D \W = 1. Then, we add
the candidate in D \W to W . A pseudocode description of
the SCR rule is given in Algorithm 1.

We note that multiple generalized solid coalitions in
Φ(R,W,D) may have the same maximal underrepresenta-
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Algorithm 1: The Solid Coalition Refinement Rule
Input :A preference profile R and committee size k
Output :A committee of k candidates

1 W ← ∅
2 for i ∈ {1, . . . , k} do
3 D ← C
4 while |D \W | > 1 do
5 Φ(R,W,D)← {(N ′, C ′) :C ′⊊D,C ′ ̸⊆W, and

N ′ is a generalized solid coalition supporting C ′}
6 (N∗, C∗)← argmax

(N ′,C′)∈Φ(R,W,D)

|N ′|
|W∩C′(N ′)|+1

7 D ← C∗

8 W ←W ∪D
9 return W

tion value in some step; in such cases, we assume that ties
are broken by an arbitrary but fixed ranking ▷ over the sets
of candidates C ′ ⊆ C. That is, if two generalized solid coali-
tions N ′ and N ′′ with candidate sets C ′ and C ′′ have the same
maximal underrepersentation value in some step of the SCR
rule, we choose (N ′, C ′) if C ′ ▷C ′′ and (N ′′, C ′′) otherwise.

We next present an example illustrating how SCR works.
Example 1. Consider the following strict preference profile
with n = 5 voters and m = 4 candidates:

Voter 1: c1 ≻ c2 ≻ c3 ≻ c4
Voter 2: c1 ≻ c3 ≻ c2 ≻ c4
Voter 3: c3 ≻ c2 ≻ c1 ≻ c4
Voter 4: c4 ≻ c1 ≻ c2 ≻ c3
Voter 5: c4 ≻ c1 ≻ c2 ≻ c3.

With a committee size k = 3, the SCR rule runs as follows.
1) Initially, D = {c1, c2, c3, c4} and W = ∅. Then:

• The solid coalition N ′ = {1, 2, 3} supporting C ′ =
{c1, c2, c3} has ρ(W,N ′, C ′) = 3, which is maximal
among all solid coalitions in Φ(R,W,D). SCR sets
D = {c1, c2, c3}.

• The solid coalition N ′ = {1, 2} supporting C ′ = {c1}
has ρ(W,N ′, C ′) = 2, which is maximal among all solid
coalitions in Φ(R,W,D). SCR sets D = {c1}.

Candidate c1 is selected, so W = {c1}.
2) D is reset to {c1, c2, c3, c4}. Then:

• The solid coalition N ′ = {4, 5} supporting C ′ = {c4}
has ρ(W,N ′, C ′) = 2, which is maximal among all solid
coalitions in Φ(R,W,D). SCR sets D = {c4}.

Candidate c4 is selected, so W = {c1, c4}.
3) D is reset to {c1, c2, c3, c4}. Then:

• The solid coalition N ′ = {1, 2, 3} supporting C ′ =
{c1, c2, c3} has ρ(W,N ′, C ′) = 3

2 , which is maximal
among all solid coalitions in Φ(R,W,D). SCR sets
D = {c1, c2, c3}.

• The solid coalition N ′ = {3} supporting C ′ = {c3} has
ρ(W,N ′, C ′) = 1, which is maximal among all solid
coalitions in Φ(R,W,D). SCR sets D = {c3}.

Candidate c3 is selected, so the final committee is W =
{c1, c3, c4}.

We next show that SCR is well-defined and runs in poly-
nomial time if voters have strict preferences. Due to space
restrictions, we defer the proof of the subsequent proposition
to Appendix B and discuss a proof sketch instead.
Proposition 1. The SCR rule always terminates and produces
a committee of the target size k. Furthermore, for strict pref-
erences, it can be implemented to run in polynomial time.

Proof Sketch. For showing that the SCR rule is well-defined,
we note that each iteration of the for-loop (line 2) adds exactly
one candidate to W . This is true because it holds for every pair
(N ′, C ′) in Φ(R,W,D) that |C ′ \W | ≥ 1 and the while-loop
(line 4) is only exited when |D \W | ≤ 1. Moreover, it can be
shown that the set Φ(R,W,D) is always non-empty during the
execution of SCR, so the rule indeed produces a committee of
the desired committee size k. Next, the SCR rule runs for strict
preferences in polynomial time because, in this case, the set of
(voter-maximal) generalized solid coalitions can be efficiently
computed and contains at most mn elements. We hence can
solve the maximization problem in line 6 by iterating through
all voter-maximal generalized solid coalitions, so SCR can be
computed in polynomial time for strict preferences.

A natural follow-up question to Proposition 1 is whether the
SCR rule can also be computed in polynomial time for weak
preferences. Unfortunately, there is no clear way to compute
line 6 in this case. Moreover, if we could solve this line for
every profile R, committee W , and the set Φ(R,W,C), we
could also decide whether there is a generalized coalition N ′

supporting a set C ′ such that C ′ ̸⊆ W and ρ(W,N ′, C ′) >
n

k+1 . However, this is equivalent to deciding whether the
committee W satisfies IPSC for the profile R, which is known
to be a coNP-complete problem (Brill and Peters, 2023).

In the remainder of this section, we will show that the SCR
rule satisfies committee monotonicity and IPSC.
Theorem 2. Even for weak preferences, the SCR rule is com-
mittee monotone and satisfies IPSC.

Proof. Since the SCR rule selects candidates sequentially and
independently of the target committee size, it follows immedi-
ately that it satisfies committee monotonicity.

Next, to show that SCR satisfies IPSC, we fix a profile R
and a committee size k. Moreover, for all t ∈ {1, . . . , k}, we
let ct denote the t-th candidate that SCR adds to the winning
committee for R, and we define W t = {c1, . . . , ct} for all
t ∈ {1, . . . , k} and W 0 = ∅. For our proof, we assume
that each voter i ∈ N has a virtual budget bi = 1 and that
the candidates will be bought using these budgets for a price
of n

k+1 . We will next show that, for every t ∈ {1, . . . , k},
there is a payment scheme for W t such that (i) the budgets
of all voters are always non-negative and (ii) if a voter i is
part of a generalized solid coalition N ′ supporting a set C ′

such that C ̸⊆ W t and ρ(W t, N ′, C ′) > n
k+1 , then voter

i only spent his budget on candidates in C ′(N ′). To derive
such a scheme, we fix t ∈ {1, . . . , k} and inductively assume
that there is a payment scheme for the committee W t−1 that
satisfies conditions (i) and (ii). If t = 1, such a scheme exist
for W t−1 as W 0 = ∅ and no money has been spent. We next
explain how to extend the payment scheme for W t−1 to W t.
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For this, we proceed with a case distinction and first assume
that ρ(W t−1, N ′, C ′) ≤ n

k+1 for all generalized solid coali-
tions N ′ that support a set C ′ with C ′ ̸⊆W t−1. In this case,
we deduct the money for candidate ct arbitrarily from the bud-
gets of the voters while ensuring that no budget becomes nega-
tive. This is possible as the voters’ total budget exceeds the nec-
essary budget to pay for k candidates, i.e., n > k n

k+1 . More-
over, it holds that ρ(W t, N ′, C ′) ≤ ρ(W t−1, N ′, C ′) ≤ n

k+1

for all generalized solid coalitions N ′ with set C ′ ̸⊆ W t, so
condition (ii) holds trivially.

For the second case, suppose that there is a generalized solid
coalition N ′ supporting a set C ′ such that C ′ ̸⊆ W t−1 and
ρ(W t−1, N ′, C ′) > n

k+1 . In this case, let N∗ and C∗ denote
the last generalized solid coalition and the corresponding set of
candidates in the execution of the while-loop of SCR (line 4)
that satisfies these conditions. By condition (ii), the voters in
N∗ have only spent money on the candidates in C∗(N∗) so
far. Hence, these voter have spent a total budget of at most
|W t−1 ∩ C∗(N∗)| n

k+1 . By rearranging the assumption that

ρ(W t−1, N∗, C∗) = |N∗|
|W t−1∩C∗(N∗)|+1

> n
k+1 , we infer that

|N∗| > (|W t−1 ∩C∗(N∗)|+ 1) n
k+1 . Therefore, these voters

have a total remaining budget of at least n
k+1 , so they can pay

for the candidate ct without violating condition (i).
It remains to show that this payment scheme for W t sat-

isfies condition (ii). For this, let N ′′ denote a generalized
solid coalition supporting a set C ′′ such that C ′′ ̸⊆ W t and
ρ(W t, N ′′, C ′′) > n

k+1 . We assume for contradiction that
there is a voter i ∈ N ′′ who spent money on candidates outside
of C ′′(N ′′). Since ρ(W t−1, N ′′, C ′′) ≥ ρ(W t, N ′′, C ′′) >
n

k+1 , we infer from the induction hypothesis that voter i has
not spent money on candidates outside of C ′′(N ′′) during
the first t − 1 steps. Hence, voter i spent money on candi-
date ct and ct ̸∈ C ′′(N ′′). This means that i ∈ N∗, so C∗

forms a prefix of voter i’s preference relation. Further, because
ct ̸∈ C ′′(N ′′), it follows that C ′′ ⊊ C∗. However, this means
that after SCR selected the solid coalition N∗ with set C∗ in
the while-loop, there is another iteration of the while-loop such

|N ′|
|W t−1∩C′(N ′)|+1

≥ |N ′|
|W t∩C′(N ′)|+1

> n
k+1 . This violates the

definition of N∗ and C∗, so the assumption that voter i spent
some money on ct is wrong and condition (ii) holds.

Finally, we will show that SCR satisfies IPSC. Assume
for contradiction that the committee W k fails IPSC for R
and the committee size k. Thus, there is a generalized solid
coalition N ′ supporting a set C ′ and an integer ℓ ∈ N such
that |N ′| > ℓn

k+1 , C ′ ̸⊆ W k, and |W k ∩ C ′(N ′)| < ℓ. This

implies that ρ(W k, N ′, C ′) = |N ′|
|Wk∩C′(N ′)|+1

≥ |N ′|
ℓ > n

k+1 .
In turn, condition (ii) of the payment scheme shows that the
voters in N ′ only paid for candidates in C ′(N ′). Hence, they
spent a budget of at most (ℓ − 1) n

k+1 . Since the total initial
budget of these voters is |N ′| > ℓn

k+1 , their remaining budget
is more than n

k+1 in the end. However, the total remaining
budget of all voters after k candidates have been bought is
n− kn

k+1 = n
k+1 . Hence there must be a voter i ̸∈ N ′ who has

a negative budget. This contradicts condition (i), which means
that SCR satisfies IPSC.

6 PSC and Irrelevant Voter Blocks
We next use the SCR rule to answer an open question of
Graham-Squire et al. (2024) by showing that a rule satisfying
independence of losing voter blocs and PSC exists. In more
detail, Graham-Squire et al. study the setting of truncated
(strict) preferences, i.e., voters have strict preferences but it is
no longer necessary to rank all alternatives. More formally, a
preference relation ≿i is truncated if it is a strict preference
relation over a subset of the candidates.

First, the notion of solid coalitions, and thus also PSC as
well as the SCR rule, can be easily extended to truncated
preferences. Specifically, solid coalitions are defined just as
before and, in particular, only form for sets of voters who rank
all alternatives in the supported set of candidates. Then, PSC
and the SCR rule can be adapted to truncated preferences by
using this new definition of solid coalitions.

Furthermore, Graham-Squire et al. (2024) suggest two con-
sistency notions regarding the behavior of committee voting
rules when some voters are removed from the election. One
of these notions, independence of losing voter blocs, requires
that the outcome should not change when we remove voters
who only rank unchosen candidates. To formalize this notion,
we define by X(≿i) the set of alternatives that are not ranked
in the truncated preference relation ≿i. Moreover, R−N ′ de-
notes the profile derived from another profile R by deleting
the voters in N ′ ⊆ N from R. Based on this notation, we now
define independence of losing voter blocs.

Definition 4 (Independence of losing voter blocs). A com-
mittee voting rule f satisfies independence of losing voter
blocs if f(R, k) = f(R−N ′ , k) for all truncated preference
profiles R, committee sizes k, and sets of voters N ′ ⊊ N such
that f(R, k) ⊆ X(≿i) for all i ∈ N ′.

Graham-Squire et al. (2024) show that no classical propor-
tional rules such as STV and EAR satisfy this property. In fact,
these authors even conjecture that no voting rule satisfies PSC
and independence of losing voter blocs at the same time. We
show that this conjecture is false as SCR (adapted to truncated
rankings) satisfies both conditions

Theorem 3. For truncated preferences, the SCR rule satisfies
PSC and independence of losing voter blocs.

Proof. First, an analogous argument as in the proof of Theo-
rem 2 shows that SCR satisfies PSC for truncated preferences.
Hence, we focus on independence of losing voter blocs. To
this end, we fix a profile R, a committee size k, and a set of
voters N ′ such that W ⊆ X(≿i) for all i ∈ N ′ and the com-
mittee W chosen by SCR for the profile R and the committee
size k. We need to show that SCR also chooses the committee
W for the profile R−N ′ and the committee size k. For this, let
W ′ denote the intermediate committee and D the current set
of candidates of Algorithm 1 during some step of the execution
of SCR for R such that |D \W ′| > 1. Moreover, let (N∗, C∗)
be the solid coalition and the set of candidates that is chosen
next at line 6. Since W ⊆ X(≿i) for all i ∈ N ′, there must
be for every voter i ∈ N ′ a candidate x ∈ C∗ ∩X(≿i). Oth-
erwise, voter i ranks the candidate that will be selected next
because C∗ ⊆ C \X(≿i). Since solid coalitions form only
over sets of voters N ′′ and sets C ′′ such that all voters i ∈ N ′′
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rank all candidates in C ′′, this implies that N∗ ∩N ′ = ∅. In
turn, it follows that (N∗, C∗) ∈ Φ(R−N ′ ,W ′, D). Further, it
holds that Φ(R−N ′ ,W ′, D) ⊆ Φ(R,W ′, D) as introducing
new voters can only create more solid coalitions. Thus, if
SCR agreed on W ′ and D for both R and RN ′ for the current
step, it will still agree on these sets for the next step. Since it
initially always holds that W ′ = ∅ and D = C, it now follows
that SCR chooses W for both R and R−N ′ .

7 Committee Monotonicity and Rank-JR
In light of our positive results so far, it is a natural follow-
up question whether the SCR rule—or, more generally, any
committee monotone voting rule—also satisfies other forms of
proportionality. Unfortunately, we will give a negative answer
to this question by showing that no committee voting rule
satisfies both committee monotonicity and a proportionality
notion called Rank-JR due to Brill and Peters (2023).

In more detail, Brill and Peters suggested a whole family
of proportionality notions inspired by fairness axioms from
approval-based committee elections. To explain these axioms,
we define the rank of a candidate c in a preference relation ≿i

as rank(≿i, x) = 1 + |{y ∈ A : y ≻i x}|. Now, Brill and Pe-
ters observe that for each r ∈ {1, . . . ,m}, we can transform a
preference profile R into an approval profile A(R, r) by letting
each voter approve the alternatives with a rank of at most r.
Based on this, proportionality notions for approval-based com-
mittee elections can be transferred to ranked preferences by
requiring that a committee satisfies the given proportionality
axiom for the approval profiles A(R, r) for all r ∈ {1, . . . ,m}.
Applying this approach to justified representation (JR), one
of the weakest fairness notions in approval-based committee
voting, results in the following axiom.
Definition 5 (Rank-JR). A committee W satisfies Rank-JR for
a preference profile R and committee size k if for all ranks
r ∈ {1, . . . ,m} and groups of voters N ′ ⊆ N such that
|N ′| ≥ n

k and
⋂

i∈N ′{x ∈ C : rank(≿i, x) ≤ r} ̸= ∅, it
holds that W ∩

⋃
i∈N ′{x ∈ C : rank(≿i, x) ≤ r} ≠ ∅.

We note that Brill and Peters also adopt several other
approval-based fairness axioms to ranked preferences. How-
ever, since JR is the weakest approval-based fairness notion,
Rank-JR is their weakest fairness notion for ranked prefer-
ences. Thus, showing that no committee monotone voting
rule satisfies Rank-JR implies that, for ranked preferences, no
committee monotone rule satisfies any of the proportionality
conditions of Brill and Peters. Moreover, we note that some of
these fairness notions are logically related to variants of PSC;
we refer to Figure 1 for an overview of these relations.

We are now ready to prove our impossibility theorem.
Theorem 4. Even for strict preference relations, no committee
voting rule satisfies both committee monotonicity and Rank-JR
if m ≥ 5, n ≥ 4, and n is divisible by 4.

Proof. We will focus on the case that m = 5 and n = 4;
to increase m, we can simply append new candidates at the
bottom of the preference relations of all voters, and to increase
n, we can duplicate the whole profile multiple times. Now,
assume that f is a committee voting rule that satisfies Rank-JR
and consider the following profile R.

Voter 1: c1 ≻ c2 ≻ c3 ≻ c4 ≻ c5
Voter 2: c3 ≻ c2 ≻ c1 ≻ c4 ≻ c5
Voter 3: c4 ≻ c2 ≻ c1 ≻ c3 ≻ c5
Voter 4: c5 ≻ c2 ≻ c1 ≻ c3 ≻ c4

We will show that Rank-JR necessitates that c2 ∈ f(R, 2)
and f(R, 4) = {c1, c3, c4, c5}. This implies that f fails com-
mittee monotonicity because c2 ∈ f(R, 2) but c2 ̸∈ f(R, 4).

Claim 1: c2 ∈ f(R, 2). Assume for contradiction that c2 ̸∈
f(R, 2). Since k = 2, at most two out of the four voters
receive their top-ranked candidate in f(R, 2). However, Rank-
JR for r = 2 requires also that one of the top-ranked candidates
of the other two voters is chosen as all voters rank c2 second
but c2 ̸∈ f(R, 2). Hence, it holds that c2 ∈ f(R, 2).

Claim 2: f(R, 4) = {c1, c3, c4, c5}. When k = 4, Rank-JR
for r = 1 requires that the top-ranked candidate of each voter
is selected. Thus, f(R, 4) = {c1, c3, c4, c5} has to hold.

8 Conclusions
In this paper, we present the first committee voting rules for
ranked preferences that satisfy committee monotonicity and
proportionality for solid coalitions (PSC). Specifically, we first
give a general scheme for defining such rules based on known
rules that satisfy PSC. To extend our positive results to weak
preferences, we further design a new committee voting rule
called the Solid Coalition Refinement rule that simultaneously
satisfies committee monotonicity and IPSC, a variant of PSC
for weak preferences. Using this rule, we also disprove a
conjecture by Graham-Squire et al. (2024) regarding the com-
patibility of PSC and notion called independence of losing
voter blocs for truncated preferences. Finally, we show that
committee monotonicity is not compatible with a recently sug-
gested family of fairness concepts by Brill and Peters (2023).

A natural follow-up question is whether our positive results
extend to the more general setting of participatory budgeting
(PB). In this setting, each candidate has a cost and the task is
to choose a set of candidates within a prescribed budget. For
PB, committee monotonicity has been generalized to an axiom
called limit monotonicity (Talmon and Faliszewski, 2019) and
IPSC has been defined for this setting by Aziz and Lee (2021).
However, a simple counterexample shows that limit mono-
tonicity is incompatible with IPSC. First, we note that IPSC
implies exhaustiveness (the left-over budget cannot be enough
to purchase another candidate). Now, assume that there are
two voters and three candidates c1, c2, c3 where c1 and c2 have
cost 2 and c3 has cost 1. If c1 and c2 are each ranked first
by one of the voters, these candidates must be chosen when
the budget is 4. However, if the budget is 3, exhaustiveness
requires c3 to be chosen. This violates limit monotonicity, so
weaker variants of proportionality or committee monotonicity
are required to obtain positive results in PB.

Our results also give other directions for future work. In
particular, we leave it open whether there is a polynomial-
time computable rule for weak preferences that satisfies the
axiomatic properties of SCR. Moreover, much remains un-
known about the compatibility of committee monotonicity and
proportionality under approval preferences (see also Lackner
and Skowron, 2023).
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A Existing rules and committee monotonicity

In this appendix, we show that all existing rules known to
satisfy PSC all fail committee monotonicity, even when voters
have strict preferences. The three rules known to satisfy PSC
are Single Transferable Vote (STV), the Expanding Approvals
Rule (EAR) of Aziz and Lee (2020) and the Quota Borda Sys-
tem (QBS) of Dummett (1984). Because Elkind et al. (2017)
prove that STV does not satisfy committee monotonicity, we
only discuss to the other two rules.

A.1 EAR

EAR works as follows. First, each voter is given a budget of
bi = 1, which will be used to buy candidates at a cost q ∈
( n
k+1 ,

n
k ] (our subsequent counterexample holds for any such

q). Then, EAR works as follows until k candidates have been
selected. For each rank r, starting at r = 1, the rule checks
whether any candidates can be afforded by voters who all rank
this candidate in their top r. If so, this candidate is added to
the committee and the total budget of the corresponding voters
is decreased by q. If no such candidate exists, we increase r
by 1 and repeat this process. We note that the choice of the
exact candidate and the way to decrease the voters’ budgets
needs, in principle, further clarification; however, these issues
will not matter for our counterexample.

Now, we first note that Brill and Peters (2023) have shown
that EAR satisfies Rank-PJR+ and thus also Rank-JR. Hence,
it follows immediately from Theorem 4 that EAR fails com-
mittee monotonicity. Nevertheless, we additionally present
a simple profile R with n = 2 voters and m = 3 candidates
where EAR violates committee monotonicity:

Voter 1: c1 ≻ c3 ≻ c2
Voter 2: c2 ≻ c3 ≻ c1

For this profile, if k = 1, no candidate can be afforded
if r = 1. Hence, the rank r is increased to 2, and c3 is
chosen. So, the selected committee is {c3}. By contrast, if
k = 2, candidates c1 and c2 are both elected at rank r = 1
and so the elected committee is {c1, c2}. This fails committee
monotonicity since c3 is elected when k = 1 but not when
k = 2.

A.2 QBS

QBS was introduced by Dummett (1984) and later generalized
into a class called Minimal Demand (MD) rules by Aziz and
Lee (2022). For each rank r, starting at 1 and increasing one
by one, these rules perform two steps:

1. Partition the voters into solid coalitions, where two vot-
ers are in the same solid coalition if their top r ranked
candidates are the same, regardless of the ordering within
the top r.

2. Consider each solid coalition N ′ supporting candidate
set C ′ in the partition. If N ′ is entitled to more represen-
tation under PSC, then additional candidates from C ′ are
elected until this entitlement is met.

The family of rules differ by the tie-breaking used in the
second step. Dummett (1984) suggests that the Borda score1

be used. Aziz and Lee (2022) showed that PSC is satisfied
regardless of the tie-breaking method.

We show that MD rules fail committee monotonicity when-
ever positional scoring is used for tie-breaking. A positional
scoring rule consists of a score vector (s1, s2, . . . , sm), where
s1 ≥ s2 ≥ . . . ≥ sm ≥ 0 and s1 > sm. A candidate earns sr
points if a voter ranks them in position r. The tie-breaking in
step 2 selects the candidate with the highest total score across
all n voters. Further tie-breaking may be needed if there are
ties in the positional scoring, but our impossibility result holds
regardless of the additional tie-breaking method.
Proposition 2. Minimal Demand (MD) rules that break ties
using positional scoring do not satisfy committee monotonicity,
even for strict preferences.

Proof. Consider an MD rule with a positional scoring vector
(s1, s2, . . . , sm). We assume sm = 0: if it wasn’t, then we
could use a new vector (s1 − sm, s2 − sm, . . . , 0) without
changing any tie-breaking decisions. We consider two cases
depending on the scoring vector.
Case 1: s1 < 2s2. For this case, we construct a profile R
with n = 2 voters and m = 3 candidates. To increase n, the
entire profile can be duplicated multiple times. To increase m,
extra candidates can be added to the preference relations of
the voters as shown below.

Voter 1: c1 ≻ c3 ≻ any extra candidates ≻ c2
Voter 2: c2 ≻ c3 ≻ any extra candidates ≻ c1

For k = 1, a solid coalition must include both voters to
be entitled to representation and so no candidates are elected
until r = m. The tie-breaking will select candidate c3 since
its score of 2s2 exceeds the scores of the other candidates. For
k = 2, voters 1 and 2 both separately form solid coalitions
when r = 1, so candidates c1 and c2 are selected. This violates
committee monotonicity because c3 is elected when k = 1 but
not when k = 2.
Case 2: s1 ≥ 2s2. For this case, we construct a profile R
with n = 11 voters and m = 12 candidates. To increase n, the
entire profile can be duplicated ℓ times. To increase m, extra
candidates can be added to the end of preference relations of
each voter.

Voter 1: c1 ≻ c2 ≻ c3 ≻ c4 ≻ c9 ≻ other candidates
Voter 2: c2 ≻ c3 ≻ c4 ≻ c1 ≻ c9 ≻ other candidates
Voter 3: c3 ≻ c4 ≻ c1 ≻ c2 ≻ c9 ≻ other candidates
Voter 4: c4 ≻ c1 ≻ c2 ≻ c3 ≻ c9 ≻ other candidates
Voter 5: c5 ≻ c6 ≻ c7 ≻ c8 ≻ c9 ≻ other candidates
Voter 6: c6 ≻ c7 ≻ c8 ≻ c5 ≻ c9 ≻ other candidates
Voter 7: c7 ≻ c8 ≻ c5 ≻ c6 ≻ c9 ≻ other candidates
Voter 8: c8 ≻ c5 ≻ c6 ≻ c7 ≻ c9 ≻ other candidates

Voters 9 to 11: c9 ≻ c10 ≻ c11 ≻ c12 ≻ other candidates

1For each voter, their lowest-ranked candidate is given 0 points,
their second lowest candidate 1 point, their third lowest 2 points, etc.
The candidate with the highest total score is chosen.
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Note that voters 1 to 4 form a solid coalition supporting
{c1, c2, c3, c4} and voters 5 to 8 form a solid coalition sup-
porting {c5, c6, c7, c8}. For k = 2, the committee will con-
sist of one candidate from {c1, c2, c3, c4} and another from
{c5, c6, c7, c8}. Now consider k = 1. A solid coalition needs
at least 6 voters to be entitled to representation, and any such
solid coalition will include c9 in its supported candidates. We
will show that c9 has a higher score than all of c1 through c8,
meaning that committee monotonicity will be violated:

• Candidates c1 through c8 are ranked first, second, third,
and fourth by exactly one voter each. Therefore their
scores are upper bounded by s1 + s2 + s3 + s4 + 7s5 ≤
s1 + 3s2 + 7s5.

• Candidate c9 has a score of 3s1 + 8s5.

If s2 = 0, then si = 0 for all i ≥ 2 and c9’s score of 3s1 is
higher than c1 through c8’s score of s1. Otherwise, assume
that s2 > 0:

3s1 + 8s5 ≥ s1 + 4s2 + 8s5 since s1 ≥ 2s2

> s1 + 3s2 + 8s5 since s2 > 0

≥ s1 + 3s2 + 7s5,

and so c9 has a higher score than c1 through c8.

Since the Borda rule is a positional scoring rule, we have
the following corollary.

Corollary 1. QBS does not satisfy committee monotonicity.

B Missing Proof of Proposition 1
We next present the proof of Proposition 1, which was omitted
from the main body.

Proposition 1. The SCR rule always terminates and produces
a committee of the target size k. Furthermore, for strict pref-
erences, it can be implemented to run in polynomial time.

Proof. First, we will show that if the SCR rule terminates, it
produces a committee of size k. To this end, we note that each
iteration of the outer loop (line 2) adds exactly one candidate
to W . The reason for this is that the set Φ(R,W,D) only
contains pairs (N ′, C ′) such that C ′ ̸⊆W ′, which means that
D will always contain at least one alternative not in W . On
the other hand, we only reach line 8 after the end of the while-
loop, which requires that |D \W | ≤ 1. In combination, this
means that |D \W | = 1, so each iteration of the outer loop
adds a single candidate.

Next, we will show that SCR always terminates. To this end,
we note that if Φ(R,W,D) is always non-empty, then each
iteration of the while-loop (line 4) reduces the size of D by at
least 1. This holds because C ′ is a strict subset of D for all
(N ′, C ′) ∈ Φ(R,W,D). Hence, we only need to show that
Φ(R,W,D) is always non-empty during the execution of the
SCR rule. For this, consider the set D in some round during the
execution of the SCR rule and suppose that |D \W | > 1. We
first note that D is supported by a generalized solid coalition
N ′′. In more detail, if D = C, this holds as C is supported
by the set of all voters N . On the other hand, if D ̸= C,

then D was chosen as the set of candidates supported by a
generalized solid coalition N ′′ in the previous iteration of
the while-loop. Next, let i ∈ N ′′, which means that d ≿i c
for all d ∈ D, c ∈ C \ D. Moreover, let d∗ denote one
of voter i’s least favorite candidates in D \ W and define
D′ = {c ∈ C \ {d∗} : c ≿i d∗}. By the definition of this
set and d∗, it holds that D′ ⊊ D, D′ ̸⊆ W , and that {i} is a
generalized solid coalition supporting D′. Hence,({i}, D′) ∈
Φ(R,W,D), which proves that Φ(R,W,D) ̸= ∅. Thus, the
SCR rule is indeed well-defined.

Finally, we show that the SCR rule can be computed in
polynomial time for strict preference profiles. Since line 4
is repeated at most mk times, we only need to show that the
procedure in the while-loop can be done in polynomial time.
For this, we note that for strict preferences, IPSC coincides
with PSC and a generalized solid coalition is equivalent to a
solid coalition. Furthermore, there are only nm candidate sets
C ′ such that (N ′, C ′) can be in Φ(R,W,D): for each voter i
and each rank r, we can obtain one such set by considering the
r most preferred candidates of voter i. Finally, we can compute
line 6 by evaluating ρ(W,N ′, C ′) for all such sets C ′ and
the maximal solid coalitions N ′ supporting C ′. This works
because for any two sets N ′, N ′′ supporting C ′, it holds that
C ′(N ′) = C ′(N ′′) and thus ρ(W,N ′, C ′) ≥ ρ(W,N ′′, C ′)
if |N ′| ≥ |N ′′|. Moreover, we can compute the maximal solid
coalition supporting a set C ′ by simply checking for each voter
whether he supports C ′. Since all of these steps can be done in
polynomial time, it follow that the SCR rule can be computed
in polynomial time for strict preferences.
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