

Guaranteed Fault Recovery Time for FPGA-based TMR Circuits Employing Partial Reconfiguration

Ediz Cetin & Oliver Diessel University of New South Wales

- Motivation & Background
- Objectives & Approach
- Our technique
- Results so far
- Work in progress

- Space-based systems are increasingly important in our daily lives
 - Systems with bandwidths of 10-60 Gb/s and throughput of up to 1 TOPs are being planned
 - Next gen systems are required to be reprogrammable during operation
- Off-the-shelf SRAM-based FPGAs are ideally suited to meeting these demands

Device cut-away

• Logic Block structure

Logic function implementation

Α	В	C	Υ	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

FPGA Susceptability to SEUs

- BUT...FPGAs are particularly susceptible to radiation-induced Single Event Upsets (SEUs)
 - Deposited charge causes a change of state in dynamic circuit elements
 - Affects both datapath and configuration memory

FPGA Susceptability to SEUs

- BUT...FPGAs are particularly susceptible to radiation-induced Single Event Upsets (SEUs)
 - Deposited charge causes a change of state in dynamic circuit elements
 - Affects both datapath and configuration memory

SEU occurrence increases with orbit radius

Orbit	SEUs/day	MTTU (s)	
LEO (560 km)	4.09	2.11 x 10 ⁴	
Polar (833 km)	1.49 x 10 ⁴	5.81	
GPS (20,200 km)	5.46 x 10 ⁴	1.58	
Geosynchronous (36,000 km)	6.2 x 10 ⁴	1.39	

Predictions for Virtex-4 (XC4VLX200) [Engel et al., 2006]

> FPGA Susceptability to SEUs

Computing in Heterogeneous, Autonomous 'N' Goal-oriented Environments

SEUs have more significant impact as transistor sizes shrink

Device Family	Technology Node	Total Events	1-Bit Events	2-Bit Events	3-Bit Events	4-Bit Events
Virtex	250 nm	241,166	241,070 (99.996%)	96 (0.004%)	0 (0%)	0 (0%)
Virtex-II	150 nm	541,823	523,280 (98.42%)	6,293 (1.16%)	56 (0.01%)	3 (0.001%)
Virtex-II Pro	130 nm	10,430	10,292 (98.68%)	136 (1.30%)	2 (0.02%)	0 (0%)
Virtex-4	90 nm	152,577	147,902 (96.44%)	4,567 (2.99%)	78 (0.05%)	8 (0.005%)

Event distribution due to proton radiation @63.3 MeV [Quinn et al., 2005]

SEU mitigation in FPGAs

Computing in Heterogeneous, Autonomous 'N' Goal-oriented Environments

Triple Modular Redundancy (TMR)

SEU mitigation in FPGAs

- Triple Modular Redundancy (TMR)
 - Eliminate configuration errors by scrubbing

SEU mitigation in FPGAs

- Triple Modular Redundancy (TMR)
 - Eliminate configuration errors by scrubbing
 - Or by dynamic modular reconfiguration

- System reset may take too long and cause data to be lost
- Copying state between modules is infeasible
 too many wires & too much control
- Checkpointing state is complicated and costly - too much memory & control
- Predicting future state is complicated and limited – only feasible for small FSMs

- Develop a general approach
- Protect FPGA circuits from SEUs
- Bound the maximum time to detect and recover from configuration memory errors

CHAINIGE

- Simplest case:
 - Pipeline or linear filter
 - Streamed data

- Represent as acyclic DFG
 - Node = Op [+ Reg]
 - Edge = Data transfer
- >2 successive errors trigger reconfiguration of faulty module
- Time to detect fault:

$$t_{D MAX} \leq N$$
 clock cycles

Time to recover from fault:

$$\leq 2t_{D_MAX} + t_R$$
 clk cycles

- The cause of persistent faults in cyclic components cannot be determined
- The correct state cannot be set by presenting new inputs to the circuit
- ⇒ Cut feedback edges & vote on them; recycle fb as an input to an otherwise acyclic component

Reconfiguration control

Computing in Heterogeneous, Autonomous 'N' Goal-oriented Environments

TM outputs, $\omega_i = \{A, B, C\}$, ω_i a vector of all output bits from module i $\Omega = A \cdot B + B \cdot C + A \cdot C$ $error_i = \omega_i \oplus \Omega$ $reset\ request = \omega_j \oplus \omega_k$ while ω_i reconfiguring

Partitioning a circuit

- Fault detection and recovery times are affected by component latency
- Recovery time is also affected by reconfiguration time, which depends upon component size
- Internal structure of acyclic components does not affect correctness
 - Require voter to check all outputs
 - Ensure all inputs arrive at each module in the same cycle

> Partitioning a circuit

- Partitioning is feasible when the area & latency of DFG nodes are known
 - Probably requires synthesized & tech-mapped netlists
- Explore the DFG breadth-first:
 - Advance wavefront CC' of included nodes
 - Iteratively update the area & latency included in the partition
 - Halt advance before maximum delay $2t_{DMAX} + t_{R}$ exceeded
 - Continue with the outputs of the previous partition

- Simulation using a simple encryption engine as the TM component
- Easier to implement and faster to resynchronise than [Azambuja et al., 2009]
 - No need to include state prediction table
 - No need to wait for predicted state to be entered before resynching

Directions for further work

- Developing automated partitioning and layout tools based on VPR
- Benchmarking the technique on common signal processing circuits
- Implementing FPGA-based systems with large numbers of reconfigurable regions
- Autonomous approaches to detecting and mitigating faults