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1 Introduction 
 
On-going improvements in the scaling of FPGA device 
sizes and time-to-market pressures encourage the use of 
module-oriented design flows [3], while economic factors 
favour the reuse of smaller devices for high performance 
computational tasks.  One of the core problems in 
proposing dynamic modular reconfiguration approaches is 
supporting the differing communications needs of the 
sequence of modules configured over time [2]. 
 
Proposals to date have not focussed on communications 
issues. Moreover, they have advocated the use of specific 
protocols [4], or they cannot be readily implemented [1], 
or they suffer from high overheads [5], or rely upon 
deprecated features such as tri-state lines [7]. In contrast, 
we propose a methodology for the rapid deployment of a 
communications infrastructure that provides the wires 
required by dynamic modules and allows users to 
implement the protocols they want. Our aim is to support 
new tiled dynamically reconfigurable architectures such as 
Virtex-4, as well as mature device families. 

2 The COMMA Approach 
 
We propose developing a set of tools to automatically 
generate a wiring infrastructure that is optimised for a 
given hardware platform and for the application 
requirements known at design time. 
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Figure 1: Paging and Infrastructure 

We target the new Xilinx Virtex-4 family of FPGAs to 
demonstrate our approach. This architecture is unique in

        
that the configuration frames have a fixed-length of 41 
quad-byte words, each spanning 16 CLB rows. These are 
tiled about the device into independently configurable and 
independently clocked “pages” that span half the width of 
the device, thereby allowing us to readily place modules 
as shown in Figure 1(a). External I/O banks are located 
towards the left and right edges of the device, but not 
necessarily right on the edge as in predecessor families. 
An additional bank is located in the centre columns of the 
device. 
  
To support independent reconfiguration, we propose 
accommodating one reconfigurable module per page. 
However, a module may be placed in two or more 
adjacent pages such that larger ones can be 
accommodated, and it is also possible to divide a page 
into sub-pages spanning fewer CLB columns. Figure 1(a) 
shows modules M1 and M2 being placed into a sub-
divided page, M3 into three aggregated pages and M4 into 
a page of its own. The above concepts can also be 
implemented on predecessor device families if the entire 
device is viewed as a single page and modules are placed 
into horizontally divided sub-pages. 
 
In order to support dynamic module replacement and 
relocation, our approach allows virtualisation of any I/O 
pin in the communications infrastructure and relies upon 
mapping virtual to physical pins at reconfiguration time. 
Pin virtualisation is implemented by covering external I/O 
pins with the infrastructure, providing module I/O via 
slice macros [6], statically configuring alternative routes 
between module and external I/O pins, and defining 
Reconfigurable Data Ports (RDPs, see Figure 2) that map 
logical module ports to physical slice macros. At 
reconfiguration time, RDPs are dynamically connected 
either to RDPs of other modules or to external I/O pins by 
selecting the actual routes from those configured at 
application startup. RDPs are implemented as module 
adapters or wrappers. 
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Figure 1(b) illustrates a double ring layout of the 
infrastructure for an XC4VFX12 device that provides for 
8 reconfigurable module areas (of 3 different types) and 
illustrates the presence of slice macros on the boundary of 
the grey wiring area and the white module areas. Note that 
any layout that envelops the communicating module and 
I/O pins, satisfies bandwidth requirements, and makes 
effective use of wiring resources can be chosen. 
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Figure 2: RDP Mappings 

Communication requirements are derived from design 
time knowledge about the runtime sequence of module 
configurations, their interfaces and interconnection 
patterns. User constraints are also used to guide the 
optimisation of the inter-module wiring layout. Dynamic 
module placement and communication channel setup, 
possibly involving route selection, is performed either by 
on- or off-chip agents. 

3 Current Development 
 

A prototype has been developed that involves a two-stage 
tool flow to implement an instance of our communications 
architecture for a given dynamic application. In the first 
stage, we use Xilinx-supplied device information with 
user-supplied module interface, schedule and placement 
constraints to generate an optimised communications 
infrastructure consisting of HDL, constraints, slice macros 
and accessory macros. During the second (module 
finalization) stage, the infrastructure’s design is used to 
wrap and physically implement dynamic modules on the 
fabric. 
 
We have implemented a circuit-switched, multiplexer-
based prototype on an XC4VFX12 device as shown in 
Figure 3. The infrastructure provides 4 module areas, each 
having 8 inputs and 8 outputs, and supports 16 external 
I/O pins in total. The host control switches slice macros 
and external I/Os with a small on-chip programmable 
controller that sets multiplexer selectors to direct pin-to-
pin communications. 
 
Due to the lack of support for Virtex-4 partial 
reconfiguration in ISE 7.1i, internal module routing 
ignores area constraints (Figure 3: left indicates area 
constraints, right indicates final routes). Our module 
finalisation flow solves this by integrating the 
infrastructure as a hard macro, preventing modules from 
utilising the infrastructure routes. 
 
 

The maximum clock speed of the communications 
infrastructure after place and route, as per the tool flow 
above, is 358 MHz (speed grade –10, i.e. the slowest 
available), which should be sufficient for most modules. 
The infrastructure takes up 573 slices (~10.5% of the 
smallest Virtex-4 device, i.e. the XC4VFX12), and each 
module area is 576 slices large. For reference, a DES core 
uses 476 slices at 182 MHz and a MicroBlaze processor 
988 slices at 200 MHz. The trident layout scales to 22 
dynamic module areas, each of 3200 slices, for the largest 
Virtex-4 LX device.  Reconfiguration overheads at this 
module size might encourage further module area 
subdivision. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Implementation Constraints and Routes 

We intend automating the tool flow and determining 
methods for optimising the routing and switching 
architecture in the future. 
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