|IJCAI'09 Tutorial

New Trends in
General Game Playing

Michael Thielscher, Dresden

Chess Players

e - e z = T e e

The 1% Chess Computer (“Turk®, 18™ Century)

Alan Turing & Claude Shannon (~1950)

Deep-Blue Beats World Champion (1997)

In the early days, game playing machines were considered a
key to Artificial Intelligence.

But Deep Blue is a highly specialized system--it can't even play
a decent game of Tic-Tac-Toe or Rock-Paper-Scissors!

A General Game Player is a system that

» understands formal descriptions of arbitrary games

» |learns to play these games well without human intervention

General Game Playing is considered a grand Al Challenge

Rather than being concerned with a specialized solution to a narrow
problem, General Game Playing encompasses a variety of Al areas:

= Al Game Playing

> Knowledge Representation and Reasoning
= Search, Planning

» Learning

= ...and more!

General Game Playing and Al

EEEEEE—

Application (1)

Commercially available chess computers can't be used
for a game of Bughouse Chess.

E LW AZE ENnegdWe K
Adidd 2444 iy A H A
A d A %)

i A &

&
22 22 &
AR EEHB HAA A4dd 412 414
E sWwoo K EA ©WeoeAE

An adaptable game computer would allow the user to
modify the rules for arbitrary variants of a game.

Application (2): General Agents

A General Agent is a system that

» understands formal descriptions of arbitrary multiagent
environments

» learns to function in this environment without human intervention

Examples

> Rules of e-marketplaces made accessible to agents
» Internet platforms that are formally described

> Providing details in agent competitions (eg, TAC) at runtime

Example Games

Single-Player, Deterministic

Demo: Single-Player, Deterministic

Two-Player, Zero-Sum, Deterministic

Two-Player, Zero-Sum, Deterministic

Two-Player, Zero-Sum, Nondeterministic

L] A

|

TEId

Two-Player, Simultaneous Moves

ST [=
» el oL F'.,_I o __T" IF.-'_"F_._l'_.'_._ = . .

Incomplete Information, Nondeterministic

Lindas4 S hlacrmax

$5502 65 Current Hand #1067 3461 $1000

rugoe2s P J stuariGd
(=itting out) Ee (=itting out)

lucster - { == OviDog 72
Al s E e
$ATET A\ Sl8 | | 5107440.45

Jockey?21

FA2056.55
ComE—

The History of General Game Playing

» 1993 B. Pell: “Strategy Generation and Evaluation for Meta-

Game Playing” (PhD Thesis, Cambridge)
> 2005 1° AAAI General Game Playing Competition

» 2006 First publications on General Game Playing
» 2009 1% General Game Playing Workshop (GIGA'09)

» Research groups world-wide: Austin, Bremen, Dresden,

Edmonton, Liverpool, Paris, Potsdam, Reykjavik, Sydney

Roadmap: New Trends in GGP

> Description Languages
» Reasoning about Game Descriptions
» Generating Evaluation Functions

» Learning by Simulation

Description Languages

Description Languages: Overview

» The technology of General Agents requires languages
to describe the rules that govern an environment

» Descriptions

- should be easy to understand and maintain
- can be fully automatically processed by a computer
- must have a precise semantics

» Examples

- Game Description Language GDL
- Market Specification Language MSL

Every finite game can be modeled as a state transition system

But direct encoding impossible in practice

S ANANAR

> | X O wa a4 &
i aa

X 4 =
AN e AR

O B & OE

19,683 states ~ 10 legal positions

— DD W B 01 00 N O

E
1

&

d

Modular State Representation: Features

i
Wy

&5

b

A

22
=4
C

2
&
&5
K

d

&2
&
&

&
WA
&

&

cell(X,Y,C)

Xe {a,.., h}
ye{l,..,6 8}
C € {whiteKing, ..., blank}

control (P)
P € {white, black}

— DD W B 01 00 N O

E
1

&

d

Feature Representation for Chess (2)

i
Wy

&5

b

A

&\
=4
C

2
i
&
i}

d

8
&
b

&
WA
@

&

canCastle (P, S)

P € {white, black}
S € {kingsSide, queensSide}

enPassant (C)

ce{a,.., h}

— DD W B 01 00 N O

Moves

move (U,V,X,Y)
Uu,Xe{a,.. n}
v, Ye{l,.., 8}

promote (X, Y,P)
X,Ye {a,.., h}
P € {whiteQueen, ...}

Game Description Language GDL

Based on the features and moves of a game, the rules can be
described in formal logic using a few standard predicate symbols

role (P) P is a player
init (F) F holds in the initial position
true (F) F holds in the current position

legal (P, M) | player P has legal move M

does (P,M) | player P does move M

next (F) F holds in the next position

terminal the current position is terminal

goal (P,N) | player P gets reward N in current position

Elements of a Game Description (1)

» Players

» [Initial position | ke

» Moves

Elements of a Game Description (2)

next

» Moves: Update does

true

terminal

» Result

A Complete Formalization of Tic-Tac-Toe (1/3)

role (xplayer) <= legal (P, mark (X,Y)) <=
init(cell(l,1,b)) <= true(control(P))
init(cell(l,2,b)) <=
L legal (xplayer, noop) <=

t 11(1,3,b <=
init{cellf) true (cell(X,Y,b)) A
init(cell(2,1,b)) <= true (control (oplayer))
init(cell(2,2,b)) <=
init(cell(2,3,b)) < legal (oplayer, noop) <=
init(cell(3,1,b)) <= true(cell(X,Y,b)) A
init (cell(3,2,b)) <= true (control (xplayer))
init(cell(3,3,b)) <=
init (control (xplayer)) <=

Rules of Tic-Tac-Toe (2/3)

next (cell(M,N, x)) <= does(xplayer,mark (M, N))
next (cell(M,N,0)) <= does(oplayer,mark (M,N))
next (cell(M,N,W)) <= true(cell(M,N,W)) A
does (P, mark (J,K)) A (-M=J V -N=K)
next (control (xplayer)) <= true(control (oplayer))
next (control (oplayer)) <= true(control (xplayer))

terminal <= line(x) V line(o) V -open

line(W) <= row(M,W) V column(M,W) V diagonal (M, W)
open <= true(cell(M,N, b))

Rules of Tic-Tac-Toe (3/3)

goal (xplayer,100) <= line(x)
goal (xplayer,50) <= =line(x) AN -line(o) AN -open
goal (xplayer, Q) <= line(0)

(

(

(
goal (oplayer,100) <= 1line(0)
goal (oplayer, 50) <= =line(x) AN =line (o) A -open
(

goal (oplayer, 0) <= line(x)

row(M,W) <=
true(cell(M,1,W))Atrue(cell (M, 2,W))Atrue(cell (M, 3,W))
column (N, W) <=
true(cell(1,N,W))Atrue(cell (2,N,W))Atrue(cell (3,N,W))
diagonal (W) <=
true(cell(1l,1,W))Atrue(cell(2,2,W))Atrue(cell (3,3,W))
Vtrue(cell(1l,3,W))Atrue(cell(2,2,W))Atrue(cell (3,1,W))

Properties of GDL

» GDL rules are logic programs, including the use of

negation-as-failure

> Additional, syntactic restrictions ensure that all relevant
derivations are finite

» The language is completely knowledge-free: symbols like
cell and control acquire meaning only through the rules

> To make this clear, GDL descriptions are often obfuscated

For details see [Genesereth, Love & Pell, 2006]

Obfuscated Rules:
How the Computer Sees a Game Description

next (thuis (M, N,een)) <= does(jij,huur (M, N))
next (thuis (M, N, het)) <= does(wij, huur (M, N))

next (fiets(jij)) <= true(fiets(wij))
next (fiets(wij)) <= true(fiets(jij))
terminal <= brommer (een) V brommer (het) V —-keer

brommer (W) <= gaag(M,W) V daag(M,W) V naar (M, W)

a/b

Semantics: Games as State Machines

@43/3 @4 a/b @

a/b a/’a a/’a

b/b »CD a/b @ ab

b/b

a/a

Game Model

A game is a structure with the following components:

R — set of players
S — set of states
A — set of moves

/< RxAx S —the legality relation
u: M x S — S —the update function, for joint moves m: R — A

s, € S —initial game state
[< S —terminal states
g < R x S x N —the goal relation

From the Rules to the Game Model (Example):
Initial Position

A GDL description P encodes

init(cell(l,1,b)) <
init(cell(1l,2,b)) <

init(cell(3,3,b)) <=
init (control (xplayer)) <=

From the Rules to the Game Model:
Legality Relation

Let St :={ true(f) : FES).

legal (P, mark(X,Y)) <= true(cell(X,Y,b)) A
true (control (P))

From the Rules to the Game Model:
Update Function

Let m<=° :={does(r,m(r)) :reR}.

next (cell (M, N, x))<= does (xplayer,mark (M, N))
next (cell (M, N, 0)) <= does (oplayer,mark (M

(
(

next (cell(M,N,W))<= true(cell(M,N,W)) A
does (P,mark (J,K)) A (-M=J V -N=K)

For details see [Schiffel &Thielscher, 2009a]

A Basic Player

w

Actual Game Play

Game description
Time to think: 1,800 sec
Time per move: 45 sec

i i i Your role

Actual Game Play

Start

Actual Game Play

Your move, please

Actual Game Play

Individual moves

Actual Game Play

Joint move

Actual Game Play

End of game

Demo: Bidding Tic-Tac-Toe

Towards Other Description Languages

> The GGP principle can be transferred to other areas

» A General Trading Agent is a system that
- understands the rules of unknown market places
- learns how to participate without human intervention

» A specification language for markets must account for
- Information asymmtery
- asynchronous actions

— Introduce market maker + private message passing

Market Specification Language MDL

trader (A) A is a trader

message (A, M) trader A can send message M
init (F) F holds in the initial state
true (F) F holds in the current state
next (F) F holds in the next state
legal (A) market maker can do action A
does (A) market maker does action 2
receive (A,M) receiving message M from trader A
send (A, M) sending message M to trader A
time (T) T is the current time
terminal the market is closed

For details see [Thielscher & Zhang, 2009]

Example: Sealed-Bid Auction

trader (a_1)<=

trader (a_n)<=
message (A, my_bid(P)) <= trader(A) N P = 0

next (bid (A, P)) <= accept (bid(A,P))

accept (bid(A,P)) <= receive(A,my_bid(P)) A time (1)
bestbid (A, P) <= true(bid(A,P)) AN —-outbid(P)
outbid (P) <= true(bid(A,P1l)) A P1 > P

legal (clearing(A,P)) <= bestbid(A,P) A time(2)

send (A, bid_accepted(P)) <= accept(bid(A,P))

send (A, winner (Al,P)) <= trader (A) N does(clearing(Al,P))

terminal <= time (3)

Reasoning about Game Descriptions

The Value of Knowledge

Knowledge-based players try to extract and prove useful
knowledge about a game from the mere rules

Some examples of potentially useful game-specific knowledge
> The game is strictly turn-based

» Each board cell (X, Y) has a unique contents M

» Markers x and o in Tic-Tac-Toe are permanent

Players systematically search for such properties and use them,
eg. to improve their search or to generate an evaluation function

How to Verity Game-Specific Properties

> One approach is to run a number of random games and
see if the property never gets violated

> More reliable--and often even more efficient--is to
actually prove that the game rules entail the property

> Proof by induction: the property holds initially, and
whenever it is true it also holds after a legal joint move

Induction Proofs: Example

Claim
Fluent control has a unique argument in every reachable position

P:

The claim holds if P implies that
» uniqueness holds init; and

> uniqgueness holds next,
provided it is true (and every player makes a legal move)

Induction Proofs by Answer Set Programming

ASP is an established method to compute models of logic programs.
Efficient off-the-shelf implementations can be used.
Proof by contradiction: claim follows if its negation admits no model.

_ weight atom
admits no answer set; same for

P U

constraint

Another Example

Claim
Every board cell has a unique contents

Let P be the GDL rules for Tic-Tac-Toe.

P U

admits no answer set

Another Example (cont'd)

For the induction step, uniqueness of control must be known!

admits no answer set. For details see [Schiffel &Thielscher, 20090]

General Search Techniques for Games

> Single-player games: iterative deepening, non-uniform,

le. nodes with high estimated values searched deeper

> Transposition tables to store (position,evaluation)-pairs

> Two-player, zero-sum games with alternating moves:

standard minimax with «-B-cutoffs

> Simultaneous moves, non-zero sum, n-player games:

- paranoid search (opponents choose worst move for us)
- computing equilibria (game theory)

Using Knowledge for Search: Symmetry

Symmetries can be logically derived from the rules of a game

A symmetry relation over the elements of a domain is an
equivalence relation such that

» two symmetric states are either both terminal or non-terminal
> If they are terminal, they have the same goal value

> 1If they are non-terminal, the legal moves in each of them are
symmetric and yield symmetric states

Reflectional Symmetry

Connect-3

Rotational Symmetry

@,
D OO
C D

Capture-Go

Using Knowledge for Search: Factoring

Hodgepodge = Chess + Othello

Branching factor: a Branching factor: b

Branching factor as given to players: a- b
Fringe of tree at depth n as given: (a- b)"
Fringe of tree at depth nif factored: &’ + b’

Double Tic-Tac-Toe

X|0O| X X
X10|O

O X O X

O

Branching factor: 81, 64, 49, 36, 25, 16, 9, 4, 1
Branching factor (after factoring): 18, 16, 14, 12, 10, 8, 6, 4, 1

Generating Evaluation Functions

Automatically Generated Evaluation Functions

Besides efficient inference and search algorithms, the ability to
automatically generate a good evaluation function distinguishes

good from bad general game players

Approaches
» General heuristics: Mobility heuristics, Novelty heuristics, ...
» Recognizing structures: boards, pieces, piece values, ...

» Fuzzy Goal Evaluation

Mobility Heuristics

» |dea
More moves means better state

» Advantage
Often, being cornered or forced into making a move is quite bad

- In Chess, having fewer moves means having fewer pieces or

pieces of lower value
- In Othello, having few moves means you have little control of

the board

» Disadvantage
Mobility is bad for some games

Example: Worldcup 2006 Final

. . . Playclock:
. Black
FLUXPLAYER
. . . Last Moves (step 2):
Red Black
. . . noop move(bp.c.c6.des)

Piece Count BLACK: 12 RED: 12

Checkers (on a cylindrical board) with standard “forced capture® rule

Novelty Heuristics

» |dea
Changing the game state is better

» Advantage
- Changing things as much as possible can help avoid getting stuck

- When it is unclear what to do, maybe the best thing is to throw in
some controlled randomness

» Disadvantage
- Game state can also change if you just throw away own pieces

- Unclear if novelty per se actually goes anywhere useful

ldentifying Structures: Domains

> Domains of fluents identified by dependency graph

Identifying Structures: Relations

A successor relation is a binary relation that is antisymmetric,
functional, and injective

Example

An order relation is a binary relation that is antisymmetric and
transitive

Example

Boards and Pieces

An (m-dimensional) board is an n-ary fluent (n = m+1) with
> m arguments whose domains are successor relations
» 1 output argument

Example
cell(a,l,whiterook) A cell(b,1l,whiteknight) A ...

A marker is an element of the domain of a board's output argument
A piece is a marker which is in at most one board cell at a time

Example: Pebbles in Othello, White King in Chess
For details see [Clune, 2007]

Fuzzy Goal Evaluation: Example
1 2 3

Value of intermediate state = Degree to which it satisfies the goal

Full Goal Specification

After Unfolding

3 literals are true after does (x, mark (1,1))
2 literals are true after does (x,mark (1,2))
4 literals are true after does (x, mark (2,2))

Fuzzy Goal Evaluation

» Use t-norms, egq. instances of the Yager family (with parameter q)

T(a,b) =1—-5(1-a,1-b)
S(ab) = (a"q + b"q) " (1/q)

» Evaluation function for formulas

eval(f A g) = T(eval(f),eval(g))
eval(f v g) = S(eval(f),eval(g))
eval(-f) =1 - evalff)

Advanced Fuzzy Goal Evaluation: Example

(3,13)

0e% 0%
%% :%
02¢%: %
%%
%%
B S
owwmme Mmm
%N %

©
=
)
>
e
C
)
-
-
O
O
'
)
&
C
Qv
-
D
2
Il
©
S
)
et
©
@)
O
W -
O
()
)
| -
(@)
)
O
L
-
-
S
T

ldentifying Metrics

= QOrder relations Binary, antisymmetric, functional, injective

» Qrder relations define a metric on functional features

A (cell (green, j,13),cell(green,e,5)) =13

Degree to which f(x,a) is true given that f(x,b)

@oo
%o
0309
o

»
>
.
»
g@‘
©
®
®
»
®
®
»
)
>
»
»
»
>

®
»
®
®
®
®
®
®
®
@®
®

P |—h
0) ~
~ |_\
Ul O
® -
®
%
®_®
®_®
®_®
®_®_®
®_®_®
.8 _®
®_®_®
®_®_®
S _®_®
®_®_®
@_0_®
0_®_®
®_0_"
.... ®
®
®
(G
Ul

) &
0%e®
og0
<

With p=0.9, eval(cell (green, e, 5)) IS
0.082 if true(cell (green, £,10))
0.085 if true(cell (green, j,5))

Assessment

Fuzzy goal evaluation works particularly well for games with

» Independent sub-goals
15-Puzzle

» converge to the goal
Chinese Checkers

» guantitative goal
Othello

» partial goals
Peg Jumping, Chinese Checkers with >2 players

For details see [Schiffel & Thielscher, 2007]

Learning by Simulation

Knowledge-Free General Game Playing:
Monte Carlo Tree Search

horizon

100 0 50

Game Tree Seach VS. MC Tree Search

Monte Carlo Tree Search

Value of move = Average score returned by simulation

Improvement: UCT Search

» Play one random game for each move
> For next simulation choose movewith

logn
n

]

(confidence bound)

argmax ;| v+ Cx

UCT = Upper Confidence bounds applied to Trees

Assessment

UCT Search works particularly well for games which

» reward greedy behavior
» do not require long-term strategies
> have a large branching factor

» are difficult for humans to play

For details see [Finnsson & Bjornsson, 2008]

Demo: An Unstructered Game

Knowledge-Based vs. Simulation-Based (Championship 2008)

Demo: A Structured Game

Simulation-Based vs. Knowledge-Based (Championship 2008)

Summary

The GGP Challenge

Much like RoboCup, General Game Playing
» combines a variety of Al areas
» fosters developmental research
» has great public appeal
» has the potential to significantly advance Al

In contrast to RoboCup, GGP has the advantage to
» focus on high-level intelligence

> have low entry cost

> make a great hands-on course for Al students

A Vision for GGP

Natural Language Understanding
> Rules of a game given in natural language

Computer Vision
> Vision system sees board, pieces, cards, rule book, ...

Robotics
> Robot playing the actual, physical game

Resources

Stanford GGP initiative games.stanford.edu
- GDL specification
- Basic player

GGP in Germany general—-game-playing.de
- Game master

- 24/7 online game playing

- Extensive collection of GGP literature

Palamedes palamedes—-ide.sourceforge.net
- GGP/GDL development tool

Papers

[Clune, 2007]
J. Clune. Heuristic evaluation functions for general game playing.
AAATI 2007

[Finnsson & Bjornsson, 2008]
H. Finnsson, Y. Bjornsson. Simulation-based approach to general game
playing. AAAI 2008

[Genesereth, Love & Pell, 2006]
M. Genesereth, N. Love, B. Pell. General game playing.
Al magazine 26(2), 2006

[Schiffel & Thielscher, 2007]
S. Schiffel, M. Thielscher. Fluxplayer: a successful general game
player. AAAI 2007

[Schiffel & Thielscher, 2009a]
S. Schiffel, M. Thielscher. A multiagent semantics for the Game
Description Language. ICAART 2009.

[Schiffel & Thielscher, 2009Db]
S. Schiffel, M. Thielscher. Automated theorem proving for general game
playing. IJCAI 2009.

[Thielscher & Zhang, 2009]
M. Thielscher, D. Zhang. From GDL to a market specification language
for general trading agents. GIGA 2009.

