
COMMA: A Communications Methodology for Dynamic Module Reconfiguration in FPGAs
(Extended Abstract)

Shannon Koh and Oliver Diessel
School of Computer Science & Engineering, The University of New South Wales

Embedded Real-Time, and Operating Systems (ERTOS) Program, National ICT Australia, Sydney, Australia

1 Introduction

On-going improvements in the scaling of FPGA device
sizes and time-to-market pressures encourage the use of
module-oriented design flows [3], while economic factors
favour the reuse of smaller devices for high performance
computational tasks. One of the core problems in
proposing dynamic modular reconfiguration approaches is
supporting the differing communications needs of the
sequence of modules configured over time [2].

Proposals to date have not focussed on communications
issues. Moreover, they have advocated the use of specific
protocols [4], or they cannot be readily implemented [1],
or they suffer from high overheads [5], or rely upon
deprecated features such as tri-state lines [7]. In contrast,
we propose a methodology for the rapid deployment of a
communications infrastructure that provides the wires
required by dynamic modules and allows users to
implement the protocols they want. Our aim is to support
new tiled dynamically reconfigurable architectures such as
Virtex-4, as well as mature device families.

2 The COMMA Approach

We propose developing a set of tools to automatically
generate a wiring infrastructure that is optimised for a
given hardware platform and for the application
requirements known at design time.

 1(a): V4FX12 Pages 1(b) Infrastructure Layout
Figure 1: Paging and Infrastructure

We target the new Xilinx Virtex-4 family of FPGAs to
demonstrate our approach. This architecture is unique in

that the configuration frames have a fixed-length of 41
quad-byte words, each spanning 16 CLB rows. These are
tiled about the device into independently configurable and
independently clocked “pages” that span half the width of
the device, thereby allowing us to readily place modules
as shown in Figure 1(a). External I/O banks are located
towards the left and right edges of the device, but not
necessarily right on the edge as in predecessor families.
An additional bank is located in the centre columns of the
device.

To support independent reconfiguration, we propose
accommodating one reconfigurable module per page.
However, a module may be placed in two or more
adjacent pages such that larger ones can be
accommodated, and it is also possible to divide a page
into sub-pages spanning fewer CLB columns. Figure 1(a)
shows modules M1 and M2 being placed into a sub-
divided page, M3 into three aggregated pages and M4 into
a page of its own. The above concepts can also be
implemented on predecessor device families if the entire
device is viewed as a single page and modules are placed
into horizontally divided sub-pages.

In order to support dynamic module replacement and
relocation, our approach allows virtualisation of any I/O
pin in the communications infrastructure and relies upon
mapping virtual to physical pins at reconfiguration time.
Pin virtualisation is implemented by covering external I/O
pins with the infrastructure, providing module I/O via
slice macros [6], statically configuring alternative routes
between module and external I/O pins, and defining
Reconfigurable Data Ports (RDPs, see Figure 2) that map
logical module ports to physical slice macros. At
reconfiguration time, RDPs are dynamically connected
either to RDPs of other modules or to external I/O pins by
selecting the actual routes from those configured at
application startup. RDPs are implemented as module
adapters or wrappers.

Slice
Macros

Figure 1(b) illustrates a double ring layout of the
infrastructure for an XC4VFX12 device that provides for
8 reconfigurable module areas (of 3 different types) and
illustrates the presence of slice macros on the boundary of
the grey wiring area and the white module areas. Note that
any layout that envelops the communicating module and
I/O pins, satisfies bandwidth requirements, and makes
effective use of wiring resources can be chosen.

M2

M3

M4

M1
Module
Areas

PowerPC

Figure 2: RDP Mappings

Communication requirements are derived from design
time knowledge about the runtime sequence of module
configurations, their interfaces and interconnection
patterns. User constraints are also used to guide the
optimisation of the inter-module wiring layout. Dynamic
module placement and communication channel setup,
possibly involving route selection, is performed either by
on- or off-chip agents.

3 Current Development

A prototype has been developed that involves a two-stage
tool flow to implement an instance of our communications
architecture for a given dynamic application. In the first
stage, we use Xilinx-supplied device information with
user-supplied module interface, schedule and placement
constraints to generate an optimised communications
infrastructure consisting of HDL, constraints, slice macros
and accessory macros. During the second (module
finalization) stage, the infrastructure’s design is used to
wrap and physically implement dynamic modules on the
fabric.

We have implemented a circuit-switched, multiplexer-
based prototype on an XC4VFX12 device as shown in
Figure 3. The infrastructure provides 4 module areas, each
having 8 inputs and 8 outputs, and supports 16 external
I/O pins in total. The host control switches slice macros
and external I/Os with a small on-chip programmable
controller that sets multiplexer selectors to direct pin-to-
pin communications.

Due to the lack of support for Virtex-4 partial
reconfiguration in ISE 7.1i, internal module routing
ignores area constraints (Figure 3: left indicates area
constraints, right indicates final routes). Our module
finalisation flow solves this by integrating the
infrastructure as a hard macro, preventing modules from
utilising the infrastructure routes.

The maximum clock speed of the communications
infrastructure after place and route, as per the tool flow
above, is 358 MHz (speed grade –10, i.e. the slowest
available), which should be sufficient for most modules.
The infrastructure takes up 573 slices (~10.5% of the
smallest Virtex-4 device, i.e. the XC4VFX12), and each
module area is 576 slices large. For reference, a DES core
uses 476 slices at 182 MHz and a MicroBlaze processor
988 slices at 200 MHz. The trident layout scales to 22
dynamic module areas, each of 3200 slices, for the largest
Virtex-4 LX device. Reconfiguration overheads at this
module size might encourage further module area
subdivision.

Figure 3: Implementation Constraints and Routes

We intend automating the tool flow and determining
methods for optimising the routing and switching
architecture in the future.

Acknowledgements: National ICT Australia is funded
through the Australian Government’s Backing Australia’s
Ability initiative, in part through the Australian Research
Council.

[1] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and
J.v.d. Veen. DYNOC: A dynamic infrastructure for
communication in dynamically reconfigurable devices. In FPL
2005, pp. 153 – 158.
[2] G. Brebner. The swappable logic unit: a paradigm for
virtual hardware. In FCCM97, pp. 77-86.
[3] L. Chaouat, S. Garin, A. Vachoux, and D. Mlynek. Rapid
prototyping of hardware systems via model reuse. In 8th IEEE
Intl Workshop on Rapid System Prototyping, 1997, pp. 150-156.
[4] H. Kalte, M. Porrmann, and U. Ruckert. System-on-
programmable-chip approach enabling online fine-grained 1D-
placement. In IPDPS 2004, p. 141.
[5] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R.
Lauwereins. Interconnection networks enable fine-grain dynamic
multi-tasking on FPGAs. In FPL 2002, 795 – 805.
[6] P. Sedcole, B. Blodget, J. Anderson, P. Lysaght, and T.
Becker. Modular partial reconfiguration in Virtex FPGAs. In
FPL 2005, pp. 211 - 216.
[7] Xilinx Inc. Two flows for partial reconfiguration: module
based or difference based. Xilinx App. Note 290 Sep., 2004.

	Embedded Real-Time, and Operating Systems (ERTOS) Program, N
	1 Introduction
	2 The COMMA Approach
	3 Current Development

