Knowledge Representation for Systems with General Intelligence

Michael Thielscher, IJCAI 2021, Montreal

Artificial General Intelligence

Intelligence is the ability to

- Perceive or infer information, and to
- Retain it as knowledge to be applied towards adaptive behaviours within an environment or context

Wikipedia

Artificial general intelligence enables systems to

- Perceive or infer information about new tasks
- Adapt to these tasks without human intervention

Systems with General Intelligence

A system with general intelligence can

- Take representations of new problems as input
- Solve these problems without human intervention

Disclaimer

This isn't just Newell and Simon's General Problem Solver:

- They only used symbols to represent problems
- They only used symbol manipulation to solve them

Systems with General Intelligence

A system with general intelligence can

- Take representations of new problems as input
- Solve these problems without human intervention

Claim

Systems with general intelligence require to integrate different AI methods

1. General game-playing programs

- KR for describing new games
- + Inference + Search + Deep Learning
- 2. General collaborative problem-solving robots
 - Hybrid robot control
 - + Epistemic planning for collaboration
- 3. Agent programming for interactive artworks
- 4. A new challenge Escape Room Robot

General Game Playing

Jim Gardner

S.M.S.I., Inc. - Owen Williams, The Kasparov Agency

Sugitaro

Cyberoro ORO

A general game playing system can

- Understand descriptions of new games
- Learn to play these new games effectively without human intervention

Defining General Problem-Solving Tasks

Define:

- 1. A problem class C
- 2. How to present problems $p \in C$ to a system

General Game Playing (2005, 1st AAAI Competition)

Finite, n-player games with

- Synchronous moves
- Complete state information

Defining General Problem-Solving Tasks

Define:

- 1. A problem class C
- 2. How to present problems $p \in C$ to a system

Contents: PREFACE page 2 BASIC RULES OF PLAY Article 1 The nature and objectives of the game of chess page 2 Article 2 The initial position of the pieces on the chessboard page 3 The moves of the pieces Article 3 page 4 Article 4 The act of moving the pieces page 7 Article 5 The completion of the gam page 8 COMPETITION RULES The chess clock Article 6 page 9 page 11 Article 7 Irregularities Article 8 The recording of the move page 11 Article 9 The drawn game page 12 Article 10: Quickplay finish page 13 Article 11: Points page 14 Article 12: The conduct of the player page 14 The role of the arbiter (see Preface) Article 13: page 15 Article 14: FIDE page 16

FIDE LAWS of CHESS

- 1. General game-playing programs
 - KR for describing new games
 - + Inference + Search + Deep Learning
- 2. General collaborative problem-solving robots
 - Hybrid robot control
 - + Epistemic planning for collaboration
- 3. Agent programming for interactive artworks
- 4. A new challenge Escape Room Robot

Knowledge Representation Formalisms for Dynamic Domains

J. McCarthy's Situation Calculus (1968)
STRIPS (1972)
→ PDDL (1998)

Game Description Language GDL (2005) Video Game Description Language (2014) Ludii (2016)

Game Descriptions

```
(init (cell a 1 white-rook))
 ...
(init (cell h 8 black-rook))
(<= (legal white (castle ?direction))
   (true (control white))
   (true (cell e 1 white-king))
   ... )
(<= (next (cell c 1 white-king))</pre>
   (does white (castle c-side)))
(<= (goal (?player 100))
   (checkmate)
   (not (true (control ?player))))
```

Ï	*	4	i.	ij	*	-		2	薑
1	*	-		Ł	1	*			1
			ľ		-		h	ľ	
							ľ		
Å	2	2	2	8	8	2	1	3	Å
Ë	3	9	V	Щ	ť	ġ	E	2	A
		a8	b8	c8	d8	e8	f8	g8	h8
		a7	b7	c7	d7	e7	f7	g7	h7
		a6	b6	C6	d6	e6	f6	g6	h6
		a5	b5	c5	d5	e5	f5	g5	h5
		a4	b4	c4	d4	e4	f4	g4	h4
		a3	b3	c3	d3	e3	f3	g3	h3
		a2	b2	c2	d2	e2	f2	g2	h2
		a1	b1	c1	d1	e1	f1	g1	h1

- 1. General game-playing programs
 - KR for describing new games
 - + Inference + Search + Deep Learning
- 2. General collaborative problem-solving robots
 - Hybrid robot control
 - + Epistemic planning for collaboration
- 3. Agent programming for interactive artworks
- 4. A new challenge Escape Room Robot

Inferring New Knowledge

っあ

Answer Set Program

Solver for single-player games

M.T., ICLP'09

Inferring New Knowledge

General search-based player

Koriche, Lagrue, Piette, & Tabary, Constraints 2016

Inferring New Knowledge

Learning to Play New Games

Schkufza, Love, & Genesereth, Al'08

Learning to Play New Games

The AlphaZero Method

- Self-play using Monte Carlo Tree Search (MCTS) at each state, guided by Neural Network
- Train Neural Network with self-play result

Generalising AlphaZero to Full GDL

AlphaZero

- Two-player, zero-sum, symmetric, turn-based, board games
- Hand-crafted network architecture for each game

GGPZero

- Arbitrary GDL games
- Non-zero-sum games: E(Reward)
- Asymmetric multiplayer games: n output layers

GGP: KR + Inference + Search + Learning

LACES I

- Knowledge representation to describe new games
- Reasoning to understand the rules
- Search enhanced by Learning to play well

Can we learn from General Game-Playing Systems?

• "Maybe our conception of chess has been too limited."

(Demis Hassabis)

(Judit Polgár)

• "Deeper understanding is very difficult to make explicit."

- 1. General game-playing programs
 - KR for describing new games
 - + Inference + Search + Deep Learning
- 2. General collaborative problem-solving robots
 - Hybrid robot control
 - + Epistemic planning for collaboration
- 3. Agent programming for interactive artworks
- 4. A new challenge Escape Room Robot

General Problem-Solving Robot (2016)

Goals

- High-level planning, execution monitoring
- Parallel actions, execution constraints
- Handle human interference

2x speed

General blocksworld problem-solving robot

- 1. General game-playing programs
 - KR for describing new games
 - + Inference + Search + Deep Learning
- 2. General collaborative problem-solving robots
 - Hybrid robot control
 - + Epistemic planning for collaboration
- 3. Agent programming for interactive artworks
- 4. A new challenge Escape Room Robot

- 1. General game-playing programs
 - KR for describing new games
 - + Inference + Search + Deep Learning
- 2. General collaborative problem-solving robots
 - Hybrid robot control
 - + Epistemic planning for collaboration
- 3. Agent programming for interactive artworks
- 4. A new challenge Escape Room Robot

- Robot R grabs a block (b) to check if it's labelled "A"
- Robot S may observe this

- Robot R grabs a block (b) to check if it's labelled "A"
- Robot S may observe this

- Robot R grabs a block (b) to check if it's labelled "A"
- Robot S may observe this

- Robot R grabs a block (b) to check if it's labelled "A"
- Robot S may observe this

A New Event Model Description Language

Grab(x,b)	causes	has(x,b)		
Grab(x,b)	causes	<pre>obs(x,label(A))</pre>	if	label(b,A)
Grab(x,b)	causes	<pre>obs(y,grab(x,b))</pre>	if	looking(y)
Signal(x,y)	causes	looking(y)		
Distract(x,y)	causes	not looking(y)		

It follows that, after Signal(R,S), Distract(R,T), Grab(R,b),

- R knows whether block b is labelled "A"
- S knows that R knows whether block b is labelled "A"
- T doesn't know that S knows that R knows ...

A New Event Model Description Language

Grab(x,b)	causes	has(x,b)	
Grab(x,b)	causes	<pre>obs(x,label(A))</pre>	<pre>if label(b,A)</pre>
Grab(x,b)	causes	<pre>obs(y,grab(x,b))</pre>	<pre>if looking(y)</pre>
Signal(x,y)	causes	looking(y)	
Distract(x,y)	causes	not looking(y)	

Theorem.

Rajaratnam & M.T., KR'21

- Every event model can be described in the language (DER)
- The DER description can be exponentially smaller
- The canonical DER description is always polynomial in size

General Epistemic BW Problem-Solving Robot (Work in Progress)

Goals

- High-level epistemic planning, execution monitoring
- Parallel actions, execution constraints
- Handle human/robot collaboration

- 1. General game-playing programs
 - KR for describing new games
 - + Inference + Search + Deep Learning
- 2. General collaborative problem-solving robots
 - Hybrid robot control
 - + Epistemic planning for collaboration
- 3. Agent programming for interactive artworks
- 4. A new challenge Escape Room Robot

Hierarchical Control for Virtual Agents

Animated characters

• Act and react to human gestures and movements

Hierarchical control combines

- High-level BDI-based agent program (Jason)
- Low-level control engine for characters (Unity)

Hierarchical Control for Virtual Agents

Intraspace UNSW / Academy of Fine Arts Vienna, Christina Jauernek

- 1. General game-playing programs
 - KR for describing new games
 - + Inference + Search + Deep Learning
- 2. General collaborative problem-solving robots
 - Hybrid robot control
 - + Epistemic planning for collaboration
- 3. Agent programming for interactive artworks
- 4. A new challenge Escape Room Robot

The Escape Room Robot Challenge

Goal

 Test the ability of robots to solve new problems in new environments

Tasks

- Scan and map room
- Identify physical objects
- Understand and solve symbolic puzzles
- Relate solutions to objects and actions

Summary: KR to Leverage Al Systems

Goal

 Leverage our AI systems by enhancing their ability to understand and adapt to new problems

KR helps systems to

• Understand and reason about problem descriptions

Examples

- KR + Search + Deep RL to build a general game player
- KR + Hybrid control architectures for robots, virtual agents

Thanks

Dennis Del Favero Adrian Goldwaser Som Guan **Bernhard Hengst** Maurice Pagnucco David Rajaratnam Ji Ruan Claude Sammut

Keith Clark **Thorsten Engesser Christian Freude** Alvaro Gunawan Christina Jauernik Robert Mattmüller Ajit Narayanan **Bernhard Nebel** Peter Robinson Wolfgang Tschapeller

