
1

FMER: An Energy-Efficient Error Recovery
Methodology for SRAM-based FPGA Designs

Dimitris Agiakatsikas∗, Ediz Cetin†, and Oliver Diessel∗
∗School of Computer Science and Engineering, UNSW Sydney, Australia

†School of Engineering, Macquarie University, Australia
{d.agiakatsikas, o.diessel}@unsw.edu.au, ediz.cetin@mq.edu.au

Abstract—This work introduces FMER, that is, a frame-
and module-based Configuration Memory (CM) error recovery
technique targeting Triple Modular Redundant (TMR) designs
that are realized on SRAM-based FPGAs. Module-based CM
Error Recovery (MER) is used to reconfigure on-demand the
CM of faulty TMR modules, while the remaining CM of the
device recovers from soft-errors with periodic scrubbing. We
derive reliability, availability and power consumption models of
TMR designs that incorporate FMER, MER, blind scrubbing and
no recovery at all, and show that FMER is particularly beneficial
for missions that require high reliability or availability subject
to a low energy budget.

Index Terms—Fault-tolerance, SRAM-based FPGAs, reliabil-
ity, availability, radiation-induced errors, SEUs, configuration
memory error recovery techniques.

I. INTRODUCTION

H IGH radiation environments, such as space, render the
memory cells of SRAM-based FPGAs unreliable since

their state can be unintentionally changed when they are struck
by high energy particles [1], [2]. Such errors are usually
called Single Event Upsets (SEUs) and fall into a group of
radiation-induced errors, namely Single Event Effects (SEEs)
[2]. However, SRAM-based FPGAs are ideal platforms for im-
plementing complex space applications due to their low Non-
Recurring Engineering (NRE) costs, their high performance
and more importantly for their in-field reconfigurability which
makes them very flexible; the hardware itself can be upgraded
remotely while it operates in space without needing any phys-
ical human interaction [3]. These systems may target different
or multiple mission requirements, such as high reliability, high
availability or high performance [4], [5], but all systems must
expend their energy reserves efficiently and strategically in
order to reliably accomplish their computational tasks during
the mission.

The research community is therefore increasingly devel-
oping design techniques and methodologies to enable the
implementation of reliable space applications on SRAM-based
FPGAs [2], [6], [7]. These techniques not only have to mitigate
SEEs that are encountered in classic Application Specific
Integrated Circuit (ASIC) designs, such as transient errors in
combinational logic or SEUs in the user memory, i.e. Flip-
Flops (FFs) or RAM, but also have to mitigate SEUs in

This work was supported by the Australian Research Council Linkage
(LP140100328) and Discovery (DP150103866) Projects funding schemes and
an Australian Postgraduate Award (APA) scholarship.

the configuration SRAM cells of the FPGAs. Unfortunately,
Configuration Memory (CM) errors1 [8] account for most
of the errors in SRAM-based FPGA systems and have a
permanent effect on the functionality of the design until the
CM is rewritten with the golden bitstream.

Most SRAM-based FPGA designs enhance their reliability
with Triple Modular Redundancy (TMR) [9]. TMR triplicates
a design and an additional sub-circuit, a voter, overrules any
erroneous output of a corrupted module (replica). However,
the TMR design fails when two or more of its replicas output
different results [10]. Such a situation can arise for various
reasons, i.e. Common Mode Failures (CMFs) due to a design
bug that exists between all replicas [11], or due to an SEU in
a shared interconnection resource between the replicas [12],
[13]. Nevertheless, even when CMFs are not present in the
TMR design, the possibility exists that a succession of soft
errors will cause a second or a third replica to fail. In order to
avoid such situations, TMR-based designs realized on SRAM-
based FPGAs are usually combined with user memory [9],
[14] and CM Error Recovery (ER) [15], [16], [17], [18], [19],
[20] mechanisms. These mechanisms correct soft errors in the
system as fast as possible in order to increase the system’s
availability as well as its reliability when it is triplicated.

CM ER techniques can be divided into two categories.
The first category treats the CM of the FPGA as a memory
component and periodically scrubs (checks and/or rewrites)
its contents to correct any accumulated SEUs without taking
into account the effects of these SEUs on the functionality of
the design. In contrast, the second category observes the func-
tionality of the design, which can be corrupted by either soft
errors in its user memory or CM, and reconfigures (rewrites)
the CM of the device when the design experiences ongoing
functional errors. Further, when Module-based configuration
memory Error Recovery (MER) is incorporated in the system,
the voters in the TMR design not only mask errors from a
faulty module but also identify which module is in error, in
the minority, so as to trigger partial reconfiguration of the CM
of that particular module[21], [22]. MER therefore recovers
faster from CM errors than periodic scrubbing or on-demand
device CM reconfiguration as it partially reconfigures a subset
of the device’s CM — the CM of the faulty module.

On the other hand, independent of the utilized CM ER

1An error is a manifestation of a fault (or otherwise of an SEE) on an
entity and therefore it is said that the entity is experiencing a failure.

2

technique used, SEUs in the user memory should also be re-
covered. These recovery techniques usually involve (i) BRAM
triplication with periodic scrubbing of their contents [9], and
(ii) voter insertion in the feedback paths of the replicas [23]
so that user memory errors are not trapped in cyclic data-
paths and so that the state (flip-flops) of a replica can be
re-synchronized with its healthy siblings after CM ER has
been completed [22]. This work assumes that the above
described user memory ER techniques are used, and that
non-triplicated BRAMs or Flip-Flops (FFs) of simplex (non-
triplicated) components are reset to their initial state after they
recover from a CM error.

Nevertheless, despite the importance of CM ER in various
applications, especially of those targeting space missions, to
our best knowledge, and as stated in [20], energy consumption
models for CM ER techniques have not yet been reported in
the literature. Only recently, Tomfat et. al [24] proposed a
methodology to measure the energy consumption of writing
a configuration frame — the smallest portion of CM that can
be configured at a time — in order to compare their proposed
ER technique with blind scrubbing.

In this work, we provide power consumption models for
CM scrubbing, MER and our proposed ER technique, FMER,
in addition to the System on Chip’s (SoC’s) reliability and
availability models, so that the trade-off between these prop-
erties can be studied and compared. This work shows that
FMER is beneficial for missions where periodic device CM
scrubbing or MER cannot achieve the mission’s Mean Time To
Recover (MTTR), availability and/or reliability requirements
for a given energy budget.

A preliminary version of this work was presented in [25].
The derivation of the reliability and availability models for the
simplex (non-triplicated) and TMR components — described
in Sec. III — are new for this article. The proposed dependabil-
ity models have also been expanded to incorporate sub-systems
that are difficult to triplicate (e.g. high-speed transceivers)
and are therefore usually implemented without any form of
redundancy. A more thorough discussion of the assumptions
made in the derivation of the dependability models, as well
as a discussion of the CM SEU rate in modern SRAM-
based FPGAs, is provided. The implementation of FMER is
detailed, while the practicality and applicability of FMER is
given through the implementation of various triplicated HLS
applications on an Artix-7 200T FPGA. Finally, a related work
section has been added to this manuscript.

The paper is organized as follows. Section II states the prob-
lem we address in this work. Section III provides information
about the configuration architecture of modern FPGAs and
its sensitivity to radiation-induced errors. Additionally, models
for the dependability2 and energy consumption of systems
built on these devices is given, while section IV evaluates
the proposed models. Section V provides the implementation
details of FMER, while section VI evaluates FMER on a
number of SoCs that implement triplicated HLS benchmarks

2This work uses the term dependability to describe both the reliability and
the availability of a system.

M1

M1

M1

V1

V1

V1

MK

MK

MK

VK

VK

VK

P

P

P

P

P

P

M1

M1

V1

V1

V1

MK

MK

MK

VKP P

M1

M1

M1

V1

MK

MK

MK

VKP P

M1

F2: SRs

of the SoC

F1: modules

of the a1,2,3

subsystems

Device: FD = F1 + F2

F1 = f×FD F2 = (1-f)×FD

F4: CFs of

the a4

subsystems

F3: SRs

of the a1,2,3

subsystems

Portion F2 = F3 + F4

F3 =

g×(1-f)×FD

F4 =

(1-g)×(1-f)×FD

F6: SRs

(simpex)

of the a1,2,3

subsystems

F5: SRs

(triplicated)

of the a1,2,3

subsystems

F5 =

h×g×(1-f)×FD

F6 = (1-h)×

g×(1-f)×FD

Portion F3 = F5 + F6

a1

a2

a3

(a) (b)

M1 MLP Pa4

Fig. 1. (a) Possible programmable System on Chip (SoC) sub-systems, (b)
FPGA-based SoC design formulation

on an Artix-7 200T FPGA. Section VII presents related work.
Final considerations and future work conclude the paper.

II. PROBLEM STATEMENT

State-of-the-art SRAM-based FPGAs provide a large
amount of configurable logic to implement a vast array of
space applications on a single chip, thus reducing overall
system mass, weight and power consumption. Such SoC
designs are usually implemented by integrating a number of
independently developed sub-systems, of which, depending
upon the dependability requirements of the mission, some
sub-systems are triplicated to enhance their reliability. The
following paragraphs describe these SoCs in detail and point
out the advantages and disadvantages of using CM scrubbing
or MER for repairing faults in them. Finally, the benefits of
combining these two methods, as investigated in FMER, are
outlined.

Consider an FPGA-based SoC design that is composed of a
combination of some or all of the a1, a2 a3 and a4 sub-systems
as depicted in Fig. 1 (a), where each sub-system is composed
of some different number of K or L components. Of the sub-
systems depicted in Fig. 1(a) the most reliable structure is
that of sub-system a1, whose logic is completely triplicated
including the voters V and the Input Output (IO) pins P [9].
Although fully triplicated schemes provide better reliability
than those with simplex (non-triplicated) IO pins and voters,
there are situations in which this triplication is not possible,
such as when the number of available pins in the device do not
suffice [26]. Such a case is represented by sub-system a2, in
which all the logic of the sub-system is triplicated except for
the input pins and the output pins with their associated voters
and their interconnection resources. Moreover, as illustrated
in sub-system a3, there are situations in which even the

3

intermediate voters of a sub-system’s components are not
triplicated in order to decrease the cost of the fully triplicated
scheme. Even worse from a reliability perspective, the SoC
may include sub-systems, shown as a4, that are not triplicated
at all, due to performance issues, resource unavailability or
inflexibility. Examples of such sub-systems are the hardwired
high-speed transceivers or clock managers found in modern
SoC FPGAs that are difficult to triplicate.

When periodic CM scrubbing [20] is incorporated in the
SoC, any erroneous resource affected by an SEU in their CM
will recover after a scrub cycle [9] (a complete configuration of
the device’s CM). On the other hand, if MER [21] is applied to
the SoC, any permanent functional error of the design caused
by SEUs in the FFs, BRAMs or the CM of a triplicated
module will be detected by its voters and be corrected with
user memory and CM ER techniques. Therefore, with MER
only errors inside the TMR modules can be detected via the
component’s voters and thus be corrected, i.e. only erroneous
resources inside the dashed (white) bounding boxes (BBs)
depicted in Fig. 1 (a) recover. In this case, errors in the
following resources are not detected or corrected with MER:
(i) the output pins since they are instantiated after the voters,
(ii) the non-triplicated voters and their associated output pins,
(iii) the non-triplicated input pins, (iv) the routing resources
that interconnect the modules, and (v) the simplex a4 sub-
systems. We refer to the resources that are not included
in the dashed regions, but appear shaded in Fig. 1(a), as
Support Resources (SRs). CM scrubbing therefore has higher
CM fault-coverage than MER since errors in both the TMR
modules and the SRs are corrected by just reconfiguring
the configuration frames of the device. However, scrubbing
has a considerably higher CM ER latency than MER, which
responds rapidly when a voter detects repeated errors in a
module [27]. Moreover, scrubbing wastes energy scanning for
errors in the CM of the replicated modules, although this
information is available from the component’s voters.

Our contribution is a hybrid CM ER mechanism, which
we refer to as Frame- and Module-based CM Error Recovery
(FMER), that combines the advantages of both scrubbing and
MER; FMER periodically scrubs the SRs of the SoC until
it is interrupted by a reconfiguration request from a faulty
replicated module, whereupon it recovers the module by MER
before resuming to scrub the SRs. Therefore, FMER achieves
the CM fault-coverage of scrubbing alone, but provides lower
MTTR in the SoC since errors within modules are recov-
ered immediately after they are detected and only the SRs
are recovered with periodic scrubbing. Moreover, the energy
expended recovering the SRs via scrubbing is less than that
used were the entire device scrubbed. We model and compare
the dependability and energy consumption of four identical
SoCs that are composed of the sub-systems depicted in Fig.
1(a) and incorporate either (a) FMER, (b) blind scrubbing, (c)
MER or (d) NR (no error recovery). Firstly, this requires the
derivation of the reliability and availability functions for the
components of the a1, a2, a3 and a4 sub-systems, where each
component is repaired either with blind scrubbing or MER, or
is left un-recovered depending on the adopted ER technique
in the SoC.

We explore the proposed SoC models at various radiation
levels and design parameters and show that FMER affords
higher reliability and availability to SoCs with lower energy
consumption than obtained with classic CM scrubbing or
MER.

III. DEPENDABILITY – ENERGY CONSUMPTION MODELS

This section provides background on the CM architecture
of Xilinx FPGAs and their soft-error vulnerabilities in various
operating orbits. It then provides models for the MTTR of CM
blind scrubbing and MER, while it formulates the reliability,
availability and power consumption models of the SoC, when
it incorporates either blind scrubbing, MER, FMER or no
recovery (NR) at all. Last, the assumptions made in the
derivation of the dependability models are provided. Note that
this work presents a new CM ER technique and compares the
dependability of four equivalent SoCs that utilize the same user
memory ER techniques. Therefore, our dependability analysis
does not account for soft-errors in the user memory of the
design as their effect on the dependability of each SoC is the
same.

A. Configuration Memory Architecture

As already mentioned in Section I, high radiation particles
in space can corrupt the CM cells of SRAM-based FPGAs.
Therefore, these systems incorporate an external or internal
Reconfiguration Controller (RC) that repairs soft-errors in the
FPGA’s CM. This subsection introduces the CM architecture
of Xilinx FPGAs [28], but similar properties and models also
apply to Altera SRAM-based FPGAs. In more detail, the
CM of Xilinx FPGAs is accessed through blocks of memory
referred to as Configuration Frames (CFs). A device includes
FD CFs that are accessed via an IB (32-, 16- or 8-bit) Internal
Configuration Access Port (ICAP) bus when the RC is internal,
while other type of configuration access ports are used for the
realization of external RCs. A CF is composed of BF bits and
the ideal time, tF , needed to read or write it depends upon the
operating frequency fICAP of the ICAP primitive, the IB bus
width, and the size of the frame:

tF =
1

fICAP
× BF
IB

(1)

B. Error Susceptibility Of Modern FPGAs

The upset rate of a configuration bit λb in Xilinx 7-series,
specifically the Kintex-7 family, is given in Table I. The results
were calculated using SPENVIS [29] for Geosynchronous
Equatorial Orbit (GEO), Global Positioning System (GPS)
orbit and Low Earth Orbit (LEO) in order to be used as upset
rate references in the following sections. In deriving the figures
of Table I, we used the Worst Week, Worst Day and Peak 5-
minute CREME96 models [30] and assumed the presence of
2.54 mm of aluminium shielding, while the cross-section of
the device was obtained from [31]. This work demonstrates
FMER on a Xilinx Artix-7 (XC200T) FPGA and we believe
that λb for this device is similar to that of Kintex-7, since
all Xilinx 7-series FPGAs share a unified architecture and

4

TABLE I
UPSET RATE PER CONF. BIT PER SECOND, λb

Orbit
Alt./Incl.

Worst
Week

Worst
Day

Peak
5-Min.

GEO
35,768 km / 0◦ 2.16E-11 7.34E-11 2.66E-10

GPS
20,200 km / 0◦ 1.43E-11 4,84E-11 1.75E-10

LEO (ISS)
400 km 51.60◦ 3.76E-14 1.10E-13 3.86E-13

are manufactured using TSMC’s 28 nm High-K Metal Gate
(HKMG) technology process [32].

For example, assuming the worst week GEO model, the CM
of the Artix-7 (XC200T) FPGA is expected to upset with rate
λdevice = λb × FD × BF = 2.16E-11 × 18, 300 × 3, 232 =
0.0013 SEUs/device/sec. (≈ 1 SEU per 13 min). However,
the upset rate of the FPGA’s CM is different from the failure
rate of an implemented design on that specific device. For
example, a design that is implemented on this device with
utilization U = 80% of the FPGA’s reconfigurable resources,
which has an Architectural Vulnerability Factor (AVF) = 15%
[33] is expected to fail with rate λdesign = λdevice × U ×
AVF = 0.0013×0.8×0.15 ≈ 0.00015 times per second (≈ one
failure per 1.8 hours). The AVF depends upon the design itself
and denotes the portion of the utilized configuration bits that
will lead to observable errors if they are corrupted. These bits
that produce errors in the system are referred to as critical SEU
bits in this work. Xilinx claims that the AVF is approximately
15% for an average design [33], i.e. results averaged from a
number of designs that utilize more than 70% of the FPGA’s
available reconfiguration resources.

C. Mean-Time-To-Recover Models

This subsection provides the MTTR models of CM blind
scrubbing and MER that are then used to derive our proposed
hybrid ER technique. Note, that we combine blind scrub-
bing and MER for FMER, however, it is also possible to
combine more sophisticated scrubbing techniques with MER
to implement FMER, e.g. by combining MER with Single
Error Correction Double Error Detection (SECDED) readback
scrubbing.

1) Blind scrubbing: The simplest way to recover errors
in an SRAM-based FPGA design is to periodically, one-
by-one reconfigure the CFs of the device with golden CFs
stored externally in a radiation-tolerant memory, e.g. flash, or
radiation-hardened SRAM when high memory throughput is
required [34]. The worst case time to recover from an SEU is
when it occurs in the 1st CF of the FPGA and the scrubber
has just started to reconfigure the 2nd CF of the device. Thus,
the SEU will not be corrected until after a whole scrub cycle
or otherwise a complete reconfiguration of the device. Hence,
on average the device requires half a scrub cycle to recover
from an SEU, in addition to any waiting time w that is inserted
between the scrub cycles:

MTTR =

(
FD
2
tF

)
+ w (2)

2) MER: Many fault-tolerant designs inherently include
majority voters and/or comparators, i.e. with TMR or Dual
Modular Redundant (DMR) schemes, that provide rapid error
detection and localization mechanisms in the system. There-
fore, the RC may rely on the system’s comparators to detect
repeated erroneous results from a faulty module and trigger on
demand reconfiguration of the module’s CFs. The MTTR of a
faulty module depends on the error manifestation delay tP to
the system’s RC [27], and on the time required to reconfigure
the FM CFs of the faulty module. However, tP is neglected
from the calculation since typically (tP � FM tF):

MTTR = tP + FM tF ≈ FM tF (3)

The reciprocal of (2) gives the rate at which SEUs recover
in the system when blind scrubbing (µs) is applied, while the
reciprocal of (3) gives the rate at which SEUs recover in a
faulty module when MER (µm) is applied.

D. Hierarchical Dependability Models Of The SoC
By definition, the reliability function R(t) represents the

probability that a system has operated (according to its speci-
fications) over the interval (0 ≤ t < T), where T ∈ R ≥ 0 de-
notes the mission duration. In contrast, the availability function
A(t) is the probability of the system operating correctly at time
t. When the system does not incorporate any ER mechanism
then R(t) = A(t). Additionally, the steady state availability
A is also a useful dependability metric which estimates the
probability of the system operating in the long term. Thus,
A = limt→∞A(t).

There are many ways to model the dependability of a
system. Models range from simple combinatorial models that
hold only under specific assumptions, i.e. when components
in the system fail and are repaired independently, to more
complex models, like Markov-chain models [35], which are
able to capture these dependencies. On the other hand, one can
selectively use Markov-chain models for those components for
which the accuracy of the dependability modelling would be
negatively impacted if the failure or repair dependencies were
not modelled. This work uses simple combinatorial models to
capture the dependability of the SoC as a whole, while more
complex Markov-chain reliability and availability models are
used to capture failure and repair dependencies in each sub-
system’s components.

In more detail, an SoC that is composed of a number of
the sub-systems a1 - a4 depicted in Fig. 1 (a), in which each
sub-system is composed of a different number of components
can be viewed as a series logical structure of components with
the following combinatorial system reliability and availability
functions[35]:

R(t) =

K∏
i=1

Rtype
i (t)×

L∏
j=1

Rtype
j (t) (4)

A(t) =

K∏
i=1

Atype
i (t)×

L∏
j=1

Atype
j (t), (5)

where variables K and L denote the total number of com-
ponents that realize the a1,2,3 (TMR-based) and a4 (simplex-
based) sub-systems respectively. Moreover, the sub-products

5

S0 S1 S22 λm3 λm

S0 S1λm

μs

S0 S1 S22 λm3 λm

μ0

μ1

S0 S1λm

R(t) =
pSO + pS1 μ0

R(t) =
pSO

A(t) =
pSO + pS1

A(t) =
pSO(a)

(c)

(b)

(d)

Fig. 2. Markov-chain models for the types of components encountered in
sub-systems a1 − a4

of the K and L components denote the total reliability and
availability of the a1,2,3 and the a4 sub-systems respectively.
Depending on the properties of a sub-system’s component,
i.e. whether or not it is simplex or triplicated and whether
or not it recovers with MER or CM scrubbing (when ER is
applicable in the SoC), then the reliability and availability
of each component in the SoC is given with one of the
following type of function: (a) Simplex & No Recovery (NR),
(b) Simplex & Scrub, (c) TMR & NR, (d) TMR & Scrub, and
(e) TMR & MER. Note that Eqs. (4) & (5) just state the fact
that the SoC works when all components of the a1,2,3,4 sub-
systems are functional. The following subsections provide the
reliability and availability functions for the mentioned (a), (b),
(c), (d) and (e) type of components, which are derived with
Markov-chain models. Moreover, sub-section III-I provides the
assumptions made for the derivations of these models and also
discusses their accuracy and flexibility.

E. Reliability and Availability of SoC Components

In this subsection we utilize continuous-time discrete-state
Markov chains to derive the dependability functions for the
types of components encountered in the sub-systems depicted
in Fig. 1(a). The derived functions are thereafter substituted
into Eqs. (4) & (5) to calculate the overall R(t) and A(t) of the
SoCs.

Markov chains generate a set of differential equations that
are solved in order to derive the probability distribution of the
chain’s states, where each state represents a distinct behavior
of the modeled component. We use Mathematica [36] to apply
the methodologies presented in [10], [37] and [35] to find R(t)
and A(t) of each component. We assume that all components
start in state S0 (there are no errors in the components), i.e.
that the initial probability distribution of the Markov chains
depicted in Fig. 2 is pS0 = 1 and 0 elsewhere.

1) Simplex & NR: The reliability of a simplex component
that has no means of recovering from errors is presented with
the two states (S0: functional, S1: failed) of the Markov chain
depicted in Fig. 2(a), where λm represents the failure rate
with which the component (simplex module) transitions to the
failed S1 state. The probability distribution of the functional
state pS0 gives the reliability function of the component:

Ra(t) = pS0 = e−λmt, (6)

which verifies the well-known reliability function of a non-
redundant component [35]. The availability function of the
component is also given by Eq. (6), Aa(t) = Ra(t), since the
component is never repaired.

2) Simplex & Scrub: The reliability model of a simplex
component that recovers from CM errors via scrubbing is the
same as for a simplex component with no recovery at all, i.e.
it can be modeled with the Markov chain depicted in Fig. 2
(a). This underscores the fact that blind scrubbing does not
have any impact on the reliability of a simplex component. In
the exponential reliability model, reconfiguring the component
periodically does not have an impact on the occurrence of
an SEU event. The reliability of a simplex component with
scrubbing is therefore:

Rb(t) = Ra(t) = e−λmt, (7)

On the other hand, the availability of a simplex component
that is periodically scrubbed is modeled with the Markov chain
depicted in Fig. 2 (b). This figure augments the reliability
Markov chain of the component shown in Fig.2 (a) with a
transition from S1 to S0 with rate µs, which represents the
ER rate of the component. The component is available when
it is in state S0 and therefore the chain is solved for pS0 [37]:

Ab(t) = pS0 =
µs

λm + µs
+
λme

−t(λm+µs)

λm + µs
. (8)

The availability function of Eq. (8) is given by two partial
rational expressions, whereby the second fraction denotes the
transition to the steady state (first term of the equation) of
the component. In this paper all A(t) functions are presented
in the above form, i.e. a first term, which captures the steady
state of the component, and a second term, which captures the
transition to its steady state.

3) TMR & NR: The reliability model of a TMR component
without any form of recovery (µ0 = 0) is illustrated in Fig. 2
(c). States S0 (no faulty modules) and S1 (one faulty module)
represent the functional states of the component, while state
S2 (two or more faulty modules) represents its failed state. If
the three TMR modules of the component are identical, i.e.
all modules have on average the same failure rate λm, then
the chain transitions from S0 to S1 with rate 3λm since in
S0 all modules are functional. Similarly, the chain transitions
from S1 to S2 with rate 2λm since in S1 one module has
already failed. The reliability function is given by summing the
probability distribution of states S0 and S1, i.e. the functional
states of the component:

Rc(t) = pS0 + pS1 = 3e−2λmt − 2e−3λmt (9)

Additionally, since the component does not incorporate any
recovery mechanism, then the availability of the component is
given also by Eq. (9), i.e. Ac(t) = Rc(t).

4) TMR & Scrub or TMR & MER: The reliability model of
a TMR component that recovers from SEUs with scrubbing or
with MER is given in Fig. 2 (c). The rate at which a module
fails, λm, in both TMR & Scrub or TMR & MER components
is the same, while the rate at which a module recovers, µ0,
depends on the adopted recovery method. As mentioned in
subsection (III-C), the average time to recover an error in a
module with scrubbing, (µ−1s), is a function of the device’s
size, given in (FD) CFs, and the performance of the RC, i.e.
the required time, (tf), for reconfiguring a CF. In contrast, the
mean time to recover a module with MER (µ−1m) depends on

6

the RC’s performance, i.e. tf , and also on the design itself, i.e.
the size of the TMR module that is given in FM CFs. For this
reason, the same reliability Markov chain can be applied to
both cases by just substituting the corresponding recovery rate
for scrubbing, µ0 = µs, or for MER, µ0 = µm, respectively.
The probability distribution of S0 and S1 (pS0 + pS1) gives
the reliability of the components:

Rd(t) = Re(t) =
e−

1
2 (at)

(
a sinh

(
bt
2

)
+ b cosh

(
bt
2

))
b

, (10)

where a = 5λm+µ0, b =
√
λ2m + 10λmµ0 + µ2

0 and µ0 = µs
in the case of scrubbing, or µ0 = µm in the case of MER.

The same concept also applies for the derivation of the
availability function of the TMR component in which errors
recover with scrubbing or with MER. The availability model
for the TMR component with scrubbing is given in Fig. 2(d),
where µ0 = µ1 = µs since one, two or three modules of
the component recover on average after half scrub cycle. The
probability distribution of S0 and S1 gives its availability
function:

Ad(t) = pS0 + pS1 =
µs(5λm + µs)

ab

+
6λme

−bt (−2λm − µs + µse
λmt + 3λme

λmt
)

ab
,

(11)

where a = 2λm + µs and b = 3λm + µs.
Similarly, the availability model for a TMR component that

recovers with MER is given with the Markov chain of Fig. 2
(d), where µ0 = µm and µ1 = µm

3 since either one or three
modules need to be recovered when the component is in state
S1 or S2 respectively. Its availability function is:

Ae(t) = pS0 + pS1 =
µm(5λm + µm)

b

+
18λ2e−

1
6 (ct)

(
c sinh

(√
at
6

)
+
√
a cosh

(√
at
6

))
√
ab

,

(12)

where a = 9λm
2+60λmµm+4µm

2 , b = 18λm
2+5λmµm+

µm
2 and c = 15λm + 4µm.

Taking the limit of (6), (8), (9), (11) and (12), as t → ∞,
yields the steady state availability of; (a) simplex & NR, (b)
simplex & Scrub, (c) TMR & NR, (d) TMR & Scrub and (e)
TMR & MER components respectively:

Aa = lim
t→∞

Ra(t) = 0 (13)

Ab = lim
t→∞

Ab(t) =
µs

λs + µs
(14)

Ac = lim
t→∞

Rc(t) = 0 (15)

Ad = lim
t→∞

Ad(t) =
µs(5λm + µs)

6λm2 + 5λmµs + µs2
(16)

Ae = lim
t→∞

Ae(t) =
µm(5λm + µm)

18λm2 + 5λmµm + µm2
(17)

F. FPGA-based SoC Design Formulation

Fig. 1(b) depicts an abstract model of an FPGA-based
SoC composed of a number of the sub-systems of type a1
– a4 illustrated in Fig. 1(a). As shown at the top of Fig.

1(b), the FPGA’s CFs have been divided into two subsets,
FD = {F1, F2} where:

• F1 = FD −F2 CFs are devoted to mapping (implement-
ing) the logic of the 3K TMR modules (dashed boxes in
Fig. 1(a)) of the TMR-based sub-systems a1 - a3 that can
either be recovered by MER or by scrubbing, or not at
all.

• F2 = FD − F1 CFs are devoted to mapping the SRs of
the SoC, i.e. the CFs of the shaded area in Fig. 1(a) that
recover with scrubbing when FMER is employed or when
scrubbing is used to recover from CM errors in the SoC.

Moreover, Fig. 1(b) shows F2 being further subdivided into
two subsets, F2 = {F3, F4} in the middle of the figure where:

• F3 = F1−F4 CFs are devoted to mapping the SRs for the
a1,2,3 sub-systems, e.g. their simplex or their triplicated
IO pins, voters and interconnection resources.

• F4 = F1 − F3 CFs are devoted to mapping the logic
for the simplex a4 sub-systems, e.g. clock managers or
complex high-speed transceivers with their IO pins and
interconnection resources.

Last, F3 is further subdivided at the bottom of the figure into
two subsets, F3 = {F5, F6} where:

• F5 = F3−F6 CFs are devoted to mapping the triplicated
SRs of the a1,2,3 sub-systems, e.g. triplicated output
pins and any triplicated interconnection routing resources
between the TMR sub-systems.

• F6 = F3 − F5 CFs are devoted to mapping the simplex
SRs of the a1,2,3 sub-systems, e.g. simplex IO pins or
simplex voters and the interconnection resources between
them.

The proposed model includes three parameters, f, g, h ∈
[0, 1] in order to distinguish between F1 and F2, or F3 and
F4, or F5 and F6 respectively, i.e.
FD = F1 + F2 = [f × FD] + [(1− f)× FD],
F2 = F3 +F4 = [g×(1−f)×FD]+[(1−g)×(1−f)×FD],
and F3 = F5 +F6 = [h× g× (1− f)×FD] + [(1− h)× g×
(1− f)× FD].

Therefore, the average number of CFs for one TMR module
is given by:

FM =
F1

3×K
=
f × FD
3×K

, (18)

i.e. every TMR component occupies F1/K CFs on aver-
age, whereas each of its three identical modules occupies
(F1/K)/3 CFs.

Additionally, it is assumed that every TMR component in
the a1,2,3 sub-systems require

FSS =
F6

K
=

(1− h)× g × (1− f)× FD
K

(19)

CFs for the implementation of their simplex SRs, while every
module in the TMR components require

FTS =
F5

3×K
=
h× g × (1− f)× FD

3×K
(20)

CFs for the implementation of their triplicated SRs.

7

The remaining CFs of the device, i.e. the F4 portion im-
plement the simplex modules of the a4 sub-systems, whereby
each module with its interconnections and IO pins occupies:

FSysSRs =
F4

L
=

(1− g)× (1− f)× FD
L

(21)

CFs on average.
Moreover, the total upset rate of the device is modeled as

follows:
λD = FD ×BF × λb (22)

Consequently, the average failure rate for the logic imple-
mented with the FM , FSS , FTS and FSysSRs CFs are:

λm = f×λD

3×K ×UM × AVF, (23)

λSS = (1−h)×g×(1−f)×λD

K ×US × AVF, (24)

λTS = h×g×(1−f)×λD

3×K ×US × AVF, (25)

λSysSRs = (1−g)×(1−f)×λD

L ×UC × AVF, (26)

respectively. Moreover, the UM and US variables denote the
resource utilization of each TMR module and their SRs in the
a1,2,3 sub-systems respectively, while UC denotes the resource
utilization in the a4 sub-system, i.e. its modules with their
associated IO pins and interconnections.

G. Recovery technique: Impact on SoC reliability and Avail-
ability

This subsection formulates the reliability and availability of
four SoC implementations: 1) SoC/FMER, 2) SoC/Scrub, 3)
SoC/MER and 4) SoC/NR (No Recovery), which follow the
model of Fig. 1(b).

1) SoC/FMER – Errors in F1 (TMR modules) are recov-
ered with MER, while in F2 (SRs) with scrubbing.

2) SoC/Scrub – Both F1 and F2 portions are scrubbed or
in other words the device is completely scrubbed.

3) SoC/MER – Errors in F1 are recovered with MER, while
in F2 errors are not recovered.

4) SoC/NR – The device does not incorporate any form of
CM ER.

The difference between the above SoC implementations is
the incorporated recovery technique and therefore the rate at
which their components recover. The average rate at which the
modules and the associated SRs fail is the same irrespective
of the repair mode. The following provides the R(t) and A(t)
for the SoC/FMER model.

1) SoC/FMER: The rate µm at which the average TMR
module recovers with MER in F1 can be found by substituting
Eq. (18) into the reciprocal of Eq. (3):

µm = (FM × tF)−1 (27)

Moreover, the rate µs at which the F2 CFs of the SRs recover
with scrubbing can be found by replacing FD with F2 in the
reciprocal of Eq. (2):

µs = (
F2

2
× tF + w)−1 (28)

TABLE II
RELIABILITY AND AVAILABILITY TERMS OF ALL SOCS

SoC/FMER SoC/Scrub SoC/MER SoC/NR

Rei (t)|
(27)⇒µm

(23)⇒λm
Rdi (t)|

(28)⇒µs

(23)⇒λm
Rei (t)|

(27)⇒µm

(23)⇒λm
Rci (t)|(23)⇒λm

Rdi (t)|
(28)⇒µs

(25)⇒λm
Rdi (t)|

(28)⇒µs

(25)⇒λm
Rci (t)|(25)⇒λm

Rci (t)|(25)⇒λm

Rbi (t)|(24)⇒λs
Rbi (t)|(24)⇒λs

Rai (t)|(24)⇒λs
Rai (t)|(24)⇒λs

Rbj(t)|(26)⇒λs
Rbj(t)|(26)⇒λs

Raj (t)|(26)⇒λs
Raj (t)|(26)⇒λs

Aei (t)|
(27)⇒µm

(23)⇒λm
Adi (t)|

(28)⇒µs

(23)⇒λm
Aei (t)|

(27)⇒µm

(23)⇒λm
Aci (t)|(23)⇒λm

Adi (t)|
(28)⇒µs

(25)⇒λm
Adi (t)|

(28)⇒µs

(25)⇒λm
Aci (t)|(25)⇒λm

Aci (t)|(25)⇒λm

Abi (t)|
(28)⇒µs

(24)⇒λs
Abi (t)|

(28)⇒µs

(24)⇒λs
Aai (t)|(24)⇒λs

Aai (t)|(24)⇒λs

Abj(t)|
(28)⇒µs

(26)⇒λs
Abj(t)|

(28)⇒µs

(26)⇒λs
Aaj (t)|(26)⇒λs

Aaj (t)|(26)⇒λs

Therefore, the reliability of the SoC follows from (4) and is
given by the product of two sub-products:

R(t) =

K∏
i=1

Rei (t)R
d
i (t)R

b
i (t)×

L∏
j=1

Rbj(t), (29)

whereby the first sub-product denotes the reliability of the
a1,2,3 sub-systems, while the reliability function of each of
their K components depends on their type and is given as
follows:
• The reliability function of the TMR modules of the ith

TMR component is given by Rei (t)|
(27)⇒µm

(23)⇒λm
since they

are recovered with MER, while
• the reliability of the ith triplicated SRs associated with

the ith TMR component is given by Rdi (t)|
(28)⇒µs

(25)⇒λm
since

they are recovered by scrubbing,
• and that of the ith simplex SRs associated with the ith

TMR component is given by Rbi (t)|(24)⇒λm
since they

recover with scrubbing.
The second sub-product of Eq. (29) denotes the R(t) of the a4
sub-systems where the reliability of its jth simplex module
with its associated pins and interconnection is Rbj(t)|(26)⇒λm

as it is scrubbed.
Similarly, the availability of the SoC is calculated as

A(t) =

K∏
i=1

Aei (t)A
d
i (t)A

b
i (t)×

L∏
j=1

Abj(t), (30)

whereby Aei (t)|
(27)⇒µm

(23)⇒λm
, Adi (t)|

(28)⇒µs

(25)⇒λm
and Abi (t)|

(28)⇒µs

(24)⇒λm

are substituted in the first sub-product of the equation, and
Abj(t)|

(28)⇒µs

(26)⇒λm
is substituted in the second sub-product of the

equation.
The reliability and availability of the other implementations,

namely SoC/Scrub, SoC/MER and SoC/NR are similarly de-
rived and are summarized in Table II. The first four rows in
the first column (SoC/FMER) of the table correspond to the
Rei (t), R

d
i (t), R

b
i (t), and Rbj(t) terms of Eq. (29) respectively,

while the last four rows in the same column correspond
to the Aei (t), A

d
i (t), A

b
i (t), and Abj(t) terms of Eq. (30) re-

spectively. Similarly, the corresponding terms for SoC/Scrub,
SoC/MER and SoC/NR are given in the rows of the second,
the third and the fourth columns respectively. For example, the

8

Eq.(4) Markov model

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

t[s]

R
(t
)

Fig. 3. Comparison of R(t) for t ∈ [0,1000] s between Eq. (4) and the Markov
model of [10]

Rei (t)|
(27)⇒µm

(23)⇒λm
term of SoC/FMER (shown in the 1st column,

2nd row of Table II) becomes Rdi |
(28)⇒µs

(23)⇒λm
for the case of

SoC/Scrub (shown in the 2ndcolumn, 2nd row of Table II).

H. Recovery technique: Impact on SoC energy consumption

This subsection estimates the energy consumption of each
SoC implementation, depending upon which ER technique is
used and the mission’s length (T).

Denoting with EF the energy required to reconfigure one
CF in the device, then the energy consumption of SoC/Scrub
is:

EScrub =
T

FDtF + w
FDEF , (31)

i.e. the first term, (T
FDtF+w), denotes the number of executed

scrub cycles during the mission and the second term, (FDEF),
denotes the energy consumption of a scrub cycle.

Similarly, the energy consumption of SoC/MER is:

EMER = 3λmT FMEf , (32)

i.e. the first term, (3λmT), represents the expected number
of TMR module failures during the mission, while the energy
needed to recover a faulty TMR module is given by the second
term of the equation, (FMEf).

The energy consumption of SoC/FMER can be calculated as
follows. The RC of the SoC recovers the F1 CFs (that imple-
ment the TMR modules) with MER for TMER = 3λmT FM tF
time of the mission. Thus, for the rest of the mission, TScrub =
T−TMER = T (1−3λm FM tF) the RC is either scrubbing the
F2 CFs of the SRs or is waiting between scrub cycles. Thus,
the energy consumption of SoC/FMER for a mission time T
is:

EFMER = EMER + EScrub

= 3λmT FMEF +
T (1− 3λm FM tF)

(1− f)FDtF + w
(1− f)FDEF ,

(33)

where (1− f)FD denotes the F2 portion of the device’s CFs
that is scrubbed periodically.

I. Assumptions

The reliability and availability functions in this section were
derived given the following assumptions. Failures in the SoC
follow a Poison distribution, while Eqns. (4) and (5) hold if

all K+L components fail and recover independently in the
SoC. The assumption of independent failures between the
SoC’s components holds when appropriate design techniques
are followed during the implementation of the system. For
example, the authors in [13] developed CAD tools that place
and route a TMR-based design in a Xilinx FPGA in a way
that eliminates the probability of having more than one TMR
module failure from a single CM upset. Similar commercial
CAD tools that isolate failures between the modules of a SoC
are provided in the Xilinx Isolation Design Flow [38].

Additionally, the assumption of independent recovery be-
tween the SoC’s components holds when the system is com-
pletely scrubbed, since a complete reconfiguration of the
FPGA is equivalent to having a dedicated repair facility for
each TMR module or SR in the SoC, which requires µ−1s
time to recover it. Therefore, the recovery process between all
components in the SoC/Scrub is independent. For instance, the
authors in [10] used a Markov-chain model, rather than Eq.(4)
to calculate the reliability of a TMR-based design. We have
found that Eq.(4) yields the same results as the Markov model
given in [10] despite being considerably more straightforward
to evaluate. This can be seen in Fig. 3, where we plot the
reliability of the system for K = 20, λdevice = 0.1 SEUs/dev/s
(λm = λdevice/3K) and recovery rate µs = 10λdevice, by using
Eq.(4) and the Markov model of [10]. On the other hand, when
the SoC incorporates MER an independent reconfiguration
process (recovery) for every faulty module holds as long as
the repair rate of the module is much larger than its failure
rate, µm � λm, i.e. when the probability of executing a
recovery process in a faulty TMR component, while another
TMR component requires repair is negligible [37]. In practice,
this is usually the case, since the rate at which modules fail
and recover in a TMR-based SoC that incorporates MER is
on the order of hours and ms respectively [27].

IV. ANALYTICAL RESULTS

This section explores and compares the reliability, availabil-
ity and energy consumption of the four SoC implementations
presented in Section III, namely SoC/FMER, SoC/Scrub,
SoC/MER and SoC/NR. We recall and summarize the most
relevant parameters that are frequently used in this section:
• K ∈ N+: number of TMR components in the SoC.
• f ∈ [0, 1]: the fraction of device CFs devoted to the 3K

TMR modules. All CFs are devoted to the SRs when f
= 0.

• w ∈ R+ ∪ {0}: waiting time between scrub cycles given
in seconds (s).

• λb ∈ R+: upset rate of a configuration bit given in
SEUs/bit/s.

• T ∈ R+ denotes the mission duration given in hours (hrs)
or years (yrs).

We assume that each SoC is implemented on a Xilinx
Artix-7 200T FPGA, which has the following specifications:
FD = 18,300 CFs, BF = 3,232 bits and tF = 1.01E-6 s con-
sidering the maximum configuration speed of the FPGA. We
feel that the following base parameters of the model depicted
in Fig. 1(b) captures a realistic FPGA-based SoC design

9

FMER Scrub MER NR

0 6 12 18 24

0.0

0.2

0.4

0.6

0.8

1.0

t [hrs]

R
(t
)

(a) R(t) for t ∈ [0,24] hrs

FMER Scrub (FMER-Scrub)

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

t [yrs]

R
(t
)

(b) R(t) for t ∈ [0,15] yrs

FMER Scrub

1.×10-15 1.×10-10
0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

λbit[SEU/s]

R
(T
)

(c) R(T) for λb ∈ [E-15,E-10], T = 5 yrs

(FMER-Scrub)

(d) ΔR(T) for λb ∈ [E-12,E-10], T = 15 yrs

FMER Scrub

(e) R(T) for w ∈ [0,30], λb ∈ [E-12,E-10]m, T = 5 yrs

FMER Scrub MER NR

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

h

R
(T
)

(f) R(T) for h ∈ [0,1], λb=3.76E-14, T = 5 yrs

FMER Scrub

0 10 20 30 40 50

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

K

R
(T
)

(g) R(T) for K ∈ [1,50], T = 5 yrs

FMER Scrub MER

0.00 0.05 0.10 0.15 0.20
0.999975

0.999980

0.999985

0.999990

0.999995

1.000000

t[s]

A
(t
)

(h) A(t) for t ∈ [0,0.2] s, λb=2.66E-7

FMER Scrub

(i) A for h ∈ [0,1], US ∈ [0,1]

FMER Scrub

0 10 20 30 40 50 60
0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1.0000

w[s]

A

(j) A for w ∈ [0,60]

FMER Scrub

(k) E(T) for w ∈ [0,60], f ∈ [0,1], T = 5 yrs

FMER Scrub MER

1 2 3 4 5 6 7 8 9 10
1

10

100

1000

104
105
106

K

E
(T
)[
J]

(l) E(T) for K ∈ [1,10], w = 15, T = 5 yrs

Fig. 4. Reliability, Availability and Energy Consumption Results

that operates in a relatively high radiation environment; λb
= 2.66E-11 SEU/bit/s, w = 0 s, f = 0.6, g = 1.0, h = 1.0,
AVF = 0.15, US = 0.1, UM = UC = 0.8, K = 5 and T = 5
yrs. However, we explore all possible values of the model’s
parameters, i.e. we vary λb, w,K, etc. We explore the SoC’s
model from LEO up to GEO radiation levels, λb ∈ [3.76E-14,
2.66E-10], which were estimated in Subsection III-B.

The reliability, availability and energy consumption results
are captured on the y-axis of 2D and 3D plots in Fig. 4, while
the other dimensions are devoted to the model parameters. All
plots use the mentioned default values unless otherwise stated.
We report energy consumption in Joules (J) and assume that
the RC requires on average Ef = 535E-9 J to reconfigure
a CF [24]. Although, the authors of [24] conducted their
measurements on a Xilinx Virtex-5 FPGA rather than on the
utilized Artix-7 FPGA of this work, the assumed Ef does not
change the shape of the provided energy results.

A. Reliability Results

Fig. 4(a) shows the reliability of all SoCs for a 24-hour
mission (T = 24 hrs); as expected SoC/MER is considerably
less reliable than SoC/FMER and SoC/Scrub because errors in
the SRs are not recovered, while SoC/NR is the least reliable of
all implementations since no ER technique is incorporated into
the system. On the other hand, SoC/FMER and SoC/Scrub are
the only survivors after 24 hrs of operation and have negligible
difference in reliability ∆R(T) ≈ 43E-6. However, for a longer

mission the reliability of SoC/FMER is interestingly higher
than that of SoC/Scrub. For example, Fig. 4(b) shows the
reliability of SoC/FMER and SoC/Scrub, and their difference
in reliability (FMER-Scrub) for a 15-year mission, at the end
of which SoC/FMER has R(15 yrs) ≈ 0.94, much higher than
SoC/Scrub, which has R(15 yrs) ≈ 0.47.

Nevertheless, when the upset rate λb of the SoC’s CM
decreases, the reliability of SoC/Scrub becomes similar to that
of SoC/FMER. For example, Fig. 4(c) shows the reliability at T
= 5 yrs and λb ∈ [E-15, E-10]. When the CM upset rate is low,
SoC/FMER and SoC/Scrub both achieve high reliability since
TMR error masking at low CM upset rates allows plenty of
time for recovery, i.e. µ of scrubbing is adequate to reduce the
probability of having more than one faulty module per TMR
component to a negligible level. This can be observed in Fig.
4(c) when λb ∈ [E-15, E-13] — the reliability of SoC/FMER
and SoC/Scrub at the International Space Station (ISS) orbit
at the lower end of this range.

Additionally, the 3D plot of Fig. 4(d) shows the difference
in reliability ∆R(T) between SoC/FMER and SoC/Scrub for
T ∈ [1, 15] yrs and λb ∈ [E-12, E-10]. The figure shows that
∆R(T)→ 0 as λb → 0. These results indicate that SoC/FMER
achieves substantially better reliability than SoC/Scub, par-
ticularly in higher radiation environments or as the mission
time increases. Moreover, FMER should be considered in
missions with a tight energy budget, i.e. w in SoC/FMER
can be increased to a level so that it achieves the same

10

reliability as SoC/Scrub does, but by consuming less energy.
For example, Fig. 4(e) shows the reliability of a mission with
λb ∈ [E-12, E-10] and w ∈ [0,30] s. The figure reveals that
the reliability of SoC/Scrub is affected more than the reliability
of SoC/FMER as w increases. The reason for this is that with
blind scrubbing alone the system is completely scrubbed, while
with FMER only a portion of the device is scrubbed, i.e. only
the F2 CFs are scrubbed. Therefore, w can be longer in the
case of FMER and still recover errors more effectively than
scrubbing the whole device. Moreover, SoC/FMER achieves
the reliability of SoC/Scrub with less frequent scrub cycles and
is thus able to reduce its energy consumption. For instance,
in Fig. 4(e) we observed that both SoC/FMER and SoC/Scrub
have R(5 yrs) ≈ 0.992 when λb = E-11 and when w is 30 s
for SoC/FMER and 0.198 s for SoC/Scrub respectively. Using
Eqs. (31) and (33) it is calculated that SoC/Scrub consumes
347 times more energy than SoC/FMER (EFMER ≈ 20,297 J,
EScrub ≈ 7.03E6 J) during the mission, in order to achieve
the same reliability as SoC/FMER does.

However, the above results only hold when the SoC is
fully triplicated, i.e. when g, h = 1. As shown in Fig. 4(f),
the reliability of all SoCs is dramatically reduced, even in
low radiation orbits (λb = 3.76E-14), when the proportion of
simplex components increases in the a1,2,3 sub-systems, i.e.
when h → 0. Note that similar results are observed when
simplex a4 sub-systems are included in the SoC, i.e. when
g → 0. In more detail, the reliability of the SoC is reduced
due to the unreliability of any included simplex resources. For
example, assume a fully triplicated SoC that has RSoC(1 yr) =
0.9999. If an additional simplex component with RSimplex(1 yr)
= 0.5 is included in the design, then the overall reliability of the
SoC will be RSoC(1 yr) = 0.9999 × 0.5 ≈ 0.5 ≈ RSimplex(1 yr).

Nevertheless, when the SoC is fully triplicated, i.e. when
g, h = 1, then the reliability of the system can be increased by
partitioning the design at a finer granularity (K →∞), e.g. by
triplicating every stage of a processor rather than the processor
as a whole. Firstly, as K increases, the number of TMR
modules in the system increase and the likelihood of multiple
errors affecting the one component is reduced. Moreover, the
average number of CFs per TMR module decreases, and thus
the overall MTTR in SoC/FMER (not in SoC/Scrub) decreases
since less CFs have to be reconfigured per faulty TMR module
with MER according to Eq. (3). The improvement in reliability
as K increases is captured in Fig. 4(g), which depicts the
reliability of SoC/FMER and SoC/Scrub for K ∈ [1,50]. As
can be observed the reliability of SoC/FMER improves faster
than SoC/Scrub as K increases.

B. Availability Results

Achieving high availability in an FPGA-based SoC is easier
than achieving high reliability. The ratio between the CM upset
rate and ER rate in modern SRAM-based FPGAs makes them
attractive SoC candidates for high-availability space missions
[3].

For example, Fig. 4(h) depicts the transition to steady
state availability of SoC/FMER, SoC/Scrub and SoC/MER
for an extremely high CM upset rate, λb = 1,000× 2.66E-10

(1,000x the Peak-5-Min GEO λb), which is more likely to be
encountered in high-energy physics experiments [39] than in
space. As can be observed, even with this extremely high λb
the steady state availability of SoC/Scrub is 4 nines, while
the steady state availability for SoC/FMER is much higher. In
contrast, the availability of SoC/MER does not reach a steady
state since the SRs never recover when MER alone is applied
to the SoC.

Nevertheless, SoC/FMER and SoC/Scrub achieve high
availability even when h → 0 and US = 1, i.e. when the
SRs are not fully triplicated and are highly utilized. This is
shown in Fig. 4(i) where in the worst case (h = 0, US = 1),
the steady state availability of SoC/FMER and SoC/Scrub is
0.999997 and 0.999991 respectively. However, FMER can be
used to achieve high availability with less energy consumption
than when scrubbing alone is used. Fig. 4(j) shows the steady
state availability of SoC/FMER and SoC/Scrub as w is varied.
SoC/FMER achieves 5 nines availability when w = 60 s, while
SoC/Scrub approximately 3 nines for the same w, however
EFMER ≈ 10,163 J, while EScrub ≈ 25,369 J, i.e. SoC/FMER
achieves higher availability than SoC/Scrub with 2.5 times less
energy. Note that similar results are obtained when the SoC
incorporates simplex a4 sub-systems, i.e. when g → 0.

C. Energy Consumption Results

We found that SoC/FMER and SoC/Scrub energy consump-
tion decreases geometrically as w increases. Fig. 4(k) illus-
trates the energy consumption for both systems in logarithmic
scale for w ∈ [0,60], f ∈ [0,1]. We observe that EFMER is
always less than EScrub for equal values of w and for f >
0. When f = 0 in SoC/FMER then the system is completely
scrubbed, thus EFMER = EScrub. Additionally, as K increases,
the energy consumption of SoC/MER decreases. This is true
because the system is partitioned at finer granularity which
means faulty TMR modules can be localized and corrected
more precisely as K increases, thus the RC reconfigures
less CFs per fault. This is shown in Fig. 4(l), in which we
plot the energy consumption of SoC/FMER, SoC/Scrub and
SoC/MER against a logarithmic energy scale for K ∈ [1,10]
and w = 1 s. We observe that EMER decreases as K in
SoC/MER increases. In the case of SoC/FMER the energy
consumption that is expended in repairing TMR modules is
negligible compared to the energy consumed scrubbing the
SRs. Therefore, K does not significantly affect the overall
energy consumption of SoC/FMER. Furthermore, the energy
consumption of SoC/Scrub is not affected at all as K varies,
since µ depends on FD and not on FM . Last, we observe that
EMER is less than EFMER and EScrub since SoC/MER does not
involve periodic scrubbing as it only reconfigures the CFs of
faulty TMR modules when error are detected.

V. IMPLEMENTATION OF FMER

FMER can be implemented with any internal or external RC
that is able to reliably configure the CM of the FPGA with
CFs located in an external memory. In principle, FMER can
be realized by: (i) constraining the placement of modules to
specific regions of the FPGA, which are referred to as Pblocks

11

in this work, and (ii) generating lists of frame addresses
(FADs) for each Pblock and for the SRs of the design, so that
the CFs of the SR FAD list are periodically scrubbed, and the
CFs of any corrupted Pblock are reconfigured on-demand. In
order to generate the lists of FADs for the Pblocks and SRs
we execute the following steps: (i) generate a FAD list for the
whole device, (ii) generate a FAD list for each Pblock, and
(iii) create a FAD list for the SRs by subtracting the Pblock
FAD lists from the device FAD list.

A. Generating FAD lists and CFDATA

To the best of our knowledge, two methodologies have been
described in the literature to create a FAD list for a Xilinx
device. One way is to extract the FAD from the bitstream
with custom bitstream manipulation tools [17], [40], which
can be implemented using academic CAD frameworks such as
Rapidsmith [41]. However, to use this method, the bitstream
has to have a format in which the FAD for each CF in
the bitstream can be associated with its configuration data
(CFDATA). This bitstream format can be obtained from the
Xilinx Vivado design suite by enabling the CRC-per-frame
flag or the debug flag during its generation. Another way to
generate the FAD list for the device is to readback the CM
of the FPGA and capture the Frame Address Register (FAR)
as it auto-increments [42]. We used the first method to extract
the FAD list for the device from its bitstream and the FAD
list for each Pblock from its partial bitstream.

The CFDATA for each FAD is obtained from Vivado’s .ebc
file. This file is generated from Vivado when the essential
bits flag is enabled during bitstream generation. The .ebc file
contains the CFDATA, in ASCII representation, as obtained
from reading back the CM of the device [42], [28]. The
.ebc file is converted into binary form and is stored in the
external memory of an SoC, together with the FAD lists and
the bitstream of the design. The device is initially configured
with a complete bitstream, and while it is in operation, CM
upsets recover with CFDATA from the .ebc file. The same
.ebc file can also be used to recover CFs using blind scrub-
bing or MER. For example, the Xilinx Soft Error Mitigation
(SEM) controller utilizes this file to implement read-back CM
scrubbing [43].

VI. PRACTICALITY AND APPLICABILITY OF FMER

In order to demonstrate the practicality and applicability
of FMER in real-world, fault-tolerant SoCs, we implemented
TMR versions of various High-Level Synthesis (HLS) appli-
cations on a Nexys Video board, which hosts a Xilinx Artix-7
XC7A200T FPGA. We tested each design with all three error
recovery methods – blind scrubbing, MER and FMER – and
all ER techniques were implemented using the internal TMR
RC presented in [44]. The reliability, availability and power
consumption of the three techniques were compared for a 2-
year LEO mission.

The following subsections provide a description of the SoC
implementations and outline how we derived the dependability
and energy consumed during error recovery for each technique.
Experimental results are presented at the end of the section.

A. Benchmarks and implementation of the SoCs

We implemented a range of different SoCs with applications
from the CHStone, DWARV and Bambu HLS benchmark
suites [45], [46] that fit onto the XC7A200T device when
triplicated. These benchmarks come from various application
domains, such as communications, encryption, compression,
arithmetic, compute and media.

We used the TLegUp HLS tool [47] to generate TMR
Register-Transfer Level (RTL) Verilog code for each applica-
tion. Each triplicated HLS application consists of 3 modules
(i.e. the 3 replicas of the TMR application), while each module
incorporates a 3-bit health status port to report which modules
of the TMR design, if any, are corrupted. Additionally, each
HLS application includes three 1-bit input ports: clock, reset
and start, as well as three output ports: finish (1-bit) and result
(32-bit). Test vectors for each application are provided by the
benchmark suite and are stored on chip to perform functional
verification during their operation.

The RC of [44] was used to implement each error recovery
technique and to control the ports of the application in order to
verify its operation. All designs were synthesized, floorplanned
[48] and implemented with Vivado 2017.2.

All three modules of the triplicated RC were placed into
one Pblock, which was located in one of the ten available
clock regions of the device. The three modules of the RC were
placed in a single Pblock because the authors in [44] found
that the RC achieves higher performance and reliability with
this arrangement. The remaining resources of the device were
used to create three further Pblocks, with each one hosting a
module of the triplicated application.

B. Utilized configuration frames, essential bits and resources

With the essential bits flag enabled, Vivado generates a mask
for the .ebc file, which is called an .ebd file or essential bits
(Ebits) file. This “mask” indicates which bits in the CM may
produce a functional error when upset [43], [40], [17]. We
analyzed the .ebd file with custom tools [40] implemented
using the Rapidsmith CAD framework [49] in order to count
the Ebits in each Pblock and the SRs of each SoC. The number
of Ebits and CFs of the Pblocks and SRs were used to estimate
the dependability and energy consumption of each SoC. Note
that the number of CFs of each Pblock and the SRs is equal
to their FAD list size.

The CFs, Ebits and resource utilization of each SoC are
listed in Table III. The sub-columns f and 1−f under the FD
column denote the fractions fFD and (1−f)FD of the device’s
CM devoted to the Pblocks (including the RC Pblock) and the
SRs respectively. Columns 2-4 of the table report the number
of CFs and Ebits of the 1st, 2nd, and 3rd HLS application
Pblocks (PBs), respectively, while column 4 shows the same
information for the SRs of each SoC. The Ebits of the SRs are
further divided into bits located in the configuration (Cfg), IO
Block (IOB) and clock (Clk) resource frames of the device.
Note that bits for the ICAP are included under the Cfg column.
The bits allocated to the remaining resource frames of the SRs
are shown in the “Rem” field of the table. These configuration
bits realize the routing of the triplicated nets between the

12

TABLE III
NUMBER OF CFS, ESSENTIAL BITS (EBIT) AND RESOURCE UTILIZATION OF THE PBLOCKS AND SRS FOR EACH SOC

SoC
FD 1st HLS PB 2nd HLS PB 3rd HLS PB Support Resources (SRs) Resource Util.

f 1-f CFs Ebit(K) CFs Ebit(K) CFs Ebit(K) CFs Ebit(K) Slice BM DSPCfg IOB Clk Rem. Total (K)

aes 0.23 0.77 1,052 942.80 1,052 1094.72 1,052 949.49 14,122 1.52 0.35 38.77 15.19 55.83 3.88 12 0
aesdec 0.24 0.76 1,124 913.08 1,124 1079.09 1,124 910.81 13,906 1.55 0.35 20.00 19.93 41.83 3.49 12 0
bell 0.14 0.86 344 332.81 600 332.78 600 390.31 15,734 1.70 0.34 4.12 32.07 38.23 0.94 6 0
dfadd 0.23 0.77 1,032 728.43 1,032 730.14 1,032 751.34 14,182 1.69 0.34 17.92 9.39 29.35 5.94 18 0
dfmul 0.19 0.81 924 550.72 924 522.96 580 507.91 14,850 1.44 0.34 16.51 7.37 25.65 4.14 18 48
gsm 0.31 0.69 1,920 1446.63 1,200 1438.75 1,560 1377.18 12,598 1.50 0.34 33.18 223.81 258.83 5.93 21 177
mips 0.12 0.88 380 440.28 408 431.20 380 478.11 16,110 3.58 0.36 12.35 2.13 18.42 1.89 12 12
mmult 0.09 0.91 236 157.88 236 181.71 236 143.88 16,570 1.44 0.34 10.59 11.33 23.71 0.54 12 15
motion 0.43 0.57 2,280 2900.22 2,316 2868.96 2,280 3252.83 10,402 1.70 1.59 55.13 58.02 116.43 7.64 23 0
satd 0.16 0.84 416 354.50 708 384.65 708 364.26 15,446 1.62 0.34 4.10 12.52 18.58 1.73 12 0
sha 0.30 0.70 1,484 1803.28 1,484 1802.68 1,484 2238.30 12,826 1.63 2.06 10.55 56.67 70.92 6.79 30 0

GMean 0.20 0.77 807 705.13 860 734.69 838 732.07 14,138 1.78 0.64 18.44 19.44 43.89 2.99 15 35

Pblocks of the SoC. Column 6 provides the post-routing
resource utilization of each HLS design in terms of number of
slices, BRAM16 (BM) and DSP48 (DSP), in order to show the
relationship between utilized CFs and resources, respectively.
The bottom row of the table provides the geometric mean
(GMean) of the experimental results. Information for the RC
is excluded from the table, since the same RC is instantiated
in all SoCs; the RC is realized with 1062 CFs and 1476.51K
Ebits, as averaged over all SoC implementations. Note that
the numbers of Ebits for the RC change slightly between each
case study due to the heuristic nature of the algorithms used
in the CAD tools.

The SoC with the largest fraction of CM devoted to Pblocks
is motion, with f = 0.43, while the smallest is mmult, with
f = 0.09. Motion utilizes 14 times more slices than mmult,
which is also reflected in the considerably higher number of
Ebits for this design. All SoCs have on average f = 0.20. The
analytical results of section IV showed that FMER achieves
higher dependability with less energy consumption as f →
1. Therefore, the benefits of FMER would have been more
pronounced if the SoCs had greater f .

C. Dependability and energy consumption
In the following, we outline the derivation of the dependabil-

ity and energy consumption for each error recovery technique.
The SoCs include three simplex subsystems, namely the

ICAP, the clock (i.e. clock buffers, clock manager etc.) and IO
(i.e. clock input pin) subsystems, that are implemented with
the Cfg, IOB and Clk Ebits of Table III, respectively. The SoCs
also include three TMR subsystems: (i) the HLS application,
which is implemented with the 1st, 2nd and 3rd HLS PB Ebits
of Table III, (ii) the RC, which is implemented with 1476.51K
Ebits, and (iii) the interconnection nets between the modules
of the application and the RC, which are implemented with
Rem. Ebits of Table III.

1) Reliability of the SoCs: The reliability of the simplex
SR subsystems in each SoC is:

Rsimplex(t) = Rcfg(t)×RIOB(t)×Rclk(t), (34)

where Rcfg(t), RIOB(t), and Rclk(t) are the reliabilities of
each of the simplex subsystems, and the reliability of each

subsystem is given by Eq. (7). The Ebits of each subsystem
(i.e. Cfg., IOB and Clk in Table III) multiplied by the failure
rate of a configuration bit, λb, gives its failure rate, λm, which
is then used in Eq. (7).

The reliability of the TMR subsystems in each SoC is:

RTMR(t) = Rapp(t)×RRC(t)×Rinet(t), (35)

where Rapp(t), RRC(t) and Rinet(t) is the reliability of the
application, RC, and the triplicated interconnection nets be-
tween them, respectively, and the reliability of each subsystem
is given by Eq. (10), except for SoC/MER, where Rinet(t) is
given by Eq. (9).

The average Ebits of the 1st, 2nd and 3rd Pblock of Table
III are used to calculate the average failure rate, λm, of each
module in the HLS application. On the other hand, all three
modules of the TMR RC are placed in one Pblock, which
is implemented with 1476.51K Ebits. Therefore, the average
failure rate per RC module is 1476.51K

3 λb upsets/s. Similarly,
the average failure rate of 1/3 of the triplicated interconnection
nets, which are modelled as belonging to one module in our
dependability analysis, is Rem.

3 λb upsets/s.
The average recovery rate, µs, for all TMR subsystems in

SoC/Scrub is given by the reciprocal of Eq. (2). In SoC/MER
and SoC/FMER, the average number of CFs of the three
Pblocks of the HLS application is used in the reciprocal of
Eq. (3) to calculate the recovery rate, µm, of each module of
the HLS application.

In contrast, all three modules of the RC are reconfigured
whenever any module fails, since all RC modules have been
placed into a single Pblock. The recovery rate for the RC is
calculated by the reciprocal of Eq. (3), with Fm = 1062 CFs,
i.e. the total number of CFs for the RC Pblock.

According to Eq. (29), the total reliability of SoC/Scrub,
SoC/MER and SoC/FMER is:

R(t) = Rsimplex(t)×RTMR(t), (36)

where Rsimplex(t) and RTMR(t) are the corresponding reliabil-
ities of the simplex and TMR subsystems of each SoC.

13

2) Availability of the SoCs: Similar to the Xilinx SEM
controller [43], the RC outputs a heartbeat that stops when
a fatal failure in the SoC occurs. Fatal failures may occur
in the RC when one or more simplex SR subsystems fail or
when two or more modules of the RC fail. For example, the
heartbeat will stop when a clock resource, the ICAP or the
clock input pin of the SoC fails. Fatal failures are recovered
by a complete reconfiguration of the FPGA. On average it
takes half the period of the heartbeat (THB), plus the latency
of a complete reconfiguration of the FPGA (Treconfig.) to detect
a heartbeat stop and to recover the SoC:

Tfatal-recovery =
THB

2
+ Treconfig. (37)

Therefore, the availability of the simplex subsystems of all
SoCs is:

Asimplex(t) = Acfg(t)×AIOB(t)×Aclk(t), (38)

where Acfg(t), AIOB(t), and Aclk(t) are given by Eq. (8) and
µm = (Tfatal-recovery)−1.

Similarly, the availability of the triplicated subsystems in
each SoCs is:

ATMR(t) = Aapp(t)×ARC(t)×Ainet(t), (39)

where Aapp(t) and Ainet(t) are given by Eq. (11) for
SoC/Scrub, and Eq. (12) for SoC/FMER. In SoC/MER,
Aapp(t) and Ainet(t) are given by Eqs. (12) and (9), respec-
tively. Lastly, ARC(t) in SoC/Scrub is calculated by adding the
probability distributions pS0 and pS1 in the Markov model of
Fig.2 (d), when µ1 = µs, i.e. the scrub rate of the device, and
µ2 = (Tfatal-recovery)−1, i.e. the rate at which the device recovers
from a stopped heartbeat. Similarly, ARC(t) in SoC/MER and
SoC/FMER is calculated by adding pS0 and pS1 of the same
Markov model, where µ1 = (1062 ×tF)−1, i.e. the recovery
rate of the RC Pblock, and µ2 = (Tfatal-recovery)−1.

The total availability of each SoC is the product of their
simplex and TMR subsystem availabilities:

A(t) = Asimplex(t)×ATMR(t) (40)

3) Energy consumption of CM ER in the SoCs: The CM
ER energy consumption of SoC/Scrub is given by Eq. (31),
while for SoC/MER it is:

E = EHLS-app + ERC, (41)

where both EHLS-app and ERC are given by Eq. (32). However,
FM in the ERC part is equal to 1062 CFs.

The energy consumption of SoC/FMER is given by Eq. (33),
except for TMER, which is derived as follows. The RC and
the modules of the HLS application in these SoCs recover
with MER for TMER = THLSapp + TRC time of the mission.
Both THLSapp and TRC are equal to 3λmTFM tF , however in
TRC, 3λm and FM are substituted with 1,476.51K and 1062,
respectively.

4) Calculation of “w” in SoC/Scrub and SoC/FMER:
Xilinx suggests scrubbing at a rate at least 10 times faster than
the expected CM upset rate[50]. Therefore, the scrub rate, µs,
of SoC/Scrub should be:

µs = kλD, k > 10 (42)

where λD is as in Eq. (22) and k determines how many times
faster to scrub than the CM upset rate. By setting µs equal to
the reciprocal of Eq. (2) in Eq. (42) we get:(FD

2
× tF + w)−1 = kλD (43)

Solving for w in Eq. (43) sets:

w =
1

kλD
− FDtF

2
, (44)

such that the scrubbing rate is k times higher than the CM
upset rate. Values for w in SoC/FMER were also calculated
with Eqs. (22) and (44), but by substituting FD with the
number of CFs for the SRs.

D. Experimental Results

The reliability, availability and energy consumption of all
SoCs were calculated with the following parameters: (i) T
= 2 years, i.e. the mission time, (ii) λb = 1.10E-13, i.e. the
configuration bit upset rate of the worst day value for LEO
from Table I, (iii) tF = 16.56 us, i.e. the time required for
the RC to read a CF from the external SPI flash of the Nexys
Video board and to write it to the CM of the FPGA, (iv) THB
= 100 ms, i.e. the RC heartbeat period, (v) Treconfig. = 400ms,
i.e. the time the device takes to download the bitstream of a
design into its CM, and (vi) k = 100, i.e. the scrub rate was
set to 100 times the CM upset rate.

TABLE IV
R(T), A(T) AND ENERGY CONSUMPTION FOR A 2-YEAR LEO MISSION

SoC
R(T) A(T) [# of 9s] E [Joules]

Any Srub MER FMER Scrub MER FMER

aes 0.76 8.67 2.47 8.70 396 0.017 236
aesdec 0.86 8.92 2.24 8.96 396 0.018 229
bell 0.96 9.49 1.85 9.52 396 0.008 293
dfadd 0.87 8.98 2.88 9.01 396 0.014 238
dfmul 0.88 9.02 3.08 9.04 396 0.010 261
gsm 0.79 8.71 0.45 8.76 396 0.030 188
mips 0.91 9.13 3.59 9.15 396 0.008 307
mmult 0.92 9.21 2.72 9.21 396 0.006 325
motion 0.67 8.41 1.37 8.54 396 0.081 128
satd 0.96 9.49 2.63 9.52 396 0.008 282
sha 0.91 8.94 1.39 9.15 396 0.037 195

Gmean 0.86 8.99 2.00 9.05 396 0.015 237

Table IV provides the reliability, R(T), availability, A(T), in
number of nines [8] and energy consumption, E, in Joules for
all SoCs. It is important to note that SoC/Scrub, SoC/MER and
SoC/FMER have equal R(T). Our experimental and analytical
results show that Rsimplex(T) in Eq. (36) determines the total
R(T) of the SoC. For example, the Rsimplex(T) and RTMR(T)
of aes SoC/Scrub in Table IV is 0.76 and 0.99 respectively.

14

By substituting these values into Eq. (36) we obtain the total
R(T) of the SoC, i.e. R(T) = 0.76 × 0.99 = 0.75 ≈ Rsimplex(T).
The satd and motion applications use the lowest and highest
number of Ebits respectively for the implementation of their
simplex SRs (Total - Rem. in Table III); this is reflected in
their reliability, where R(T) = 0.96 for satd and R(T) = 0.67
for motion. All SoCs achieve on average R(T) = 0.86.

Further, all SoC/Scrub and SoC/FMER designs achieve
more than 8 nines A(T). SoC/FMER has on average a slightly
higher A(T) than SoC/Scrub, because the TMR subsystems
of the SoC recover faster with FMER. In fact, the A(T) of
SoC/FMER would have been much greater than SoC/Scrub
if the designs where fully triplicated; the availability of the
SoCs is mostly determined by the availability of their simplex
subsystems, not by their triplicated subsystems, whereby their
reliability depends significantly on the error recovery tech-
nique used. On average, SoC/MER has approximately 7 nines
less A(T) than SoC/Scrub and SoC/FMER, since the triplicated
interconnection nets between the Pblocks are not recovered
from SEUs. In the long term, the availability of SoC/MER
becomes zero when T →∞, except if a heartbeat is included
in the application to trigger a reconfiguration of the device
when the interconnection nets between the Pblocks of the SoC
fail.

The energy consumption of SoC/Scrub depends only on the
FPGA used, i.e. it depends on FD and λD, which determines
µs. Therefore, SoC/Scrub requires 396 Joules to recover CM
upsets for the 2-year LEO mission. In contrast, the energy
used to recover with SoC/MER and SoC/FMER depends on
the device and on the circuit design, since the Ebits of each
Pblock determines how often a fault in the Pblock will trigger
its reconfiguration. SoC/MER and SoC/FMER will have con-
sumed, respectively, 19,812 and 1.68 times less energy than
SoC/Scrub during the 2-year mission. Of all SoCs, mmult and
motion SoCs have the lowest and highest f . This is reflected in
the energy consumed recovering from SEUs, where mmult and
motion SoC/MER have the lowest and highest consumption,
respectively. On the other hand, motion SoC/FMER consumes
the lowest amount of energy to recover from CM upsets of
those applications studied, since f is large and not many CFs
of the SRs have to be recovered with periodic scrubbing.

VII. RELATED WORK

A number of authors have proposed novel techniques for
recovering soft-errors in the CM of SRAM FPGAs [20], [2].
Both blind and readback and compare scrubbing were first
introduced in [51]. The latter recovery technique involves the
readback and comparison of the FPGA’s CFs with golden
CFs stored in external memory, in order to detect and re-
write only corrupted CFs. Xilinx embedded Error Correction
Codes (ECC) in each CF from Virtex-5 FPGAs onwards in
order to reduce the need for external memory to perform CM
error recovery. Xilinx also added hardwired logic for reading
the FPGA’s CFs and applying SECDED combined with CRC
mechanisms to correct and detect single- and multi-bit CM
upsets, respectively [28]. However, demand for faster and more
energy-efficient CM error recovery techniques led to a number

of interesting proposals, some of which are described in the
following paragraph.

Sari et al. [17] reduces both the time and energy expended
to recover CM errors by placing the design in a highly utilized
Pblock, in order to gather the design’s Ebits into a small chip
area, and scrub only the CFs that contain at least one Ebit,
also called essential CFs (ECFs). The authors in [52] use a
deadline-aware scrubbing scheme which dynamically chooses
the frame to commence scrubbing with in real-time FPGA
systems so as to reduce the number of missed deadlines. Tonfat
et al. [24] introduced a customized design flow that places
and routes the three modules of a TMR design in a way
that all modules have identical CFDATA and MBUs can be
corrected by using information from the TMR scheme. A novel
technique that uses a lightweight error detection code and
erasure codes to detect and correct MBUs in CFs, respectively,
is presented in [53]. Bolchini et al. [18] investigated how the
number of partitions and the location of inserted voters affect
the size and recovery time of modules in a TMR design that
incorporates MER. Cetin et al. [16] proposed a scalable token-
ring network to transfer to a RC the health status from the
modules of TMR designs that incorporate MER. A follow up
paper [27] showed that the most reliable and scalable solution
for the implementation of such a network is to use the ICAP
to readback CFs containing the health status of these modules.

Our work considers the advantages of scrubbing and MER
and proposes FMER as a way to reliably and efficiently
recover CM errors in SRAM FPGA SoCs of current and future
space missions.

VIII. CONCLUSIONS AND FUTURE WORK

In summary, this work proposes FMER, an energy efficient
error recovery (ER) technique that targets TMR-based FPGA
SoC designs. To demonstrate the efficacy of this method
the reliability, availability and energy consumption of imple-
mentations that incorporate either FMER, blind scrubbing,
MER or no recovery were modelled and compared. It was
shown that MER was the most energy efficient recovery
technique. However, it has the lowest configuration memory
(CM) fault coverage compared with FMER or scrubbing alone,
since with MER errors in the support resources (SRs) are
not recovered. Moreover, it was shown that in SoC/Scrub
unnecessary energy is wasted refreshing the contents of the
FPGA’s CM even when it is not corrupted. The provided
results, demonstrate that SoC/FMER consumes less energy
than SoC/Scrub while it always achieves higher reliability and
availability than SoC/Scrub and SoC/MER, especially in high
radiation environments or on long missions.

The implementation details of FMER were presented, while
11 different TMR-based SoCs that incorporated blind scrub-
bing, MER and FMER were implemented on an Artix-7 200T
FPGA. On a 2-year LEO mission at high radiation levels, the
energy consumption of SoC/FMER was found to be on average
1.68 times less than that of SoC/Scrub, while reliability and
availability of the two techniques was almost identical.

Future work involves a more thorough analysis of the Ebits
and CFs of the SoCs, which will help us understand how

15

the essential bits are distributed in the CM of the device.
We believe that most real-life TMR-based FPGA designs do
not use many resources for the implementation of their SRs
and therefore only a small fraction of the SR CFs are used.
This suggests that the scrubbing time and energy consumption
of recovering upsets in the CM of the SRs can be further
reduced when only their essential CFs are scrubbed. However,
we believe that there would be no reason to do so in Pblocks
since they are usually highly utilized and most of their CFs
are essential.

REFERENCES

[1] Quinn, H., Graham, P., Morgan, K., Baker, Z., Caffrey, M., Smith, D.,
Wirthlin, M., and Bell, R., “Flight experience of the Xilinx Virtex-4,”
IEEE Trans. on Nuclear Science, vol. 60, no. 4, pp. 2682–2690, 2013.

[2] Siegle, F., Vladimirova, T., Ilstad, J., and Emam, O., “Mitigation of
Radiation Effects in SRAM-Based FPGAs for Space Applications,”
ACM Comput. Surv., vol. 47, no. 2, pp. 37:1–37:34, Jan. 2015.

[3] ——, “Availability analysis for satellite data processing systems based
on SRAM FPGAs,” IEEE Trans. on Aerospace and Electronic Systems,
vol. 52, no. 3, pp. 977–989, June 2016.

[4] Esposito, S., Albanese, C., Alderighi, M., Casini, F., Giganti, L.,
Esposti, M. L., Monteleone, C., and Violante, M., “COTS-Based High-
Performance Computing for Space Applications,” IEEE Trans. on Nu-
clear Science, vol. 62, no. 6, pp. 2687–2694, Dec 2015.

[5] TA 8: Science Instruments, Observatories, and Sensor Systems, 2015
NASA Technology Roadmaps, 2015.

[6] Kastensmidt, F. L., Carro, L., and da Luz Reis, R. A., Fault-tolerance
techniques for SRAM-based FPGAs. Springer, 2006, vol. 1.

[7] Quinn, H., Morgan, K., Graham, P., Baker, Z., Caffrey, M., Roussel-
Dupree, D., Howes, W., Johnson, E., Johnson, J., Krone, J. et al.,
Improving Fault Tolerance of SRAM-Based FPGAs in Harsh Radiation
Environments. CRC Press, 2015, vol. 48.

[8] Koren, I. and Krishna, C. M., Fault-tolerant systems. Morgan Kauf-
mann, 2010.

[9] Carmichael, C., Triple module redundancy design techniques for Virtex
FPGAs Application Note (XAPP197), Xilinx Inc., July 2006.

[10] McMurtrey, D., Morgan, K. S., Pratt, B., and Wirthlin, M. J., Estimating
TMR reliability on FPGAs using Markov models, unpublished, 2008.

[11] Lala, J. H. and Harper, R. E., “Architectural principles for safety-critical
real-time applications,” Proceedings of the IEEE, vol. 82, no. 1, pp. 25–
40, Jan 1994.

[12] Isolation Design Flow for Xilinx 7 Series FPGAs or Zynq-7000 AP SoCs
(Vivado Tools) Application Note (XAPP1222), Xilinx Inc., September
2016.

[13] Sterpone, L. and Violante, M., “A new reliability-oriented place and
route algorithm for SRAM-based FPGAs,” IEEE Trans. on Computers,
no. 6, pp. 732–744, 2006.

[14] Li, Y., Nelson, B., and Wirthlin, M., “Reliability Models for SEC/DED
Memory With Scrubbing in FPGA-Based Designs,” IEEE Trans. on
Nuclear Science, vol. 60, no. 4, pp. 2720–2727, Aug 2013.

[15] Martin, Q. and George, A., “Scrubbing optimization via availability
prediction (SOAP) for reconfigurable space computing,” in IEEE Conf.
on High Performance Extreme Computing (HPEC), Sept 2012, pp. 1–6.

[16] Cetin, E., Diessel, O., Gong, L., and Lai, V., “Towards bounded error
recovery time in FPGA-based TMR circuits using dynamic partial recon-
figuration,” in Int. Conf. on Field Programmable Logic and Applications
(FPL), 2013, pp. 1–4.

[17] Sari, A. and Psarakis, M., “Scrubbing-based SEU mitigation ap-
proach for Systems-on-Programmable-Chips,” in Int. Conf. on Field-
Programmable Technology (FPT), Dec 2011, pp. 1–8.

[18] Bolchini, C., Miele, A., and Santambrogio, M. D., “TMR and Partial
Dynamic Reconfiguration to mitigate SEU faults in FPGAs,” in IEEE
Int. Symp. on Defect and Fault-Tolerance in VLSI Systems (DFT), Sept
2007, pp. 87–95.

[19] Heiner, J., Sellers, B., Wirthlin, M., and Kalb, J., “FPGA partial
reconfiguration via configuration scrubbing,” in Int. Conf. on Field
Programmable Logic and Applications (FPL), 2009, pp. 99–104.

[20] Herrera-Alzu, I. and Lopez-Vallejo, M., “Design Techniques for Xil-
inx Virtex FPGA Configuration Memory Scrubbers,” IEEE Trans. on
Nuclear Science, vol. 60, no. 1, pp. 376–385, Feb 2013.

[21] Bolchini, C., Miele, A., and Sandionigi, C., “A novel design method-
ology for implementing reliability-aware systems on SRAM-based FP-
GAs,” IEEE Trans. on Computers, vol. 60, no. 12, pp. 1744–1758, Dec
2011.

[22] Cetin, E., Diessel, O., and Gong, L., “Improving Fmax of FPGA circuits
employing DPR to recover from configuration memory upsets,” in IEEE
Int. Symp. on Circuits and Systems (ISCAS), 2015, pp. 1190–1193.

[23] Johnson, J. M. and Wirthlin, M. J., “Voter insertion algorithms for FPGA
designs using triple modular redundancy,” in Field-Programmable Gate
Arrays (FPGA), 2010.

[24] Tonfat, J., Kastensmidt, F., and Reis, R., “Energy efficient frame-
level redundancy scrubbing technique for SRAM-based FPGAs,” in
NASA/ESA Conf. on Adaptive Hardware and Systems (AHS), June 2015,
pp. 1–8.

[25] Agiakatsikas, D., Cetin, E., and Diessel, O., “FMER: A hybrid configu-
ration memory error recovery scheme for highly reliable FPGA SoCs,”
in Int. Conf. on Field Programmable Logic and Applications (FPL), Aug
2016, pp. 1–4.

[26] Rollins, N. H., Hardware and Software Fault-Tolerance of Softcore
Processors Implemented in SRAM-Based FPGAs. Brigham Young
University, 2012.

[27] Agiakatsikas, D., T. H. Nguyen, N., Zhao, Z., Wu, T., Cetin, E.,
Diessel, O., and Gong, L., “Reconfiguration Control Networks for TMR
Systems with Module-Based Recovery,” in IEEE Int. Symp. on Field-
Programmable Custom Computing Machines (FCCM), May 2016, pp.
88–91.

[28] 7 Series FPGAs Configuration User Guide (UG470), Xilinx Inc., March
2018.

[29] Heynderickx, D., Quaghebeur, B., Speelman, E., and Daly, E., “ESA’s
SPpace ENVironment Information System (SPENVIS): a WWW inter-
face to models of the space environment and its effects,” American
Institute of Aeronautics and Astronautics AIAA, vol. 371, 2000.

[30] Tylka, A., Adams, J., Boberg, P., Brownstein, B., Dietrich, W., Flueck-
iger, E., Petersen, E., Shea, M., Smart, D., and Smith, E., “CREME96:
A revision of the cosmic ray effects on micro-electronics code,” IEEE
Trans. on Nuclear Science, vol. 44, no. 6, pp. 2150–2160, Dec 1997.

[31] Lee, D. S., Wirthlin, M., Swift, G., and Le, A. C., “Single-Event
Characterization of the 28 nm Xilinx Kintex-7 Field-Programmable Gate
Array under Heavy Ion Irradiation,” in IEEE Radiation Effects Data
Workshop (REDW), July 2014, pp. 1–5.

[32] Mehta, N., Xilinx redefines power, performance, and design productivity
with three new 28 nm FPGA families: Virtex-7, Kintex-7, and Artix-7
devices White Paper (WP373), Xilinx Inc., October 2012.

[33] Derek, C. and Crabill, E., UltraScale Devices Maximize Design Integrity
with Industry-Leading SEU Resilience and Mitigation White Paper
(WP462), Xilinx Inc., February 2015.

[34] Quinn, H., Graham, P., Morgan, K., Baker, Z., Caffrey, M., Smith, D.,
and Bell, R., “On-Orbit Results for the Xilinx Virtex-4 FPGA,” in IEEE
Radiation Effects Data Workshop, July 2012, pp. 1–8.

[35] Sahner, R. A., Trivedi, K., and Puliafito, A., Performance and reliability
analysis of computer systems: an example-based approach using the
SHARPE software package. Springer Science & Business Media, 2012.

[36] Maeder, R. E., The Mathematica R© Programmer. Academic Press,
2014.

[37] Shooman, M. L., Reliability of computer systems and networks: fault
tolerance, analysis, and design. John Wiley & Sons, 2003.

[38] Hallett, E., Developing Secure and Reliable Single Device Designs with
Xilinx 7 Series FPGAs or Zynq-7000 AP SoCs Using the Isolation
Design Flow Application Note (XAPP1086), Xilinx Inc., February 2015.

[39] Wirthlin, M., Takai, H., and Harding, A., “Soft error rate estimations of
the Kintex-7 FPGA within the ATLAS Liquid Argon (LAr) Calorimeter,”
Journal of Instrumentation, vol. 9, no. 01, p. C01025, 2014.

[40] Sari, A., Agiakatsikas, D., and Psarakis, M., “A Soft Error Vulnerability
Analysis Framework for Xilinx FPGAs,” in Proc. of ACM/SIGDA Int.
Symp. on Field-programmable Gate Arrays (FPGA). ACM, 2014, pp.
237–240.

[41] Lavin, C., Padilla, M., Lamprecht, J., Lundrigan, P., Nelson, B., and
Hutchings, B., “RapidSmith: do-it-yourself CAD tools for Xilinx FP-
GAs,” in Int. Conf. on Field Programmable Logic and Applications
(FPL). IEEE, 2011, pp. 349–355.

[42] Stoddard, A. G., “Configuration scrubbing architectures for high-
reliability FPGA systems,” Master’s thesis, Brigham Young Uni., 2015.

[43] Soft Error Mitigation Controller Product Guide (PG036), Xilinx Inc.,
April 2017.

[44] Gong, L., Kroh, A., Agiakatsikas, D., Nguyen, N. T., Cetin, E., and Dies-
sel, O., “Reliable SEU monitoring and recovery using a programmable

16

configuration controller,” in Int. Conf. on Field Programmable Logic
and Applications (FPL), 2017, pp. 1–6.

[45] Hara, Y., Tomiyama, H., Honda, S., and Takada, H., “Proposal and
quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis,” Journal of Information Proces.,
vol. 17, pp. 242–254, 2009.

[46] Nane, R., Sima, V.-M., Pilato, C., Choi, J., Fort, B., Canis, A., Chen,
Y. T., Hsiao, H., Brown, S., Ferrandi, F., Anderson, J., and Bertels, K.,
“A survey and evaluation of FPGA high-level synthesis tools,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 10, pp.
1591–1604, 2016.

[47] Lee, G., Agiakatsikas, D., Wu, T., Cetin, E., and Diessel, O., “TLegUp:
A TMR Code Generation Tool for SRAM-Based FPGA Applications
Using HLS,” in IEEE Int. Symp. on Field-Programmable Custom Com-
puting Machines (FCCM), April 2017, pp. 129–132.

[48] Rabozzi, M., Durelli, G. C., Miele, A., Lillis, J., and Santambrogio,
M. D., “Floorplanning automation for partial-reconfigurable FPGAs via
feasible placements generation,” IEEE Trans.s on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 1, pp. 151–164, Jan 2017.

[49] Lavin, C., Padilla, M., Lamprecht, J., Lundrigan, P., Nelson, B., and
Hutchings, B., “RapidSmith: Do-It-Yourself CAD Tools for Xilinx
FPGAs,” in Int. Conf. on Field Programmable Logic and Applications
(FPL), Sept 2011, pp. 349–355.

[50] Correcting Single-Event Upsets in Virtex-II Platform FPGA Configura-
tion Memory Application Note (XAPP779), Xilinx Inc., February 2007.

[51] Correcting single-event upsets through Virtex partial configuration Ap-
plication Note (XAPP216), Xilinx Inc., June 2010.

[52] Pereira-Santos, L., Nazar, G. L., and Carro, L., “Repair of FPGA-Based
Real-Time Systems With Variable Slacks,” ACM Trans. Des. Autom.
Electron. Syst., vol. 23, no. 2, pp. 19:1–19:20, Jan. 2018.

[53] Ebrahimi, M., Rao, P. M. B., Seyyedi, R., and Tahoori, M. B., “Low-Cost
Multiple Bit Upset Correction in SRAM-Based FPGA Configuration
Frames,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 3, pp. 932–943, March 2016.

Dimitris Agiakatsikas is a Ph.D student at the
University of New South Wales, Australia. He re-
ceived a B.Sc. in Electronics from the Technolog-
ical Educational Institute of Athens, Greece and a
M.Sc. in technology of Embedded Systems from the
University of Piraeus, Greece. Before commencing
his Ph.D studies, he was an Electronics Engineer
at the National Observatory of Athens, Greece.
His research interests include fault-tolerant comput-
ing, computer-aided design for fault-tolerant FPGA-
based systems and dependability modelling.

ch

Ediz Cetin (S’96 – M’02) received the B.Eng.
(Hons.) degree in control and computer engineering,
and the Ph.D. degree in unsupervised adaptive signal
processing for wireless receivers from the University
of Westminster, London, U.K., in 1996 and 2002,
respectively.

From 2002 to 2011, he was with the University
of Westminster, initially as a postdoctoral research
fellow and subsequently, from 2006 to 2011, as
a Senior Lecturer. From 2011 to 2017, he was
a Senior Research Associate with the Australian

Centre for Space Engineering Research, University of New South Wales
(UNSW), Sydney, NSW, Australia. He is currently a Senior Lecturer with the
School of Engineering, Macquarie University, Sydney, NSW, Australia. His
research interests include interference detection and localization, fault-tolerant
reconfigurable circuits, adaptive techniques for RF impairment mitigation for
communications and global navigation satellite system receivers, and design
and low-power implementation of digital circuits. To date, he has authored or
co-authored more than 60 technical publications, a book chapter, and holds
two patents in the areas of communications and GNSS receivers.

Dr Cetin is a member of the Institution of Engineering and Technology
(IET) and serves as the Chair of the IET New South Wales (NSW) Local
Network, as well as the Chair of the Institute of Electrical and Electronics
Engineers NSW Circuits and Systems/Solid-State Circuits/Photonics/Electron
Devices joint chapter.

Oliver Diessel is an Associate Professor in the
School of Computer Science & Engineering, at the
University of New South Wales in Australia. He
gained B.E., B.Math., and Ph.D. degrees from the
University of Newcastle, Australia. His research
interests encompass the design and application of
dynamically reconfigurable systems and technology,
including modelling, design methods, and run-time
support for such computer systems. He has co-
authored over 70 publications on these topics.

