
A Programmable Configuration Controller for
Fault-Tolerant Applications

Lingkan Gong∗†, Tong Wu∗, Nguyen T. H. Nguyen∗, Dimitris Agiakatsikas∗,
Zhuoran Zhao∗, Ediz Cetin†, and Oliver Diessel∗

∗ School of Computer Science and Engineering, UNSW Australia
† School of Electrical Engineering and Telecommunications, UNSW Australia

Abstract—FPGAs are promising candidates for computational
tasks in space applications. However, they are susceptible to
radiation-induced errors, the most common failure being due
to the corruption of their configuration memory. Module-based
partial reconfiguration and frame-based scrubbing are the two
most commonly used techniques for detecting and recovering
from configuration memory errors. Both methods require user-
designed reconfiguration controllers (RC) to read and write
FPGA configuration memory data. This paper proposes a Pro-
grammable Configuration Controller (PCC) specifically designed
for fault-tolerant applications. PCC has a soft Application Spe-
cific Instruction Set Processor (ASIP) architecture. The PCC
is software programmable using the C language, which allows
it to be used in a wide variety of fault-tolerant applications
with minimal design and/or hardware overhead. PCC also has
instruction extensions to accelerate commonly-used reconfigura-
tion operations such as reading and writing configuration data.
Through 5 case studies, we demonstrate that the use of an ASIP
architecture for reconfiguration control in applications prone to
radiation-induced corruption strikes the right balance between
speed, resource utilization and flexibility.

I. INTRODUCTION

Both module-based partial reconfiguration and frame-based
scrubbing perform FPGA fault recovery by reading and writing
configuration bitstreams from and to the FPGA configuration
port, such as the Internal Configuration Access Port (ICAP)
in Xilinx FPGAs. The Reconfiguration Controller (RC), which
oversees this process, is thus a critical component for FPGA
fault recovery. A number of investigations have studied general
techniques for designing fast, light-weight, and easy-to-use
RCs [1]. For space-based FPGA systems in particular, the re-
quirements for resource utilization (area), speed and flexibility
should be motivated yet constrained by the desire to reduce
the risks of radiation-induced errors to the RC itself.

Constrained by the system reliability, we believe it is essential
to have an RC that balances the tradeoffs between perfor-
mance, resource utilization and flexibility, instead of focusing
on any one single factor while neglecting others. For example,
in space applications that use slow flash memories for storing
bitstreams, the system only needs to perform reconfiguration
at the rate at which the flash memory can be read. Resource

This research was supported in part by the Australian Research Council’s
Linkage (LP140100328) and Discovery (DP150103866) Projects funding
schemes.

utilization is another criterion and a light-weight RC intro-
duces less error-susceptible bits. Removing unused function-
ality could reduce resource usage but the RC may not remain
flexible enough to be reused in a range of applications, or to
explore alternative fault recovery algorithms. In particular, the
surveys in [2], [3] cite a large number of possible scrubbing
algorithms. The design space is further enlarged if we also
consider Modular Error Recovery (MER) as a fault recovery
strategy. Ideally, the RC should be software programmable so
that designers can explore various fault recovery methods or
extend existing fault recovery approaches.

To the best of our knowledge, existing RCs only focus on
one or two aspects of area, speed and flexibility in general
but have not considered them jointly in the context of space
applications. HWICAP [4] is a Xilinx, general-purpose IP that
provides a bus-based interface to the ICAP and is software pro-
grammable to send any command sequence, including single
frame R(ead)/W(rite) as well as partial/complete bitstreams.
Unfortunately, the software-programmability, while improving
flexibility, comes at the cost of large resource overhead and
low performance [5]. As another example, the Xilinx Soft
Error Mitigation (SEM) controller [6] is a light-weight and
high-performance IP dedicated for fault recovery. However,
the SEM controller is not flexible since it is based on the
PicoBlaze processor [7], which does not have an official C
compiler and suffers from an extremely small instruction space
(1,024 words). Hence, the controller can not readily be repro-
grammed to perform new or different scrubbing functions.

This paper proposes a Programmable Configuration Controller
(PCC) to assist in detecting and recovering from radiation-
induced errors in space applications. PCC is a soft Applica-
tion Specific Instruction Set Processor (ASIP) based on the
RISC-V instruction specification [8]. It supports all RISC-
V integer instructions and benefits from a complete compiler
tool chain and a large development community. PCC can run
fault detection/recovery software using the general instructions
defined by the RISC-V specification while being able to
benefit from the high reconfiguration throughput provided by
instructions specifically customized for this purpose. The PCC
implementation is based on Vscale [9] and PicoRV [10], two
versions of RISC-V that have low resource usage. The PCC
can be used in either standalone mode or peripheral mode,

978-1-5090-5602-6/16 $31.00 © 2016 IEEE

117

as configured at design time by passing Verilog parameters or
VHDL generics, to meet different system design requirements.

This article is organized as follows. Section II summarizes the
use cases of RCs for fault-tolerant applications and assesses
the suitability of a number of existing RCs for this appli-
cation. The survey shows that both HW and SW solutions
fail to adequately balance performance, resource utilization
and flexibility requirements for applications with radiation-
induced faults. Aiming to bridge the gap, we propose the
ASIP architecture of Section III, while Section IV provides the
design details of the Programmable Configuration Controller
(PCC). In Section V, we compare the PCC with reference
reconfiguration controllers in a comprehensive set of fault-
recovery case studies. Section VI presents our conclusions.

II. RELATED WORK

While various reasons could cause an FPGA design to fail in
space, the most common failure is due to the corruption of
the configuration memory induced by radiation [11]. User and
research interest has focused on devising autonomous methods
to detect and recover configuration memory errors as they
occur. Broadly, the controllers, that oversee such autonomous
fault detection and recovery, as well as the golden copy of
the recovery bitstreams, may be located either external to
the FPGA or within it. Our research focuses on on-chip
controllers that fetch externally stored bitstreams and access
an internal configuration port to check and overwrite the
configuration memory. Hence, reading and writing the config-
uration memory are fundamental operations for detecting and
recovering from configuration errors. For example, in MER,
the existence of an error can be identified by reading voter
status via the configuration port [12], [13]. After an error
is detected, MER approaches typically recover the error by
partially reconfiguring the erroneous module [14], [15]. In
simple blind scrubbing, the RC refreshes the FPGA device by
continuously rewriting the configuration memory [3]. A more
efficient scrubbing method relies on Error Correcting Codes
(ECC) stored with each configuration memory frame. The RC
reads the configuration memory so as to calculate and check
the ECC data, which can isolate single bit errors. A corrected
configuration frame is written back to the device when an
error is identified [2]. Last but not least, fault injection, which
is a commonly-used technique for test and debug purposes, is
typically implemented by intentionally writing an erroneous
frame to the FPGA device [16]. In summary, the RC is a key
component for space-based FPGA designs, and there are a
variety of different use cases for it.

Various proprietary and academic controllers have been devel-
oped to meet the general needs of dynamically reconfiguring
FPGAs as well as the specific requirements posed by radiation
fault-tolerant applications. As mentioned in Section I, the
HWICAP [4] and the SEM controller [6] are vendor IPs
that can be used for fault recovery. HWICAP, commonly
used with a soft processor such as MicroBlaze, suffers from

large resource overheads and slow performance, while the
SEM controller fails to meet flexibility needs as it does not
allow new scrubbing functions to be developed. Despite these
limitations, they are popular due to their ease of use. Several
of the use cases we discuss in Section V were originally
developed using either HWICAP or the SEM controller.

Several academic development efforts have achieved ICAP
throughput approaching the maximum rated capacity of 400
MB/s but invariably compromise on flexibility and/or reliabil-
ity. Representative efforts include:

• AC-ICAP [17] for Kintex-7, which provides an AXI
interface and therefore can be interfaced to a MicroBlaze
or user logic, achieves 380 MB/s ICAP throughput using
1286 LUTs, 1193 FFs and 22 BRAMs and supports
single frame R/W as well as loading of partial bitstreams,
but does not support the loading of arbitrary commands,
preventing state capture, for example;

• A self-recovering controller [18], developed for Virtex-4,
that has the ability to recover from errors within the con-
troller by loading prestored recovery bitstreams, achieves
380 MB/s throughput, performs single frame R/W and
loads partial bitstreams, and supports ECC scrubbing –
while fast, this controller’s flexibility is compromised by
virtue of being PicoBlaze based;

• An open source controller [5], developed for Virtex-6,
that can be overclocked to drive the ICAP at up to 838
MB/s using 586 LUTs, 672 FFs and 8 BRAMs, but is
inflexible as it only supports loading partial bitstreams;

• Another open source controller [19], also designed for
Virtex-6, that only supports loading of protected bit-
streams by performing Single Error Correction, Double
Error Detection (SECDED) at 320 MB/s or Cyclic Re-
dundancy Checking (CRC) at 395 MB/s using about 590
LUTs, 300 FFs, and 1 BRAM;

A number of researchers, such as [20], have worked on
pure hardware-based RCs for better performance but are
more expensive to implemente than combined software-
hardware approaches. Furthermore, HW-only designs are not
programmable and lack the flexibility needed to develop and
explore different fault detection and recovery applications.

III. ASIP-BASED FAULT RECOVERY

As mentioned in Section I, RCs for fault recovery needs to
balance performance, resource usage, and flexibility. In this
paper, we propose an ASIP architecture to achieve this bal-
ance. An ASIP is a processor that has customized instructions
for specific applications. In particular, an ASIP has the benefit
of a general-purpose processor for users to implement various
fault detection and recovery algorithms. It also caters for cus-
tomized instructions to accelerate reconfiguration operations
commonly used for fault-recovery. Based on our literature
survey in Section II, we have identified the commonly used
reconfiguration operations as follows:

118

Table I MAPPING OF RECONFIGURATION OPERATIONS TO ASIP

Operations HW Instruction SW Function

write configuration
read configuration

wcfg <buf_addr> <nwords>
rcfg <buf_addr> <nwords>

– –

write one frame
read one frame

– – prepare header and footer in a buffer;
use wcfg to write the header and footer;
use wcfg/rcfg to write/read frame data

issue GCAPTURE
issue DeSync

– – prepare configuration commands in a buffer;
use wcfg to write commands;

blind scrubbing
modular error recovery
partial reconfiguration

wbit <ext_addr> <nwords> identify the external bitstream address;
use wbit to write bitstream from external source;

ECC-based scrubbing – – read one frame and check ECC;
correct the error and write the corrected frame back;

ICAP-based voter checking – – read one frame and extract voter bits;

fault injection – – read one frame, flip one bit and write the frame back;

• Error detection by reading the configuration memory.
As mentioned in Section II, errors can be identified by
reading the voter status bits. For Xilinx-based FPGAs,
the RC needs to issue a GCAPTURE command so as to
copy the voter status from user logic to the configuration
memory, and then read the configuration frame where the
voter status bits reside. For ECC-based scrubbing, errors
can also be detected by reading out the configuration data,
calculating the ECC data while reading, and comparing
the calculated ECC data with the pre-stored ECC data.
For Xilinx-based FPGAs, the RC can, in some cases,
obtain ECC results directly from the FRAME_ECC prim-
itive. Therefore, the RC needs to be capable of reading
the configuration memory, while being able to perform
vendor-specific operations such as issuing GCAPTURE
and reading the FRAME_ECC primitive.

• Error recovery by writing to the configuration memory.
As mentioned in Section II, both MER and scrubbing
approaches recover a configuration error by over-writing
the configuration memory. The golden configuration data
is commonly stored in radiation-hardened storage such as
external flash. The golden data can also be calculated at
runtime by flipping the erroneous bits of the configuration
data. Therefore, the RC needs to be capable of accepting
configuration data from external sources, and buffering
them for future reference.

• Error injection by writing the configuration memory.
Fault injection can be used to test the reliability of user-
designed components by emulating bit-flip errors in the
FPGA’s configuration memory. In order to support fault-
injection experiments, the controller should be able to
read a frame and write it back with some bits flipped.

Table I illustrates the mapping of commonly-used reconfigu-
ration operations to the hardware or the software of an ASIP.
The most fundamental operations are reading and writing
configuration data to/from the configuration port, a temporary
bitstream buffer, and an external bitstream source such as flash

memory. We have therefore decided to implement these as
customized instructions. All other application-specific opera-
tions are performed in software. For example, a GCAPTURE
command is issued by populating the temporary bitstream
buffer with the required command sequence and executing a
wcfg instruction, which is capable of copying an abitrary
number of words from the bitstream buffer to the ICAP.
Writing one frame is achieved by three wcfg instructions that
write the header, frame data and the footer respectively. ECC-
based scrubbing is accomplished by reading a frame, checking
the ECC and writing the corrected frame back. By mapping
these basic operations to customized instructions, the ASIP
architecture can meet the performance goals that fault-tolerant
applications require. By providing software programmability,
an ASIP-based RC can be flexibly reused for a wide range of
use cases without consuming additional resources.

IV. PROGRAMMABLE CONFIGURATION CONTROLLER

The Programmable Configuration Controller (PCC) is de-
signed according to the general requirements and design
considerations presented in Section III. It currently supports
Xilinx FPGAs but its general idea can easily be applied to
FPGAs from other vendors.

The PCC can be used in various modes that are configurable at
design time by passing Verilog parameters or VHDL generics
to the design. Figure 1 depicts the most common configuration
of the PCC, the standalone mode. The lightly-shaded blocks
are optional modules depending on use cases and modes. The
moderately-shaded blocks are present in all configurations.
The darkly-shaded blocks are part of the FPGA device silicon
(e.g., the ICAP and the FRAME_ECC primitive).

A. RISC-V CPU

Standalone mode is intended to be used in systems where
PCC is the only CPU. The main processor of the PCC is

119

Figure 1. PCC in standalone mode

based on the RISC-V instruction specification and it supports
all RISC-V integer instructions and all RISC-V C compilers
such as gcc and LLVM [8]. We have excluded the rarely
used multiplication/division instructions to reduce resource
utilization. The compiler will generate integer instructions to
emulate these instructions when they are used. Optionally, the
processsor can be configured to include interrupt handling, a
UART and a timer. To save resource usage, we implemented
these options as customized instructions, which are tightly
coupled with the main processor, instead of as traditional
peripherals over a shared and resource hungry bus.

The main processor adopts the 3-stage pipeline architecture
from Vscale [9], an open-source implementation of the RISC-
V specification. To reduce resource utilization, the processor
stalls the pipeline when hazards are detected. Furthermore,
PCC does not implement any of the privileged instructions
and registers that were originally intended to support operating
systems. To optimize the design for FPGAs, the instruction and
data fetch logic is tightly coupled with the memory resources
(e.g. BRAM) available on FPGAs so that instructions/data are
always available one cycle after an address is presented to the
memory.

B. Extended Instructions for Reconfiguration

The extended instructions, as shown in Figure 2, are imple-
mented by a Finite State Machine (FSM), which controls a
bitstream buffer and a bitstream FIFO. The bitstream buffer
is used by the wcfg and rcfg instructions (See Table I)
as a temporary storage for configuration data. The buffered
configuration data can be used by other operations that are
implemented in software, such as to extract voter status bits
or to flip the erroneous bit when an ECC check mismatches.
The bitstream FIFO is used by the wbit instruction to buffer
configuration data transferred from external storage such as
a serial flash. Functionally, the wbit instruction acts as a
DMA engine between the FIFO and the ICAP. The instruction
extension logic can be conceptually viewed as a co-processor
to the main processor while it is actually tightly coupled to
the pipeline of the main processor for better performance.

Figure 2. Customized wcfg instruction

Figure 2 illustrates the format and the pseudo-code descrip-
tion of the wcfg instruction. The reconfiguration instructions
use the R-type instruction format in which the two source
operands, rs1 & rs2, come from the register file, and the result,
rd, is written back to the register file. The instruction opcode,
custom1, is selected from the set of reserved opcodes that
are used by the RISC-V compiler for user-defined instructions.
The funct3 field indicates whether rs1, rs2 and rd are valid.
The funct7 field is assigned by the user for individual
instructions. In the assembly program, users need to define
a macro for each extended instruction (see Figure 2). The rest
of the program uses the assembly macro and the compiler
generates valid instructions accordingly.

The main processor communicates with the configuration co-
processor via the Pico Co-Processor Interface (PCPI) [10].
In particular, the decode logic of the main processor dis-
patches the extended reconfiguration instructions word (i.e.,
the pcpi_insn signal indicated in Figure 1), as well as the
operands (i.e., the pcpi_rs1 and pcpi_rs2 signals) to the
co-processor via a VALID/READY handshake. The result (i.e.,
the pcpi_rd signal) is driven by the co-processor and is
written back to the main register file.

Standalone mode requires users to design a dedicated flash
controller to interface the bitstream FIFO with an external
flash. Flash controllers are system specific and are therefore
not included as part of the PCC. Instead, PCC exports a simple
and native FIFO interface so that users can easily implement
logic that transfers configuration data from external storage
to the FIFO. Depending on the application’s performance
requirements, designers can optionally use dedicated DMA to
perform bitstream transfer.

C. Peripheral Modes

The PCC can also be used as a slave attachment to the AXI
bus and operate as a bus peripheral. Such a system typically
involves a main processor, such as a MicroBlaze or a LEON,
running the main application, and uses the PCC to perform
reconfiguration operations and/or fault-recovery tasks. This
mode is also useful during the development of a system during
which designers can debug the PCC via the system processor.
Depending on whether the PCC includes the RISC-V CPU or
not, there are two types of peripheral modes.

Figure 3 depicts the NO_CPU peripheral mode. Instead
of including the RISC-V processor, the PCC contains the

120

Figure 3. PCC in NO_CPU peripheral mode

PCC_REGs module which has registers accessible by the main
processor. The PCC_REGs module mimics the PCPI interface.
In particular, if the main processor writes to the PCPI_INSN,
PCPI_RS1 and PCPI_RS2 registers, the PCC_REGs module
initiates a PCPI handshake and dispatches the instruction to
the co-processor. On completion, the PCPI handshake retires
and the PCC_REGs module raises an interrupt to the main
processor. Since the PCC_REGs module shares the same PCPI
interface as the RISC-V, the co-processor of the PCC is the
same in all modes. The peripheral mode also includes an AXI
master interface to fetch bitstreams from external sources.

If the designer includes the RISC-V CPU, PCC operates in
the so-called co-processor peripheral mode. The co-processor
peripheral mode includes all the AXI master and slave logic,
as well as the PCC_REGs module. This mode is intended to
be used by systems that require a dedicated CPU to perform
fault recovery in the background so as to offload these tasks
from the main processor.

V. CASE STUDIES

We demonstrate the benefits and flexibility of the PCC via
5 case studies. The case studies aim to cover all aspects of
common reconfiguration operations used by fault-tolerant ap-
plications (See Section III). Case studies 1 and 3 demonstrate
error detection by reading the configuration frames of the
voters and the modules. To recover an error, we can obtain the
golden configuration data from external flash (Case Study 2) or
by flipping the erroneous bit (Case Study 3). The case studies
injects errors as the test stimuli. The fourth study demonstrates
the use of PCC to implement a custom recovery strategy that
blends frame- and module-based error recovery. The last case
study involves using the PCC for traditional partial reconfig-
uration that is not related to fault recovery, but demonstrates

PCC’s suitability for general purpose applications. For each
case study, we compare the use of PCC with that of a
MicroBlaze and HWICAP subsystem (MB_HWICAP) or the
SEM controller. We compare the resource usage, performance
and development effort for each design.

A. Case 1: ICAP-based Voter Checking

Cast Study 1 demonstrates the use of PCC to check voter
status via the ICAP used in Modular Error Recovery (MER)
[13] (See Figure 4). The system consists of a number of
synthetic compute nodes with each node containing one voter
and three identical copies of synthetic computational modules.
Each voter monitors the module outputs and updates its voter
status bits (either NO_ERROR or the erroneous module ID).
The system’s Reconfiguration Controller (RC) polls the voter
status bits of each voter so as to identify which module is
in error, and it does so by reading the configuration frame of
the voter. The RC is implemented as either a MB_HWICAP
subsystem, or as a PCC running in standalone mode.

Figure 4. Case study 1: ICAP-based voter checking

Table II RESOURCE UTILIZATION OF RCS IN CASE STUDIES 1-4

RC Slices LUTs FFs
MB_HWICAP (Cases 1,2,4) 3350 (10%) 7452 (5.5%) 8323 (8.1%)
PCC (Cases 1,2,3,4) 573 (1.7%) 1758 (1.3%) 1048 (0.39%)
SEM (Case 3) 187 (0.55%) 568 (0.42%) 478 (0.17%)

Table III PERFORMANCE OF CASE STUDY 1.

RC Frame Write Frame Read GCAPTURE One Test
MB_HWICAP 73us 70us 5us 16.4ms
PCC 3.41us 3.39us 0.81us 1.51ms
Lower Bound 2.02us 2.02us 0.11us 0.71ms

The voter checking platform was implemented on a Xilinx
Artix-7 XC7A200TFBG484-1 FPGA using the Vivado tool
chain. A test cycle, which involves injecting an error into
one of the compute nodes and checking all voter status bits,
requires frequent frame-based configuration access operations.
Table II shows the resource utilization of the RCs in Case

121

Studies 1-4. Table III compares the performance on the frame
access between RCs and the theoretical lower bound. Note that
for the FPGA used, a frame contains 202 words including
the pad words [21], and GCAPTURE requires 11 words.
The PCC-based RC achieves more than 20x improvements
in performance at significantly lower utilization.

Table III also compares the time to run one full test cycle,
which involves 231 frame reads and writes combined. The
PCC-based RC was found to be 10x faster than MB_HWICAP.
Since the application itself requires frequent frame reads
and writes, using fast configuration access instructions has a
significant impact on the overall performance. For this voter-
checking application, we are only interested in a small number
of voter status bits contained in the configuration frame. The
PCC uses a rcfg instruction to burst the frame data to the
bitstream buffer at maximum throughput and only reads the
bits of interest to the processor main memory. On the other
hand, the MB_HWICAP wastes numerous cycles transferring
all frame data from the ICAP to the processor main memory
over a resource hungry bus, only to use a few bits of interest.

The ASIP architecture of PCC introduces a number of over-
heads. From a hardware perspective, reading a frame is imple-
mented by two wcfg and one rcfg instructions (See Table I)
and, to simplify the processor design, each customized instruc-
tion stalls the pipeline and introduces extra latencies. From a
software perspective, a common software coding practice is
to encapsulate customized instructions as C functions callable
by other C code. Such encapsulation introduces a number of
extra instructions. PCC therefore fails to achieve the lowest
possible latency. However, in subsequent case studies, we can
see that the loss of performance is worthwhile given the extra
flexibility provided by software programmability.

B. Case 2: Modular Error Recovery

Case Study 2 evaluates the use of PCC for error recovery by
partial reconfiguration of the erroneous modules. It uses the
same platform as Case Study 1 but, in order to support modular
recovery, Case Study 2 adds extra flash controllers to both RCs
(See Figure 5) so as to access the golden bitstreams stored in
off-chip flash memory. For the PCC-based RC, we used the
Xilinx DataMover DMA to connect the FIFO interface of the
PCC to the AXI_QSPI flash controller. On the other hand, the
MicroBlaze-based RC adds DMA and a flash controller to the
AXI bus outside of the RC.

Table IV PERFORMANCE OF CASE STUDY 2.

RC QSPI->CPU->ICAP QSPI->DMA->ICAP
MB_HWICAP 3.56MB/s 11.2MB/s
PCC – 24.4MB/s
Upper Bound 25MB/s 25MB/s

Table IV compares the throughput of both RCs when used
for modular reconfiguration. In this application, the bottle-
neck of the platform is the off-chip flash memory (Spansion

Figure 5. The RCs of Case Study 2

S25FL256S), with a maximum throughput of 25MHz which
is dedicated to bitstream storage. Since the PCC exposes the
bitstream FIFO as an interface accessible to other components,
we are able to directly attach the DataMover DMA and the
flash controller to the PCC so as to form a dedicated datapath
between the flash memory and the ICAP. The PCC-based
RC achieves throughput that is close to the upper bound.
For the MB_HWICAP, we have tested the throughput both
without and with DMA, and it was no surprise to see a big
performance improvement when DMA was used. However,
in this application, DMA has to be configured in the “key
hole” mode so as to transfer the bistream to the FIFO of
the HWICAP. DMA can only transfer 16 bytes at a time and
the MicroBlaze-based RC therefore only achieves 50% of the
maximum throughput.

C. Case 3: ECC-based Scrubbing

Apart from single frame and modular reconfiguration, PCC can
also be used to recover configuration errors by scrubbing. The
platform of Case Study 3 is the RUSH on-satellite computer,
which is a customized FPGA platform to study fault-tolerance
applications in space [22]. The RUSH FPGA design (See
Figure 6) contains 9 triplicated computational nodes, as well
as an RC that runs ECC-based scrubbing in the background.
The RC is either the SEM controller running in repair mode
[6], the MB_HWICAP, or the PCC configured in standalone
mode. During scrubbing, the RC reads out configuration
data frame-by-frame and checks the FRAME_ECC primitives
to detect and localize a single bit error. If FRAME_ECC
reports an error, the corrected frame is written back to the
configuration memory. We added an AXI_GPIO module to
the MB_HWICAP to read the FRAME_ECC output. The
SEM controller and the PCC are capable of accessing the
FRAME_ECC as a sub-component.

Table V PERFORMANCE OF CASE STUDIES 3 AND 4.

RC Check a Frame Fix an Error
MB_HWICAP (Cases 3,4) 36us 76us
SEM (Cases 3) 1us 610us
PCC (Cases 3,4) 3.6us 7.5us

The resource utilization of the SEM controller is illustrated
in Table II, whereas the resource utilization of the PCC and

122

Figure 6. Case study 3: ECC-based scrubbing

the MB_HWICAP is not much different from those of Case
Study 1. Table V compares the performance of scrubbing
for the RCs. In particular, the SEM controller takes 18.3
ms to scan the entire Artix-7 XC7A200T FPGA [6], which
contains 18,300 configuration frames (i.e., 1us per frame).
Frame reading is slower for PCC (3.6us per frame) since the
customized instructions have to read one extra pad frame for
each configuration frame needed. This doubles the number of
frames read by the PCC and increases the length of one scrub
cycle. On the other hand, it is much faster for PCC to fix
an error (7.5us) compared with the SEM controller (610us).
Since the SEM controller is a black box, we are not able
to analyze its exact operations. For the same reason, we are
also unable to extend the SEM IP to study user-developed
scrubbing algorithms such as the one in Case Study 4.

D. Case 4: In-house Fault-Recovery Algorithm

Case Study 4 demonstrates the application of PCC to im-
plement and test custom error recovery algorithms such as
the Frame- and Module-based configuration memory Error
Recovery (FMER) [23]. FMER recovers configuration mem-
ory errors that occur in TMR modules using modular re-
configuration. All other resources are periodically scrubbed,
thereby ensuring robust detection and repair of errors that
occur outside the TMR modules.

The FMER system is implemented on the RUSH FPGA plat-
form and the development effort for this case study involved
reusing and integrating hardware and software components
from Case Studies 2 and 3. In particular, we developed a tool to
extract a list of frames that are not included in TMR modules,
and the RC use ECC-based scrubbing, as in Case Study 3, to
scrub them on a continuous basis. We added a star network
so as to connect all voters and to transfer the IDs of erroneous
modules from the voters to the RC. When an interrupt is raised
by a voter to indicate an error in a TMR module, the RC
pauses scrubbing and reconfigures the erroneous module as in
Case Study 2. Since the RUSH board uses a parallel flash for

storing the golden bitstreams, we modified the RCs of Case
Study 2 to use the AXI_EMC flash controller. While these
modifications are straightforward to implement on either the
PCC or the MB_HWICAP, we are unable to implement FMER
using the SEM controller since it cannot be extended.

We found the scrub performance to be the same as Case Study
3 (see Table V). We found the reconfiguration throughput for
both RCs to be approximately the same: the PCC had a mean
throughput of 13.7MB/s, whereas the MB_HWICAP achieved
12.4MB/s. The performance of both solutions was bounded by
the throughput of the parallel flash (15.4MB/s).

E. Case 5: Partial Reconfiguration

Apart from using the PCC for fault-tolerant applications, it
can also be used as the RC for general purpose reconfigurable
designs. Case Study 5 is derived from the Xilinx partial
reconfiguration reference design [24]. As illustrated in Figure
7, the system has a reconfigurable peripheral attached to
a microprocessor bus, while two modules, an adder and a
multiplier, are mapped to the reconfigurable peripheral. Soft-
ware running on the main MicroBlaze processor reconfigures
the peripheral by programming the HWICAP. The reference
design was originally implemented using Xilinx PlanAhead
tool targeting Virtex-5 FPGAs with an SD card. We re-
targetted it to a Nexys-Video board that has an Artix-7 FPGA
and an SPI flash, and upgraded the IPs and tools to Vivado.

Figure 7. Case study 5: Partial reconfiguration using PCC

Table VI RESOURCE AND PERFORMANCE OF CASE STUDY 5

RC Slices LUTs FFs
HWICAP 261 (0.78%) 339 (0.25%) 957 (0.36%)
PCC 387 (1.15%) 1015 (0.75%) 1022 (0.38%)
PCC.NO_DMA 231 (0.73%) 646 (0.43%) 552 (0.20%)

For Case Study 5, we replaced the HWICAP module with a
PCC operating in the NO_CPU peripheral mode. Since this
mode uses the standard AXI master and slave interfaces, it
can readily be integrated with a blocked design using the
Vivado tools. From a software perspective, the application can
be easily modified for PCC since the PCC and the hwicap
drivers share similar C function prototypes and calling con-
ventions. For example, the C functions that perform partial

123

reconfiguration are the XHwIcap_DeviceWrite function
for hwicap, and the Pcc_DeviceWrite function for the
PCC. Both versions take the same bitstream buffer and size
as arguments. While the XHwIcap_DeviceWrite function
copies the bitstream, word by word, to the HWICAP, the
Pcc_DeviceWrite function initiates DMA-style bitstream
transfer by dispatching a wbit instruction to the PCC co-
processor via the PCPI interface. The hwicap driver has 3000
Lines of Code (LOC) whereas the PCC version has 1500 LOC.

The PCC, when configured in NO_CPU peripheral mode,
consumes 50% more slices than HWICAP (See Table VI). This
increase is primarily due to the inclusion of DMA logic and
the AXI master interface, which are not available in HWICAP.
As a reference, the PCC without DMA is slightly smaller
than HWICAP. With DMA, the time to reconfigure either of
the peripherals, whose partial bistreams have 123,280 bytes,
reduced from 33.8ms, for HWICAP, to 7.6ms for PCC.

VI. CONCLUSIONS AND FUTURE WORK

Due to the unique characteristics of fault-tolerant FPGA
applications used in space, the design of the RC needs to
carefully balance performance, resource usage, and flexibility
requirements. To the best of our knowledge, this paper is
the first work to use a soft ASIP architecture to balance
such requirements while targetting reconfiguration control for
FPGA design reliability. The PCC, an implementation of
a soft ASIP architecture, is C programmable and supports
rapid development of a variety of fault-tolerant applications.
PCC also has hardware instruction extensions to accelerate
commonly-used reconfiguration operations such as reading
and writing configuration data.

Through 5 comprehensive case studies, we have demonstrated
that PCC can be used in both single frame and modular
reconfiguration applications (Cases 1 & 2), in conventional
and custom scrubbing applications (Cases 3 & 4), as well as
in conventional partial reconfiguration applications (Case 5).
The PCC can be used in standalone configuration (Cases 1, 2,
3 & 4), and NO_CPU peripheral mode (Case 5). It is capable
of interfacing with an external flash controller (Cases 2 &
4), without a flash (Cases 1 & 3) and of using a system flash
(Case 5). In all cases, the development effort involves changing
a few hardware parameters, and writing C code. Therefore,
we believe that PCC meets the flexibility requirements set
by space applications. Our case studies also demonstrate
that a PCC-based RC provides lower reconfiguration latency,
higher throughput and uses less resources compared with the
MB_HWICAP solution. While PCC uses more resource than
the SEM controller, it achieves comparable performance and
provides far more programming flexibility.

This paper provides the baseline design of a reliable reconfig-
uration controller. Looking ahead, we are studying techniques
to enhance the reliability of PCC itself. We are looking at
general fault-tolerant approaches such as TMR, ECC-protected
BRAM, as well as methods that are specific for ASIP designs.

REFERENCES

[1] K. Papadimitriou, A. Dallas, and S. Hauck, “Performance of Partial
Reconfiguration in FPGA Systems: A Survey and a Cost Model,” ACM
Transactions on Reconfigurable Technology and Systems, vol. 4, no. 4,
pp. 36:1 – 36:24, 2011.

[2] I. Herrera-Alzu and M. Lopez-Vallejo, “Design Techniques for Xilinx
Virtex FPGA Configuration Memory Scrubbers,” IEEE Trans. on Nu-
clear Science, vol. 60, no. 1, pp. 376–385, 2013.

[3] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of
Radiation Effects in SRAM-Based FPGAs for Space Applications,”
ACM Computing Surveys, vol. 47, no. 2, pp. 37:1–37:34, 2015.

[4] Xilinx, AXI HWICAP (PG134), 2015.
[5] K. Vipin and S. A. Fahmy, “A High Speed Open Source Controller

for FPGA Partial Reconfiguration,” in Field-Programmable Technology
(FPT), International Conference on.

[6] Xilinx, SoftSoft Error Mitigation Controller (PG036), 2015.
[7] ——, PicoBlaze 8-bit Embedded Microcontroller User Guide (UG129),

2011.
[8] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, The RISC-V

Instruction Set Manual Volume I: User-Level ISA, 2014. [Online].
Available: https://riscv.org/specifications/

[9] A. Magyar, RISC-V in Verilog, 2015. [Online]. Available:
https://riscv.org/2015/09/risc-v-in-verilog/

[10] C. Wolf, PicoRV32 - A Size-Optimized RISC-V CPU, 2016. [Online].
Available: https://github.com/cliffordwolf/picorv32/

[11] H. Quinn, P. Graham, K. Morgan, Z. Baker, M. Caffrey, D. Smith, and
R. Bell, “On-Orbit Results for the Xilinx Virtex-4 FPGA,” in 2012 IEEE
Radiation Effects Data Workshop, 2012, pp. 1–8.

[12] F. Veljkovic, T. Riesgo, and E. de la Torre, “Adaptive Reconfigurable
Voting for Enhanced Reliability in Medium-grained Fault Tolerant
Architectures,” in NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), 2015, pp. 1–8.

[13] D. Agiakatsikas, N. T. H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel,
and L. Gong, “Reconfiguration Control Networks for TMR Systems with
Module-based Recovery,” in Field-Programmable Custom Computing
Machines (FCCM), IEEE Symposium on, 2016, pp. 88–91.

[14] C. Bolchini, A. Miele, and M. D. Santambrogio, “TMR and Partial
Dynamic Reconfiguration to Mitigate SEU Faults in FPGAs,” in IEEE
Int. Symp. on Defect and Fault-Tolerance in VLSI Systems (DFT), 2007,
pp. 87–95.

[15] A. Vavousis, A. Apostolakis, and M. Psarakis, “A Fault Tolerant
Approach for FPGA Embedded Processors Based on Runtime Partial
Reconfiguration,” J. Electron. Test., vol. 29, no. 6, pp. 805–823, 2013.

[16] H. Quinn and M. Wirthlin, “Validation Techniques for Fault Emula-
tion of SRAM-based FPGAs,” IEEE Transactions on Nuclear Science,
vol. 62, no. 4, pp. 1487–1500, 2015.

[17] L. A. Cardona and C. Ferrer, “AC ICAP: A Flexible High Speed ICAP
Controller.”

[18] A. Ebrahim, K. Benkrid, X. Itrube, and C. Hong, “A Novel High-
Performance Fault Tolerant ICAP Controller,” in NASA/ESA Conference
on Adaptive Hardware and Systems.

[19] S. D. Carlo, P. Prinetto, and P. Trotta, “A Portable Open-Source
Controller for Safe Dynamic Partial Reconfiguration on Xilinx FPGAs,”
in Field Programmable Logic and Applications (FPL), International
Conference on.

[20] H. Kalte and M. Porrmann, “Context Saving and Restoring for Multi-
tasking in Reconfigurable Systems,” in Field Programmable Logic and
Applications (FPL), International Conference on, 2005, pp. 223 – 228.

[21] 7 Series FPGAs Configuration User Guide (UG470), Xilinx Inc., 2013.
[22] E. Cetin, O. Diessel, L. Gong, and V. Lai, “Towards Bounded Error

Recovery Time in FPGA-based TMR Circuits using Dynamic Partial
Reconfiguration,” in Field Programmable Logic and Applications (FPL),
International Conference on, 2013, pp. 1–4.

[23] D. Agiakatsikas, E. Cetin, and O. Diessel, “FMER: A Hybrid Configura-
tion Memory Error Recovery Scheme for Highly Teliable FPGA SoCs,”
in Field Programmable Logic and Applications (FPL), International
Conference on, 2016, pp. 1–4.

[24] PlanAhead Software Tutorial: Partial Reconfiguration of a Processor
Peripheral (UG744), Xilinx Inc., 2009.

124

