A Web—Based Multiuser Operating System for
Reconfigurable Computing

Oliver Diessel, David Kearney, and Grant Wigley

School of Computer and Information Science
University of South Australia
Mawson Lakes SA 5095

{0liver.Diessel, David.Kearney, Grant.Wigley}Qunisa.edu.au

Abstract. Traditional reconfigurable computing platforms are designed
to be used by a single user at a time, and are acknowledged to be diffi-
cult to design applications for. These factors limit the usefulness of such
machines in education, where one might want to share such a machine
and initially hide some of the technical difficulties so as to explore issues
of greater value. We have developed a multitasking operating system
to share our SPACE.2 coprocessing board among up to 8 simultane-
ous users. A suite of pre—configured tasks and a web based client allows
novices to run reconfigurable computing applications. As users develop
a knowledge of the FPGA design process they are able to make use of
a more advanced PC client to build and upload their own designs. The
development aims to increase access to the machine and generate inter-
est in the further study of reconfigurable computing. We report on the
design, our experience to date, and directions for further development.

1 Introduction

Definitions of reconfigurable computing are currently unclear. Rather than clar-
ify the issue, we define usage of the term as it relates to this paper as describing
the computations one performs on computers that include reconfigurable logic
as part of the processing resource. The reconfigurable logic presently of interest
is some form of Field Programmable Gate Array (FPGA) technology. Current
reconfigurable machines may have the reconfigurable resource tightly coupled
with a von Neumann processor integrated on a single chip, or loosely coupled
to a von Neumann host via a general purpose bus such as PCI. While the cou-
pling does influence performance in different application domains, the reason
for employing reconfiguration is the same for both, namely, to speed up com-
putations by implementing algorithms as circuits, thereby eliminating the von
Neumann bottleneck and exploiting concurrency. In tightly coupled machines

This paper appears in José Rolim, editor. Parallel and Distributed Pro-
cessing, IPPS/SPDP’99 Workshops Proceedings, pages 579 — 587, Berlin,
Germany, 1999. Springer—Verlag.



it may be viable to reconfigure on—chip logic at a fine grain of computation —
perhaps even at the instruction level. However, the overheads of communicating
over relatively low bandwidth buses demand that loosely coupled machines be
reconfigured at a coarser grain. Applications on this latter class of machine are
generally implemented as a front—end program executing on the sequential host,
and a sequence of one or more configurations that are loaded and executed on a
reconfigurable coprocessing board.

Loosely coupled reconfigurable coprocessing boards such as PAM [5], Splash
2 [2], and SPACE.2 [3] are single tasked devices despite usually being attached
to hosts running multitasking operating systems. A possible reason for this is
that most FPGAs are programmed in a slow configuration phase that estab-
lishes the circuitry for the whole chip at once. It is therefore easier to control
performance and access if it is done for a single task at a time. However, the
advent of dynamically reconfigurable FPGAs such as the Xilinx XC6200 and
Atmel AT6K families, which allow part of the FPGA to be reconfigured while
the rest of the chip continues to operate, has increased the interest in techniques
and applications that exploit these chips’ facility for multitasking.

Early work in this area was carried out on the loosely coupled DISC computer
[6], which made use of a well-defined global context to allow the reconfigurable
logic to be reconfigured and shared by multiple relocatable tasks during the run—
time of an application. However, use of the DISC array is restricted to a single
task at a time to avoid contention on globally shared control lines. More re-
cently, the tightly coupled GARP processor [4] allows multiple configurations to
be cached within the reconfigurable logic memory and supports time slicing on
the controlling MIPS processor that is integrated with the reconfigurable logic
array. Multiple users and multiple tasks thereby appear to be supported, but in
fact only one configuration at a time may execute lest multiple configurations
contend for control signals. Brebner described the issues involved in managing
a virtual hardware resource [1]. He proposed decomposing reconfigurable com-
puting applications into swappable logic units (SLUs), which describe circuits
of fixed area and input/output (I/O) interfaces, so that multiple independent
tasks might share a single FPGA. Brebner described two models for allocating
the resources of the FPGA. The sea of accelerators model admits arbitrarily
sized rectangular tasks and is suited to independent tasks of varying computa-
tional needs. On the other hand, the parallel harness model, which partitions
the resource into fixed sizes, was thought to be more appropriate for cooperating
tasks. We examine the implementation of a parallel harness model that parti-
tions an array of FPGAs at the chip level. Our SLUs occupy an entire chip, and
currently operate independently.

Our interest in developing a multiuser operating system for reconfigurable
computing is motivated by the desire to increase accessibility to a SPACE.2
machine for CS and EE classes within a university environment. A second thrust
of this work is to provide abstractions that simplify the programming and use
of reconfigurable computers for novices. To this end, we have designed a web—
based interface to SPACE.2 that allows multiple users to execute pre—configured



applications at the same time. Users familiar with the FPGA design flow are also
able to design and upload their own applications within a PC environment. Both
are based on a simple multiuser operating system that partitions the FPGAs on
a SPACE.2 board to allow up to 8 simultaneous users. This operating system
provides the interface to web—based clients and manages the allocation of FPGAs
within the SPACE.2 array to user tasks. We report on the development to date
and the future direction of the project.

The remainder of this paper is organized as follows. Section 2 describes the
architectural and applications development features of SPACE.2 that impact on
the design of the multiuser operating system. Section 3 presents the design and
reports on the development of the multiuser operating system and web—based
clients. Our findings so far are reported on in Section 4. Section 4 also proposes
remedies for overcoming the limitations experienced with the current design.
The conclusions and directions for further work are presented in Section 5.

2 The SPACE.2 architecture

The SPACE.2 system consists of a DEC Alpha host into which one or more
SPACE.2 processing boards are installed as 64 bit PCI localbus slaves [3]. The
host processor communicates configuration and application data over the PCI
bus to individual boards. Processing boards can operate independently of each
other, but for particularly large applications they can also be connected together
over a secondary backplane to form extensive arrays.

The compute surface of a SPACE.2 processing board consists of a 4 x 2
array of Xilinx XC6216 FPGAs. In addition, the board provides control logic for
interfacing the configurable logic to the PCI bus, on-board RAM, and a clock
module.

Limited connectivity to I/O blocks in the XC6216 makes a seamless array
of gates spanning multiple FPGAs impossible. The devices are interconnected
in a 2-dimensional mesh, with a pair of adjacent chips sharing 32 pads in the
east-west direction and a column of 4 chips sharing 41 pads in the north-south
direction. With appropriate pad configurations, opposing edges of the mesh may
be tied together to create a toroidal structure. Access to the on-board RAM is
available from the northern and southern edges of the FPGA array.

Several global signals are distributed throughout the array. Devices are pro-
grammed via a global 16 bit data bus. This bus is also available for FPGA
register I/O. The appropriate chip is selected by the control logic, while mode,
configuration, and state registers are selected through an 18 bit address bus.
Three common clock frequencies are set in the clock module and distributed
with a global clear signal to the FPGA array.

All software on the host interacts with the SPACE.2 processing boards through
a character device driver under UNIX. A board is opened as a single-user file to
allow a user to make exclusive use of the reconfigurable hardware. Once opened,
a board’s FPGA configuration and state can be read or written to by an appli-
cation program.



2.1 Current design flow

SPACE.2 applications typically consist of two parts: a circuit design for config-
uring the FPGAs of a SPACE.2 board and a host program that manages I/O
and controls the loading, clocking, and interrupt handling for the circuit. Appli-
cations initially therefore present a problem in hardware/software codesign.

When the hardware portion of the design has been identified, its design is
elaborated in two stages. In the first stage, the logic of the required circuits is
derived. Then, in the second stage, the logic is placed onto the FPGAs and its
interconnections are routed.

The front—end or host program is responsible for loading the design onto
the board, communicating with the running application, and responding to user
interrupts. Configurations cannot be tested by simulation due to a lack of tools
for simulating multi—chip designs. Circuits are therefore not tested until they
are loaded onto SPACE.2. Debugging is then performed by reading the contents
of registers while the circuit is live. This may necessitate modifying the original
design to latch signals for debugging purposes.

Apart from the difficulty of recognizing opportunities for exploiting paral-
lelism in problems, the current design flow inhibits experimentation with the
SPACE.2 platform in several ways. Due to a lack of adequate abstractions, ap-
plications development requires the understanding and management of many
low—level details. Moreover, we lack the tools to make this task easier. For ex-
ample, designers need to partition tasks manually, and there is limited support
for testing and verifying designs. In order to debug designs, a detailed knowledge
of the system is needed. It should be noted that these problems are not unique
to SPACE.2 but are generally accepted as barriers to the wider adoption of re-
configurable computing as a useful paradigm. One of the roles of our operating
system is to hide as much detail as possible from the novice user.

3 The multiuser environment

In order to introduce reconfigurable computing to novice users and to develop
their interests, we embarked on a project to develop two internet accessible
interfaces and a multiuser operating system for the SPACE.2 machine. One of
these interfaces provides a simple form for the user to select and run one of
several pre—configured applications for the machine. This interface is available
from common WWW browsers. As the user’s knowledge of the FPGA design flow
develops, they may upload their own designs from a network PC—based interface.
Managing the requests of these two clients, the multiuser server establishes socket
connections using TCP/IP, vets user authorizations, allocates FPGAs to users,
loads user tasks, and handles user I/O to tasks.

3.1 Web-based demonstration platform

The web—based client consists of a CGI script and forms—based interface that
contains a number of pre—configured designs. Users may choose to execute one



of a number of simple applications, supply their own data, and obtain results
upon completion of processing. The client thus abstracts the details of designing
and running an application. With this interface we also hope to develop clear
demonstrations of what the SPACE.2 board is capable of.

The client attempts to establish a connection with the server after the user
selects an application and provides input data. In contrast to the PC-based
client, no special authorization is required for web—based users. If an FPGA
is available, the server provides a connection, and accepts an application in
the form of a Xilinx CAL file one line at a time. This file is translated into
global coordinates and loaded by the server. Thereafter the user input values
are written to the appropriate registers. The simple applications developed so
far return results to the user within a predefined number of clock periods. Event—
driven applications are not yet catered for. After the results have been obtained,
the FPGA resource is freed by the server, and the socket connection to the client
is broken.

3.2 Support for applications design

Loading designs onto the SPACE.2 processing board and interacting with them
is tricky since it involves lengthy sequences of control functions. When users
begin to design their own applications, they should not be distracted by these
details. We therefore developed a PC—based Tcl/ Tk client to abstract away the
complexity of loading and interacting with tasks. This client presents a mouse—
driven graphical user interface that can be used from any PC on the internet
that uses the Windows 95 operating system. Anybody may request a copy of
the client by filling out a web—based form that is processed by the system’s
administrator in order to establish an entry for the user in the host’s password
file. The user is then provided with instructions on how to download and install
the client by email.

The Tcl/Tk GUI interacts with a dynamic link library (DLL) that also resides
on the PC for parsing requests between the client and the server. Use of the DLL
provides communications independence between the client and server, thereby
allowing either to be more easily replaced. The client provides an authentication
procedure by sending a username and password to the server for checking against
the host’s password file. After a connection is established, the client sends the
user’s design to the server for translation and loading and sends the user’s data
for writing to the input registers. When requested to by the user, the server
retrieves the application results from the output registers and passes them to
the client for display.

Successful SPACE.2 designs must resolve several complex design issues. To
overcome some of these problems we have chosen to constrain user designs in a
number of ways: (1) We make use of the XC6200 family’s support for bus—based
register I/O. A “register” may be viewed as a virtual pins abstraction since the
user need not worry about interfacing designs to particular pins. (2) The number
of registers is limited to a maximum of eight for input and output respectively.
Registers are 8 bits wide. The eight input registers are aligned in the leftmost



column of an FPGA, and the eight output registers are aligned in the rightmost
column. (3) The user design must be able to be fully loaded onto a single FPGA,
thereby eliminating multi—chip partitioning problems. (4) The application must
be designed to a fixed global clock speed.

Adding these constraints to applications limits the range of designs that can
be created, but simplifies their complexity considerably.

3.3 Operating system design

Normally only one user at a time can gain access to a SPACE.2 board. However,
with the possibility of several people wanting to gain access to the machine
at the same time, a multiuser operating system is required. Currently, while a
designer is using a SPACE.2 board, all other attempts to open the device driver
are blocked by the kernel. The multiuser operating system removes the blocking
semantics by adding an additional layer to the device driver. The system is
modelled on a multiprocess server that accepts up to eight simultaneous socket
connections — one for each chip.

The operating system initializes the socket connection code and establishes a
file-based allocation table for the 8 FPGAs on the board. The server then listens
on a designated port for connection requests that are initiated by the web or
PC-based clients. When a user connects to a socket, the operating system checks
whether the SPACE.2 board is available for use. This occurs in two stages. If the
server does not yet have control of the SPACE.2 device driver, it attempts to
gain control in order to determine whether any other user has dedicated access
to the SPACE.2 board. After control of the device driver has been gained, the
FPGA allocation table is checked for an available chip. If one is found, the server
then forks off a process for the new user, and waits for further socket connection
requests. If either stage fails, the request is refused and the client will wait until
the user attempts to reconnect.

The system validates PC client users against the host’s password file and
determines the user’s privileges (super or normal) before allocating an FPGA to
the user. The user’s process ID, name, and priveleges are stored in the alloca-
tion table for easy reference and to avoid contention. A super user has similar
privileges to those of a UNIX root user. This user has access to all user com-
mands as well as simple “house—keeping” functions such as altering the common
system clock speed and removing users from the system. Normal users do not
have access to these global commands. The list of super users is maintained in
a separate file.

The multiuser operating system manages FPGA allocation and deallocation
on a first come, first served (FCFS) basis. In the conventional single user op-
erating environment, this function is explicitly handled by the user’s front—end
program. Once allocated, a chip is not relinquished until the socket connection is
broken. The connection to a web—based client is broken after the results from a
run have been obtained. A PC—based client is disconnected at the user’s request.

The operating system is responsible for loading applications and handling
I/O for the applications. A 3 digit code is used for communicating requests



between the clients and the server. Requests consist of three parts: the code,
followed by an integer representing the number of arguments to follow, and a
list of arguments. The server must acknowledge each part of the request for the
communication to proceed.

The application designs are uploaded in the form of a Xilinx CAL file, which
can be loaded onto any XC6216 chip. The file is loaded up one line at a time
and a special flag is sent to indicate EOF. Row and column addresses in this file
are translated into the global SPACE.2 coordinate system so that the design is
loaded onto the correct chip. Similarly, I/O requests are parsed so as to address
the correct set of cells in the global coordinate system.

4 Performance review

4.1 What sorts of tasks work?

The interface constraints imposed by our clients limit the range of practical tasks
that can be performed by the FPGAs. Nevertheless, the current environment
does not preclude users from experimenting with reconfigurable computing. In-
deed, we see it as an entry point for education, and believe there is ample scope
for devising educational projects that fit within the constraints of the inter-
face. Suitable pre—configured designs include simple bit manipulation tasks and
more complex neural net classifiers and distributed multipliers. Moreover, it is
a matter of designing alternative client interfaces to remove the restrictions on
I/O since the multiuser server has the full capability of the device driver at its
disposal.

Since all requests go through the original single user device driver, which
services them sequentially, it is possible that performance will suffer. The server
is therefore not practical for tasks that expect performance guarantees such as
real-time tasks.

SPACE.2 is a platform designed for experimentation. The problem of provid-
ing a multiuser run-time environment for SPACE.2 requires solutions to numer-
ous issues. These include: the design and compilation of suitable applications, the
interplay of time— and space—sharing, what the granularity of swapping should
be, and how the device driver and operating system kernel should be designed.
We have just begun to explore some of these issues. There is considerable work
to go on with.

4.2 Problems and potential solutions

The current implementation of the multiuser operating system suffers from sev-
eral limitations. In this section we discuss these problems and propose what we
perceive to be workable solutions.

The current Tcl/Tk client interface for user designed tasks limits the number
of input and output registers to eight of each, and the width of these registers is
set to 8 bits. Moreover, input is from the leftmost column and output is to the



rightmost column of an FPGA. It may be desirable to have more registers, and
that it be possible to interface with these at arbitrary locations, in particular,
as an aid to debugging. A more flexible client interface would overcome this
limitation.

Register I/0 is acceptable for tasks involving low bandwidth transfers, but
for high bandwidth streaming applications it causes overheads that could be
avoided. Unfortunately for such applications, use of the on—board RAM is not
supported in the current operating system. However, use of the RAM could be
supported by applications that make use of the pair of chips at the northern
edge of the board, which would leave the rest of the board free for tasks that
make use of register I/0.

Another area where more support from the client interface may be necessary
is dynamic reconfiguration. While the SPACE.2 board and device driver allow
dynamic reconfiguration, the multiuser environment does not currently support
it. Tasks are therefore limited in size to a single XC6216 chip. It should be
possible to provide hooks and conditions for reconfiguration within the client
interface. Alternatively, the operating system could be designed to interface with
conventional front—end host programs that control the reconfiguration.

Future enhancements to the operating system should also consider more
adaptive space—sharing schemes so as to allow allocating tasks in multiples of a
single chip.

At present up to 8 simultaneous users are supported by partitioning the logic
resource of a SPACE.2 board at the chip level. Any additional users are blocked
from access to the board. To overcome this problem we propose implement-
ing a time—sharing mechanism in the future. Time—sharing would place further
constraints on tasks, such as ensuring that all intermediate results are latched
before commencing a swap. However, having 8 chips available for swapping en-
sures a reasonable period over which to amortize the costs of swapping if they
are carried out in a round-robin fashion. To reduce the overheads of swapping,
it would be desirable to modify the board controller to enable on—board storage
of configurations and state.

If time—sharing and swapping is to be supported, it may be necessary to
investigate multithreading the device driver to reduce blocking, and to implement
a scheduler to reduce the unpredictable delays that can result with the FCFS
servicing of requests imposed by the current device driver.

Finally, the fixed global clock speed places an undue constraint on perfor-
mance. It would be nice to find a solution to the problem of frequency—sharing
the board — having multiple tasks of different clock speed sharing the board. To
this end, we propose investigating supporting user programmable clock divider
circuits within each chip.

5 Conclusions

We have described the initial design of a multiuser server for our SPACE.2 recon-
figurable computing platform. This system partitions the array of eight FPGAs



available on a SPACE.2 processing board among multiple users, one per user, so
as to allow multiple independent tasks to execute simultaneously. This approach
increases utilization and access to the system. However, our solution is rather
coarse grained considering that the XC6216 chips used in the array are partially
reconfigurable at the cell level. The resource is also under—utilized if less than
8 tasks are running. Moreover, the PCI bus and board device driver form a se-
quential channel for I/O to the array. Tasks are therefore loaded one at a time,
and I/0O to tasks is performed sequentially. A further limitation imposed by the
board on the initial design is the need to share a common clock. To overcome
these problems we intend supporting adaptive partitions and implementing a
time—sharing scheme. We will investigate implementing programmable clock di-
vider circuits on each chip to allow the board to be shared in the frequency
domain. Further enhancements envisaged for the user interface are intended to
facilitate the use of dynamic reconfiguration and support more flexible I/0.

Acknowledgments

The helpful comments and assistance provided by Matthew Altus, Bernard Gun-
ther, Ahsan Hariz, Jan Machotka, Manh Phung, Joseph Pouliotis, and Karl Sell-
mann are gratefully acknowledged.

URL

Access to the server and documentation is available through links from the URL
http://www.cis.unisa.edu.au/acrc/cs/rc/multios.

References

1. G. Brebner. A virtual hardware operating system for the Xilinx XC6200. In R. W.
Hartenstein and M. Glesner, editors, Field—Programmable Logic: Smart Applica-
tions, New Paradigms and Compilers, 6th International Workshop, FPL’96 Pro-
ceedings, pages 327 — 336, Berlin, Germany, Sept. 1996. Springer—Verlag.

2. D. A. Buell, J. M. Arnold, and W. J. Kleinfelder, editors. Splash 2: FPGAs in a
Custom Computing Machine. IEEE Computer Society, Los Alamitos, CA, 1996.

3. B. K. Gunther. SPACE 2 as a reconfigurable stream processor. In N. Sharda
and A. Tam, editors, Proceedings of PART’97 The 4th Australasian Conference on
Parallel and Real-Time Systems, pages 286 — 297, Singapore, Sept. 1997. Springer—
Verlag.

4. J. R. Hauser and J. Wawrzynek. Garp: A MIPS processor with a reconfigurable
coprocessor. In K. L. Pocek and J. M. Arnold, editors, The 5th Annual IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM’97), pages 24 —
33, Los Alamitos, CA, Apr. 1997. IEEE Computer Society.

5. J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. H. Touati, and P. Boucard.
Programmable active memories: Reconfigurable systems come of age. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 4(1):56 — 69, Mar. 1996.

6. M. J. Wirthlin and B. L. Hutchings. Sequencing run—time reconfigured hardware
with software. In FPGA’96 1996 ACM Fourth International Symposium on Field
Programmable Gate Arrays, pages 122 — 128, New York, NY, Feb. 1996. ACM Press.



