
A short-transfer model for tightly-coupled
CPU-FPGA platforms

Alexander Kroh
University of New South Wales

Sydney, Australia
alex.kroh@unsw.edu.au

Oliver Diessel
University of New South Wales

Sydney, Australia
o.diessel@unsw.edu.au

Abstract—Due to the cost of repeated data movement between
CPU and FPGA, the use of FPGA-based accelerators has
traditionally been limited to offloading long-running tasks from
the CPU to programmable logic. Although modern heterogeneous
platforms, such as Zynq and HARP, reduce the costs of CPU-
FPGA data transfers, the traditional offload model is cemented
as the popular choice.

For these systems to become truly heterogeneous, the utili-
sation of all computational resources should be optimised. In
particular, the CPU and FPGA should cooperate by dividing the
workload between them so as to maximize system throughput.

We first derive a model that predicts the optimum partitioning
of a workload between hardware and software. We then measure
the performance of short transfers between CPU and FPGA
on the Zynq CPU-FPGA platform. Such transfers are essential
to efficiently synchronise between cooperating hardware and
software tasks. Finally, we demonstrate how our derived model
can be used to choose the optimum workload partitioning to
within 8% of the optimum for an accumulator task and predict
its execution time within 12%.

I. INTRODUCTION

As the compute power of traditional CPU technology has
failed to keep up with today’s processing demands, we look
favourably towards FPGA technology as a valuable addition
to compute platforms. The large latency of off-chip commu-
nication has traditionally limited the application domain of
these FPGA-based accelerators to long-running tasks. For a
long-running task, this latency is masked by a relatively long
execution time and high throughput. For short-running tasks,
the communication latency quickly masks any performance
benefit that hardware acceleration may provide.

Tightly-coupled high performance CPU-FPGA systems
have emerged in which a high-performance processor and
programmable logic are located on the same device. Not
only does this close proximity reduce the communication
latency between them, it also allows hardware and software
to access shared memory via the on-chip last level cache
(LLC). Such low-latency memory access can extend the range
of applications that are suitable for hardware acceleration from
long-running tasks to short-running tasks.

In this work we investigate the partitioning of small work-
loads between hardware and software for cooperative pro-
cessing. We imagine a system comprised of a sea of small
accelerators that provide computational support for a range of
general-purpose applications.

Our contributions are as follows:
• We derive a model that determines the optimal partition-

ing of a workload between CPU and FPGA for any given
workload size. In this model we consider the overhead
of communication in terms of CPU processing time and
transfer latency.

• We predict for which workload sizes the execution time
of a task will be reduced if some portion of the workload
is processed in hardware.

• We measure the communication overheads of short trans-
fers between the tightly-coupled CPU and FPGA that is
provided by the Zynq SoC. These measurements provide
key parameters for our partitioning model.

• We demonstrate that our model can be used to predict
optimum workload partitioning between CPU and FPGA.
We do that by studying a stream-based integer accumu-
lation task.

II. RELATED WORK

Much research has been carried out on algorithms that par-
tition an application between hardware and software. Surveys
of this work can be found in [1] and [2]. However, those
works do not consider cooperative processing. Rather, they
assume the software is idle when control is passed to the
hardware accelerator until control returns to the processor. This
design pattern is also present in hardware-software communi-
cation frameworks such as RIFFA [3] and the communication
templates instantiated by the high-level synthesis (HLS) tool
LegUp [4], unless the application is multithreaded.

Although some hardware-software partitioning algorithms
consider the cost of moving data between the CPU and
programmable logic, the cost of control and synchronisation
is rarely considered.

III. COMMUNICATION MODEL

The focus of our work is cooperative computation, in which
two or more compute elements (CEs) perform a common
function on a subset of the provided data (Fig. 1). Once all
CEs have processed their workload partition, a nominated CE
aggregates the partial results and returns the final result to the
application.

The execution time T of a cooperative task is determined by
the longest completion time across the FPGA (TF) and CPU

CPU FPGA

Communication
execution
overheads

Transmission
latency

Return
latency

g(a) g(b)

f(g(a), g(b))

Fig. 1: Cooperative system architecture and overheads.

(TC). If too much work is given to the FPGA, the CPU will
become idle as it waits for the FPGA to complete. If too little
work is sent to the FPGA, an opportunity for parallel execution
is lost. Therefore, the workload must be carefully partitioned
to minimise the completion time T = max(TF , TC), which
occurs when TF = TC .

When a workload N is large, the cost of the communication
needed to initialise the accelerator can be ignored as it is small
relative to the computation time. The completion time of the
FPGA and CPU partitions can then be calculated using (1a)
and (1b) respectively, where α∗ is the fraction of the workload
that should be processed by the FPGA. By equating (1a) and
(1b), we see that α∗ partitions the workload proportionally
to the throughput provided by the FPGA (XF) and the CPU
(XC) (2).

TF =
α∗N

XF
(1a) TC =

(1− α∗)N

XC
(1b)

α∗ =
XF

XF +XC
(2)

For small workloads, cooperative computation requires care-
ful attention to data transfer costs in terms of both transfer
latency (DF) and CPU overhead (OC) (Fig. 1). Transfer
latencies on both the transmission and return paths reduce
the amount of work the FPGA can complete by TF − TC .
Programmable logic must wait for the processing command
to arrive and ensure that the result is available to the CPU as
soon as it is needed. The transfer of the processing command
is performed by the CPU. The CPU execution cycles required
to perform this transfer represent an opportunity cost to the
CPU as these cycles could be used to process the workload.
By considering both CPU overhead and transfer latency, the
workload can be partitioned by α (4) such that the CPU and
FPGA complete the processing of their respective parts at the
same time.

TF =
αN

XF
+DF (3a) TC =

(1− α)N

XC
+OC (3b)

α = α∗
[
XC(OC −DF)

1

N
+ 1

]
(4)

Workload partitioning improves task completion time only
if the time required for communication is masked by a reduced
completion time. To determine the workload size NL for which

we benefit from using the programmable logic, we must ensure
two conditions are met: First, the time to send some subset
αNL of the workload to the FPGA for processing, to compute
(1−α)NL work on the CPU and to receive the results is less
than or equal to the time required to process NL work on the
CPU alone (5). Second, the time to process αNL on the FPGA
should also be less than or equal to the time to process NL

work on the CPU alone (6). We find NL by solving these two
equations simultaneously, where O0 is the proportion of OC

associated with calling and processing the function in software
with N = 0 work.

NL

XC
+O0 ≥ (1− α)NL

XC
+OC (5)

NL

XC
+O0 ≥ αNL

XF
+DF (6)

NL ≥ XC

[
XC (OC −O0)

XF
+DF −O0

]
(7)

IV. EVALUATION

We used the Avnet Zedboard for our study. The Zedboard
features a Xilinx XC7Z020 Zynq system on chip (SoC) that
provides two ARM Cortex-A9 CPUs and programmable logic
within the one package. An accelerator coherency port (ACP)
provides a 64-bit data bus between programmable logic and
the cache for shared memory access. Direct communication
between the CPUs and the programmable logic is provided
by a 32-bit wide general-purpose (GP) port.

A. CPU communication overhead evaluation
In order to use our model, we first found values for the CPU

overhead and latency of CPU-FPGA communication. These
communication overheads also assisted in choosing the most
appropriate communication primitive for our accelerators.

In our experiments, direct communication to programmable
logic was issued to an AXI memory controller that we
connected directly to the GP port at the CPU-FPGA boundary.
This controller was designed to respond immediately to all re-
quests and thereby eliminated latency due to soft interconnects
and peripherals.

An ACP read transaction to shared memory from pro-
grammable logic can be served from any level of the memory
hierarchy, including the private L1 cache of either CPU. On
the other hand, an ACP write transaction from programmable
logic is always issued to the L2 cache. In this case any
corresponding cache lines present in the private L1 cache of
each CPU is invalidated. When the CPU polls shared-memory
for changes, read requests are served by the L2 cache of the
CPU. The CPU overheads of cache-coherent shared memory
communication were therefore measured as the time to access
L1 cache for writes and L2 cache for reads.

We used the CPU cycle counter of the ARM performance
monitoring unit (PMU) to measure the above CPU overheads
for reads and writes of various sizes using direct and shared
memory communication. Out-of-order execution made it diffi-
cult to record precise timings so we performed two measure-
ments. We measured a pessimistic execution time by flushing

TABLE I: Zynq CPU overheads for short transfers between
CPU and FPGA, measured in CPU cycles.

Target Words = 1 2 3 4 5 6
In-order execution
L2 Cache read 28 41 54 67 80 93
FPGA read 76 86 103 119 145 164
L1 Cache write 7 7 8 9 10 11
FPGA write 14 17 20 23 26 29
Out-of-order execution
L2 Cache read 12 25 38 51 64 77
FPGA read 60 70 87 103 129 148
L1 Cache write 1 1 2 2 3 3
FPGA write 1 1 4 7 10 13

the CPU store buffers and execution pipeline before and after
the transfer instruction(s) were issued. We also measured a
best-case execution time by adding 12 instructions that could
be executed out-of-order after the transfer instruction(s). The
memory attributes of reads and writes to the FPGA were
configured to Device memory [5] as this setting provides the
best performance [6]. The median CPU execution cycles of
100 measurements for both reads and writes are reported in
Table I.

Our results show that, when the Device memory attribute is
used, CPU overheads for direct communication were similar
to those obtained for L1 cache writes when out-of-order
execution is possible. This is because the Device memory
attribute allows the CPU to continue to execute after issuing
the transaction to the interconnect. On the other hand, the CPU
overhead of reading directly from the FPGA is much higher
than the overhead of an L2 cache read because the CPU stalls
until the read transaction completes.

B. CPU-FPGA latency evaluation

A common reference of time was required when measuring
the latency of communication between CPU and FPGA. We
used the send event (SEV) instruction of the ARM-based Zynq
to provide a low-latency signal at key points in the instruction
stream. We assumed that this signal has no latency since it
does not propagate through interconnects within the CPU or
programmable logic.

We used the integrated logic analyser (ILA) soft IP core
provided by Vivado to measure the elapsed FPGA clock cycles
between events in programmable logic and the CPU. For direct
communication from CPU to FPGA, we executed the SEV
instruction immediately before a write instruction. We then
measured the FPGA cycles from when the SEV instruction
was observed until the data arrived at the CPU-FPGA bound-
ary. The latency of a direct communication from FPGA to
CPU was measured as the time from when the CPU executed
the read instruction until the corresponding data arrived back
at the CPU. For this reason, we used CPU overhead without
out-of-order execution as our value for latency (Table I).

Shared memory communication latency was measured by
first initialising a pre-determined word in memory to a known
value. The sender was then configured to change the value
of this word and the receiver was configured to continuously

TABLE II: Zynq communication latency between CPU and
programmable logic.

Method Direction Latency (CPU cycles)

Direct FPGA→CPU 76
CPU→FPGA 32

Shared memory FPGA→CPU 36
CPU→FPGA 42

read this word until it observed that the value had changed.
When the FPGA is the sender, we programmed the CPU
to execute the SEV instruction when it observed a change
in memory content. The latency was then measured as the
time from when the write transaction arrived at the CPU-
FPGA boundary, until the CPU executed the SEV instruction.
When the FPGA was the receiver, the CPU executed the SEV
instruction immediately before writing to shared memory. The
latency was then measured as the time from when the SEV
instruction was observed until the updated value appeared at
the CPU-FPGA boundary.

The results of our experiments (Table II) show that the
latency of short transfers from the CPU to the FPGA are lowest
when direct communication is used. For transfers from FPGA
to CPU, shared memory provides the lowest latency.

Summarising our findings for both CPU overhead and
latency of short transfers, direct communication should be used
for short transfers from the CPU to the FPGA while shared
memory communication should be used for short transfers
from the FPGA to the CPU.

C. Hardware accumulator evaluation

We chose an accumulator task for our evaluation because
the workload is easily divided and cooperatively executed on
both CPU and FPGA. Although this application is trivial, it
allows us to focus on workload partitioning and communica-
tion overhead, rather than on the underlying data processing
algorithms. The methods used for this application can be
applied directly to other fixed-size streaming workloads, such
as vector multiplication.

We connected our accumulator core to a soft DMA con-
troller, which provided a stream of integers from shared
memory for processing. The DMA engine was configured
using two direct writes from the CPU to the DMA engine
via the GP port. These writes provided the address of the first
integer, the number of bytes to transfer and also instructed the
DMA engine to begin the transfer.

The DMA engine provided independent channels for up-
and down-stream transfers. We used the second channel to
transfer the result of the computation back to shared memory
once the last integer had been accumulated. We assumed that
this needed only to be configured once to configure a fixed
location in shared memory for the result of all accumulator
operations. For this reason, the overhead of programming the
second channel was excluded from our experiments.

The DMA engine was connected to the ACP to avoid
the overheads of cache-maintenance. Our IP was capable of
processing two 32-bit words concurrently in a single cycle to

TABLE III: Accumulator model parameters given a 667 MHz
CPU clock frequency.

Symbol Value
XF 594 MB/s
XC 231 MB/s
DF 401 ns
O0 36 ns
OC 81 ns
α -56 N−1 + 0.72
NL 96 B

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

NL

T
a
s
k
 e

x
e
c
u
ti
o

n
 t
im

e
 (

C
P

U
 e

x
e

c
u
ti
o

n
 c

y
c
le

s
)

Workload size (Bytes)

Software only
Hardware only

Measured
Predicted

Best-case partitioning

Fig. 2: Accumulator execution time for α partitioning.

match the 64-bit data bus of the ACP. The system throughput
was thus limited by the bandwidth provided by the ACP.

We measured the final component of CPU overhead, O0 by
using the CPU cycle counter to measure the cost of calling
the accumulator function with 0 integers to accumulate.

The final component of latency was found by using the ILA
to measure the time between the DMA controller transaction
arriving at the CPU boundary and the first integer pair arriving
at the accelerator. Alternatively, this could be found from the
DMA and interconnect IP core specifications.

Finally, the throughput of the CEs (XF and XC) was
measured using the CPU cycle counter when calling the
accumulator function with a very large workloads – the
communication overheads can be ignored in this case. The
complete set of parameters, including α and NL, are shown
in Table III.

We measured the completion time of the accumulator when
using software- and hardware-only, as well as a cooperative
system in which the partitioning was chosen by our model
(Fig. 2). Included in our results is the expected execution time
as predicted by our model. We also include the best-case result
for each workload size, which was found experimentally by
varying the partitioning ratio from 0.0 to 1.0 in increments of
0.001 and executing the task to completion.

Our results show that our model predicted the workload size
NL, for which the cooperative approach begins to outperform
the software-only approach. This prediction was within 8% of
the measured optimal value for the accumulator application.

Our model is able to predict the completion time of the
partitioned cooperative system with a mean relative error
(MRE) of 12% for workloads in the range 8 B to 1 KB. Over
the same range, the MRE between the modelled partitioning
approach and the best-case observations was 2%.

V. FUTURE WORK

We plan to apply our cooperative execution model to com-
mon short-running shared-library functions. In this way, many
programs will benefit from hardware acceleration without
modification. Shared libraries generally provide a blocking
interface to the caller. For small workloads, we expect that
the performance benefit of hardware acceleration will only be
realised if the CPU processes some portion of the workload
while it waits for the partial result to be returned by the
accelerator.

VI. CONCLUSION

In this paper we presented a model for partitioning a task
between a CPU and tightly-coupled programmable logic for
all workload sizes. This model can be applied to short-running
tasks as it considers both the CPU overhead and latency of
communication between CE.

We have also reported the CPU overhead and latency of
short direct and shared memory communication between the
CPU and the FPGA on the Zynq device. These parameters, as
well as interconnect delays, were used in our model to estimate
the partitioning and completion time of the applications that
we studied.

Our model was able to predict, within 8%, the workload size
at which we benefit from task partitioning for a generic stream
based application. The task completion time was predicted
by our model with a MRE of 12%. We used our model to
calculate a partitioning ratio that reduced task completion time
to be within 2% of the best case.

ACKNOWLEDGMENT

This research was supported through an Australian Govern-
ment Research Training Program Scholarship.

REFERENCES

[1] J. W. Tang, Y. W. Hau, and M. Marsono, “Hardware/software partitioning
of embedded system-on-chip applications,” in 2015 IFIP/IEEE Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC), pp. 331–
336, Oct 2015.

[2] M. López-Vallejo and J. C. López, “On the hardware-software partitioning
problem: System modeling and partitioning techniques,” ACM Trans. Des.
Autom. Electron. Syst., vol. 8, pp. 269–297, July 2003.

[3] M. Jacobsen and R. Kastner, “RIFFA 2.0: A reusable integration frame-
work for FPGA accelerators,” in 2013 23rd International Conference on
Field programmable Logic and Applications, pp. 1–8, Sept 2013.

[4] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “Legup: High-level synthesis for fpga-based
processor/accelerator systems,” in Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA
’11, (New York, NY, USA), pp. 33–36, ACM, 2011.

[5] ARM limited, ARMv7-A Architecture Reference Manual DDI 0406C.b,
2005.

[6] A. Powell and D. Silage, “Statistical performance of the ARM Cortex A9
accelerator coherency port in the Xilinx Zynq SoC for real-time applica-
tions,” in 2015 International Conference on ReConFigurable Computing
and FPGAs (ReConFig), pp. 1–6, Dec 2015.

